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Abstract—Cross-site scripting (XSS) is a common security
vulnerability found in web applications. DOM-based XSS,
one of the variants, is becoming particularly more prevalent
with the boom of single-page applications where most of the
UI changes are achieved by modifying the DOM through in-
browser scripting. It is very easy for developers to introduce
XSS vulnerabilities into web applications since there are
many ways for user-controlled, unsanitized input to flow
into a Web API and get interpreted as HTML markup and
JavaScript code.

An emerging Web API proposal called Trusted Types
aims to prevent DOM XSS by making Web APIs secure by
default. Different from other XSS mitigations that mostly
focus on post-development protection, Trusted Types direct
developers to write XSS-free code in the first place.

A common concern when adopting a new security mech-
anism is how much effort is required to refactor existing
code bases. In this paper, we report a case study on adopting
Trusted Types in a well-established web framework. Our ex-
perience can help the web community better understand the
benefits of making web applications compatible with Trusted
Types, while also getting to know the related challenges and
resolutions. We focused our work on Angular, which is one
of the most popular web development frameworks available
on the market.

Index Terms—web security, cross-site scripting, trusted types

1. Introduction

Cross-site scripting, a.k.a. XSS, is known to be one of
the most common security vulnerabilities on the web [1],
[2], [3]. XSS is a type of code injection attack caused
by web applications taking untrusted user inputs and
interpreting them as HTML or JavaScript code without
appropriate sanitization or escaping. A particular kind
of XSS, called DOM-based XSS, occurs when there are
bugs of this type in the client-side JavaScript part of a
web application. As single-page web applications become
more and more prevalent, client-side code is growing
exceedingly large and complex [4], putting DOM-based
XSS on the path to becoming the most common XSS
variant.

In essence, DOM-based XSS exists because there
lacks a mechanism in the JavaScript language or the Web
APIs to distinguish trusted from untrusted data. There
have been many attempts to establish this mechanism,

e.g., by dynamic taint tracking [5], [6], [7] or static data-
flow analysis [8], [9], [10]. Unfortunately, most of the
dynamic methods suffer from scalability or performance
issues when applied to large-sized code bases of mod-
ern web applications. Static methods, on the other hand,
often have difficulties in analyzing the highly dynamic
JavaScript and the templating languages commonly used
in web development.

In recent years, a different approach to eradicating
DOM-based XSS was developed at Google, called API
hardening [11]. Different from traditional XSS counter-
measures that focus on post-development mitigations, API
hardening aims to prevent developers from writing XSS-
prone code in the first place by replacing the original
Web APIs with inherently safe APIs powered by a set
of especially designed type contracts enforced at compile
time.

The success of API hardening has inspired a new Web
API proposal, called Trusted Types [12]. Trusted Types
(TT) follow the idea of making Web APIs inherently
secure, but they do so by introducing dynamic security
enforcement inside the browser instead of performing
static type checking like API hardening does. For TT-
enabled applications, the browser will perform additional
checks on values flowing to sensitive Web APIs and ex-
amine if they are produced by certain developer-endorsed
factory functions, e.g., sanitizers. This effectively prevents
malicious, user-injected values from being interpreted as
HTML or JavaScript by the browser.

At the time of writing, Trusted Types are supported in
Chromium-based browsers including Google Chrome and
Microsoft Edge, and the API is work in progress under
W3C [12]. Although it would be in the best interest of web
developers to prevent XSS vulnerabilities from slipping
into their applications, the process of adopting a new
security mechanism can be lengthy and challenging [13].
Enabling Trusted Types typically requires developers to
review, and very likely revise, the design and implemen-
tation of their applications. For large applications, this
process is bound to be challenging if done without the
right methodology or tooling support.

In this paper, we report our experience with making
Angular, a widely used open source web framework, com-
patible with Trusted Types. Angular powers many high-
profile web applications. Making Angular TT-compatible
is the first step towards helping downstream applications
embrace this new security feature and fend off the threats
of DOM-based XSS.

Throughout this case study, we would like to shed



light on the costs and benefits of revising an existing
code base for TT-compatibility. Hopefully, by following
our path, other developers will be able to avoid many of
the engineering obstacles we encountered if they decide to
migrate their own frameworks or applications to Trusted
Types. While the idea of integrating Angular with Trusted
Types originated as part of a broader security improvement
initiative at Google, the migration has been executed
completely as an open source operation and our engineers
have been working closely with Angular maintainers to fix
problems related to the Angular ecosystem. Therefore, our
experience should be inspiring to both the industry and the
open source community.

In the course of this case study we made the following
contributions:

• We refactored Angular, one of the most widely
used web frameworks, to be compatible with
Trusted Types, allowing downstream applications
to adopt this new security feature to prevent XSS
attacks. We demonstrated this by additionally mi-
grating a medium-sized web application built upon
Angular to Trusted Types.

• We introduced the methodology of the migration,
enumerated the technical challenges, and shared
the lessons we learned from this project. This first-
hand experience can help other developers perform
similar adoptions, which can lead to enhancing the
security of a larger web community.

• We discovered and fixed a new Angular vulner-
ability during the migration, demonstrating how
adopting Trusted Types can fundamentally im-
prove the security of web software.

The rest of the paper is organized as follows: We begin
with some relevant background knowledge in Section 2.
We then introduce the motivation of our project and the
encountered challenges in Section 3. Section 4 enumerates
the tooling we utilized during the migration. We elaborate
on the characteristics of existing violations in Angular
in Section 5. Section 6 addresses the scope and design
principles of the project, while Section 7 presents the rest
of the migration details. We share the lessons learned from
this process in Section 8. Section 9 and Section 10 dis-
cuss threats to validity and related work, respectively. We
conclude the paper in Section 11. Appendix A describes
the migration of an Angular web application to Trusted
Types for the interest of certain readers.

2. Background

2.1. DOM-Based XSS

DOM-based XSS occurs when there are bugs in the
client-side code of a website. By exploiting these bugs,
attackers are able to inject executable content directly
into the Web API injection sinks without needing to send
malicious payload to the servers.

Figure 1 shows an example of DOM-based XSS. In
this example, the vulnerability manifests when a malicious
user visits the website with a URL parameter like the
following:
?cat_name=<img src=x onerror=alert(’xss’)>

<html>
<title>Cat Gallery</title>
<body>
<p>You want to see: <span id="cat_name"></span></p>
<script>

const catName = new URLSearchParams(
location.search).get(’cat_name’) ?? ’signature cat’;

const nameArea = document.getElementById(’cat_name’);
nameArea.innerHTML = catName; // XSS!

</script>
</body>

</html>

Figure 1. Example Web Application with a DOM-Based XSS Vulnera-
bility

TABLE 1. MAJOR WEB APIS GATED BY TRUSTED TYPES

Web API Required Type

Document#write TrustedHTML
Document#writeln TrustedTHML
DomParser#parseFromString TrustedHTML
innerHTML and outerHTML TrustedHTML
srcdoc on <frame> TrustedHTML

eval TrustedScript
text and textContent on <script> TrustedScript
Constructor of Function TrustedScript
setTimeout and setInterval TrustedScript

src on <script> and <embed> TrustedScriptURL
Constructor of Worker TrustedScriptURL
Constructor of SharedWorker TrustedScriptURL

Element#setAttribute Element and attribute dependent

The root cause of the vulnerability is that the client-side
code of the application does not properly check user input
before assigning it to the innerHTML property of an
HTML element, a DOM sink that interprets strings as
HTML markup.

