
Fast Task-Aware Architecture Inference

Efi Kokiopoulou∗1, Anja Hauth1, Luciano Sbaiz1, Andrea Gesmundo1, Gabor Bartok1

and Jesse Berent1

1Google AI Perception

February 18, 2019

Abstract

Neural architecture search has been shown to hold great
promise towards the automation of deep learning. How-
ever in spite of its potential, neural architecture search
remains quite costly. To this point, we propose a novel
gradient-based framework for efficient architecture search
by sharing information across several tasks. We start
by training many model architectures on several related
(training) tasks. When a new unseen task is presented,
the framework performs architecture inference in order
to quickly identify a good candidate architecture, before
any model is trained on the new task. At the core of our
framework lies a deep value network that can predict the
performance of input architectures on a task by utilizing
task meta-features and the previous model training experi-
ments performed on related tasks. We adopt a continuous
parametrization of the model architecture which allows for
efficient gradient-based optimization. Given a new task,
an effective architecture is quickly identified by maximiz-
ing the estimated performance with respect to the model
architecture parameters with simple gradient ascent. It
is key to point out that our goal is to achieve reasonable
performance at the lowest cost. We provide experimental
results showing the effectiveness of the framework despite
its high computational efficiency.

1 Introduction

Designing high performing neural networks is a time con-
suming task that typically requires substantial human effort.
In the past few years, neural architecture search and algo-
rithmic solutions to model building have received growing
research interest as they can automate the manual process
of model design. Although they offer impressive results
that compete with human-designed models [22], neural
architecture search requires large amount of computational
resources for each new task. For this reason, recent meth-
ods have been proposed that focus on reducing its cost (see
e.g., [13, 15]). This very fact becomes a major limitation
in those setups that impose strict resource constraints for

∗{efi,ahauth,sbaiz,agesmundo,bartok,jberent}@google.com

Database
of model
training
experiments

Task K-1

...

child model architectures

Deep Value
Network

Training triplets

Offline training phase

samples meta-features

Task 1

samples meta-features

Task 0

samples meta-features

Estimated performance

(a)

Unseen Task K

model architecture space

Online inference phase

samples meta-features

(b)

Figure 1: The proposed framework. (a) Offline phase.
Several architectures are trained and their performances
are stored in a database. The performances along with
meta-features about the task are used to train a value
network which estimates the performance. (b) Online
phase. Given a new task and its meta-features, the system
applies gradient ascent on the output of the value net.

model design. For example, in cloud machine learning
services, the client uploads a new data set and an effective
model should ideally be auto-designed in minutes (or sec-
onds). In such settings architecture search has to be very
efficient, which is the main motivation for this work.

At the same time, applying independently automated
model building methods to each new task requires a lot of
models to be trained as well as learning how to generate
high performing models from scratch. Such an approach
requires a formidable amount of computational resources
and is far from being scalable. On the other hand, hu-

1

ar
X

iv
:1

90
2.

05
78

1v
1 

 [
cs

.L
G

] 
 1

5 
Fe

b 
20

19



man experts can design state-of-the-art models using prior
knowledge about how existing architectures perform across
different data sets. Similar to human experts, we aim to
cross learn from several task data sets and leverage prior
knowledge.

In this paper, we present a framework that amortizes the
cost of architecture search across several tasks and remains
effective thanks to the knowledge transfer between tasks.
Architecture search aims at learning a mapping from a
data set to a high performing architecture. We propose
to formulate architecture search as a structured prediction
problem and build on top of previously proposed deep
value networks [8]. Given a candidate model architecture
and meta-features about the task, a deep value network
provides a differentiable mapping whose output estimates
the performance of the input architecture on the task
data set. We also adopt a continuous parametrization of
the model architecture which allows for efficient gradient-
based optimization of the estimated performance. Also, in
contrast to previous work, e.g., [5] that uses pre-computed
meta-features for the task, we present a solution for learning
the meta-features directly from the raw task samples as
part of the deep value network weights.

