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ABSTRACT
Image classification models take image pixels as input and predict
labels in a predefined taxonomy. While contextual information (e.g.
text surrounding an image) can provide valuable orthogonal signals
to improve classification, the typical setting in literature assumes
the unavailability of text and thus focuses onmodels that rely purely
on pixels. In this work, we also focus on the setting where only
pixels are available in the input. However, we demonstrate that if
we predict textual information from pixels, we can subsequently use
the predicted text to train models that improve overall performance.

We propose a framework that consists of two main components:
(1) a phrase generator that maps image pixels to a contextual phrase,
and (2) a multimodal model that uses textual features from the
phrase generator and visual features from the image pixels to pro-
duce labels in the output taxonomy. The phrase generator is trained
using web-based query-image pairs to incorporate contextual in-
formation associated with each image and has a large output space.

We evaluate our framework on diverse benchmark datasets
(specifically, the WebVision dataset for evaluating multi-class classi-
fication and OpenImages dataset for evaluating multi-label classifi-
cation), demonstrating performance improvements over approaches
based exclusively on pixels and showcasing benefits in prediction
interpretability. We additionally present results to demonstrate that
our framework provides improvements in few-shot learning of
minimally labeled concepts. We further demonstrate the unique
benefits of the multimodal nature of our framework by utilizing in-
termediate image/text co-embeddings to perform baseline zero-shot
learning on the ImageNet dataset.
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1 INTRODUCTION
In recent years, we havewitnessed the emergence of ever-improving
convolutional network (ConvNet) architectures for image classi-
fication [7, 13, 21, 41–43]. These ConvNets take image pixels as
input and predict labels in a predefined taxonomy, and have en-
joyed significant success with unparalleled predictive power and
generalizability to unseen data. However, classifiers that rely solely
on pixel information are often unable to recognize the context of an
image, leading to misinformed predictions, a lack of interpretabil-
ity, and an inability to generate meaningful outcomes for labels
associated with few training examples.

Consider the example image in Figure 1, which is obtained from
the ImageNet dataset [35]. The image resembles a salt shaker as
well as a milk can, both of which are labels in the ImageNet tax-
onomy. As the image has the same shape and structure as a salt
shaker, networks trained purely with pixel information often pro-
duce the incorrect label “salt shaker.” Now, suppose we are told
that the image is related to the phrase “cartoon cow and milk” (see
Figure 2)—this phrase certainly hints that the image is more likely
to be related to the label “milk can” than the label “salt shaker.”
While such textual information (e.g. text surrounding an image)
can provide valuable orthogonal signals, the typical setting in im-
age understanding literature assumes the unavailability of text and
focuses on models that rely purely on pixels. In this work, we also
focus on the setting where only pixels are available in the input.
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Figure 1: Traditional convolutional network misclassifica-
tion example. Inception v3 [43] produces the label “salt
shaker,” while using web-sourced textual information more
readily points to the correct outcome “milk can.”

However, we show that if we predict text from pixels, we can then
use the predicted text to train models that lead to better overall
performance.

But how do we obtain contextual text if we are only given the pix-
els for the image? While images are sometimes associated with ex-
isting surrounding text (e.g. captions), such contextual information
is unavailable in most cases. This is particularly true given the large
number of images captured from video frames and photographs
taken using smartphones. Furthermore, even when surrounding
text is available, the text rarely deterministically maps to the target
taxonomy of the classification problem (e.g. “cartoon cow and milk”
does not trivially map to the “milk can” label). In this paper, we
propose a multimodal framework that can infer contextual informa-
tion from image pixels to address these two challenges. To address
the absence of surrounding text, we present a phrase generation
model capable of predicting contextual phrases (such as “cartoon
cow and milk”) exclusively from image pixels. The image pixels
and the textual phrases are taken together as input to a multimodal
image classifier for predicting labels in the target taxonomy.

This ability to generate text from images is at the crux of our ap-
proach: the generated phrases allow our framework to “bridge the
gap” between visual (input) and textual modalities. The generation
of suitable phrases is challenging, however, as generated phrases
should have a rich vocabulary that expresses the fine-grained con-
tent of an image independent of target taxonomy labels. Although
image-to-text approaches such as image captioning [33, 50, 51] and
text retrieval from similar images currently exist, they cannot be
directly applied as a phrase generator. This is because image cap-
tioning methods rely on an underlying image classification model,
limiting their vocabulary to the taxonomy used to train the model.
Furthermore, text retrieval based methods require carefully de-
signed text aggregation and cleaning to infer context in an image,
and such methods are not scalable at inference time.

