Splitting a Hybrid ASP Program

Alex Brik
Google Inc., USA

Hybrid Answer Set Programming (Hybrid ASP) is an extension of Answer Set Programming (ASP) that allows ASP-like rules to interact with outside sources. The Splitting Set Theorem is an important and extensively used result for ASP. The paper introduces the Splitting Set Theorem for Hybrid ASP, which is for Hybrid ASP the equivalent of the Splitting Set Theorem, and shows how it can be applied to simplify computing answer sets for Hybrid ASP programs most relevant for practical applications.

An important result for logic programs is the Splitting Set Theorem [12], which shows how computing an answer set for a program can be broken into several tasks of the same kind for smaller programs. The theorem and its more general variant the Splitting Sequence Theorem are extensively used for proving other theorems, for instance in [1], [9] or [3] among many others. Hybrid Answer Set Programming (Hybrid ASP) [4] is an extension of ASP that allows ASP-like rules to interact with outside sources, which makes Hybrid ASP well suited for practical applications. For instance, recently Hybrid ASP has been used in a system for diagnosing failures of data processing pipelines at Google Inc [8]. The theory of Hybrid ASP, however is not extensively developed. This paper introduces the Splitting Set Theorem for Hybrid ASP and the Splitting Sequence Theorem for Hybrid ASP, which are the equivalents for Hybrid ASP of the similarly named results for ASP, thus making a small step towards developing the theory of Hybrid ASP. The author hopes that the new theorems will have many future applications, in the way analogous to the original Splitting Set Theorem and Splitting Sequence Theorem. The potential of the new theorems to be useful in the future, and the significance of the new results is demonstrated by using them to simplify computation of answer sets for the types of Hybrid ASP programs most relevant for practical applications, i.e. those applications that have answer sets with states having times of the form $k \cdot \Delta t$, such as the programs that result from translating descriptions in action languages Hybrid AL [7] and Hybrid ALE [2], or such as the programs used in other applications of Hybrid ASP [6], [5].

The paper is structured as follows. The first section reviews ASP, The Splitting Set Theorem and Hybrid ASP. The paper then presents The Splitting Set Theorem for Hybrid ASP and The Splitting Sequence Theorem for Hybrid ASP. The following section presents an algorithm that simplifies computing answer sets for Hybrid ASP. Finally a short conclusion follows.

1 Review of the Splitting Set Theorem and Hybrid ASP

We will begin with a brief review of ASP. Let At be a nonempty set of symbols called atoms. A block is an expression of the form

$$b_1, ..., b_k, \ not \ b_{k+1}, ..., \ not \ b_{k+m}$$

(1)

where $b_1, ..., b_{k+m}$ are atoms. For a block B as above, let the set of atoms of B be defined as $At\ (B) \equiv \{b_1, ..., b_{k+m}\}$. $B^+ \equiv b_1, ..., b_k$ is called the positive part of B, and $B^- \equiv not \ b_{k+1}, ..., not \ b_{k+m}$ is called the negative part of B. A set operation applied to a block B will indicate the same set operation applied to $At\ (B)$ with the block being reconstructed from the result of the set operation. For instance $b_1, b_2, not \ b_3, b_4 \ \setminus \ \{b_1, b_4\}$ will indicate a block $b_2, not \ b_3$.

© A. Brik
This work is licensed under the Creative Commons Attribution License.
A normal propositional logic programming rule is an expression of the form
\[r \equiv a : -B \]
(2)

where \(a \) is an atom and \(B \) is a block. We define the head of \(r \) as \(\text{head}(r) \equiv a \), and we define the body of \(r \) as \(\text{body}(r) \equiv B \). We define \(\text{At}(r) \equiv \{a\} \cup \text{At}(B) \).

Given any set \(M \subseteq \text{At} \) and a block \(B \), we say that \(M \) satisfies \(B \), written \(M \models B \), if \(\text{At}(B^+) \subseteq M \) and \(\text{At}(B^-) \cap M = \emptyset \). For a rule \(r \), we say that \(M \) satisfies \(r \), written \(M \models r \), if whenever \(M \) satisfies the body of \(r \), then \(M \) satisfies the head of \(r \). A normal logic program \(P \) is a set of rules. We say that \(M \subseteq \text{At} \) is a model of \(P \), written \(M \models P \), if \(M \) satisfies every rule of \(P \).

A Horn rule is the rule with the empty negative part. A Horn program \(P \) is a set of Horn rules. Each Horn program \(P \) has a least model under inclusion, \(\text{LM}_P \), which can be defined using the one-step provability operator \(T[P] \) as follows. For any set \(A \), let \(\mathcal{P}(A) \) denote the set of all subsets of \(A \). The one-step provability operator \(T[P] : \mathcal{P}(\text{At}) \to \mathcal{P}(\text{At}) \) associated with the Horn program \(P \) is defined by setting
\[T[P](M) = M \cup \{a \in P \mid a = \text{head}(r) \land M \models \text{body}(r)\} \]
for any \(M \in \mathcal{P}(\text{At}) \). We define \(T[P]_M(M) \) by induction by setting \(T[P]^0(M) = M \), \(T[P]^1(M) = T[P](M) \) and \(T[P]^{n+1}(M) = T[P](T[P]^n(M)) \). Then the least model \(\text{LM}_P \) can be computed as \(\text{LM}_P = \bigcup_{n \geq 0} T[P]_M(\emptyset) \).

If \(P \) is a normal logic program and \(M \subseteq \text{At} \), then the Gelfond-Lifschitz (GL) reduct of \(P \) with respect to \(M \) is the Horn program \(P^M \) which results by eliminating those rules \(r \) such that \(M \not\models \text{body}(r)^- \) and replacing other rules \(r \) by \(\text{head}(r) : -\text{body}(r)^+ \). We then say that \(M \) is a stable model for \(P \) if \(M \) equals the least model of \(P^M \).

An answer set programming rule is an expression of the form (2) where \(a, b_1, \ldots, b_{k+1} \) are classical literals, i.e., either positive atoms or atoms preceded by the classical negation sign \(\neg \). The set of literals of \(\text{At} \) will be denoted \(\text{Lit}_{\text{At}} \). Answer sets are defined in analogy to stable models, but taking into account that atoms may be preceded by classical negation and that atoms \(a \) and classically negated atoms \(\neg a \) are mutually exclusive in answer sets.