The framework consists of an offline training phase and
an online inference phase (see Fig. 1 for a conceptual il-
lustration). Assuming that we have trained several model
architectures on several related (training) tasks, when a
new unseen task is presented, the framework performs fast
architecture optimization in order to quickly identify a
good candidate architecture, before any model training
is performed. In particular, the best candidate architec-
ture is efficiently identified by maximizing the estimated
performance with respect to the model architecture param-
eters with simple gradient ascent. In summary, the paper
contributions are the following:

• Efficient architecture search using gradient-based ar-
chitecture optimization.

• Ability to learn the task meta-features directly from
the raw task data samples.

• Cross learning across many tasks (by leveraging in-
formation about how various architectures perform
across many tasks data sets).

We provide experimental results showing the potential of
the proposed framework. The rest of the paper is organized
as follows. Section 2 formally defines the problem we
are interested in. Next, in Section 3, we introduce the
proposed framework and present it in details. Section 4
reviews related methods from the literature. We present
experimental results in Section 5 and the conclusions and
future work in Section 6.

2 Problem formulation

We are interested in task-aware efficient neural architecture
search. Given a new (unseen) task data set, we would like

Model architecture

Deep Value
Network

Child model
performance

Task data set
meta-features

(a)

Model architecture

Child model
performance

Task data set

samples

(b)

Figure 2: Deep value network. (a) With pre-computed
meta-features. (b) With learned meta-features. The value
net consists of φ(·) and ρ(·).

to identify quickly an effective model architecture before
any model is trained. We want to learn across datasets in
order to amortize the cost of neural architecture search.
In particular, we want to collectively learn from all the
model training experiments and leverage this wealth of
information. Instead of performing architecture search in-
dependently for each new data set, we would like to transfer
the knowledge obtained from past training experiments on
related tasks. In summary, the proposed framework should
have the following properties:

• High scalability in terms of computing resources.

• Ability to scale and learn collectively across task data
sets.

• Ability to propose a good architecture for a new related
task without training any model.

In the next section we propose a general framework that
has these desired properties.

3 Proposed framework

We want to automatically discover the model architecture
that achieves the best quality for a given data set. Es-
sentially we are looking for learning a mapping from an
input data set to a high performing model architecture.
We propose to formalize the architecture search problem as
a structured output prediction problem. The key intuition
is that learning to criticize candidate architectures is easier

2



than learning to directly predict the optimal architecture.
In particular, the proposed framework builds on top of
the Deep Value Networks (DVNs) [8] that were originally
developed in the context of structured prediction applied to
image segmentation. In our context, a deep value network
acts as a meta-model that tunes the architecture of a child
model. We consider child model families parametrized by u,
assuming for now that u is a vector of continuous variables.

A deep value network in our context takes as input: (i)
descriptive meta-features z derived from a certain task
data set and (ii) the child model architecture parameters
u, and predicts how well the architecture u performs on
the task data set described by z. The performance metric
v can take various forms (e.g., accuracy, AUC) but the
framework is agnostic to it. In this paper, we use the
validation accuracy as performance metric. The deep value
network is shown conceptually in Fig. 2. When training
the value network, our hope is that it learns which type
of child model architectures work well on certain types of
data. This tries to mimic the human expert during manual
architecture design. Human experts rely on intuition and
prior knowledge when developing new candidate architec-
tures. Here, our hope is that such an ‘intuition’ is encoded
in the weights of the value network and that it is generally
applicable and transferable across data sets.

In the following sections, we provide more details about
the proposed framework. We discuss the meta-features of
a task in Section 3.1. The framework has two phases: an
off-line training phase and an online inference phase that
are detailed below in Sections 3.2 and 3.3 respectively. Sec-
tion 3.4 discusses the child model architecture parameters
u.

3.1 The meta-features of a task

The meta-features z of a task describe its characteristics
and statistics, and they are typically derived from the
task data set itself. The meta-features may include the
following: total number of samples, number of classes and
their distribution, label entropy, total number of features
and statistics about them (min, max, median), mutual
information of the features with the label and task id. The
latter can be used to learn an embedding for each data
set. Similar data sets should get similar embeddings (see
e.g., [20]).

