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ABSTRACT
Accelerating communication for users with severe motor and
speech impairments, in particular for eye-gaze-based augmentative
and alternative communication (AAC) device users, is a longstand-
ing area of research. However, observation of such users’ commu-
nication over extended durations has been limited. This case study
presents the real-world experience of developing and field-testing
a tool for observing and curating the gaze typing-based communi-
cation of an eye-gaze AAC user with amyotrophic lateral sclerosis
(ALS). With the intent to observe and develop technology to ac-
celerate eye-gaze typed communication, we designed a tool and
a protocol called the SpeakFaster Observer to measure everyday
conversational text entry by the gaze-typing user, as well as several
consenting conversation partners of the AAC user. We detail the
design of the Observer software and data curation protocol, along
with considerations for privacy protection. The deployment of the
data protocol from November 2021 to April 2022 yielded a rich
dataset of gaze-based AAC text entry from everyday life, consist-
ing of 130+ hours of gaze keystrokes and 5,000+ curated speech
utterances from the AAC user and the conversation partners. We
present the key statistics of the data, including the speed (8.1±3.9
words per minute) and keystroke saving rate (-0.14±0.83) of gaze
typing, patterns of utterance repetition and reuse, and the temporal
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dynamics of conversation turn-taking in gaze-based communica-
tion. We share our findings and also open source our data collection
tools to further research in this domain.
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1 INTRODUCTION
In diseases that cause profound motor impairments such as amy-
otrophic lateral sclerosis (ALS) or cerebral palsy, if limb and speech
motor control are lost then voluntary eye movement becomes the
primary means of communication and interaction. In such cases,
an on-screen keyboard driven by an eye tracker is often used to
control an augmentative and alternative communication (AAC) tool.
When coupled with speech generation (aka text-to-speech or TTS),
eye gaze-based typing enables an alternative way of speaking to
others. However, gaze typing is extremely slow, typically less than
10 words per minute (WPM) [19], an order of magnitude slower
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than fluent speech (at ≈ 190 WPM for English [33]). This presents
a significant obstacle to effective communication and social well-
being for gaze-typers [10]. In this study, we focus on observing and
measuring the conversational communications of an eye-gaze AAC
user over an extended duration with the intention of finding means
to accelerate their communication.

Conducting research on the real usage of gaze-typers is difficult
due to their health conditions (e.g., fatigue can impact willingness
to learn new software), lack of mobility (e.g., hindering travelling
to user study sites), slow communication (e.g., reducing the abil-
ity to give feedback on a new system), as well as potential inva-
sions to their personal conversations (e.g., privacy concerns with
logging system inputs). As a result of these practical challenges,
few prior studies have measured or characterized gaze typing by
motor-impaired users. Most studies employ able-bodied subjects as
surrogates (e.g., [15, 18, 26, 30–32]) or rely on simulation or theo-
retical analysis of interface performance under optimal conditions
(e.g., [13, 14]). Experiments on actual gaze-typers are usually short
in duration and limited to lab settings (e.g., [20]). We are unaware
of any studies reporting on long-term gaze typing use by disabled
AAC users in natural settings.

Studying gaze typing by actual AAC users during everyday use is
necessary to ensure that algorithms and interfaces tested in the lab
and/or with non-disabled testers are properly tuned for real world
use. For instance, on able-bodied users, research on typing in real
world settings has yielded insights unobtainable from lab studies
alone [5, 12, 21]. In particular, for AAC users, factors that may affect
speed and accuracy such as fatigue or gradual drifts in eye-tracking
calibration [27], practicing and reusing phrases [18, 32], or using
adaptive word prediction and completion models [25, 29], may be
missed in short lab studies. To limit the impact of these factors
on a study’s data, researchers may be forced to control for such
factors ahead of time, e.g., by asking users to type non-repeating
phrases (often generic text collected from non-AAC users, e.g., [17])
which again may not reflect daily use. Another potential bene-
fit of studying everyday use of gaze typing by actual AAC users
is the opportunity to collect corpora that can capture long-term
trends and personalized patterns. The current lack of realistic AAC
corpora has prompted researchers to assemble simulated corpora
through crowdsourcing based on an imagined AAC scenario [28].
Further, if the goal of such corpora is to enhance communication
for AAC users, it would help to include context from conversa-
tional partners [31]. Corpora from conversations involving real
gaze-typing users would not only surpass imagined text in terms
of representativeness, but may contain authentic clues about long-
term trends, personalized vocabularies and grammar patterns, as
well as contextual factors that impact communication.