We will now follow [12] in review of the Splitting Set Theorem and the Splitting Sequence Theorem. A splitting set for a program \(P \) is any set \(U \subseteq \text{At} \) such that for every rule \(r \in P \) if \(\text{head}(r) \in U \) then \(\text{At}(r) \subseteq U \). The set of rules \(r \in P \) such that \(\text{At}(r) \subseteq U \) is called the bottom of \(P \) relative to the splitting set \(U \) and is denoted by \(b_U(P) \). The set \(P \setminus b_U(P) \) is the top of \(P \) relative to \(U \).

Consider \(X \subseteq \text{At} \). For each rule \(r \in P \) such that \(\text{At}(\text{body}(r)^+) \cap U \subseteq X \) and \(\text{At}(\text{body}(r)^-) \cap U \cap X = \emptyset \) take the rule \(r' \) defined by
\[\text{head}(r) : -\text{body}(r) \setminus U \]

The program consisting of all rules \(r' \) obtained in this way will be denoted by \(\varepsilon_U(P,X) \).

A solution to \(P \) with respect to \(U \) is a pair \((X,Y)\) of sets of literals such that
- \(X \) is an answer set for \(b_U(P) \)
- \(Y \) is an answer set for \(\varepsilon_U(P \setminus b_U(P), X) \)
- \(X \cup Y \) is consistent (a set is consistent if for any atom \(a \) it does not contain both \(a \) and classically negated atom \(\neg a \))
Splitting Set Theorem. Let U be a splitting set for a program P. A set A of literals is a consistent answer set for P if and only if $A = X \cup Y$ for some solution (X, Y) to P with respect to U.

We will now review extending the definition of a splitting set to a splitting sequence. A sequence is a family whose index set is an initial segment of ordinals, $\{ \alpha : \alpha < \mu \}$. The ordinal μ is the length of the sequence. A sequence $(U_\alpha)_{\alpha < \mu}$ of sets is monotone if $U_\alpha \subseteq U_\beta$ whenever $\alpha < \beta$, and continuous if, for each limit ordinal $\alpha < \mu$, $U_\alpha = \bigcup_{\beta < \alpha} U_\beta$.

A splitting sequence for a program P is a monotone, continuous sequence $(U_\alpha)_{\alpha < \mu}$ of splitting sets for P such that $\bigcup_{\alpha < \mu} U_\alpha = \text{Lit}_P$. The definition of a solution with respect to a splitting set is extended to splitting sequence as follows. A solution to P with respect to $(U_\alpha)_{\alpha < \mu}$ is a sequence $(X_\alpha)_{\alpha < \mu}$ of sets of literals such that

- X_0 is an answer set for $b_{U_0}(P)$,
- for any α such that $\alpha + 1 < \mu$, $X_{\alpha+1}$ is an answer set for $e_{U_{\alpha}}(b_{U_{\alpha+1}}(P) \setminus b_{U_{\alpha}}(P) \cup X_\beta)$,
- for any limit ordinal $\alpha < \mu$, $X_\alpha = \emptyset$,
- $\bigcup_{\alpha < \mu} X_\alpha$ is consistent.

Splitting Sequence Theorem. Let $U \equiv (U_\alpha)_{\alpha < \mu}$ be a splitting sequence for a program P. A set A of literals is a consistent answer set for P if and only if $A = \bigcup_{\alpha < \mu} X_\alpha$ for some solution $(X_\alpha)_{\alpha < \mu}$ to P with respect to U.

We will now proceed with the review of Hybrid ASP. A Hybrid ASP program P has an underlying parameter space S. Elements of S are of the form $p = (t, x_1, \ldots, x_l)$ where t is time and x_i are arbitrary parameter values. We shall let $t(p)$ denote t and $x_i(p)$ denote x_i for $i = 1, \ldots, l$. We refer to the elements of S as generalized positions. Let A be a set of atoms of P. Then the universe of P is $A \times S$. Let B be a block. We will define

$$B \times p \equiv \{(x, p) : x \in B\}.$$

If $M \subseteq A \times S$, we let $GP(M) = \{ p \in S : (\exists a \in A)((a, p) \in M) \}$. Given an initial condition, defined as a subset $I \subseteq S$ let $GP_I(M) = GP(M) \cup I$. Given $M \subseteq A \times S$ and $p \in S$, we say that M and initial condition I satisfy a block B of the form (1) at the generalized position p, written $M \models_I (B, p)$, if the following holds:

- if $B^+ \neq \emptyset$ then $B^+ \times p \subseteq M$ and $B^- \times p \cap M = \emptyset$
- if $B^- = \emptyset$ then $B^- \times p \cap M = \emptyset$ and $p \in GP_I(M)$.

We say that M satisfies an N-tuple of blocks written as $B_1; \ldots; B_n$ with the initial condition I at the N-tuple of generalized positions (p_1, \ldots, p_n), written $M \models_I (B_1; \ldots; B_n, (p_1, \ldots, p_n))$, if $M \models_I (B_i, p_i)$ for $i = 1, \ldots, n$.

There are two types of rules in Hybrid ASP. Advancing rules are of the form

$$r \equiv a : \neg B_1; B_2; \ldots; B_n : A, O$$

(3)
where \(A \) is a function returning a set of generalized positions, \(\text{body} (r) \equiv B_1, \ldots, B_n \) are blocks, \(\text{head} (r) \equiv a \) is a literal, and \(O \) is a subset of \(S^i \) such that if \((p_1, \ldots, p_n) \in O \), then \(t(p_1) < \cdots < t(p_n) \) and \(A (p_1, \ldots, p_n) \) (A applied to \(p_1, \ldots, p_n \)) is a subset of \(S \) such that for all \(q \in A (p_1, \ldots, p_n) \), \(t(q) > t(p_n) \). Here and in the next rule, we allow blocks to be empty for any \(i \). \(O \) is called the constraint set of the rule \(r \) and will be denoted by \(\text{CS}(r) \). \(A \) is called the advancing algorithm of the rule \(r \) and is denoted by \(\text{Adv}(r) \). The arity of rule \(r \), \(N(r) \), is equal to \(n \).

The idea is that if \((p_1, \ldots, p_n) \in O \) and for each \(i \), \(B_i \) is satisfied at the generalized position \(p_i \), then the function \(A \) can be applied to \((p_1, \ldots, p_n) \) to produce a set of generalized positions \(O' \) such that if \(q \in O' \), then \(t(q) > t(p_n) \) and \((a,q) \) holds. Thus advancing rules are like input-output devices in that the function \(A \) allows the user to derive possible successor generalized positions as well as certain atoms \(a \) which are to hold at such positions. The advancing algorithm \(A \) can access outside sources quite arbitrarily in that it may involve functions for solving differential or integral equations, solving a set of linear equations or linear programming equations, solving an optimization problem, etc. (as for example in [5]).