Learning the meta-features. On top of using pre-
computed meta-features such as those listed above, one can
also learn them directly from the task data set D. In this
case, the data set (or a large fraction of it) is given as input
to the deep value network, and a task embedding is learned
directly from the raw task data set samples. Note that
we use both the features and the labels of the task data
set samples towards learning the task embedding. This
task embedding plays the role of the meta-features and is
learned jointly together with the rest of the weights of the
deep value network.

Algorithm 1 Offline training phase

Inputs:
Task datasets Dk, see Eq. (2)
DVN training set T , see Eq. (3)
kInnerIters, kOuterIters

repeat
Sample randomly a task k.
for i = 1 to kOuterIters do

Pick a mini-batch from T with samples only from
task k.
for j = 1 to kInnerIters do

Pick a large batch from the task dataset Dk.
Perform one step of Stochastic Gradient Descent
step on the weights of the deep value network.

end for
end for

until Convergence

The task embedding should be invariant to the order of
the samples in the task data set. According to [21], such
a function can be decomposed in the form ρ(

∑
x∈D φ(x))

for suitable transformations φ and ρ. The latter transfor-
mations are typically implemented by a few layers (e.g.,
fully connected, non-linearities etc.). The main idea is to
transform each sample from the task data set using φ(·)
and then aggregate the transformed samples such that the
task embedding becomes permutation invariant before it is
fed into ρ(·). This process is shown conceptually in Fig. 2,
where the deep value network essentially consists of φ(·)
and ρ(·) that are jointly learned, i.e.,

v(u, z) := ρ

(
u,
∑

x∈D
φ(x)

)
(1)

We assume here that the data samples of different tasks are
expressed in a common feature space that can be ingested
by φ(·).

3.2 Off-line training phase

Assume we have K tasks with corresponding data sets
denoted:

Dk =
{

(x
(k)
i , y

(k)
i )
}Nk−1

i=0
, k = 0, . . . ,K − 1 (2)

where Nk is the number of data samples in the k-th task.

(x
(k)
i , y

(k)
i ) is the i-the sample and its corresponding label

in the k-th task data set.
For each task data set, we generate m child model archi-

tectures, train them and collect the model performances on
the validation set in a life-long database of model training
experiments (see Fig. 1). This database is used to generate
the training set for the deep value network, which consists
of M triplets of the form:

T = {(zi, ui, v∗i )}M−1i=0 , (3)

3



Algorithm 2 Online inference phase

Inputs:

New Task dataset DK = {(x(K)
i , y

(K)
i )}NK−1

i=0

Trained DVN model v(u, z;w)
kNumStartingPoints, kMaxIters

Compute the meta-features z =
∑

x∈DK
φ(x)

Form an empty set S = {} of solutions
for i = 1 to kNumStartingPoints do

Pick an initial guess u
(0)
i , t = 0

repeat

u
(t+1)
i = u

(t)
i + η ∂

∂uv(u
(t)
i , z;w)

t := t+ 1
until Convergence (or t > kMaxIters)
S := S ∪ {(v̂i, ûi)} where ûi is the found solution
and v̂i its corresponding value.

end for
Output: arg max(v,u)∈S v(u).

where the value v∗i holds the child model performance ob-
tained when training with the model architecture ui on
the task data set with meta-features zi. In this paper,
the model performance metric used is the validation ac-
curacy. As more tasks are ingested in the database and
more models get trained, the deep value network improves
its predictions. In the Appendix we provide experimental
results demonstrating this behaviour.

Once the child model training experiments have been
collected in the database, we can start training the deep
value network. Algorithm 1 shows the main steps of this
offline training phase.

3.3 Online inference phase

After training the deep value network v(u, z;w), the
model weights w are kept fixed. At inference time, given a
new task dataset, we first extract its meta-features z. At
this point we can employ the value network in two ways.
First, if we have a candidate architecture u we can evaluate
it by simply doing a forward pass on the deep value net and
get the estimated child model performance. Alternatively,
we can compute the gradient of v(u, z) with respect to u and
perform simple gradient-based optimization to get a good
candidate architecture û that maximizes the estimated
child model performance.