We propose to utilize web-based query-image pairs to train a
phrase generation model. Specifically, we use 260 million images
and 40 million unique queries, in which the query is treated as the
class annotating the image, and we apply ResNet [13] to train the
phrase generation model. We further apply techniques inspired
by prototypical networks [39] to increase the size of the phrase
generation model output space. We subsequently reformulate the

query prediction problem as a nearest neighbor search problem, for
which we adopt quantization techniques [12, 48].

The resulting multimodal classification framework, where the
predicted phrase from the phrase generation model is used together
with image pixels to classify input images, is illustrated in Figure 2.
Given an image of a milk can, the phrase generationmodel produces
phrases such as “cartoon cow and milk” and “cow with milk” from
its large output space. These phrases are in turn fed into a model
that produces a textual embedding. In parallel, the image is input to
a convolutional network whose bottleneck layer produces a visual
embedding. Finally, the visual and textual embeddings are input to
a multimodal model that predicts labels in the target taxonomy.

Notice that our framework is able to produce a textual embed-
ding although the input to the framework consists solely of image
pixels. The textual embedding of the phrase generation model’s
output is necessary as the phrase generator does not necessarily
consider semantic similarity between queries in the textual space.
For example, if the target label was “dairy farm” rather than “milk
can,” the similarity between those concepts may not be captured in
spite of their similarity in semantic textual space. Therefore, we sub-
sequently apply a text embedding model trained with query-query
associations to the generated phrases to produce a representation
that incorporates orthogonal textual signals and captures additional
similarity in the textual space.

We evaluate the effectiveness of our approach on the WebVision
[24] and OpenImages [22] benchmarks, showcasing significant
improvements in classification accuracy, particularly in cases of
few-shot learning of minimally labeled concepts. Furthermore, we
demonstrate that the inclusion of textual information improves
interpretability of the classification outcomes. In summary, the
contributions of our work include the following:

• Amultimodal image classification framework combining pre-
dicted textual signals with visual signals for context-aware
prediction. Our model is distinguished from other multi-
modal frameworks in its ability to bridge the gap between
visual and textual modalities via the prediction of text, even
when only pixels are provided for the image.

• A phrase generation model trained on web query-image
pairs that takes arbitrary images as input. In addition to pro-
ducing output contextual signals using input images alone,
this model facilitates the efficient extraction of text-based
information from input images for multimodal prediction.

• An analysis of the viability of ourmodel across diverse bench-
mark datasets, showcasing improvements in classification
performance, model interpretability, and few-shot learning.
We additionally present, to our knowledge, the best reported
result on the WebVision dataset, further bolstering the effec-
tiveness of our approach.

The rest of the paper is organized as follows. In Section 2, we
discuss related work. In Section 3, we describe the proposed frame-
work and methodology. We provide an experimental evaluation of
the approach in Section 4, and conclude in Section 5.

2 RELATEDWORK
Representation Learning from Images. The enormous progress
of convolutional networks has demonstrated the effectiveness of



Figure 2: Illustration of our proposed pipeline flow on Figure 1, with outputs of intermediate models represented belowmodel
names. Note that the generation and embedding of contextual phrases containing “milk” and “cow” aid themultimodal model
in producing the correct classification.

representation learning from large-scale image datasets [22, 24,
35]. Ever since the pioneering work by Krizhevsky et al. [21] on
ImageNet, there have been numerous efforts to make ConvNets
deeper [38, 42], more accurate [13, 41] and faster [14, 36]. Recently,
there have been attempts to automate the neural network archi-
tecture design process [25, 32, 52] using reinforcement learning.
Once image representations are learned, they can be “transferred” to
other related perception tasks including object detection [10, 16, 34]
and semantic segmentation [3, 4].

In this paper, we use Inception v3 [43] for image representation
learning and residual networks [13] for the phrase generationmodel.
However, our proposed framework does not make assumptions
about the underlying ConvNet, which can easily be replaced with
the latest architectures.
Learning fromWeb Data.We are not the first to resort to large-
scale web data for visual recognition tasks. For example, there is
a line of work which aims to learn image representations from
web images [5, 6, 8] with the goal of using noisy web tags (e.g.
from the YFCC-100M [45] dataset) to conduct supervised training
on web images. However, the learned representations from such
models perform worse than ImageNet pre-trained counterparts
when applied on target tasks. Recently, it has been shown that
scaling up to 300million [40] or even 1 billion [28] images allows the
learned representations to outperform their ImageNet counterpart
when trained from noisy web labels.