Stationary rules are of the form

\[
\begin{align*}
r &\equiv a : -B_1; B_2; \ldots; B_n : H, O \\
\end{align*}
\]

where \(\text{body} (r) \equiv B_1, \ldots, B_n \) are blocks, \(\text{head} (r) \equiv a \) is a literal, \(H \) is called a boolean algorithm of the rule \(r \) and will be denoted by \(\text{Bool}(r) \), and \(O \subseteq S^k \) is the constraint set of the rule \(r \) denoted \(\text{CS}(r) \). A boolean algorithm is a function returning either true or false. We will sometimes treat a boolean algorithm of the rule as a set. For instance \(H \cap O \) will indicate all the \(n \)-tuples of generalized positions \((p_1, \ldots, p_n) \) such that \(H (p_1, \ldots, p_n) \) is true and \((p_1, \ldots, p_n) \in O \). The arity of rule \(r \), \(N(r) \), is equal to \(n \).

Stationary rules are much like normal logic programming rules in that they allow us to derive new atoms at a given generalized position \(p_n \). The idea is that if \((p_1, \ldots, p_n) \in O \cap H \) and for each \(i \), \(B_i \) is satisfied at the generalized position \(p_i \), then \((a,p_n) \) holds. The difference is that a derivation with our stationary rules can depend on what happens in the multiple past time points and the boolean algorithm \(H \) can be any sort of a function which returns either true or false.

For an advancing rule or a stationary rule \(r \) as above we define the positive part of the body of \(r \), denoted \(\text{body}(r)^+ \equiv B_1^+; \ldots; B_n^+ \) and we define the negative part of the body of \(r \), denoted \(\text{body}(r)^- \equiv B_1^-; \ldots; B_n^- \). For the rest of the paper, we denote by \(n \) the arity of a hybrid ASP rule when the rule is clear from the context.

A Hybrid ASP program \(P \) is a collection of Hybrid ASP advancing and stationary rules. To define the notion of a stable model of \(P \), we first must define the notion of a Hybrid ASP Horn program and the one-step provability operator for Hybrid ASP Horn programs.

A Hybrid ASP Horn program is a Hybrid ASP program which does not contain any negated atoms.

Let \(P \) be a Horn Hybrid ASP program and \(I \subseteq S \) be an initial condition. Then the one-step provability operator \(T [P, I] \) is defined so that given \(M \subseteq At \times S \), \(T [P, I] (M) \) consists of \(M \) together with the set of all \((a,J) \in At \times S \) such that

1. there exists a stationary rule \(r \) and \((p_1, \ldots, p_n) \in \text{CS}(r) \cap \text{Bool}(r) \cap (GP_I (M))^n \) such that \((\text{head}(r),J) = (a,p_n) \) and \(M \models (\text{body}(r), (p_1, \ldots, p_n)) \) or

2. there exists an advancing rule \(r \) and \((p_1, \ldots, p_n) \in \text{CS}(r) \cap (GP_I (M))^n \) such that \(J \in \text{Adv}(r) \) \((p_1, \ldots, p_n) \) and \(M \models (\text{body}(r), (p_1, \ldots, p_n)) \) and \(a = \text{head}(r) \).

The stable model semantics for Hybrid ASP programs is defined as follows. Let \(M \subseteq At \times S \) and \(I \) be an initial condition in \(S \). An Hybrid ASP rule \(r \equiv a : -B_1; \ldots, B_n : A \) is inapplicable for \((M, I) \) if for all
(p₁, ..., pₙ) ∈ O ∩ (GPₙ(M))ⁿ, either (i) there is an i such that M ⊬ (Bᵢ⁻, pᵢ), (ii) A(p₁, ..., pₙ) ∩ GPₙ(M) = ∅ if A is an advancing algorithm, or (iii) A(p₁, ..., pₙ) = 0 if A is a boolean algorithm.

If r is not inapplicable for (M, I) then we define the GL reduct of r over M and I, denoted by r⁰, as follows:

1. If r is an advancing rule r ≡ a : −B₁; ...; Bₙ : O, A then r⁰ ≡ B₁⁺; ...; Bₙ⁺ : A, O where A and O are defined in analogy to stable models, but taking into account that atoms may be preceded by classical negation and that (a, p) and (−a, p) are mutually exclusive in answer sets.

We then say that M is a stable model of P with initial condition I if ∪ₖ=0 T [Pₜₙ,M, I]ⁿ (∅) = M.

Answer sets are defined in analogy to stable models, but taking into account that atoms may be preceded by classical negation and that (a, p) and (−a, p) are mutually exclusive in answer sets.

2 The Splitting Set Theorem for Hybrid ASP

We will now introduce additional notation that will be used throughout the rest of the paper.

Without loss of generality assume that all advancing rules are of the form

\[a : −B₁; ...; Bₙ : O, A \]

and all of stationary rules are of the form

\[a : −B₁; ...; Bₙ : O, H \]

where a is a literal, B₁, ..., Bₙ are blocks, O is a constraint set, A is an advancing algorithm, and H is a boolean algorithm.

Let M be a set of literals and generalized position pairs, and let p be a generalized position. Define

\[M|_p \equiv \{(a, q) ∈ M : q = p\} \]

\[At(M) \equiv \{a : (a, p) ∈ M\} \]

Let U ⊆ Litᵢ × S. We say that U is a splitting set of P with initial condition (w.i.c.) J if for all r ∈ P

1. if r is advancing and (p₁, ..., pₙ) ∈ CS(r) and p ∈ Adv(r)(p₁, ..., pₙ) and (a, p) ∈ U then both for i = 1, ..., n, Bᵢ × pᵢ ⊆ U and \{p₁, ..., pₙ\} ⊆ GPₙ(U).
2. if \(r \) is stationary and \((p_1, \ldots, p_n) \in CS(r) \) and \((a, p_n) \in U \) then both for \(i = 1, \ldots, n, \) \(B_i \times p_i \subseteq U \) and \(\{p_1, \ldots, p_n\} \subseteq GP_{\bar{P}}(U) \).

As in the case of the original splitting set theorem [12] the splitting set \(U \) acts to split Hybrid ASP program \(P \) into the part that can derive \(U \) or one of its subsets, and the remaining part of \(P \), which can derive \(At \times S \setminus U \) or one of its subsets. The difference, however, is that for a given rule the conclusion of the rule may be in \(U \) for some \(n \)-tuples of generalized positions \((p_1, \ldots, p_n) \) and not for others. So, the splitting set splits not only the program, but the rules themselves. This will be elaborated below.