In practice, we noticed that the gradient ascent is sen-
sitive to initialization. Hence, we run the process several
times with different initial guesses and at the end pick the
one that resulted in the maximum estimated performance.
Note also that in order to be able to perform gradient-
based inference we need to relax the model architecture
parameters u to live in a continuous space. Section 3.4
below discusses this parametrization in details. The main
steps of the online phase are shown in Algorithm 2. This
online process is also illustrated conceptually in Fig. 1.

3.4 Architecture parametrization

We discuss in this section the parametrization of the child
model architectures. Previous work [13, 18] has shown
that relaxing the parametrization from discrete to continu-
ous space allows for efficient gradient-based optimization
schemes while still providing competitive model perfor-
mances. Our approach goes along the lines of this previous
work. The main idea is that in order to make the architec-
ture space continuous we move away from the categorical
nature of design choices to a parametrized softmax over all
possible choices. We provide below a few examples where
this is applied.

Continuous parametrization for one layer Assume
that we have implemented a basis set consisting of p base
layers oi(x) corresponding to different sizes and different
activation functions. We associate a weight αi with each
base layer and we define a new parametrized layer as follows

o(x) =

p∑

i=1

exp(αi)∑p
j=1 exp(αj)

oi(x). (4)

The values αi allow the final parametrized layer o(x) to
‘morph’ from one size to another and/or from one activation
function to another. We use zero padding whenever needed
to resolve the dimension mismatch among base layers of
different sizes.

Continuous parametrization for a child network
Leveraging on the continuous parametrization for one layer
introduced above, we can put several parametrized layers
together. We attach a superscript to the layer parameters

to denote the layer where they belong to i.e., α
(j)
i is the

parameter that multiplies the output of the i-th base layer
in the j-th parametrized layer of the final network. We
also add the ability for each layer to be enabled or disabled
independently from the other layers. For this, we add extra
parameters βj that control the presence or absence of each
layer. This is shown conceptually in Fig. 3 below.

8,
relu

8,
tanh

256,
tanh

256,
relu

...

8,
relu

8,
tanh

256,
tanh

256,
relu

...

8,
relu

8,
tanh

256,
tanh

256,
relu

...

Layer 0 Layer 1 Layer L - 1

+

...

Figure 3: Continuous parametrization of the child models.

Putting everything together, we consider child models
that are standard Feedforward Neural Networks (FFNNs)
composed of an embedding module followed by several

4



parametrized layers and a final softmax classification layer.
The reason for using an embedding module is that it speeds
up the training time for the child models and improves
their quality especially when the training set is small. The
embedding module is soft-selected by an input set of pre-
trained embedding modules1 using the same softmax trick
analogous to Eq. (4) where we denote by γ the correspond-
ing parameters of the softmax. After this relaxation, archi-
tecture search reduces to learning the continuous variables
u := {{α}, {β}, {γ}}. We refer to u as the encoding of the
model architecture. Finally, we would like to emphasize
that this parametrization is just one example among many
possible options. Any parametrization will work with the
proposed framework as long as it is continuous.

4 Related work

Automated model building is an important challenging
research problem and several related methods have been
proposed in the past few years. In general, previous works
can be broadly categorized into the following classes:

• Bayesian optimization methods [19, 14, 9, 6] build a
probabilistic model of the performance of the network
as a function of its hyperparameters and then decide
which candidate point in the search space to evaluate
next.

• Methods based on Reinforcement Learning (RL) [22,
20, 15, 12] evaluate candidate child model architectures
on-the-fly, by training and evaluating on a validation
set. Using the validation accuracy as the reward signal,
these methods use RL to optimize the child model
architecture.

• Evolutionary methods such as [17] form a population
of model architectures. The population is evolved over
time by picking individuals and mutating them (e.g.,
inserting a new layer). The quality of the popula-
tion improves over time as the individuals with poor
performance are removed.

• Morphing methods [7, 3] start with an initial model
architecture and they iteratively refine the architecture
during training until a certain objective is hit (e.g.,
model size or flops per inference).