Thus, there is a need for a reliable system of instrumenting eye-
gaze typing during everyday use by AAC users over long periods
(e.g., weeks or even months). Our interdisciplinary team comprised
researchers and engineers with backgrounds in AI, HCI, and ac-
cessible technologies, speech language pathologists with clinical
experience with AAC users, and members of a foundation working
with people with ALS; this mix of perspectives resulted in our novel
data collection software and protocol, with its strong emphasis on
privacy and autonomy for the AAC user and their conversation
partners. This case study presents the design and implementation

of a system and protocol referred to as the SpeakFaster Observer
for gathering, handling, curating, and analyzing AAC gaze-typing
behavior in context. We describe the Observer tool and report our
experience using it to curate and collect data from a consenting
gaze-typing user who has ALS and the user’s consenting conversa-
tion partners. The instrumentation of the participant’s gaze-typing
usage was conducted for a six-month period, yielding a rich dataset
of keystrokes (>1,500 utterances) typed and embedded within the
context of conversations (>5,000 utterances) with several partners.

Based on this dataset, we report several findings including met-
rics of gaze typing, patterns of phrase reuse, long-term trends, as
well as aspects that are seldom studied in AAC communication and
could differ significantly from typical speakers such as temporal
dynamics and turn-taking [8, 23]. These results constitute the first
extended study of AAC gaze-typing "in the wild" to our knowledge.
We have open sourced the SpeakFaster Observer and hope that the
tool helps in quantifying and benchmarking deployed gaze-typing
solutions. Further, our ultimate goal is to accelerate communica-
tion for such users, so we hope that our study can help inform a
baseline that can be used to evaluate and improve novel text-entry
paradigms such as ones using neural network-based completions
and expansions [1, 6, 22].

2 DESIGN OF SPEAKFASTER OBSERVER
The SpeakFaster Observer (or the Observer for short) is an appli-
cation designed to gather conversational gaze-tying data (that the
AAC user intends to use TTS to speak aloud) while providing the
user full visibility and control over its state of operation. The Ob-
server is implemented as a Windows® application that runs in
the background, minimized as a system tray icon, and drives a
user-provided USB LED to ensure a salient signal is visible to con-
versation participants during active data collection. The user can
launch the application from a shortcut through eye-gaze clicking.
Once launched, the application enters an inactive state, during
which no data is logged and no signal is sampled from any sensors.
This inactive state is indicated by the gray color of the icon in the
system tray. Gaze clicking the icon toggles the Observer into the
"active" state, as indicated by the red color of the icon. The appli-
cation can be shut down anytime by the user through the "Exit"
option in the context menu. Fig. 1 shows screenshots of the system
tray icon under different states.

The active state of the Observer is divided into two distinct
sub-states, non-session and in-session. The observer logs data only
during the in-session state, in addition to a contextual lead time for
audio data (described below). The transition from the non-session
state to the in-session state is triggered by the user bringing a con-
figurable target application, typically the user’s primary application
for speech generation through gaze-typing (e.g., Tobii Dynavox
Communicator® and PRC Accent®), to the system foreground. The
state reverts automatically from in-session to non-session if the
target application has not been in the foreground for the last 5 min-
utes. This adds an extra layer of safety to prevent unwanted data
collection if the user forgets to deactivate the Observer or when
gaze-based conversation is paused for an extended period of time.
The Observer gives the user full control over its state of operation,
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Figure 1: Panels showing the UI elements of the observer application. A, B, and C are screenshots and D includes photos of the
USB LED under the off and on states.
including options to activate/deactivate at will, and exit at any time
from any state (see the state diagram in Supplementary Fig. 1).