2.2. Trusted Types

In addition to innerHTML, there are numerous Web
APIs that are prone to XSS. Trusted Types changes these
APIs so they accept special types instead of strings.1
These types can only be constructed in designated factory
functions called policies. If this requirement is not met,
the APIs will throw run-time exceptions.

2.2.1. Trusted Types policies. A Trusted Types policy
is a set of factory functions that produce Trusted Types
values from strings. There are three Trusted Types, for
different contexts that can cause XSS:

• TrustedHTML, used for safely feeding DOM
APIs that expect HTML, e.g., innerHTML and
document.write.

• TrustedScript, for safely evaluating
JavaScript dynamically with APIs like eval.

• TrustedScriptURL, for safely loading
JavaScript code from a URL, e.g., the src
attribute of <script> and importScripts
in web workers.

Table 1 lists some of the most common Web APIs that
Trusted Types currently monitor.

1. The complete roster can be found at https://w3c.github.io/
webappsec-trusted-types/dist/spec/#integrations.

https://w3c.github.io/webappsec-trusted-types/dist/spec/#integrations
https://w3c.github.io/webappsec-trusted-types/dist/spec/#integrations


let sanitizeHTMLPolicy = {
createHTML: str => DOMPurify.sanitize(

// Sanitize HTML and only allow simple
// "rich text"
str, {ALLOWED_TAGS: [’b’, ’q’, ’i’]});

};
if (window.trustedTypes && trustedTypes.createPolicy) {
sanitizeHTMLPolicy = trustedTypes.createPolicy(

’myEscapePolicy’, escapeHTMLPolicy);
}

const sanitized = sanitizeHTMLPolicy.createHTML(
’<b>See this<img src=x onerror=alert(1)></b>’);

// If Trusted Types are available, ‘sanitized‘ is
// now an instance of TrustedHTML.
el.innerHTML = sanitized; // ’<b>See this</b>’

Figure 2. Example of Using Trusted Types in Web Applications

trustedTypes.createPolicy(
’default’,
{ createHTML: (str) => DOMPurify.sanitize(str) });

Figure 3. Example of the “default” Trusted Types Policy

Figure 2 shows an example of a TT policy that pro-
duces TrustedHTML. The policy contains the factory
function createHTML which sanitizes the input using
DOMPurify, a library that strips executable parts off
HTML markup [14]. To make use of this policy, develop-
ers need to wrap all such strings with a factory function
before passing them to the Web API sinks, otherwise the
browser will raise run-time exceptions. It is worth noting
that Trusted Types fully fit in progressive enhancement,
as also shown in Figure 2: With a minimal stub API
(a.k.a. a tinyfill2) in place, data pass through the sanitiza-
tion policy even in browsers that do not support Trusted
Types. This means that when an application is Trusted-
Types-compatible, it is resilient against DOM XSS in all
browsers.3

Note that Trusted Types do not verify the semantics of
the policies themselves and therefore Trusted Types alone
do not offer any formal security guarantees. What Trusted
Types ensure is that all values accepted by sensitive Web
APIs must be processed according to one of the desig-
nated, centralized policies.

2.2.2. Default policy. A web application can define as
many TT policies as it desires, but the policy named
“default” is a special one. Due to various reasons, it may
be extremely difficult, if not impossible, to modify certain
pieces of code that cause TT violations. For example, the
violation may come from a third-party library which the
application developers have no control over. The default
policy is a fail-safe policy which automatically applies
to Web API sink usage not already covered by any other
policy. In the example demonstrated by Figure 3, a default
policy is created to ensure that all strings passed to HTML
DOM sinks are sanitized by DOMPurify if they have not
already been processed by other policies.

2. https://github.com/w3c/webappsec-trusted-types#tinyfill
3. See https://github.com/w3c/webappsec-trusted-types/wiki/FAQ#

do-trusted-types-address-dom-xss-only-in-browsers-supporting-trusted-types
for details regarding the security guarantees provided in this scenario.

2.2.3. Trusted Types enforcement. In Trusted Types, the
availability of the JavaScript API to create policies is
separated from the enforcement, which is controlled via
Content Security Policy (CSP) in HTTP response headers.
That allows the applications to introduce Trusted Types to
their code gradually, without causing behavior changes,
and allows for gradual rollout of the enforcement using
the CSP report-only mode.

The CSP header has two separate directives4 control-
ling Trusted Types:

• trusted-types specifies which policies can
be defined, i.e. controlling the sources of Trusted
Types instances.

• require-trusted-types-for controls
which Web APIs require Trusted Types values,
i.e., specifying the sinks of Trusted Types values.

If the application violates these restrictions, e.g., it tries to
create a policy with a name not on the trusted-types
allowlist, or a string is assigned to innerHTML without
a policy to convert it to TrustedHTML, the respective
JavaScript statement throws a TypeError and a CSP
violation is dispatched. That makes introducing a security
vulnerability a programming error, which is necessary to
address early on.

Web navigation APIs can also cause XSS with
javascript: schemed URLs. When Trusted Types
are enforced, the browser will intercept javascript:
URLs before the navigation and pass the code to the
default policy’s createScript factory function. If such
a policy does not exist or if its createScript function
rejects the URL, the browser stops the navigation attempt
and dispatches a CSP violation.5

2.2.4. Comparison with other XSS mitigations. Trusted
Types refine and complement existing XSS mitigation
measures with the idea of managing security risks in the
early stages of software development across the entire
project. Their Web API is visible to static tooling. As
such, it surfaces the XSS risks directly in the code and can
leverage the tooling to address those risks when writing
the application - contrasting it with other Content Security
Policy directives, compliance with which can only be
asserted after the code has been written.

Static tooling for DOM XSS issues already exists, but
when used alone, it fails to detect all instances of the
vulnerabilities [7]. Trusted Types, with their enforcement
in the browser engine, act at run time, and can prevent
the accidental DOM XSS risks that static analysis failed
to find.

Trusted Types don’t focus on the payloads (like XSS
filters [6] and Web Application Firewalls) and impose
constraints on all uses of dangerous Web APIs, even
though it may not be immediately clear why a particular
use can lead to XSS vulnerabilities. However, industry
practice shows evidence that using this rigid approach can
substantially reduce XSS across large code bases [11].