• Performance prediction methods [10, 4, 2, 12]. Given a
candidate model architecture, these methods forecast
its performance without training. In order to train the
performance predictor a database of previous trainings
of various model architectures is typically built.

The proposed framework also belongs to the last cat-
egory of performance prediction methods. However, our
deep value network is task-aware and takes-in not only the

1The pre-trained modules are available via the Tensorflow Hub ser-
vice (https://www.tensorflow.org/hub). Please refer to the Appendix
for more details about them.

architecture but also meta-features about the task, with
the extra ability of learning them directly from the raw
task samples. Hence, the proposed framework in its current
form is novel (to the best of our knowledge). However, it
shares connections and similarities with existing works that
we outline below. The previously proposed SMAC method
[9] for general algorithm configuration also uses a history
of past configuration experiments as well as descriptive fea-
tures for the problem instances. However, this method uses
an expensive Bayesian optimization process as opposed to
the efficient gradient-based architecture search that this
framework proposes (implied by the structured prediction
formulation).

The TAPAS system proposed in [10] also uses a history
of past configuration experiments stored in a database of
experiments. The paper proposes a performance predictor
that takes as input the difficulty of the dataset as well
as a candidate network architecture. However, they use
only pre-computed meta-features and their architecture
parametrization is not differentiable.

The paper in [20] proposes a multi-task training of RL-
based architecture search methods. For each task, it learns
a task embedding that captures the task similarity. The
task embedding is provided as input to the controller at
each time step. In contrast to our work where the task
embedding is derived directly from the data samples of the
task, the task embedding in [20] is derived from the task id.
Also, this method still requires some child model trainings
and evaluations on the test task as opposed to our method
that requires no child model trainings.

5 Experiments

The framework has been implemented in TensorFlow2 [1].
For the experimental results we use publicly available NLP
data sets whose main characteristics are shown in Ta-
ble 1. We have performed several leave-one-out experi-
ments, where each task in our set is considered to be a
test task and the rest of the tasks are used as the training
tasks. Then for each such leave-one-out experiment, we
train a DVN, we study its predictive performance and use
it for fast architecture inference. More details are provided
below.

5.1 Setup

Child models The child models have been implemented
using the parametrization discussed in Section 3.4. The
sizes of the base layers in a single parametrized layer
are {8, 16, 32, 64, 128, 256} and each one of them is com-
bined with two distinct activation functions (relu and
tanh). Hence a single parametrized layer is composed of
twelve base layers and each child model has seven such
parametrized layers. The child models have been trained
using Adam optimizer [11] with a learning rate of 10−4 for
20 training epochs.

2We plan to make the code publicly available.

5



Table 1: Statistics for the NLP classification data sets. Number of examples in the training set, validation set and test
set, number of classes and reference.

Data set Train Examples Val. Examples Test Examples Classes Reference

Airline 11712 1464 1464 3 crowdflower.com
Corporate Messaging 2494 312 312 4 crowdflower.com
Emotion 32000 4000 4000 13 crowdflower.com
Disasters 8688 1086 1086 2 crowdflower.com
Global Warming 3380 422 423 2 crowdflower.com
Political Bias 4000 500 500 2 crowdflower.com
Political Message 5000 500 500 9 crowdflower.com
Progressive Opinion 927 116 116 3 crowdflower.com
Progressive Stance 927 116 116 4 crowdflower.com
US Economic Performance 3961 495 496 2 crowdflower.com

Deep value network The value network was trained on
the child model training experiments stored in the database,
which was populated with about 500 child model architec-
tures per task (generated by random one-hot architecture
encodings). We used a simple value network consisting of
two fully connected layers of size 50 each for the task meta-
features tower (aka φ(·) in Fig. 2) and two fully connected
layers of sizes 50 and 10 for the tower that produces the
final prediction (aka ρ(·) in Fig. 2). The value network
used standard L2 loss for regression and was trained using
Stochastic Gradient Descent with momentum [16] (using
0.5 as default parameter). The learning rate was set to
10−4. We set kOuterIters to 1 and kInnerIters to 2 in
Algorithm 1. When training the value network we normal-
ized the child performances vi = (vi − µk)/σk using the
mean µk and standard deviation σk of the population of
child performances for a certain task k. Each task has its
own level of difficulty and we noticed that this normaliza-
tion step factors out the difficulty of the task and improves
the performance of the value network.