We now describe the data that the Observer gathers when it is
active and in-session.

Keystroke logging: The Observer logs keystrokes only if the
target application is in the foreground. While “in-session”, the user
may put another application in the foreground for a brief moment
without causing the state to revert to non-session. No keystroke
is logged during these moments despite the in-session state. This
prevents keystroke logging unrelated to speech-based AAC, such
as writing emails or entering passwords in a web browser. When
the target application is in the foreground, the logged keys include
all keystrokes entered by the user through gaze and ones issued by
the on-screen keyboard on behalf of the user, which we refer to as
autokeys. Autokeys, which are distinguished from human-issued
keystrokes by their short spacing from the previous keystroke
(<20 ms), occur when options for word completion and next-word
predictions are selected and when the keyboard automatically per-
forms an action that entails multiple keystrokes. For example, the
WordBackspace feature in Tobii Dynavox keyboard [7] allows the
user to conveniently delete the entire last word with a single gaze
click (i.e., the sequence Ctrl, Shift, Left, and Backspace). Both
content keys (alphanumeric, punctuation, and whitespace) and
function keys (e.g., Ctrl, Shift) are logged.

Audio recording: When active, the Observer continuously pulls
audio samples from the Windows system’s primary microphone
(16-bit mono, 16 KHz sampling rate). This audio is stored in a cyclic
RAM buffer and not written to hard drive unless the Observer state
is in-session, or if the audio is collected less than 5 minutes prior to
the beginning of an in-session state. The rationale for logging audio
5 minutes prior to entering a session is to capture any utterances
spoken by conversation partner(s) which the user’s gaze typing
may be a response to.

Screenshots: When the Observer is in-session and detects the
target application in the foreground, it logs full-screen screenshots
at a rate of 2 Hz. The collected screenshots are useful for the data
curators (Sect. 3) to gain insight into user actions for text editing
that are not available from the keystroke logs alone, such as mouse-
based cursor navigation.

Storage and transfer. We refer to a continuous period of in-
session state in the Observer as a session. The Observer creates a
dedicated folder for each session, with the folder name as the start
time of the session in UTC. Supplementary Table 1 summarizes
the modalities, file formats, and estimated byte rate of data logged
by the Observer during a session. The user can also delete logged
sessions while they are saved on disk. When network access is
available, the Observer periodically uploads the data from the local
drive to a secure cloud storage bucket via an SSL connection. Once
uploaded, the session folder is deleted permanently from the local

device. This minimizes the risk of exhausting local disk space due
to continuous collection; for instance, with the screenshots, data
can be logged at a rate 24 MB/min. In our study, the user was also
informed that uploaded data sessions could be deleted upon request
by specifying the date and time of the collection (our user did not
make any such requests).

3 PROCESSING AND CURATION OF
OBSERVER DATA

The raw data collected by the Observer for each session under-
goes automatic pre-processing, manual curation, and further au-
tomatic post-processing before it is made available to researchers
(schematically shown in Fig. 2). During preprocessing, the session’s
audio files and screenshots are concatenated into a synchronized
MP4 video file with ffmpeg [24]. The audio is transcribed using
Google Cloud Speech-to-Text (automatic speech recognition or
“ASR” hereafter) with the language set to U.S. English (our study
participants’ primary language). The utterance-level transcripts
and logged keystrokes are written to a tab-separated values (TSV)
file with timestamps consistent with the video file.