4. https://w3c.github.io/webappsec-trusted-types/dist/spec/
#integration-with-content-security-policy

5. In such a setup, enforcing Trusted Types blocks all javascript:
URLs, and the default policy can selectively allow certain known-to-be-
secure payloads like void(0).

https://github.com/w3c/webappsec-trusted-types#tinyfill
https://github.com/w3c/webappsec-trusted-types/wiki/FAQ#do-trusted-types-address-dom-xss-only-in-browsers-supporting-trusted-types
https://github.com/w3c/webappsec-trusted-types/wiki/FAQ#do-trusted-types-address-dom-xss-only-in-browsers-supporting-trusted-types
https://w3c.github.io/webappsec-trusted-types/dist/spec/#integration-with-content-security-policy
https://w3c.github.io/webappsec-trusted-types/dist/spec/#integration-with-content-security-policy


import {Component} from ’@angular/core’;

@Component({
selector: ’home-page’,
template: ’<div [innerHTML]="content"></div>’,

})
export class HomePageComponent {

content =
’<img src="logo.png" onerror=alert("error")></img>’;

}

Figure 4. Angular Template Example

2.3. Angular

Angular [15] is a design framework and develop-
ment platform for building single-page web applications.
Originating from Google, Angular has become one of
the most popular open source web frameworks. Angular
has a powerful template system that allows developers
to write a DSL that conveniently controls the UX/UI
by coordinating data between the JavaScript code and
the HTML page. Figure 4 demonstrates an example of
this DSL, in which the @Component decorator takes an
inline template that renders a <div> element, with its
innerHTML property bound to the content property
in the HomePageComponent class. When this page is
rendered, Angular automatically updates the content of the
rendered <div> with the value of the property bound to
it.

There used to be a time when web frameworks failed
to offer fundamentally better security than standalone ap-
plications [16]. To avoid these historical pitfalls, Angular
implements strict contextual escaping [17] and treats all
input values of the templates as untrusted by default.
Take Figure 4 again for example, Angular treats the
innerHTML property as a sensitive HTML DOM sink in
the template’s context, therefore automatically sanitizing
the value bound to it when rendering the template. That
means the inline event handler of the <img> tag in
content will be stripped to prevent unexpected code
execution.

3. Motivation and Challenges

This section discusses why we would like to migrate
Angular to Trusted Types and reports the experience as
a case study to a wider audience. It also discusses the
encountered challenges of this project.

3.1. Motivations

Neither automated tools nor human reviews are suf-
ficient to prevent XSS vulnerabilities in large-scale web
applications with a high degree of confidence [18], [11].
Moreover, under intense time pressure to fix vulnera-
bilities that already manifest in production, the remedi-
ation itself can be error-prone and may introduce new
vulnerabilities [19], [20], [21]. Even if such remediation
is successful, without improvements of the development
process, security regressions can occur at a later point in
time.

Various web applications and libraries already use
Trusted Types, e.g., several Google web applications,

Visual Studio Code,6 DOMPurify, Webpack, Lit, FAST.7
In this paper, we describe the migration of a major web
framework, which is quite different in many aspects.
Empirical studies show that frameworks have significant
impact on the security of downstream applications [22].
Meanwhile, refactoring a framework has some unique
challenges.

Even with numerous security features in Angular,
building applications on top of it does not automatically
make the applications secure. For example, Angular ap-
plications can contain code that bypasses the framework’s
default security checks.8 Angular applications can also
directly interact with the error-prone Web APIs, including
the DOM.9 Finally, applications may include code from
non-Angular dependencies that may be vulnerable to XSS.
Trusted Types support in Angular enables downstream
applications to contain all such security threats.

3.2. Challenges

From a software engineering point of view, adopting
Trusted Types in an established project with many devel-
opers is non-trivial. Mechanically eliminating all incom-
patibilities with Trusted Types is not the purpose, as it can
be done as easily as defining a trivial default policy (see
Section 2.2.2) that automatically converts every string to
a Trusted Types value whenever the browser is about to
raise an exception. That, however, does not help improve
the security of the project in any regard.

3.2.1. Violation Identification. The first step towards
making an application or framework compatible with
Trusted Types is to identify the code locations from which
TT violations can emerge. For application migration, this
process can be highly automated with sufficient technical
support. There are both dynamic and static tools that can
help detect TT violations in the code base, which will be
introduced with more details in Section 4. For Angular,
the challenge deepens due to the templates. Before the
applications are deployed, Angular needs to perform code
generation to transform templates into common HTML
and JavaScript, which may contain TT violations. These
violations cannot be directly identified or fixed. Instead,
we need to identify the code locations that produce the
violating code.

3.2.2. Fixing Direct Violations. It is not always imme-
diately obvious how to fix a TT violation. For example,
if the string assigned to innerHTML is a compile-time
constant, wrapping that string into TrustedHTML is
an adequate and secure solution as we know this string
can never be controlled by attackers. If, however, it is
not a compile-time constant, we have to take a different
approach, like sanitizing the string or escaping it. It may
require deep domain knowledge to decide which option
to take.

6. https://code.visualstudio.com/
7. https://github.com/w3c/webappsec-trusted-types/wiki/Integrations
8. https://angular.io/guide/security#trusting-safe-values
9. https://angular.io/api/core/ElementRef

https://code.visualstudio.com/
https://github.com/w3c/webappsec-trusted-types/wiki/Integrations
https://angular.io/guide/security#trusting-safe-values
https://angular.io/api/core/ElementRef


{
"csp-report": {

"document-uri": "https://my.url.example",
"violated-directive": "require-trusted-types-for",
"disposition": "report",
"blocked-uri": "trusted-types-sink",
"line-number": 39,
"column-number": 12,
"source-file": "https://my.url.example/script.js",
"status-code": 0,
"script-sample": "Element innerHTML <img src=x"

}
}

Figure 5. Report of Trusted Types Violations

3.2.3. Fixing Indirect Violations. As mentioned in Sec-
tion 3.2.1, Angular has a template language that is tran-
spiled to TypeScript and then JavaScript code. That means
we not only need to fix code that triggers TT violations,
but also need to fix code that produces TT-violating code.
As we will show in the later sections of this paper, we
have to make a few significant structural changes to fix
certain violations in Angular.

4. Tooling Support

Trusted Types mechanisms are controlled through
Content Security Policies, which offer a report-only mode
that helps developers safely identify code locations that
do not conform to Trusted Types when they dynamically
run the applications. Additionally, we have developed an
analyzer to make it easier to identify those code locations
statically.

4.1. Report-Only Mode

If Trusted Types are enforced in report-only mode, the
browser will record all violations without actually raising
exceptions. For example, when the application passes
a string to innerHTML, the browser may dispatch a
SecurityPolicyViolation event and send a report
to a developer-specified endpoint.

The example report in Figure 5 notifies that in
https://my.url.example/script.js, the
innerHTML property of a DOM element was assigned
to, on line 39, with a string beginning with "<img
src=x".10

4.2. Static Analyzer

Dynamically running an application to uncover all
TT violations becomes unwieldy when the applications
get large. Moreover, relying on dynamic detection means
developers can introduce new violations which they only
discover during testing or, even worse, in production. To
alleviate this inconvenience, an analyzer that can statically
identify violations in TypeScript code can be used. We

10. TT default policy can also be used to inspect string values passed
to injection sinks at run time, and in some cases might offer a more
convenient and programmatic way of collecting violation data without
breaking the application.