5.2 Predicting the model performance

We study the predictive performance of the value net-
work in each one of the leave-one-out experiments. In
particular, given the predicted performances and their cor-
responding actual performances, we quantify the predictive
performance in terms of the Spearman’s rank correlation
coefficient as well as the standard R2 metric for regression.
In order to get more accurate results we repeat this process
ten times and we report the statistics of the obtained per-
formances. Table 2 shows the obtained Spearman’s rank
correlations for each task and Table 3 shows the corre-
sponding R2 metric values. Notice that in most cases, the
Spearman’s rank correlations lie around 0.8, which seems
rather satisfactory for a method that does not use any child
model trainings on the test task.

We have also studied experimentally the effect of the
meta-features and report the predictive performances with
and without meta-features. The results in both tables
suggest that the meta-features are helpful, as expected,

since both metrics increase. The meta-features provide
task-specific information to the value network that helps
towards estimating the relative performance of various
architectures for the task at hand.

5.3 Architecture search

In this section we look into the performance of the child
model architectures suggested by our method and we report
their test accuracy. When we apply our algorithm we
set kNumStartingPoints to 10 and kMaxIters to 1000 in
Algorithm 2. For each task we run our method ten times in
order to get more accurate statistics on the performances.

We compare against the NAS method for architecture
search using Reinforcement Learning [22]. In particular,
we applied NAS on the same child models as our method.
Table 4 shows for each task the test accuracy of the child
model that NAS found as having the best validation accu-
racy. We report also the number of trained child models
that were needed for achieving this accuracy. For the sake
of completeness, the table also includes the performances
of the first 10 models that NAS tried.

Notice that the performance of the proposed method is
not too far from that of NAS. This is very promising given
that the proposed method requires no child model training
in its online phase and is very efficient.

Note finally that the experiments above have been all
performed in the continuous architecture space. However,
we acknowledge that inference with continuous child model
architectures can be expensive for some applications, since
it involves computations over all possible design choices.
In such cases, one may want to prune the architecture
(in order to make inference faster) but still keep the same
model quality. This will be the subject of a forthcoming
study.

6 Conclusions and future work

We presented a framework for efficient architecture infer-
ence that cross learns from several tasks. This is feasible

6



Table 2: Spearman’s rank correlations between the actual performances and the predicted performances provided by
the value network; breakdown by task. The higher the better. The meta-features seem to help in the majority of tasks.

Task name Without Meta-features With Meta-Features

airline 0.8003 ± 0.0180 0.8260 ± 0.0125
emotion 0.8269 ± 0.0138 0.8523 ± 0.0088
global warming 0.8072 ± 0.0116 0.8179 ± 0.0076
corporate messaging 0.8090 ± 0.0067 0.8527 ± 0.0076
disasters 0.8066 ± 0.0053 0.7933 ± 0.0121
political message 0.4915 ± 0.0114 0.5078 ± 0.0091
political bias 0.5408 ± 0.0138 0.5210 ± 0.0111
progressive opinion 0.8164 ± 0.0130 0.8338 ± 0.0063
progressive stance 0.7244 ± 0.0212 0.7883 ± 0.0200
us economic performance 0.3051 ± 0.0103 0.2851 ± 0.0114

Table 3: R2 values between the actual performances and the predicted performances provided by the value network;
breakdown by task. The higher the better. The meta-features seem to help in the majority of tasks.