The manual curation of the data is then done via an open-source
data annotation tool called ELAN1 [3]. The ELAN software allows
loading the MP4 video and the TSV file, and uses the timestamps to
provide an interface where the screenshots, audio track, utterance-
level speech transcripts, and keystrokes can all be viewed and
edited in a time-aligned fashion. A trusted data curator (described
in Sect. 4) then performs a six-step manual curation of each ses-
sion. These steps include ensuring that speech transcripts from
non-participating individuals are redacted, the speech utterances
missed by ASR are added, ASR errors are detected and corrected
or marked as background, the identity of the speaker for each
utterance is labeled with pseudonyms, and that words in the par-
ticipating individuals’ utterances that carry sensitive and private
information are redacted along with any corresponding keystrokes.
The range of redacted contents not only included standard PII and
sensitive topics such as health but also specific topics that the AAC
user and his family requested to redact through discussion with the
research team before the start of the data collection. The step-by-
step instructions to the curators are listed in Supplementary Table
2.

Following the manual curation, a postprocessing script generates
a single TSV file containing the timestamped keystrokes and speech
transcripts with properly applied redaction. The script additionally
generates a JSON file containing metadata regarding the session
such as time zone, device information, and summary statistics of
ASR errors. This pair of TSV and JSON files are purely textual, and
constitute the processed data of the Observer session. The processed

1https://archive.mpi.nl/tla/elan
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Figure 2: A schematic diagram illustrating the data flow in the SpeakFaster protocol. The SpeakFaster Observer collects raw
data, which is automatically preprocessed, then manually curated via the ELAN tool, and is then postprocessed to yield purely
textual TSV and JSON files for each session. The processed data is used in subsequent data analysis.

data from the recorded sessions forms the basis for subsequent
research and analyses. This ensures that the raw audio-visual data
from the Observer are exposed only to the trusted curators.

We have made the source code for the SpeakFaster Observer
and the GUI tools and scripts for data preprocessing, curation, and
postprocessing available in a public GitHub repository at https:
//github.com/TeamGleason/SpeakFaster.

4 AAC USER, CONVERSATION PARTNERS,
AND PRIVACY CONSIDERATIONS

A single AAC user (also referred to as User001) participated in our
case study. User001 is an adult male diagnosed with ALS and is a
native U.S. English speaker. Five additional adults, including his
spouse and four professional caregivers, were among the most
frequently engaged conversation partners. All six provided writ-
ten informed consent2 following an introduction and question &
answer session with the research team on the design of the data
collection, processing, and curation procedures. A child of User001
was also a participating conversation partner, for which parental
consent was obtained. Thus, one user and a total of six conversation
partners participated in this study.

The team of trusted data curators consisted of three adults who
had associate-level college education or above. Additional hiring
criteria included trustworthiness, attention to details, and an in-
terest in working with large amounts of text and audiovisual data
related to everyday speech communication to help individuals with
disabilities. They were interviewed by a trusted delegate of User001
during which they were informed about the purpose of the research
program and introduced to the process of curation (Sect. 3). Given
that the raw Observer data would contain daily conversations and
some sensitive data, we conducted in-person and video introduc-
tions between the user’s family and the curators before starting the
data collection, to build trust and rapport. The curators’ training
included a tutorial on the data curation process, aided by hands-on
practice with eight “practice” Observer sessions collected in two of
2Consent form template is available at https://github.com/TeamGleason/SpeakFaster/
blob/main/Legal/SpeakFaster_Data_Contribution_Agreement.md

the co-authors’ own home environments, as well as audio record-
ings from the six conversation partners to familiarize their voice
identities. The curators were paid $20 USD per hour. The curators
reported that 2.5 to 4 hours were required to curate one hour of raw
data (see Sect. 3), which is consistent with time ratios reported for
manual speech transcription [4]. The data collection itself lasted
six months, from November 2021 to April 2022.