TABLE 2. VIOLATIONS IDENTIFIED BY EACH METHOD

Method Identified Violations

Static analysis (tsec) 31
Angular applications 13
Angular tests 2

created an open source analyzer for this purpose called
tsec. 11

In its current form, the analyzer is essentially an
extended TypeScript compiler that additionally scans the
abstract syntax tree of each source file to look for uses
of XSS-prone APIs that can cause TT violations. If those
XSS sinks do not already take Trusted Types values, the
checker emits compiler errors. The analysis reuses the
type information inferred by the compiler, but is otherwise
flow-insensitive, and therefore extremely efficient [11].
For example, we have used tsec to analyze the entire code
base of Visual Studio Code, which consists of almost a
million lines of TypeScript code, in a few minutes.

Since TypeScript has an unsound type system to be
compatible with JavaScript, tsec is also unsound and can
miss code locations that cause TT violations. Our expe-
rience is that tsec can capture most of the TT violations
before developers need to run any dynamic analysis (see
Section 3.2.1 and Table 2).

5. Identified Violations

We took the following approaches to identifying po-
tential TT violations in Angular:

• Ran tsec to analyze the source code of Angular
(see Section 4.2 for details about tsec).

• Ran Angular’s unit tests with Trusted Types en-
forced and looked for failures.

• Ran small- to medium-sized Angular applications
with report-only Trusted Types enabled.

Each of these approaches excels at locating certain types
of TT violations. For example, tsec can detect the majority
of direct violations. Running Angular’s unit tests can
reveal a good amount of indirect violations, thanks to the
good test coverage. Lastly, running representative Angular
applications with TT enforced surfaces all the remaining
violations, however it might be difficult to infer their root
cause. Therefore, a manual source code review is still
required and helps us understand why the violations are
present - and that informs us how to fix them later. It
might take a few iterations to identify all the violations,
as some of them only emerge after others are removed.

Table 2 shows how many violations were identified by
each method. While there were certain overlaps among
the violations captured in different ways, we found it
necessary to employ all of them. Static analysis performed
best in finding direct violations in TypeScript code, but dy-
namic methods were necessary since they helped us better
understand the context in which the violations emerge and
therefore made it easier to devise solutions.

11. The analyzer only processes TypeScript code, since a precise anal-
ysis requires type information. Available at https://github.com/google/
tsec.

https://github.com/google/tsec
https://github.com/google/tsec


In the remainder of this section, we classify the iden-
tified violations into a few categories based on their root
causes. We try to explain these root causes with minimum
Angular-specific context. We believe at least some of
them also apply to other modern web frameworks, if
these frameworks are to be made compatible with Trusted
Types.

Template constants. When an Angular template is com-
piled, attributes and properties of HTML elements that
contain constant strings are hoisted into a local array struc-
ture. When the template is then rendered, these constant
strings are passed directly to setAttribute calls for
the corresponding element. These operations intentionally
do not undergo any sanitization, as constants in Angular
templates are developer-controlled and considered trusted.
However, in cases where the given attribute on a particular
element is an injection sink, this will raise a Trusted Types
violation.

Bound values in templates. When an Angular template
is compiled, attributes of HTML elements whose values
are bound to a data model are converted to a function call
that looks roughly as follows:
angularSetAttribute(

"attributeName", valueExpression, angularSanitizer);

The third argument is only present when the given at-
tribute or property is sensitive in the context of the given
element, and dictates how the value of the expression
should be sanitized before it is passed to the corresponding
setAttribute call for the corresponding element. This
will either use an internal sanitizer or a custom sanitizer
defined by the application. The output from the sanitizer
is a string that then gets passed to a setAttribute
call for the corresponding element, which may result in a
Trusted Types violation.

Inert DOM builder. Angular’s internal HTML sanitizer,
which is called when an attribute or property that takes
HTML as input needs to be sanitized, uses an approach
that begins by parsing the given HTML into an inert
DOM tree, traverses that tree, and then generates the
sanitized HTML as a product. To parse the HTML into an
inert DOM tree, Angular provides an inert DOM builder,
which either uses the DOMParser API, or creates a
template element and sets its innerHTML property. Both
approaches cause Trusted Types violations, since Trusted
Types treat all DOM sinks as risks, even if the resulting
DOM nodes are not yet attached to the main document of
the page.

ICU messages and i18n constants. Angular templates
support internationalization (i18n), both for text content
of elements as well as values of attributes and properties.
Text that is marked for i18n translation can contain Inter-
national Components for Unicode (ICU) directives [23],
which can be used to return different strings based on
a condition, e.g. the plurality of a counter. ICU messages
are parsed at runtime using an approach similar to the one
used by Angular’s HTML sanitizer, and thus also cause
a Trusted Types violation due to their use of the inert
DOM builder. However, in addition to that, the parsed

ICU message can contain HTML that is converted into an
intermediate opcode structure for creating and updating
the corresponding DOM fragment. Values of attributes and
properties in these ICU messages are parsed as strings, and
may thus cause Trusted Types violations when the opcodes
are executed and the corresponding setAttribute is
called.

CSS keyframes driver. Angular has a component that
facilitates the animation of element styles and dynamically
creates a <style> element and populates it with CSS via
innerHTML, which causes a Trusted Types violation.

JIT interpreter. Angular template compilation can be
done either ahead of time (AOT) or just in time (JIT).
Although a large majority of Angular applications have
migrated to AOT compilation, there are still applications
that rely on JIT compilation. Since templates may contain
JavaScript code, e.g., in event handlers, Angular’s JIT
interpreter needs to call a DOM API that evaluates strings
as executable code. When this happens, a TT violation
emerges.

Development features. When an Angular appli-
cation is served in development mode, additional
code is included for debugging, profiling, and other
development-related features. One of those features is
the named_array_type, which creates custom named
array classes to aid with profiling and debugging of oth-
erwise anonymous array structures. To achieve this, it
calls the Function constructor with the necessary class
definition as a string, causing a Trusted Types violation.

JSONP. JSON with padding, aka JSONP, is a method for
web applications to send and receive cross-domain data
in JSON. Due to security concerns, reading cross-domain
data in JavaScript is restricted by browsers. JSONP is a
method to work around this restriction, based on an ex-
ception that requesting cross-domain script files is always
allowed.12 Angular provides a module for performing
JSONP. To make such a request, the application provides
a string URL pointing to the JSONP endpoint. The mod-
ule then creates a <script> element and sets its src
attribute to the given URL. This causes a Trusted Types
violation.

Third-party libraries. Third-party libraries that the appli-
cation depends on may have to perform dangerous DOM
operations, and if they are not using Trusted Types, this
will cause Trusted Types violations. It has been shown that
third-party code is one of the major blockers of enforcing
new security policies in web applications [24].

Integration and unit tests. When running Angular’s test
suite with Trusted Types enforced, there were a large num-
ber of failures due to Trusted Types violations. Most of
them occurred within individual unit tests and associated
test utilities related to rendering pages dynamically. There
were also Trusted Types violations in the test suite drivers
themselves.