As in the case of the original splitting set theorem we identify by \(b_U(P) \) a set of new rules that capture the rules and generalized positions that may contribute to generating \(U \).

Define \(Rules_b(U, P) \) as

\[
\{ r \in P : \text{if } r \text{ is advancing and there exists } (p_1, \ldots, p_n) \in CS(r) \text{ and } p \in Adv(r)(p_1, \ldots, p_n) \text{ such that } (a, p) \in U \\
\text{if } r \text{ is stationary and there exists } (p_1, \ldots, p_n) \in CS(r) \cap Bool(r) \text{ such that } (a, p_n) \in U \}
\]

In other words, \(Rules_b(U, P) \) is the set of all rules of \(P \) that could contribute to \(U \) for some tuple of generalized positions.

For an advancing rule \(r \) let

\[
CS_b(U, r) \equiv \{ (p_1, \ldots, p_n) \in CS(r) : \text{there exists } p \in Adv(r)(p_1, \ldots, p_n) \text{ such that } (a, p) \in U \}
\]

For a stationary rule \(r \) let

\[
CS_b(U, r) \equiv \{ (p_1, \ldots, p_n) \in CS(r) \cap Bool(r) : (a, p_n) \in U \}
\]

That is \(CS_b(U, r) \) are all the generalized position tuples for which \(r \) could contribute to \(U \).

For an advancing rule \(r \in Rules_b(U, P) \) define \(Adv_b(U, r) \) by

\[
Adv_b(U, r)(p_1, \ldots, p_n) \equiv \{ p : p \in Adv(r)(p_1, \ldots, p_n) \text{ such that } (a, p) \in U \text{ if } (p_1, \ldots, p_n) \in CS_b(U, r) \}
\]

\(Adv_b(U, r) \) is an advancing algorithm that for any tuple of generalized positions will only generate those \(p \) that contribute to \(U \).

For an advancing rule \(r \) let

\[
b_U(r) \equiv head(r) : -body(r) : CS_b(U, r), Adv_b(U, r)
\]

For a stationary rule \(r \) let

\[
b_U(r) \equiv head(r) : -body(r) : CS_b(U, r), Bool(r)
\]

Define the \textit{bottom} of \(P \) with respect to \(U \), \(b_U(P) \) as

\[
b_U(P) \equiv \{ b_U(r) : r \in Rules_b(U, P) \}
\]
The idea is that just like in [12], $b_U (P)$ forms only those rules that could contribute to U, and so X will be an answer set of $b_U (P)$ w.i.c. J iff $M \cap U = X$ for some answer set M of P w.i.c. J.

We will now proceed to define $\varepsilon_U (P, X)$ with the understanding that the same rule may contribute to U for some generalized position tuples and contribute to $Lit_A \times S \setminus U$ for others.

First, we need to identify remainder $Rem (U, P)$ of $Rules_b (U, P)$ not captured by $b_U (P)$. That is, we need to identify the parts contributing to the complement of U of those rules that have other parts contributing to U. This is due to an important difference between Hybrid ASP and ASP. In ASP a rule acts more like a collection of rules contributing a single conclusion. Thus if ASP rule contributes to the splitting set then it must be in the bottom of the program. In Hybrid ASP, however, a rule acts more like a collection of rules contributing different conclusions for different generalized position tuples. Consequently, the parts of the rules that contribute to the complement of the splitting set need to be separated from those that contribute to the splitting set itself. We will now proceed with the definition.

For an advancing rule r define

$$CS_{Rem} (U, r) \equiv \{ (p_1, \ldots, p_n) \in CS (r): \text{there exists } p \in Adv (r) (p_1, \ldots, p_n) (a, p) \notin U \}$$

For a stationary r define

$$CS_{Rem} (U, r) \equiv \{ (p_1, \ldots, p_n) \in CS (r) \cap Bool (r): (a, p_n) \notin U \}$$

That is, $CS_{Rem} (U, r)$ contains those generalized position tuples such that for them the rule r contributes to the complement of U.

For an advancing rule $r \in Rules_b (U, P)$ and (p_1, \ldots, p_n) define

$$Adv_{Rem} (U, r) (p_1, \ldots, p_n) \equiv \begin{cases} \{ p : p \in Adv (r) (p_1, \ldots, p_n) \text{ s.t. } (a, p) \notin U \} & \text{if } (p_1, \ldots, p_n) \in CS_{Rem} (U, r) \\ \emptyset & \text{if } (p_1, \ldots, p_n) \notin CS_{Rem} (U, r) \end{cases}$$

That is $Adv_{Rem} (U, r)$ is a restriction of $Adv (r)$ to those generalized positions such that for them r contributes to the complement of U.

When $CS_{Rem} (U, r) \neq \emptyset$ define

$$Rem (U, r) \equiv \begin{cases} head (r) : - body (r) : CS_{Rem} (U, r), Adv_{Rem} (U, r) & \text{if } r \text{ is advancing} \\ head (r) : - body (r) : CS_{Rem} (U, r), Bool (r) & \text{if } r \text{ is stationary} \end{cases}$$

In other words, $Rem (U, r)$ is the part of r that contributes to the complement of U.

Define

$$Rem (U, P) \equiv \{ Rem (U, r) : r \in Rules_b (U, P) \text{ and } CS_{Rem} (U, r) \neq \emptyset \}$$

That is $Rem (U, P)$ contain those parts of the rules in $Rules_b (U, P)$ that contribute to the complement of U.

Let $X \subseteq U$. For a rule r define

$$CS_e (U, r, X) \equiv \{ (p_1, \ldots, p_n) \in CS (r) :$$

$$(p_1, \ldots, p_n) \in Adv (r) (p_1, \ldots, p_n) (a, p) \notin U \}$$
for \(i = 1, \ldots, n \{ B_i^+ \times p_i \} \cap U \subseteq X \) and \(\{ B_i^- \times p_i \} \cap X = \emptyset \}

That is, \(CS_e(U, r, X) \) is the set of those generalized position tuples such that for them the "projection" of \(body(r) \) onto \(U \) is satisfied by \(X \).