4.1 User001’s gaze-typing setup
User001 is an experienced gaze-typer who uses a Tobii Dynavox
PCEye® Mini IS4 eye tracker (version 2.27.0) with Tobii Dynavox
Windows Control® [7] to operate a Microsoft Surface® tablet. For
speech generation, User001 uses Balabolka3, a freeware text editor,
and used the combo key Ctrl+W to activate TTS for the last-entered
message consisting of one or more sentences. Balabolka supports
multiple tabs, which User001 uses to store pre-composed utterances
for different contexts. The user’s speech output contains a mixture
of novel phrases composed on the fly and phrases stored previously
and re-spoken with or without modifications.

5 BASIC STATISTICS OF THE USER001
DATASET

We collected a total of 469 sessions from User001 and the six con-
versation partners over the six-month period. Seventy-four of the
469 sessions did not contain any speech utterances marked by the
data curators as non-background and hence were removed from
subsequent analyses. Statistics from the remaining 395 sessions
are presented in Fig.3. The sessions are not uniformly distributed
over time. There is a high volume of data in November, shortly
after the commencement of collection (Fig.3A). The gap near the
year-end holidays was related to the user preferring not to record
due to other activities and the presence of many non-participating
visitors. Fig. 3B shows the distribution of the sessions over the days
of the week (x-axis) and 2-hour time bins over a day (y-axis). As
expected, the sessions are distributed during the user’s wakeful

3http://www.cross-plus-a.com/balabolka.htm
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Figure 3: Temporal distribution and statistics from the observed sessions. A and B show distribution of the sessions over time
of year and day respectively. C shows the correlation between the number of keystrokes with the session duration, and D the
correlation between number of utterances vs. the keystrokes in the session; each dot in C and D represents an Observer session.

hours (7 AM to 11 PM). On weekdays, the sessions tend to gravitate
toward the evening hours (7 PM - 9 PM), when the user converses
with their family. We note that the observed sessions do not en-
compass all of User001’s AAC communication in the time period,
because the user had control over when the Observer is active and
might likely reflect his preference for data collection, which was
also influenced by the presence of the consenting conversation
partners. In Fig.3C we see a significant correlation between the ses-
sion duration (17.8±12.3 min, median=14.1 min) and the number of
keystrokes (including autokeys and user-issued keystrokes) in the
session (415±498, median=265, R=0.906, p=1.6e-148). Further, Panel
D shows significant correlation between the number of keystrokes
and the number of utterances spoken by User001’s TTS (range:
1-70, 4.3±5.7, median=3, R=0.645, p=9.4e-48).

5.1 Speech utterances and conversation
turn-taking

A total of 307 sessions contained at least one utterance spoken by
User001 and one utterance from a consenting conversation part-
ner. These sessions contained 5,504 utterances. Fig. 4A shows the
fraction of utterances communicated by the different participants.
User001’s TTS output accounted for only 1,532 (27.8%) of these
utterances. In addition to utterance count, the conversational im-
balance was also seen in word counts (transcript character length
/ 5, [2]), where only 33.3% (22,217) of all words were produced by
User001 while the rest (66.7%, 44,431) were by the conversation
partners. Fig. 4B shows the fraction of sessions involving 1, 2, 3, or
more conversation partners. About half of the sessions involved
only one conversation partner. Fig. 4C shows that User001’s aver-
age phrase length was greater than those of the oral conversation
partners (14.5 words vs. 11.2 words, t-test: p=6e-8). This observa-
tion indicates that gaze-typing users do not necessarily regress
to phrases shorter than spoken phrases uttered by non-disabled
conversation partners.

Utterance repetition was a salient pattern of User001’s TTS out-
put and we analyze this in Fig. 4D. We define a repeating utterance
as one with an identical transcript (normalizing whitespace, casing,
and punctuation) to an utterance that the same speaker produced
earlier in the sameObserver session. Overall, 7.7% of User001’s utter-
ances were repetitions, significantly greater than the 2.5% repetition
ratio for the conversation partners (𝜒2 test: p=2e-41). Of User001’s

repeating utterances, a majority (75.4%) were repeating the immedi-
ately preceding utterance. Therefore the AAC user tended to repeat
previous phrases 3x as much as non-AAC interlocutors. This may
be related to our observation that conversation partners of the AAC
user often temporarily disengaged and pursued other tasks while
waiting for User001 to produce the next utterance. Therefore when
User001’s started speaking again via TTS, there was a frequent need
to repeat in order to catch conversation partners’ attention and
to ensure that the new utterance was heard correctly. Balabolka,
User00’1 TTS text editor, supported convenient repetition of the
last spoken phrase.