12. Modern browsers support Cross-Origin Resource Sharing (CORS)
which is in general more preferable for cross-domain data transfer. But
there are still a good amount of applications using JSONP.



6. Design Considerations and Scope

Even without further inspection, it is clear that the
challenges in removing the aforementioned violation cate-
gories can vary drastically. Before jumping into fixing, we
first define the scope of our refactoring and key principles
to follow during the process.

6.1. Design Considerations

We identified three principles that should be followed
during the migration. These principles should be able to
ensure that adding Trusted Types support into Angular will
indeed improve its security capability without degrading
its usability or performance.

Security. This is the most important principle we shall
respect, as it is the whole purpose of the migration. In
particular, values from an Angular application should not
be automatically converted to Trusted Types unless the
framework can guarantee that it is safe to do so, or the
developer explicitly opts in to such a conversion. This
is similar to the practice introduced by previous research
called API hardening [11], i.e., any code that may intro-
duce XSS vulnerabilities is explicitly marked by special
program constructs easily recognizable by compilers and
human reviewers.

Backward, Cross-Platform Compatibility. Considering
that Angular is the foundation of many community cre-
ations, extreme caution must be taken to avoid introducing
breaking changes that can stop applications built upon
Angular from functioning correctly. Therefore, Trusted
Types violations should be addressed in a manner that
is as close to being completely backwards compatible as
possible.

Also, Trusted Types are a relatively new feature and
not every browser supports it. Besides, Angular can even
run in a non-browser environment. We need to make sure
that the refactored Angular and downstream applications
affected by the refactoring can still function correctly on
platforms without Trusted Types support.

Code Size. For some applications, it is critical to keep
the size of served JavaScript code in check to speed
up website loading. As a framework, Angular has many
features and it is very common that a certain application
only needs some of them. To avoid unnecessarily bloating
the code size, Angular supports tree shaking, i.e., the
ability to prune out chunks of the JavaScript bundle that
are not used by the application, and thus reducing the size
of the bundle. As an example, if an Angular application
does not make use of any i18n features, great care has
been taken to make sure that the entire i18n library can
be pruned from the resulting JavaScript bundle. Good
treeshakability is one of the main design goals of Angular,
and is an important consideration when new components
or features are added to Angular.

Any Trusted-Types-specific code introduced in Angu-
lar should be tree-shakable to the greatest extent possible,
meaning that if an Angular application does not use any of
the components or features listed in the previous section

that could cause Trusted Types violations, then the TT-
specific code will not be present in the application’s
JavaScript bundle.

6.2. Scope

Among the many classes of violations, some of them
may be harder to address than others without compro-
mising our design principles. In the interest of time and
giving priority to features that are more widely used,
we de-prioritized the following types of violations in our
refactoring because they are not blockers for a minimum
viable product (MVP) and can be addressed in the future:

• First-class TT support for the JIT interpreter is
out of scope for this case study, as it requires a
very complicated design and the feature itself is
not too widely used among Angular developers.
In this case study, we devised a solution that “just
works” for JIT without conducting a thorough re-
view from the security perspective. See Section 7.2
for details.

• JSONP does not need to be supported at all in the
first iteration as it is on the path of deprecation in
favor of modern alternatives such as CORS.

7. Migration

Among the Trusted Types violations discussed in Sec-
tion 5, some can be rather easy and straightforward to fix.
In this section, we focus primarily on the non-trivial fixes.
To free readers from the rather complex technical details
of Angular’s internal gadgets, we have tried our best to
distill the high-level ideas behind our migration strategy.

7.1. General Strategy

We would like Angular to run with Trusted Types
whenever possible, with minimum user configuration, as
misconfiguration of security policies has been a com-
mon source of insecurity [13]. Therefore, we decided
that if Angular is being run in an environment that sup-
ports Trusted Types, Angular will automatically produce
Trusted Types internally. This is internal-only behaviour
unexposed to an Angular application. If the application
itself does not enable Trusted Types enforcement by send-
ing the CSP HTTP header, the internally enabled TT-
related operations are effectively no-ops.

When Trusted Types are not available, our design
makes sure that Angular will fall back to using plain
strings, just as before Trusted Types support was added.
This facilitates backwards compatibility with non-browser
platforms and browsers that do not support Trusted
Types.13

7.2. Managing Trusted Types Policies

Given the wide range of root causes of TT violations
discussed in Section 5, it is beneficial to use different TT
policies to handle different situations.

13. Applications can always use polyfills to enable Trusted Types on
those platforms and browsers, but Angular as the framework cannot
assume all applications will choose to do that.



TABLE 3. FIXES APPLIED TO ADDRESS TRUSTED TYPES VIOLATIONS

Violation category Resolution Pull
request(s)

Template constants Used angular policy and template tag functions verifying that the value
is constant.

#40082

Bound values in templates Used angular#unsafe-bypass policy when value comes from
a custom sanitizer or bypassSecurityTrust function. Otherwise,
angular policy.

#39217,
#39218

Inert DOM builder Used angular policy. The value is sanitized internally. #39208

ICU messages Dynamic values treated like bound values in templates. Constant values
converted with angular policy.

#39221

CSS keyframes driver Replaced innerHTML with textContent. #37397

JIT interpreter Used angular#unsafe-jit policy. This might be unsafe, but JIT usage
in Angular is discouraged.

#39210

Development features Used angular policy, asserting that Angular runs in development mode. #39209

JSONP n/a (out of scope) -

Third-party libraries Used dedicated policies in upstream packages (e.g. Webpack). -

Integration and unit tests Used dedicated policies in upstream packages (e.g. Karma). -

During the migration, we defined three Trusted Types
policies, one of which is the main policy and the other
two are supplemental. The main policy - angular - is
used when Angular can deduce that a given string is safe
for use in a given security context. For example, constant
strings are considered safe and thus can be processed by
the main policy. Another example of this is the output
of Angular’s sanitizer pipeline that facilitates contextual
auto-escaping.

There are cases where Angular cannot be sure that
a given string is safe, but it seems that the application
developer intentionally and explicitly bypassed a secu-
rity measure in Angular such as its internal sanitiza-
tion pipeline.14 In those cases, Angular will use a sep-
arate angular#unsafe-bypass policy, specifically
marked as insecure. Applications using the unsafe features
and which are not willing to migrate off them, may allow
this policy through server-side CSP headers. This allows
Angular applications to start enforcing Trusted Types even
when using custom security primitives, such as a custom
HTML sanitizer. Since Trusted Types do not inspect the
semantics of the security primitives behind the polices,
the insecure policy, as the name suggests, cannot provide
much security guarantee. As a bottom line, developers
have to take extra steps to enable this policy and the
bypasses can be easily discovered by security reviewers
if the application maker indeed decides to turn on this
feature.

The third policy (angular#unsafe-jit) we in-
troduced through the migration is solely for the JIT in-
terpreter. As mentioned in Section 6.2, full JIT support
would not be available in the first iteration, so we defined
this policy just to mitigate JIT-related violations. Different
from the other two policies, the JIT policy can only
produce TrustedScript values, which is sufficient to
fix the violations.