Finally

\[
e_U(P, X) \equiv \{ r' \equiv a : B_1 \backslash \text{At}(U|p_1); \ldots; B_n \backslash \text{At}(U|p_n): \{ (p_1, \ldots, p_n) \}, Q | r \equiv a : B_1; \ldots; B_n : O, Q \in \{ r \in P : CS(e_U, r, X) \neq \emptyset \} \}
\]

In other words, for every rule \(r \in P \) such that \(CS(e_U, r, X) \neq \emptyset \) and for every \((p_1, \ldots, p_n) \in CS_e(U, r, X) \) where the "projection" of \(body(r) \) onto \(U \) is satisfied by \(X \) at \((p_1, \ldots, p_n) \), we add to \(e_U(P, X) \) a rule \(r' \), which is a part of rule \(r \) that will be active only for that \((p_1, \ldots, p_n) \) with the "projection" part removed.

Theorem 1. *(The Splitting Set Theorem for Hybrid ASP).* Let \(P \) be a Hybrid ASP program over \(\text{Lit}_{At} \times S \). Let \(U \subseteq \text{Lit}_{At} \times S \) be a splitting set of \(P \) w.i.c. \(J \subseteq S \). A set \(M \) is an answer set of \(P \) w.i.c. \(J \) iff \(X \equiv M \cap U \) is an answer set of \(b_U(P) \) w.i.c. \(J \) and \(M \backslash U \) is an answer set of \(e_U(P \backslash \text{Rules}_b(U, P) \cup \text{Rem}(U, P), X) \) w.i.c. \(GP_J(X) \).

Sketch of a proof. We first prove that if \(M \) is an answer set of \(P \) w.i.c. \(J \) then \(X \equiv M \cap U \) is an answer set of \(b_U(P) \) w.i.c. \(J \). That is, we want to show that \(X = \bigcup_{k=0}^{\infty} T \left[b_U(P)^{X,J} \right]^k(\emptyset) \). In \(\supseteq \) direction we show by induction on \(k \) in one-step provability operator \(T \left[b_U(P)^{X,J} \right]^k \) that if a rule \(b_U(r)^{X,J} \) in \(b_U(P)^{X,J} \) derives \((a, p) \) in \(T \left[b_U(P)^{X,J} \right]^{k+1}(\emptyset) \), then the rule \(r^{M,J} \) must derive \((a, p) \) in \(T \left[P^{M,J}, J \right]^{m+1}(\emptyset) \) for some \(m \).

In \(\subseteq \) direction we show by induction on \(k \) in \(T \left[P^{M,J}, J \right]^k(\emptyset) \) that if \(r^{M,J} \) derives \((a, p) \) in \(T \left[P^{M,J}, J \right]^{k+1}(\emptyset) \) where \((a, p) \in U \), then \(b_U(r)^{X,J} \) derives \((a, p) \) in \(T \left[b_U(P)^{X,J} \right]^{m+1}(\emptyset) \) for some \(m \).

We then proceed to prove that if \(M \) is an answer set of \(P \) w.i.c. \(J \), and \(Y \equiv M \backslash U \) then \(Y \) is an answer set of \(Q \equiv e_U(P \backslash \text{Rules}_b(U, P) \cup \text{Rem}(U, P), X) \) w.i.c. \(L \equiv GP_J(X) \). That is, we want to show that \(Y = \bigcup_{k=0}^{\infty} T \left[Q^{Y,L}, L \right]^k(\emptyset) \). In \(\supseteq \) direction we prove by induction that if \(r^{Y,L} \) derives \((a, p) \) in \(T \left[Q^{Y,L}, L \right]^{k+1}(\emptyset) \) then there is a corresponding rule \(q^{M,J} \) in \(P^{M,J} \) that derives \((a, p) \) in \(T \left[P^{M,J}, J \right]^{m+1}(\emptyset) \) for some \(m \). In \(\subseteq \) direction we prove by induction on \(k \) in \(T \left[P^{M,J}, J \right]^k(\emptyset) \) that if \(q^{M,J} \) derives \((a, p) \) in \(T \left[P^{M,J}, J \right]^{k+1}(\emptyset) \) where \((a, p) \in M \backslash U \) there is a corresponding \(r \) in \(Q^{Y,L} \) that derives \((a, p) \) in \(T \left[Q^{Y,L}, L \right]^{m+1}(\emptyset) \) for some \(m \).

To finish the proof we need to show that if \(X \subseteq U \) is an answer set of \(b_U(P) \) w.i.c. \(J \) and \(Y \subseteq U^c \) is an answer set of \(Q \) w.i.c. \(L \) then \(M \equiv X \cup Y \) is an answer set of \(P \) w.i.c. \(J \). That is we want to show that \(M = \bigcup_{k=0}^{\infty} T \left[P^{M,J}, J \right]^k(\emptyset) \). We do so by induction in both directions in a manner similar to the previous part of the proof. \(\square \)

Similar to the Splitting Sequence Theorem of \cite{12} we also prove the Splitting Sequence Theorem for Hybrid ASP.
Theorem 2. (The Splitting Sequence Theorem for Hybrid ASP). Let \((U_\alpha)_{\alpha<\mu}\) be a monotone continuous sequence of splitting sets for a Hybrid ASP program \(P\) over \(At \times S\) w.i.c. \(J \subseteq S\), and \(\bigcup_{\alpha<\mu} U_\alpha = \text{Lit}_At \times S\). \(M\) is an answer set of \(P\) w.i.c. \(J\) iff \(M = \bigcup_{\alpha<\mu} X_\alpha\) for a sequence \((X_\alpha)_{\alpha<\mu}\) s.t.

- \(X_0\) is an answer set of \(b_{U_0}(P)\) w.i.c. \(J\)
- for any \(\alpha\) such that \(\alpha+1<\mu\) \(X_{\alpha+1}\) is an answer set for \(\varepsilon_{U_\alpha}(b_{U_{\alpha+1}}(P) \setminus \text{Rules}_b(U_\alpha, b_{U_{\alpha+1}}(P))) \cup \text{Rem}(U_\alpha, b_{U_{\alpha+1}}(P))\), \(\bigcup_{\beta<\alpha} X_\beta\) w.i.c. \(L_\alpha \equiv GP_{\mu}(\bigcup_{\beta<\alpha} X_\beta)\) and \(X_{\alpha+1} = M \cap (U_{\alpha+1}\setminus U_\alpha)\) and \(\bigcup_{\beta<\alpha} X_\beta\) is an answer set of \(b_{U_\alpha}(P)\) w.i.c. \(J\).

The proof proceeds by the induction on \(\alpha\) and is a direct application of The Splitting Set Theorem for Hybrid ASP.