5.2 Measuring the user’s gaze-typed
communication

To measure gaze typing, we examine the actual keystrokes issued
by the user. We define an utterance keystroke sequence (UKS,
plural: UKSes) as a consecutive sequence of keystrokes by which
the gaze-typing user successfully enters an utterance and issues it
as speech output via TTS. We require such a sequence to start from
a content (non-function) keystroke and end with a key sequence
that activates the TTS (Ctrl+W in User001’s case). It may contain
function keystrokes such as Backspace and WordBackspace. The
text of the utterance can be reconstructed by taking into account
the sequence of content and function keys. We analyze only those
utterance keystroke sequences with non-empty reconstructed text.
To exclude cases where the user abandoned or became distracted
from the phrase entry, we exclude sequenceswhere the time interval
between any consecutive keystrokes exceeds 15 seconds.

We examined 856 UKSes from 320 Observer sessions which con-
tained at least one UKS. The user issued 67,603 keystrokes among
which 1.26% were redacted by the curators. Interestingly, these
856 UKSes accounted only for 33% of the total number of words
in the utterances issued from the user’s TTS indicating that only
about a third of the user’s spoken words were typed on the fly
during the sessions and the rest were re-activations of previously
stored phrases in Balabolka. Fig. 5A shows that the inter-keystroke
intervals (IKIs) of the UKSes follow a bimodal distribution, with a
sharp peak of extremely small values (<20 ms) corresponding to
autokeys, along with a wider peak with values greater than 500 ms
(User001’s gaze-typing dwell time) and a long tail reaching 4 sec-
onds and higher. Autokeys account for 48.3% of all the keystrokes in
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Figure 4: Statistics of speech utterances from User001 (via TTS) and the consenting conversation partners. A: How the speech
data is distributed among User001 and the six conversation partners in terms of utterance count and word count. B: The
distribution of the sessions in terms of the number of conversation partners present. C: Average utterance lengths of the user
and partners. D: Utterance repetition by the user and partners.

Figure 5: Measuring User001’s gaze typing. The distribution of the inter-keystroke intervals (A) shows a bimodal pattern for
autokeys and human-issued keys. Distribution of text-entry speed (B) and KSR (C) of the user’s utterances are shown. A positive
correlation (D) is observed between the text-entry speed and KSR. (E) distributes human-issued keystrokes by type.

the UKSes. Fig. 5B shows the distribution of the speed in words per
minute (WPM) of all utterance keystroke sequences. We see that
the dispersion is over a wide range from near zero to occasional
values over 20 WPM, and the average text-entry rate is 8.1±3.9
WPM.

To measure the economy of keystrokes during utterance entry,
we use the metric keystroke saving rate (KSR), defined as 𝐾𝑆𝑅 =(
1 − 𝑁𝐻

𝑁

)
where 𝑁 is the number of characters in the utterance and

𝑁𝐻 is the number of human-issued keystrokes (i.e., non-autokeys)
including the function keys required to trigger the TTS output
such as Ctrl+W. KSR has a theoretical ceiling of 1 corresponding
to the ideal limiting case of outputting a TTS utterance with zero
keystrokes. A negative KSR value indicates that number of human-
issued keystrokes exceeds the character count of the utterance. The
KSRs from the 856 UKSes follow a distribution skewed towards
large negative values (Fig. 5C). Although the median KSR is 0.08,
the mean is negative (-0.14±0.83). This skew is due to a number of
utterances containing significant edits, i.e., many Backspaces- and
WordBackspace-based corrections. Overall, there is a significant
correlation between KSR and text-entry speed (Spearman’s 𝜌=0.886,
𝑝 ≊ 0), indicating a strong association between greater saving of
keystrokes and faster text entry at the utterance level (Fig. 5D).