Table 3 pairs the violation categories from Section 5
with the methods used to securely resolve them. Each row

14. https://angular.io/api/platform-browser/DomSanitizer#
security-risk

also specifies the Pull Requests in the Angular’s GitHub
repository15 containing the relevant code changes.

It should be noted that all three internal policies we
created for Angular only contain identity factory func-
tions, i.e., they merely wrap the input strings into instances
of corresponding TT types. To make sure those policies
are invoked exclusively in a secure manner, they are made
private and can only be invoked at limited code locations,
e.g., inside Angular’s sanitization pipeline and respective
internal packages. In other words, we created a small, well
designed, and thoroughly reviewed trusted computing base
(TCB) in a large project to ensure Trusted Types values
are always constructed securely and the policies are not
abused. This is one of the typical patterns for designing
Trusted Types policies, usually adopted by libraries and
frameworks that are designed with established security
principles and capable of offering security services to
other applications. Regarding policies made for most or-
dinary applications, the sanitization logic should instead
be specified inside the policy factory functions in order to
ensure that Trusted Types are always mitigating incoming
threats and to make it safe to invoke the policies without
restrictions. Most of the time, this alleviates the burden of
security reviews so that application developers can focus
on implementing other features.

7.3. Verification

To verify if the migration had completed, we mostly
relied on integration and unit tests, with Trusted Types
enforced. To achieve this, we first needed to fix the vio-
lations in the tests themselves and the test suites Angular
uses. Angular mostly depends on two open source tools
for testing, i.e., Jasmine16 and Karma.17 We made both
compatible with Trusted Types and pushed the changes
upstream. Compared with the Angular migration, adding
TT support for these two tools was a much more mechani-
cal process, partially due to the fact that there are far fewer

15. https://github.com/angular/angular
16. https://github.com/jasmine/jasmine
17. https://github.com/karma-runner/karma
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security concerns regarding testing infrastructure. It took
a single pull request containing about 50 lines of code
changes to patch each project.

In addition to the existing tests, we also created new
integration tests to cover additional TT-related cases, mak-
ing sure there will be no security regressions in the future.

7.4. Impact

After resolving the most important issues that blocked
Trusted Types adoption, Angular released a version
(v12.1.1) that officially supports Trusted Types.18 Issues
not included in this first iteration of adoption are planned
to be addressed in the next release.

On the completion of the migration, we turned on
Trusted Types enforcement for several Angular-based ap-
plications, as part of the ongoing effort to roll out Trusted
Types for all Google’s products. We also added Trusted
Types to a medium-sized open source Angular application
(see Appendix A). Trusted Types enforcement performed
in this fashion guarantees that the DOM XSS-relevant
code in these applications is minimal and sufficiently
isolated from the rest of the code base. With the help of
the static analyzer tsec and the new integration tests, we
ensure that this much smaller code base will be subject to
an efficient security review upon changes. This property
holds true regardless of additional dependencies that the
covered applications might acquire over time.

7.5. Engineering Effort

In total, it took a small team of four security engi-
neers and an intern roughly six months to complete the
migration, without working full-time on the project. Of
those, only around six weeks were spent on the concrete
design and implementation of the Trusted Types integra-
tion. As none of the engineers working on the project
had contributed to Angular before, the rest of the time
was spent on learning about Angular’s internals from
scratch and communicating with the Angular community
for suggestions and reviews. The implementation load
was also modest. The migration team sent out a total
of 14 pull requests that were directly related to Trusted
Types adoption, with about 2600 lines of code added and
modified. The team sent another four pull requests to other
open source projects to coordinate the changes made to
Angular.

Angular is one of the most feature-rich modern frame-
works, which largely contributed to the project scope and
complexity. Comparative integrations, e.g. with Lit,19 or
React,20 were noticeably easier. There, the overall time
spent on design and implementation was in the order of
days and weeks, respectively.

It should be emphasized that frameworks exist to
address common issues, such that many end applications
do not need to tackle them individually. That comes at a
price: a bar for a framework feature development is high
and introduces unique challenges like backwards com-
patibility, demanding performance goals or API surface

18. https://angular.io/guide/security#enforcing-trusted-types
19. https://github.com/lit/lit/pull/1772
20. https://github.com/facebook/react/pull/16157

design. These challenges are largely absent when changing
regular web applications (See Appendix A).

Considering these factors, we believe that the engi-
neering cost of the migration was fairly low in contrast to
the benefits delivered by this project.

8. Lessons Learned

During the adoption process, many unexpected situa-
tions emerged, both positive and negative. We believe that
some of these situations and the ways we handled them are
valuable experiences that can benefit similar work in the
future. This section summarizes the lessons we learned.

8.1. Finding New Vulnerabilities

During the migration, one of the violations caught
our particular attention. By studying Angular’s code, we
noticed that the mandatory sanitization of sensitive DOM
attributes and properties in Angular templates could be
unintentionally bypassed by the application developer.
Consider the template below:
<iframe srcdoc="{{userInput}}" i18n-srcdoc></iframe>

The i18n-srcdoc custom attribute directs Angular to
translate the srcdoc attribute for localization when ren-
dering the template. Without the i18n translation, the
srcdoc attribute is passed through Angular’s sanitiza-
tion pipeline, as it may contain unsafe user input that
would result in XSS. With the i18n translation, however,
no sanitization was performed; instead, the string was
passed directly to the underlying DOM sink, causing a
Trusted Types violation. We identified this as a security
vulnerability and have since disallowed i18n translations
on security-sensitive attributes and properties in Angular.

It is worth highlighting that if we had not discovered
this vulnerability, triggering this behaviour in a produc-
tion application with Trusted Types enforced would have
caused a Trusted Types violation, instead of XSS. Such
applications would therefore be immune to the vulnera-
bility, even though it occurs deep within the internals of
the Angular framework. This exhibits the great security
benefits that Trusted Types bring to an application.

Adopting Trusted Types brings new chances to
review the security aspect of a project’s design and
implementation, possibly leading to the discovery
of new vulnerabilities. With Trusted Types en-
forcement, applications can become more resilient
to undiscovered vulnerabilities.

8.2. Third-Party Libraries

It has been reported that third-party libraries are one
of the key blockers that prevent web applications from
adopting security features like CSP and SRI [24].

As mentioned in Section 7.3, we had to patch the third-
party test frameworks and runners to be able to verify our
changes indeed added TT compatibility to Angular. The
other blockers on the third-party side were Bazel, the build
system that compiles and tests Angular, Webpack, a code

https://angular.io/guide/security#enforcing-trusted-types
https://github.com/lit/lit/pull/1772
https://github.com/facebook/react/pull/16157


and asset bundling tool for distributing compiled Angular
applications. These were the only third-party dependencies
we had to patch and the fixes were straightforward, so our
experience only partially aligns with historical observa-
tions. The reason could be that web frameworks typically
have unique designs and most DOM-related operations
they perform have very uncommon patterns; they do not
have too many third-party libraries to rely on for ma-
nipulating the DOM. Also, web frameworks may intend
to avoid critical run-time dependencies for the sake of
ecosystem stability.