Task name Without Meta-features With Meta-Features

airline 0.7709 ± 0.0143 0.8294 ± 0.0174
emotion 0.7570 ± 0.0164 0.8011 ± 0.0116
global warming 0.7002 ± 0.0102 0.7403 ± 0.0138
corporate messaging 0.7218 ± 0.0102 0.7746 ± 0.0099
disasters 0.7805 ± 0.0120 0.8039 ± 0.0143
political message 0.7345 ± 0.0124 0.7451 ± 0.0138
political bias 0.1718 ± 0.0148 0.1382 ± 0.0148
progressive opinion 0.4473 ± 0.0060 0.4720 ± 0.0092
progressive stance 0.4189 ± 0.0112 0.4614 ± 0.0138
us economic performance 0.6886 ± 0.0164 0.6970 ± 0.0146

Table 4: Comparison with NAS in terms of test accuracy. The table shows the test accuracy achieved by the top model
according to the validation accuracy that NAS found. The number of child models that NAS trained in order to achieve
this test accuracy is also reported. For the sake of completeness, we report the statistics of the test accuracy obtained
by the first 10 models that NAS tried. Notice that the proposed method (without any child model training on the test
task) achieves test accuracy which is close to that of NAS in the majority of cases.

Task name First10 NAS Num Child models Proposed

airline 0.7904 ± 0.0366 0.83197 751 0.8222 ± 0.0129
global warming 0.7806 ± 0.0249 0.79196 1927 0.8017 ± 0.0108
disasters 0.8193 ± 0.0105 0.83425 1283 0.8235 ± 0.0119
political bias 0.7770 ± 0.0151 0.778 1989 0.7686 ± 0.0108
progressive opinion 0.6750 ± 0.0428 0.73276 1505 0.7052 ± 0.0381
progressive stance 0.4181 ± 0.0645 0.57759 1635 0.4724 ± 0.0537
us economic performance 0.7494 ± 0.0112 0.76411 1966 0.7498 ± 0.0132
corporate messaging 0.8006 ± 0.0492 0.85897 968 0.8247 ± 0.0387
emotion 0.2998 ± 0.0278 0.35425 1779 0.3397 ± 0.0238
political message 0.4230 ± 0.0075 0.414 1974 0.4214 ± 0.0061

7



thanks to a deep value network that predicts the perfor-
mance of a candidate architecture on a certain task based
on learned meta-features derived from the raw data. Given
a new task, the proposed method uses simple gradient
ascent to infer a candidate architecture for it and experi-
mental results confirm that the performance of the found
architecture is relatively close to that of the very expensive
baseline. In our future work, we plan to explore different
child model parametrizations, study the effect of prun-
ing the architecture and apply the method to other data
modalities beyond text (e.g., images).

Acknowledgements

The authors would like to thank Thomas Deselaers for his
valuable comments, fruitful discussions and support.

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In Proceedings of
the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pages 265–283,
Berkeley, CA, USA, 2016. USENIX Association.

[2] B. Baker, O. Gupta, R. Raskar, and N. Naik. Accel-
erating neural architecture search using performance
prediction. arXiv preprint, November 2017.

[3] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov,
Mehryar Mohri, and Scott Yang. Adanet: Adaptive
structural learning of artificial neural networks. In
Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pages 874–
883. JMLR.org, 2017.

[4] B. Deng, J. Yan, and D. Lin. Peephole: Predicting
network performance before training. arXiv preprint,
December 2017.

[5] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and Frank Hutter. Efficient and Robust
Automated Machine Learning. NIPS, 2015.

[6] N. Fusi, R. Sheth, and H. M. Elibol. Probabilistic Ma-
trix Factorization for Automated Machine Learning.
32nd Conference on Neural Information Processing
Systems (NIPS 2018), Montréal, Canada., 2018.

[7] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu,
T.-J. Yang, and E. Choi. MorphNet: Fast & Sim-
ple Resource-Constrained Structure Learning of Deep
Networks. CVPR, 2018.

[8] M. Gygli, M Norouzi, and A. Angelova. Deep value
networks learn to evaluate and iteratively refine struc-
tured outputs. ICML, 2017.

[9] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequen-
tial Model-Based Optimization for General Algorithm
Configuration. 5th International Conference on Learn-
ing and Intelligent Optimization, pages 507–523, 2011.

[10] R. Istrate, F. Scheidegger, G. Mariani, D. Nikolopou-
los, C. Bekas, and A. C. I. Malossi. TAPAS: Train-less
Accuracy Predictor for Architecture Search. arXiv
preprint, 2018.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. CoRR, abs/1412.6980,
2014.