Over the six-month period, we did not observe significant month-
to-month variations in the gaze-typing speed (p>0.2) or KSR (p>0.8),

indicating a stable performance at the large timescale. However,
there were trends of significant variations in the speed (p=0.011)
and KSR (p=0.063) with the time of the day. The afternoon hours
(14-16) saw the highest speed and KSR, while the morning hours
(8-10) saw the lowest speed and KSR (Supplementary Fig. 2)

The user’s typo corrections was performed primarily through
Backspace and WordBackspaces, which accounted for 13.9% (Fig.
5E) of all human-issued keystrokes. This ratio was considerably
higher than the ratio of Backspaces reported for mobile text en-
try (8.9%, [5]). Fig. 5E also shows that approximately 26% of the
keystrokes issued by the user were for selecting word predictions
(including word completion and next-word prediction). Among
these selected options, a large fraction (8% out of 26%) involve
erasing incorrectly-entered prefix letters (e.g., typing h and l, fol-
lowed by selecting the word-completion option half, involves a
Backspace autokey that first erases the preceding l).

6 DISCUSSION
We designed SpeakFaster Observer, and our research protocol, to
protect the privacy of the gaze-typing user and their conversation
partners. First, the software granted the user full control over when
to collect data; we saw that the user valued this control by choosing
to focus their data collection on a subset of their daily interactions
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(e.g., interactions in their own home during the evening). It com-
municates the data collection status clearly to the user as well as
the conversation partners present through both the UI (system tray
icon color) and hardware-based (LED) visual cues. A two-tier orga-
nization protected the raw data, wherein only the trusted curators
had access to the raw keystrokes and audio-visual data. The cu-
rators removed and redacted unrelated and sensitive information,
producing clean text-only data that was shared with researchers
for subsequent analyses. While this approach has clear benefits
for protecting the privacy of the AAC user and their conversation
partners, it also has drawbacks – the approach is time-consuming
(requiring 2.5-4 hours of manual data curation per 1 hour of raw
data), expensive (requiring $65 USD per hour of raw data to pay
the data curators), incurs cognitive cost (the AAC user must de-
cide when to turn the data collection on and off), and reduces the
completeness and generalizability of the data collected.

One of the goals of the study was to test the feasibility of col-
lecting a text corpus for AAC through instrumenting gaze typing.
Through keystroke logging, we obtained a corpus of 6,000+ words
over a period of six months. In comparison, approximately three
times as many words were available via the ASR transcripts based
on the audio recordings in the same sessions. This shows that our
user frequently reused text entered previously (i.e., not a part of
the Observer sessions), for which the text data was unavailable
through keystroke logging. Keystroke logging has the additional
limitation of not capturing non-keystroke UI events related to text
entry, including moving the cursor or selecting text (performed by
gaze users through software such as Tobii Windows Control [7]).
Data curators could use screenshots captured by the Observer to
manually annotate such UI events, but we decided against giving
curators yet another task on top of their already labor-intensive
workflow. Instead we used the audio recordings and the down-
stream ASR transcripts as the ground truth text corpus. These gaps
in data collection are caused by the design of AAC applications,
and would likely appear when collecting data from other users.
Therefore future corpus collection for gaze-typing users should
rely on a more direct instrumentation path (e.g., via the speech-
generating application’s own API) to achieve the highest possible
coverage and efficiency of corpus collection. However, such APIs
are not always available, and tailoring software to each system’s
API reduces the generality and reusability of such systems. A more
generalize alternative is to apply ASR to the user’s TTS output
through a loop-back audio channel.