Frameworks tend to have fewer dependencies than
web applications. While third-party libraries and
tools can block Trusted Types adoption for frame-
works, the obstacle is less severe than for web
applications. On the other hand, third-party block-
ers can be more subtle in the case of frameworks,
as the conflicts can manifest during testing and
distribution in addition to run time.

8.3. Backward and Cross-Platform Compatibility

When introducing new features to a framework that
serves an inherently fragmented ecosystem, maintaining
backward compatibility could lead to a “long tail” effect,
i.e., a large amount of resources is spent on platforms
with a small fraction of users. In this project, we noticed
this effect due to a TT implementation bug in Chrome
83, a browser released in May, 2020. Due to this bug,
string-to-code APIs like eval basically became no-ops
when Trusted Types were enabled. At the time we noticed
this issue, Chrome 83 only had about 0.2% market share
worldwide [25], so the issue only affected a very small
fraction of our users. Still, we made a commitment to
retaining backward and cross-platform compatibility to the
best of our abilities. We sent a dedicated pull request to
add a workaround for this browser bug.21 Although the
code change is small, it took us quite some time to develop
this solution.

Adding new security features into web frameworks
or applications may introduce unexpected back-
ward compatibility issues that affect a small group
of users but cost a notable amount of effort to fix.

8.4. Collaboration Model

Before we successfully added Trusted Types support
to Angular, we made two similar attempts. In the first two
trials, we mostly tried to work by ourselves and did not
coordinate well with the Angular community. This time
however, we followed community contribution guidelines
and built good communication channels with the Angular
technical leads. It turned out that the open source software
development model works exceptionally well in this case.
Previous studies suggest that the open source commu-
nity acknowledges the importance of security but does
not always prioritize security-related work due to various

21. https://github.com/angular/angular/pull/40815

reasons [26]. Having a group of security experts drive the
security evolution of open source projects with support
from the community can be an effective collaboration
model, even if they did not participate in community
work before. Our case shows that this model works for a
complex project like Angular, and we expect it can work
for many other projects as well.

With good collaboration and contribution prac-
tices, open source projects can benefit from
security-improving efforts initiated by “outsiders.”

9. Threats to Validity

Internal Validity. Although we have successfully adopted
Trusted Types in Angular, it remains to be seen how
effective the new security mechanism is against XSS
threats. Previous research has shown that static enforce-
ment of safe coding practices can effectively prevent XSS
vulnerabilities [11], but we do not yet have quantitative
measurement regarding the effectiveness of Trusted Types
at a large scale.

External Validity. This study focuses on Angular, an open
source web framework. Our migration work inevitably re-
quires collaboration with the core Angular team. Although
Angular contributors always advocate community-driven
development and we have tried our best to follow this
guideline during the adoption process, our experience may
still be biased due to a similarity in the development
environment and organization culture to the ones used
by Angular. These factors may affect how generally our
lessons learned can be applied to other scenarios.

10. Related Work

There has been a long history of preventing script
injection attacks with additional security mechanisms built
into browsers. The Browser-Enforced Embedded Policies
(BEEP) [27] aimed to regulate script inclusion operations
based on an application-controlled policy. A system called
SOMA [28] extends the the scope of BEEP to other web
resources in addition to scripts. These two systems in-
spired the creation of Content Security Policy (CSP) [29],
which now has been standardized and implemented by
many browsers. Trusted Types are the latest advance-
ment in this direction, introducing much more fine-grained
script injection prevention. Trusted Types can also be
seen as a continuation of an attempt of eliminating XSS
vulnerabilities by deploying a series of secure-by-default
APIs [18], [11]. Trusted Types complement the effort by
adding run-time checks in DOM APIs.

Despite being the first widely available in-browser
mechanism for preventing script injections, CSP did not
go through a smooth adoption process across the web [30],
[31]. Many studies have suggested that websites face many
problems when trying to enable CSP with an effective
policy. One of the most important reasons appears to
be that adopting CSP requires extensively rewriting the
applications [32]. Third-party libraries being incompatible
with CSP also plays a significant role in hindering the

https://github.com/angular/angular/pull/40815


adoption [24]. Browser extensions can also cast a negative
effect on the effectiveness of CSP, as many of them tamper
with the CSP policies of a page because policy makers of
the page did not take extensions into consideration [33].
JSONP is yet another common blocker for CSP adoption,
as the scripts are dynamically generated [30].

In response to the challenges in adopting new security
features in established software projects, there have been
various efforts in making it easier for developers to write
secure code or harden their applications with automated
tools. Xie et al. designed an IDE plugin that automat-
ically prompts programmers with better security options
including how to avoid XSS [34]. After studying the char-
acteristics of a large amount of vulnerable code changes,
Bosu et al. recommended that software projects should
create or adapt secure coding guidelines and establish a
dedicated security review team [35]. Parameshwaran et al.
designed a tool to automatically patch web applications
by replacing unsafe string interpolation with safer code
patterns [36]. A system called ZigZag is capable of dy-
namically instrumenting a web application and performing
invariant detection on security-sensitive code [37]. Musch
et al. proposed a tool that automatically removes third-
party code that facilitates string-to-code transformations
from web applications [38].

There have been reports of cases where developers
utilize features of specific programming languages in pur-
suit of additional security benefits. For example, Doligez
et al. released a case study about developing secure XML
validators with functional programming [39]; Anderson et
al. reported their experience with building a new Browser
Engine in the Rust Programming Language which is by
default memory safe [40]; Narayan et al. refactored the
code isolation mechanism of Firefox’s render engine for
improved security and performance, making use of ad-
vanced features of the C++ type system [41].

11. Conclusion

In this case study, we shared our experience with
migrating an established web framework to adopt Trusted
Types, the latest web API proposal for preventing XSS
attacks. We introduced the procedure of adopting Trusted
Types in a fairly complex project, detailing the root causes
of security violations, and how we fixed them. We ana-
lyzed the benefits and cost of the migration and discussed
the lessons learned from this process. We believe that
with the right tooling and methodology, adding Trusted
Types to a web application or framework should be fairly
cost effective. We hope that this report can motivate more
web developers to enhance the security of their web
applications with Trusted Types and help them overcome
the obstacles that we encountered.
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Appendix A.
Migrating Angular.io to Trusted Types

Trusted Types support in Angular enabled enforcing
TT in web applications built on top of it. We have al-
ready started this process for internal applications, but
wanted to showcase what such migrations might look
like on an open source target. In this appendix, we
demonstrate the Trusted Types migration of the web
application powering the Angular documentation site at
https://angular.io. The accompanying code is available at
https://github.com/angular/angular/pull/42800.

A.1. Preliminary work

CSP header support. To enforce Trusted Types,
the application needs to be served with the
appropriate CSP header. The Angular CLI can
be configured to serve custom headers during
local development and in end-to-end tests by
updating the angular.json file, specifically the
projects.site.architect.serve.options
configuration path, as follows.
"options": {
"headers": {
"Content-Security-Policy":
"require-trusted-types-for ’script’;"

}
}

NPM dependencies. The following packages were added
to the Angular.io application to facilitate the migra-
tion; @types/trusted-types22 for the TypeScript
type definitions for Trusted Types, safevalues23 as a
Trusted Types polyfill and utility library, and tsec for
identifying violations and preventing regressions.