In the Splitting Sequence Theorem for Hybrid ASP, \(b_{U_{\alpha+1}}(P)\) is a program that derives \(\bigcup_{\beta<\alpha+1} X_\beta\) as its answer set w.i.c. \(J\). Now, \(\bigcup_{\beta<\alpha+1} X_\beta \subseteq \bigcup_{\beta<\alpha+1} U_\beta\). So, to derive \(X_{\alpha+1}\) (i.e. the subset of \(\bigcup_{\beta<\alpha+1} X_\beta\) that is in \(U_{\alpha+1}\setminus U_\alpha\)) we need to remove from \(b_{U_{\alpha+1}}(P)\) the rules that derive \(\bigcup_{\beta<\alpha+1} X_\beta\). That is accomplished by subtracting from \(b_{U_{\alpha+1}}(P)\) the rules \(\text{Rules}_b(U_\alpha, b_{U_{\alpha+1}}(P))\). Nevertheless, this subtracts too much as some of the rules in \(\text{Rules}_b(U_\alpha, b_{U_{\alpha+1}}(P))\) contribute to \(X_{\alpha+1}\) for some generalized position tuples. The parts of those rules that contribute to \(X_{\alpha+1}\) are \(\text{Rem}(U_\alpha, b_{U_{\alpha+1}}(P))\), which we then add back. Applying \(\varepsilon_{U_\alpha}\) operator to the resulting program (i.e. \(b_{U_{\alpha+1}}(P) \setminus \text{Rules}_b(U_\alpha, b_{U_{\alpha+1}}(P)) \cup \text{Rem}(U_\alpha, b_{U_{\alpha+1}}(P)))\) then removes the "useless" part of the rules with respect to \(\bigcup_{\beta<\alpha} X_\beta\).

3 An Application: Computing Answer Sets of Hybrid ASP Programs

One of the applications of the Splitting Sequence Theorem for Hybrid ASP is proving the correctness of a certain algorithm for computing answer sets of certain types of Hybrid ASP programs. We will consider only the programs where the set of generalized positions \(S\) is such that if \(p \in S\) then \(t(p) = k \cdot \Delta t\) where \(k \in \mathbb{N}\), and for any advancing rule \(r\) of any arity \(n\), for any \((p_1, ..., p_n) \in S^n\) we have that for all \(q \in \text{Adv}(r)(p_1, ..., p_n)\), \(t(q) = t(p_n) + \Delta t\). That is, these are the programs with generalized positions with discrete times of the form \(k\Delta t\), and whenever an advancing algorithm produces a new generalized position, that generalized position has time larger by \(\Delta t\) than the largest time in the input arguments. All applications of Hybrid ASP known to the author are restricted to such programs. This is the case for using Hybrid ASP to diagnose failure of data processing pipelines, as described in [2] and [8]. It is the case for the Hybrid ASP programs that are the result of translation from action languages Hybrid AL [7] and Hybrid ALE [2]. It is also the case for using Hybrid ASP to compute optimal finite horizon policies in dynamic domains [5].

The algorithm.

We will first describe the algorithm informally. We will use some of the new notation which will be defined further below. The algorithm is based on the observation that in Hybrid ASP the facts in
the "future" cannot affect the facts in the "past". That is for any two generalized position \(p \) and \(q \), if \(t(p) < t(q) \) then the state at \(q \) cannot be used to derive the state at \(p \) (but the state at \(p \) can be used to derive the state at \(q \)). Consequently, it should be possible to first derive the states at some minimal time \(t_{\min} \), then derive the states at the time \(t_{\min} + \Delta t \), then derive the states at time \(t_{\min} + 2\Delta t \) and so on.

Without the loss of generality, we will assume that for any initial condition \(J \subseteq S \), there exists \(p \in J \) such that \(t(p) = 0 \). Let \(P \) be a Hybrid ASP program over \(Lit_A \times S \). Let \(J \subseteq S \) be an initial condition. The algorithm will be defined inductively. Suppose the set \(N \) of all the (literal, generalized position) pairs for the generalized positions with time up to \(k \cdot \Delta t \) is derived by the algorithm for some \(k \). The algorithm will first identify all the advancing rules \(Rules_{Adv}(P,N,k\Delta t) \) that could derive generalized positions with time \((k+1)\cdot \Delta t \). These are the advancing rules \(r \) such that \(N \) satisfies their body for some \((p_1, \ldots, p_n) \in CS(r) \), where \(n = \text{arity}(r) \) and the time of \(p_n \) is \(k \cdot \Delta t \). The set of the "next" generalized positions (i.e. the set of generalized positions with time \((k+1)\cdot \Delta t \)) is derived by choosing a subset of the set of all the generalized positions derived by these rules. To formally define such a choice of a subset we introduce a concept of an advancing selector \(F \), which is a function s.t. for \(M \subseteq Lit_A \times S \) and \(Z \subseteq S \), \(F(M,Z) \) is a subset of \(Z \).

We will denote the set of "next" generalized positions derived in this manner by \(NextGP(P,F,N,k\Delta t) \).

Now, for every "next" generalized position \(q \) in \(NextGP(P,F,N,k\Delta t) \) derived by an advancing rule \(r \in Rules_{Adv}(P,N,k\Delta t) \), it must be that \(\text{(head}(r), q) \) is derived. So, for every \(q \) there is a set of literals that will be derived at \(q \) by the advancing rules in \(Rules_{Adv}(P,N,k\Delta t) \). This set of literals will be denoted by \(Head_{Adv}(P,N,q) \).

Next we turn our attention to the role of the stationary rules in deriving hybrid state at a "next" generalized position \(q \). There is a set of stationary rules that can contribute to the hybrid state at \(q \). If such a stationary rule \(r \) has \(n \) blocks, then the first \(n-1 \) blocks are satisfied by \(N \) (at some generalized positions \(p_1, \ldots, p_{n-1} \)) and \((p_1, \ldots, p_{n-1}, q) \) are in \(CS(r) \cap \text{Bool}(r) \). Thus, only the last block, which we will denote by \(B_n \) needs to be evaluated at \(q \). Thus, the relevant part of such a stationary rule \(r \) is a regular ASP rule of the form \(\text{head}(r) : -B_n \). All such regular ASP rules applicable at \(q \) will be denoted by \(\text{Red}_{App}(P,N,q) \). A state at \(q \) is then an answer set of a regular ASP program \(\text{Red}_{App}(P,N,q) \cup \{ h : -h : h \in Head_{Adv}(P,N,q) \} \). To formally define such a choice we will use a concept of a stationary selector \(D \), which we will define further below.