[12] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neu-
ral architecture search. In The European Conference
on Computer Vision (ECCV), September 2018.

[13] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: Differentiable architecture search. In In-
ternational Conference on Learning Representations,
2019.

[14] H. Mendoza, A. Klein, M. Feurer, J. T. Springen-
berg, and F. Hutter. Towards Automatically-Tuned
Neural Networks. JMLR: Workshop and Conference
Proceedings, 1:1–8, 2016.

[15] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le,
and Jeff Dean. Efficient neural architecture search
via parameters sharing. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 4095–
4104. PMLR, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018.

[16] Ning Qian. On the momentum term in gradient de-
scent learning algorithms. Neural Netw., 12(1):145–
151, January 1999.

[17] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Sue-
matsu, J. Tan, Q. V. Le, and A. Kurakin. Large-Scale
Evolution of Image Classifiers. Proceedings of the
34 th International Conference on Machine Learning,
Sydney, Australia, PMLR, 2017.

[18] R. Shin, C. Packer, and D. Song. Differentiable Neural
Network Architecture Search. Workshop track - ICLR,
2018.

[19] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical Bayesian Optimization of Machine Learning
Algorithms. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 2951–2959.
Curran Associates, Inc., 2012.

8



[20] Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea
Gesmundo. Transfer learning with neural automl. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31, pages
8366–8375. Curran Associates, Inc., 2018.

[21] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos,
R. Salakhutdinov, and A. Smola. Deep Sets. NIPS,
2017.

[22] B. Zoph and Q. V. Le. Neural Architecture Search
with Reinforcement Learning. ICLR, 2017.

9



“Fast Task-Aware Architecture Inference”:
Supplementary Material

February 18, 2019

1 Adding more training tasks improves per-

formance

We study the effect of gradually adding more training tasks when training
the deep value network. In order to get accurate results, we perform the
experiment 100 times with different random orderings of the added tasks and
for each such random ordering we train the value network 10 times (all with
identical setup). In Fig. 1, we report the average values of the Spearman’s
rank correlation and the R2 coefficient as a function of the number of training
tasks. The experiments suggest that adding more tasks improves on average
the performance of the deep value network. We noticed similar behaviour
for the other tasks as well.

2 Meta-features visualizations

We looked into the learned task representations in the meta-feature space. In
particular, for each task we compute the task embedding for different batch
realizations (of the task samples) and we visualized them both with tSNE as
well as with Principal Component Analysis (PCA). Figures 2 and 3 show the
2D visualizations for tSNE and PCA respectively for 10 random batches of
the training and the test tasks. For tSNE we set the perplexity to 70. One
interesting observation is that different batch realizations from the same task
result in close-by task embeddings in the meta-feature space, which confirms
the stability of the method in this respect.

1

ar
X

iv
:1

90
2.

05
78

1v
1 

 [
cs

.L
G

] 
 1

5 
Fe

b 
20

19



(a)

(b)

Figure 1: The effect of adding more training tasks to the deep value net.
The Spearman’s rank correlation (a) and the R2 values (b) as a function
of the number of training tasks. The test task here is the ‘airline.’ Similar
behaviour holds for the other tasks (omitted here).

2



Figure 2: Visualization of the learned meta-features using tSNE for the test
task ‘airline’ (black color) and the training tasks (other colors). For each
task we show the meta-features computed from 10 random batches of the
task samples.

3



Figure 3: Visualization of the learned meta-features using PCA for the same
setup as in Fig. 2.

4



3 Text input embedding modules

Table 1: TensorFlow Hub embedding modules for text input.

Language Dataset size Embed dim. TensorFlow Hub Handles
Prefix: https://tfhub.dev/google/...

English 4B 250 Wiki-words-250/1

English 200B 128 nnlm-en-dim128/1

English 7B 50 nnlm-en-dim50/1

English - 512 universal-sentence-encoder/1

English - 512 universal-sentence-encoder/2

English 32B 200
English 32B 200

5