A.2. Identifying TT violations

While Angular framework solves many of the security
issues, applications built on top of that framework are
not completely free of DOM XSS risks (see Section 3.1).

22. https://npmjs.com/package/@types/trusted-types
23. https://npmjs.com/package/safevalues
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https://gs.statcounter.com/browser-version-market-share#monthly-202011-202012-bar
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https://npmjs.com/package/@types/trusted-types
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With Trusted Types enforced, and a support for TT in the
framework, all those risky code areas now surface as TT
violations.

We used two approaches to identify TT violations in
the Angular.io application; manual inspection by running
the application in local development mode with report-
only Trusted Types enabled, and static code analysis using
tsec.

A total of 14 violations were identified in the appli-
cation, and were all encountered during manual inspec-
tion in local development mode, while tsec was able to
identify all 11 violations that occurred in the applica-
tion’s TypeScript code base, but missed violations that
occurred elsewhere: in an external TypeScript dependency
(ServiceWorkerModule), a bundled JavaScript li-
brary (prettify.js), and a static HTML page (Google
Analytics snippet).

A.3. Removing TT violations

Out of the 14 identified violations, 7 were triv-
ial usages of unsafe sinks that could be imme-
diately refactored to use safe DOM APIs, such
as replacing an innerHTML assignment with a
textContent assignment or an equivalent construction
using document.createElement. The remaining vi-
olations, listed below, required more work to address.

Inline SVG icons. The application used innerHTML
to render various SVG icons defined statically as strings
within the application bundle. Constant strings can usually
be assumed safe as they are fully application-controlled,
and cannot be injected by an attacker. To convert constant
strings to TrustedHTML, a template tag24 was defined.
This tag, which verifies that the tagged string contains no
dynamic data interpolation, was then used to convert the
markup for each of the SVG icons to TrustedHTML.
- const svg1 = ’<svg xmlns...></svg>’;
+ const svg1 = svg‘<svg xmlns...></svg>‘;

Service worker creation. The application created a Ser-
vice Worker. Since the Service Worker URL is a constant
string, we used the same approach as with inline SVG
icons, but this time leveraging the existing scriptUrl
tag from the safevalues package that performs iden-
tical checks, but produces a TrustedScriptURL.

Content rendering. Each Angular documentation page is
written in Markdown, compiled and then served as static
HTML from the Angular.io server. The Angular.io client
code then fetches the appropriate page from the server, and
renders it inline using an innerHTML assignment. Since
the Markdown is authored and reviewed by the Angular
team, the static HTML fetched from the Angular.io server
was deemed trusted and converted to TrustedHTML
using a reviewed conversion25 from the safevalues
package.

After changing the type of the variable storing the page
content to a TrustedHTML, the TypeScript compiler

24. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Template_literals#tagged_templates

25. https://github.com/google/safevalues#reviewed-conversions

reported a type error due a string value being assigned
to that variable. Inspecting the code, this assignment
occurred when the application failed to fetch the given
documentation page, and instead the string contained a
user-friendly error message describing the failure.

Type errors from the compiler such as the above are
commonly encountered when migrating an application to
TT. The solution is often to follow the string value
upstream and convert it to a TrustedHTML in a place
where its safety is evident. In this case, however, the
source of the string was a function similar to the follow-
ing:

const FETCHING_ERROR = (path: string): string => ‘<p>
We are unable to retrieve "${path}" at this time.

</p>‘;

A keen reader may notice that the path variable, con-
taining the path to the requested documentation page, is
not escaped. Hence this user-controlled parameter is being
injected into the current document as HTML without
being escaped by the application. Fortunately, attempts to
exploit this apparent XSS vulnerability turned out to be
futile due to the way modern browsers encode requested
URLs.

However, this near miss is a representative example of
how implicit assumptions can lead to the introduction of
vulnerabilities and how Trusted Types make these assump-
tions explicit. In this case, the documentation pages were
assumed trusted since they were static HTML originating
from the application development team. This assumption
was violated when the error page, which was not static
HTML, was introduced into the code base. With TT, the
developer is required to prove that the error message is
indeed trusted HTML. Furthermore, this proof is typically
provided near the source of the data where it can be readily
assessed by a security reviewer:

const FETCHING_ERROR = (path: string): TrustedHTML =>
htmlFromStringKnownToSatisfyTypeContract(‘<p>
We are unable to retrieve "${htmlEscape(path)}"
at this time.

</p>‘, ’inline HTML with interpolations escaped’);

Syntax highlighting. Some documentation pages included
code snippets that were highlighted using an old version
of the prettify.js library.26 During highlighting, the
library assigned an escaped version of the code snippet to
innerHTML after some minor processing. Since the code
snippet was already a TrustedHTML due to the changes
made in the previous section, the library was patched
to pass that TrustedHTML directly to innerHTML,
substituting the processing step for an equivalent use of
safe DOM APIs.

Google Analytics loading. The application used a cus-
tomized Google Analytics script loader. Since the code
was defined as an inline script in one of the HTML
templates, a single-use dedicated TT policy was created
to convert the URL to the Google Analytics script to a
TrustedScriptURL.

26. https://github.com/googlearchive/code-prettify
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A.4. Preventing regressions

Besides fixing the Trusted Types violations, additional
measures were taken to prevent regressions related to
Trusted Types in the future.

Enforcement in end-to-end tests. The end-to-end test
suite of Angular.io, which runs in a browser environment
that supports Trusted Types, was configured with Trusted
Types in enforcement mode. Any Trusted Types violation
encountered during a test would cause the test to fail.

Running tsec when linting. Angular.io’s linter configu-
ration was updated to run tsec on the entire code base,
i.e., tsec -p tsconfig.app.json. Code locations
that were security reviewed to safely create Trusted Type
policies or instances were exempted in the tsec configu-
ration.

Allowlisting policy names. A CSP directive
was added to only allow the creation of Trusted
Types policies that are used by the application
and were reviewed to be safe. The respective
CSP directive was trusted-types angular
angular#bundler angular#unsafe-bypass
analytics google#safe.

A.5. Summary

Angular.io is a medium-sized Angular application,
with some cases of risky Web API usage, including
fetching (originally Markdown) documentation pages as
HTML from the server and rendering them inline. It
also uses a code prettifier modifying the DOM in a non-
obvious manner. Nevertheless, it turned out to be rather
straightforward to fix all the Trusted Types violations,
despite that the engineer working on the migration had
no previous exposure to the code base. The effort only
took:

• One day to configure TT enforcement in local
development mode and fix all the encountered
violations,

• One day to configure TT enforcement in end-to-
end tests and fix all the violations there,

• One day to set up tsec and tailor the code commits
into a publishable state.

This matches our experience in that while migrating
framework code to Trusted Types has some unique chal-
lenges that take time and effort to appropriately resolve,
subsequent migration of web applications is substantially
simpler and faster.
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