We will now define the algorithm formally.

For a set \(N \subseteq Lit_A \times S \) and generalized positions \(p \) and \(q \), let

\[
Rules_{Adv}(P,N,k\Delta t) \equiv \{ r \in P : r \text{ is an advancing rule and there is} \]

\[
(p_1, \ldots, p_n) \in GP_j(N)^n \cap CS(r) \text{ with } t(p_n) = k \cdot \Delta t \text{ and } N \models_J (\text{body}(r), (p_1, \ldots, p_n))
\]

Let \(p_1, \ldots, p_n \in GP_j(N) \). We define the set of advancing rules active at \(p_1, \ldots, p_n \) relative to \(N \) as

\[
Rules_{Adv}(P,N,(p_1, \ldots, p_n)) \equiv \{ r \in Rules_{Adv}(P,N,t(p_n)) : (p_1, \ldots, p_n) \in CS(r) \}.
\]

That is, \(Rules_{Adv}(P,N,(p_1, \ldots, p_n)) \) is the set of the advancing rules whose body is satisfied by \(N \) at \((p_1, \ldots, p_n)\) and \((p_1, \ldots, p_n) \in CS(r)\).

We define the set of "next" generalized positions at \(p_1, \ldots, p_n \) relative to \(N \) as

\[
NextGP(P,N,(p_1, \ldots, p_n)) \equiv \bigcup_{r \in Rules_{Adv}(P,N,(p_1, \ldots, p_n))} Adv(r)(p_1, \ldots, p_n).
\]

That is \(NextGP(P,N,(p_1, \ldots, p_n)) \) is the set of "next" generalized positions generated by any advancing rule active at \(p_1, \ldots, p_n \) relative to \(N \).
For a time $k \cdot \Delta t$, we define the set of all the "next" generalized positions relative to N, $k \cdot \Delta t$ and an advancing selector F as

$$\text{NextGP}(P, F, N, k\Delta t) \equiv F(N, \bigcup_{p_1, \ldots, p_n \in \text{GP}_i(N) \cap \text{Adv}(r)} \text{NextGP}(P, N, (p_1, \ldots, p_n))).$$

The set of all heads at $q \in \text{NextGP}(P, F, N, k\Delta t)$ relative to N is then

$$\text{Head}_{\text{Adv}}(P, N, q) \equiv \{ \text{head}(r) : \text{there exists } p_1, \ldots, p_n \in \text{GP}_i(N) \text{ and }$$

$$r \in \text{Rules}_{\text{Adv}}(P, N, (p_1, \ldots, p_n))$$

$$\text{such that } q \in \text{Adv}(r)(p_1, \ldots, p_n)\}.$$}

Let $p_1, \ldots, p_n \in \text{GP}_i(N)$. We define the set of stationary rules active at p_1, \ldots, p_n relative to N as

$$\text{Rules}_{\text{Stat}}(P, N, (p_1, \ldots, p_n)) \equiv \{ r \in P : r \text{ is stationary and}$$

$$(p_1, \ldots, p_n) \in \text{CS}(r) \cap \text{Bool}(r) \text{ and for } i = 1, \ldots, n-1 \text{ } \text{ } \text{ } N \models \text{J}(B_i, p_i) \}.$$}

That is, $\text{Rules}_{\text{Stat}}(P, N, (p_1, \ldots, p_n))$ is the set of stationary rules with $n-1$ blocks satisfied by N at p_1, \ldots, p_{n-1} respectively, and $(p_1, \ldots, p_n) \in \text{CS}(r) \cap \text{Bool}(r)$.

We define a stationary selector D to be a function such that for $M \subseteq A_{\text{t}} \times S$ for $z \in S$ for an ASP program U, $D(M, z, U)$ is an answer set of U. That is, a stationary selector chooses one of answer sets of a regular ASP programs U.

For a stationary rule r of the form $a : -B_1; \ldots; B_n : O, H$, we define an applicable reduct of r

$$\text{Red}_{\text{App}}(r) \equiv \{ a : -B_n \}.$$}

For $z \in \text{NewGP}(P, F, N, k\Delta t)$ we define the active reduct of P at z relative to N as

$$\text{Red}_{\text{App}}(P, N, z) \equiv \{ (\text{Red}_{\text{App}}(r) : \text{there exists } n \geq 1 \text{ and } (p_1, \ldots, p_{n-1}) \in \text{GP}_i(N)^{n-1}$$

$$\text{such that } r \in \text{Rules}_{\text{Stat}}(P, N, (p_1, \ldots, p_{n-1}, z) \}$$}

Finally, for $N \subseteq A_{\text{t}} \times S$ and $i \in \mathbb{N}$ let $N[i] \equiv \{(a, p) \in N : t(p) = i \cdot \Delta t\}$. Similarly for $Z \subseteq S$, $Z[i] \equiv \{p \in Z : t(p) = i \cdot \Delta t\}$.

We are now ready to formally specify our algorithm. We define a sequence of sets $\langle Y_i \rangle_{i \geq 0}$, $Y_i \subseteq (A_{\text{t}} \times S)[i]$ as follows:

$$Y_0 \equiv \bigcup_{z \in J[0]} D(\emptyset, z, \text{Red}_{\text{App}}(P, \emptyset, z)) \times z$$

That is, the state at any generalized position $z \in J$ with time equal to 0 is determined by taking all the stationary rules r with one block (i.e. rules of the form $a : -B : O, H$) such that $z \in O \cap H$, composing a regular ASP program from the reducts of the form $a : -B$ derived from those rules, and then finding an answer set of that program.
Now, suppose \(Y_i \) are defined for \(0 \leq i \leq k \) and \(Y_k \neq \emptyset \). Let
\[
Z_{k+1} \equiv \text{NextGP}(P, F, \bigcup_{i=0}^{k} Y_i, k\Delta t).
\]
That is \(Z_{k+1} \) is the set of generalized positions with time \((k+1)\Delta t\) derived by the advancing rules
\[
\text{Rules}_{\text{Adv}} \left(P, \bigcup_{i=0}^{k} Y_i, k\Delta t \right).
\]
Let
\[
Y_{k+1} \equiv \bigcup_{z \in Z_{k+1}} D(\bigcup_{i=0}^{k} Y_i, z, \text{Red}_{\text{App}}(P, \bigcup_{i=0}^{k} Y_i, z)) \cup \{ [a :-] : a \in \text{Head}_{\text{Adv}}(P, \bigcup_{i=0}^{k} Y_i, z) \} \times z
\]
if \(D(\ldots) \neq \emptyset \) and \(Y_{k+1} \equiv \emptyset \) otherwise.
That is, \(Y_{k+1} \) is a collection of hybrid states \((Y_{k+1}|z, z)\) where \(z \in Z_{k+1} \), and where \(Y_{k+1}|z \) is an answer set of a regular ASP program composed of the active reducts of the stationary rules that can contribute to \(z \) and the heads of the advancing rules that derive \(z \).