Unlike previous work that uses web supervision for pre-training,
we propose to use a webly-supervised phrase generator to pre-
dict web phrases for arbitrary images and subsequently build a
multimodal framework for image classification.
Multimodal Image Classification. Multimodal learning is con-
cerned with leveraging information from multiple distinct sources,
such as images, text and video [26, 27, 37]. For image classification
problems, metadata such as image tags, keywords, and captions
have been used as additional textual features to either train ensem-
ble classifiers [47] or generate pseudo labels for training a visual
classifier [11]. However, these approaches often require the avail-
ability of surrounding textual information at training time (e.g. text
captions for an image). Instead of relying on surrounding text, our
input consists exclusively of image pixels, and textual signals are
generated by a phrase generation model in our framework.

Apart from combining visual and textual signals to train a image
classifier, several research directions instead focus on zero-shot
learning tasks, in which evaluation classes may not have been
seen at training time. Techniques for such tasks leverage curated
sources of semantic information for the labels, such as the WordNet
hierarchy [29] and Wikipedia [23], as well as a knowledge base
containing descriptive properties for each class [30]. Although
these approaches have shown promising performance in the zero-
shot learning setting, it has been observed [49] that they do not
generalize well to all classes. In contrast, our proposed method
significantly outperforms the state-of-the-art baseline in scenarios
with minimally labeled images.

3 METHODOLOGY
In this section, we provide a detailed description of our approach.
In particular, we give an overview of our framework in Section
3.1. We then describe the phrase generator (Section 3.2), the model
to embed text produced by the phrase generator (Section 3.3), the
visual embedding model (Section 3.4), and the multimodal model
that combines visual and textual signals (Section 3.5).

3.1 Framework Overview
A detailed representation of the inference-time flow of our pipeline
can be seen in Figure 3. The input consists of image pixels and the
output is a probability distribution over labels from a predefined
taxonomy. Such a distribution is produced by a multimodal model
that incorporates features from visual and textual embeddings, with
the blue (top) vector representing a textual embedding and the red
(bottom) vector representing a visual embedding.

The ability to generate text is a critical aspect of our approach as
it bridges the gap between visual and textual modalities. In order
to produce textual signals, solely given image pixels, we present a
phrase generation model that predicts phrases from a large output
space. This phrase generator is trained using visual signals (image-
query associations), but we subsequently obtain orthogonal textual
signals from the generated text by embedding the text using amodel
trainedwith query-query associations. As a result, the predicted text
incorporates representations learned from two corpora reflecting
complementary signals, namely the labeled image dataset and a set
of query-query associations. In this way, images that are visually



Figure 3: Detailed depiction of inference-time pipeline flow for multimodal predictions. Input images are processed using
two pipelines, with the former generating and embedding text to produce blue vectors consisting of textual embeddings and
the latter embedding pixels to produce red vectors consisting of visual embeddings. These vectors are subsequently combined
to generate multimodal representations, which are used as input to the last stage of the pipeline to produce a probability
distribution over a desired label taxonomy.

distinct but textually similar are embedded closer to one another
than they would be in models that simply employ image-text co-
embeddings, allowing our framework to more effectively represent
images. To the best of our knowledge, the proposed framework
is the first to generate context-aware predictions for multimodal
image classification.

3.2 Phrase Generation Model
In this section, we describe the model that generates phrases from
image pixels. A key challenge in training this model is that the
phrases it generates must capture fine-grained image semantics.
Although image captions can be used to provide image semantics,
the vocabulary of image captioning models [33, 50, 51] is often
limited and their quality relies on pre-trained image classification
models. In order to infer rich and diverse context from images, we
instead consider using web query-image pairs to train a phrase
generation model.