While creating a publicly available corpus of real-world, longi-
tudinal AAC data would greatly benefit the research community,
there remain several obstacles to achieving this goal, including cost
concerns related to data cleaning on such a large scale and privacy
concerns. Since our corpus is only from a single user, we have cho-
sen not to share it publicly due to privacy concerns. Even if data
were able to be collected and combined from a larger set of users
(thereby increasing k-anonymity), serious privacy challenges would
remain – paying data curators at a large scale may be economically
infeasible, and automated techniques to scrub sensitive information
at that scale would be imperfect, thus leaving open the potential
for re-identification of AAC users and/or their conversation part-
ners, as well as potentially leaving sensitive information in the data
set. We hope that our case study reflections and accompanying

Observer software are a first step toward helping the community
consider the trade-offs and feasibility of creating a safe and ethical
public corpus of authentic AAC data.

During conversations, the gaze-typing user’s speech output ac-
counted for less than a third of the total amount of speech from all
participating interlocutors. Further, just a third of those utterances
were composed on-the-fly via gaze typing; the remainder were re-
activations of previously-entered phrases. This high ratio of reuse
hints strongly at the benefit of context-dependent phrase retrieval
(e.g., [13]). For phrases entered on-the-fly, the observed 8.1-WPM av-
erage text-entry rate remained stable over the six-month of period
and is consistent with previously reported ranges of 5-10 WPM for
gaze-based AAC users [19]. However, considerable speed variability
existed from utterance to utterance. While the rate occasionally
reached 20 WPM (1.4% of utterances, Fig. 5), many utterances suf-
fered from rates less than 2 WPM (2.9% of utterances), which is
attributable to the large number of keystrokes required to fix gaze
typos (Fig. 5E) reflected as negative KSR values (-0.14 on average,
much lower than the range of 0.15-0.2 for tap-based mobile typing
by able-bodied users [16]). The fact that User001 painstakingly fixed
typos while maintaining utterance lengths slightly exceeding those
of able-bodied partners is consistent with previous observations
that many AAC users strive to preserve the quality and personal-
ity of their language at the cost of greater effort and lower speed
[10]. Our data shows a strong positive correlation between KSR
and text-entry rate, indicating that efforts to improve the accuracy
of eye tracking and exploring novel approaches of reducing the
number of keypresses required (e.g., through context awareness
and abbreviation paradigms [6, 22]) are important directions in
future gaze-typing AAC research.

7 CONCLUSION AND FUTURE DIRECTIONS
In this study, we presented the SpeakFaster Observer, a software
application and data handling protocol to gather conversational
communication data of an AAC user. Our experience demonstrates
that this can be unobtrusively deployed to an AAC user without
affecting their habitual communication. Through thoughtful data
curation, the Observer yielded keypress and conversation data that
allowed us to gain useful insight into the speed, efficiency, and
temporal patterns of gaze typing in everyday usage of a gaze-based
AAC user with ALS.

The contextualized text corpus collected from User001 opens the
door to future case studies on the adaptation of n-gram and neural
language models [11], abbreviation expansion [6, 22], and context-
dependent phrase retrieval [13] based on real user data. Although
the Observer is designed as an observational tool, it is also an at-
tempt at testing the feasibility of a multi-modal context-aware AAC
text-entry application from technical and privacy perspectives. Our
current protocol analyzed the speech in an offline fashion; future
studies can explore online ASR of conversation partners’ speech.
Building on the Observer, future studies can also explore other
modalities of contextual data, such as images from cameras of the
eye-gaze computer and geolocation, which may contain useful con-
textual signals for improving text prediction [9]. A context-aware
AAC application that omits humans in the loop (the data curators)
will have the benefits of greater automation, lower cost, and less
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persistence and exposure of data to other humans, but will entail
the challenges of greater error rate (e.g., in speech transcription).
The tradeoffs between privacy, predictive power, and cost in AAC
applications is a nascent field and one which our case study can
shed some light on.
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