Theorem 3. \(M \) is an answer set of \(P \) w.i.c. \(J \) iff there is advancing selector \(F \) and a stationary selector \(D \) such that \(\bigcup_{i=0}^{\infty} Y_i = M \) with \(F \) and \(D \).

Sketch of a proof. We begin by specifying a sequence of splitting sets \(\langle U_i \rangle_{i=0}^{\infty} \) defined as

\[
U_i = \text{Lit}_{M} \times \{ p : p \in S \text{ and } 0 \leq t(p) \leq i\Delta t \}
\]

We then first show that \(Y_0 \) is an answer set of \(b_{U_0}(P) \) w.i.c. \(J \). The rules that can contribute to \(Y_0 \) are stationary-1 rules \(r \) such as \(CS(r) \cap \text{Bool}(r) \cap J[0] \neq \emptyset \). These rules will contribute regular ASP rules to \(\text{Red}_{\text{App}}(P, \emptyset, z) \) for every \(z \in J[0] \). We then show that \(D(\emptyset, z, \text{Red}_{\text{App}}(P, \emptyset, z)) \) is an answer set of \(\text{Red}_{\text{App}}(P, \emptyset, z) \) iff \(D(\emptyset, z, \text{Red}_{\text{App}}(P, \emptyset, z)) \times z \) is an answer set of \(b_{U_0}(P) \) w.i.c. \(J \).

The rest is proven by induction using The Splitting Sequence Theorem. That is \(M[k+1] \) is an answer set of \(E \equiv \bigcup_{i \leq k} M[i] \) w.i.c. \(GP_{j}(L) \), where \(L = \bigcup_{i \leq k} M[i] \) iff there exists an advancing selector \(F \) and a stationary selector \(D \) such that \(M[k+1] \) is equal to \(Y_{k+1} \) as defined by the algorithm.

For the forward direction of the inductive step we define \(F(N, Y) \equiv Y \cap GP(M) \). We define
\[
D(N, p, Q) \equiv \begin{cases} \text{At}(N|p) & \text{if } \text{At}(N|p) \text{ is an answer set of } Q \\ \emptyset & \text{otherwise} \end{cases}
\]

We then show \(GP(M[k+1]) = \text{NextGP}(P,F,L,k\Delta t) \). We then use the induction on one-step provability operator \(T[L^{M[k+1]}, GP_{j}(L)] \) to show that if \(M[k+1] \) is an answer set of \(E \) w.i.c. \(GP_{j}(L) \) then \(M[k+1]|_{p} = Y_{k+1}|_{p} \). That is we show that if \(M[k+1] \) is an answer set of \(E \) w.i.c. \(GP_{j}(L) \) then the algorithm derives it as \(Y_{k+1} \).
For the reverse direction we first show \(\{ (\text{head}(r), p) : r \in \text{Head}_{\text{Adv}}(P, L, p), p \in GP(Y_k) \} \subseteq T \left[E_{Y_{k+1}, GP(L), GP_J(L)} \right]^i(\emptyset) \). That is we show that the literals of \(\text{Head}_{\text{Adv}}(P, L, p) \) are also derived by \(E \) at \(p \). We then use induction on one step provability \(T \left[K^{\text{Adv}(Y_{k+1})} \right]^i(\emptyset) \), where \(K \equiv \text{Red}_{\text{Adv}}(P, L, p) \) to show that for all \(p \in GP(Y_{k+1}) \) it is the case that \(\bigcup_{i=0}^\infty T \left[E_{Y_{k+1}, GP(L), GP_J(L)} \right]^i(\emptyset) \times p \subseteq \bigcup_{j \geq 0} T \left[E_{Y_{k+1}, GP(L), GP_J(L)} \right]^j(\emptyset) \), for some \(j \). That is, we show that the literals derived by the regular ASP program \(\text{Red}_{\text{Adv}}(P, L, p) \) are also derived by \(E \) at \(p \). But this merely shows that \(\forall i \sum_{j} Y_{i} \subseteq \bigcup_{j \geq 0} T \left[P^{Y_{i},J} \right]^j(\emptyset) \). We also need to show that \(\bigcup_{j \geq 0} T \left[P^{X_{i},J} \right]^j(\emptyset) \subseteq Y \).

We do that by using induction on one step provability operator \(T \left[E_{Y_{k+1}, GP(L), GP_J(L)} \right]^i(\emptyset) \) to show that for all \(p \in GP(Y_{k+1}) \) it is the case that \(\bigcup_{j \geq 0} T \left[E_{Y_{k+1}, GP(L), GP_J(L)} \right]^j(\emptyset) \times p \) is a subset of \(\bigcup_{i=0}^\infty T \left[E_{Y_{k+1}, GP(L), GP_J(L)} \right]^i(\emptyset) \times p \).

This completes the proof of the theorem. □

The algorithm computes an answer set of the Hybrid ASP program \(P \) w.i.c. \(J \) inductively, by computing a subset of the answer set at time 0, then at time \(\Delta t \), and so on through time \(k\Delta t \). Moreover, the algorithm reduces the process of computing an answer set of a Hybrid ASP program to the repeated application of two processes: the process of computing the set of “next” generalized positions, and the process of computing an answer set of a regular ASP program derived from advancing and stationary Hybrid ASP rules applicable at these “next” generalized positions.

It’s worth noting that the algorithm is a more general form of The Local Algorithm [5], variation of which is also discussed in [2].

4 Conclusion

The paper presents The Splitting Set Theorem for Hybrid ASP, which is the equivalent for Hybrid ASP of the Splitting Set Theorem [12], and the Splitting Sequence Theorem for Hybrid ASP (which is the equivalent for Hybrid ASP of The Splitting Sequence Theorem). The original Splitting Set Theorem proved to be a widely used result. It is the author’s hope that the new theorem will likewise prove to have many applications. The paper discusses one of the applications of the theorems to computing answer sets of Hybrid ASP programs.

Acknowledgements. The author would like to thank Jori Bomanson for insightful comments that helped to enhance the paper.

References