Specifically, our phrase generation model consists of a ResNet-
101 architecture [13] trained with a dataset of query-image pairs,
which contains approximately 260 million images and 40 million
unique queries (used as classes) [19]. The distinctive feature of this
network is its ability to extract image semantics in an expressive
vocabulary by predicting the most relevant queries from input im-
ages. In order to accommodate this large output space, we shrink
the ResNet output to a 64-dimensional bottleneck layer. The choice
of the dimensionality of the bottleneck layer was driven both by
computational constraints as well as the need to construct an ef-
ficient nearest-neighbor index based on that layer. Our network
can thus be conceptualized as containing three stages: the primary
training mechanism consisting of learned weights and biases, a
64-dimensional feature layer representing image embeddings, and
a softmax layer that produces a probability distribution across the

40 million queries. Such a decomposition is depicted in the phrase
generation component of Figure 3. Since computing the softmax
loss over such a large output space is computationally demanding,
we use sampled softmax loss, a sampling technique for handling
large output spaces that was first introduced in [17].

After training the phrase generation model using query-image
pairs, the predicted probability of query qc is computed via softmax:

pc =
exp(−d(wc , x))∑
i exp(−d(wi , x))

(1)

where x is the image embedding (from the bottleneck layer in
ResNet-101), wc are the weights from the fully connected layer
after the bottleneck layer that correspond to the query qc among
40 million queries, and d(·, ·) is the distance function. We adopt the
cosine distance function for use in experiments.

To further increase the vocabulary of the predicted phrases from
the phrase generation model, we adopt techniques from prototypi-
cal networks [39] to construct prototypes of a significantly larger
number of queries. The prototype ϕc of each query c is defined as
the mean vector of the embeddings of the images associated with
that query:

ϕc =
1
|Sc |

∑
i ∈Sc

xi (2)

where Sc is the set of images that are associated with query c . We
can now replace wc by ϕc in Equation 1 to increase the output size
of the phrase generation model from 40 million queries to a much
larger output space. As will be demonstrated in Section 4.5, this
provides substantial performance improvements.

In order to integrate the phrase generation model with our mul-
timodal pipeline, we require an efficient way to predict the top
related queries for a given image. In fact, most queries in the output



space are irrelevant to the given image, and it is unnecessary to
compute their softmax probability to retrieve the top queries. Thus,
we can reformulate the classification problem as a top-k nearest
neighbor search problem for phrase generation:

q∗c = argmin
c

(d(ϕc , x)). (3)

Our problem can now be solved by fast similarity search techniques
in high-dimensional spaces [12, 48].

3.3 Textual Embedding Model
We next describe the model that produces textual embeddings from
the phrases generated as per Section 3.2. One could consider using
the 64-dimensional embedding produced from visual features di-
rectly instead of generating and separately embedding contextual
phrases. To motivate the need for a separate textual embedding,
consider a taxonomy that contains the term “dairy farm” as a la-
bel instead of “milk can.” The object in Figure 1 is an item that
can be found in a “dairy farm” and should perhaps be mapped to
it. However, the method that we used to generate the embedding
in Section 3.2 treats the output labels merely as non-overlapping
classes with no regard to semantic similarity they might possess
in the text space. Therefore, it is unlikely that the image in Fig-
ure 1 will get mapped to “dairy farm” purely based on the produced
embedding. On the other hand, if one had access to an additional
text embedding model that embeds semantically similar textual
concepts close together, then it is likely that the text produced by
the image (e.g. “cow with milk”) in Figure 1 will be closer to “dairy
farm” in this text embedding space. We take advantage of such
a powerful text embedding model that is trained on query-query
associations to encode semantic similarity.

Our textual embedding model is based on a dual-encoder as
described in [9]. It consists of a Siamese network (as in [15, 44])
pre-trained on a dataset of query-query associations; to improve
embedding quality, attention mechanisms described in [31, 46]
were additionally used. The resulting embeddings have the critical
property that related queries are situated close together in the
output embedding space. The embedding model was subsequently
utilized to embed the top-3 English text results obtained from the
phrase generation model, with phrase embeddings obtained via
a bag-of-words model consisting of unigrams and bigrams. The
embeddings for the top three phrases were subsequently averaged,
resulting in a single 200-dimensional textual feature vector.

Notice that at this stage of the pipeline, we have generated an
embedding from a network trained on textual signals (query-query
associations) that represents an image for which we were initially
given solely pixels as input. The independent textual embedding of
the generated phrases thus bridges the gap between the visual and
textual modalities, as desired.

3.4 Visual Embedding Model
In addition to the generation and extraction of textual embeddings
in the prior sections, visual embeddings were obtained from the
bottleneck layer of a pre-trained convolutional network as per
the visual embedding section in Figure 3. We apply the canonical
procedure of training a convolutional network on an input dataset,
identifying the bottleneck layer (i.e., the layer prior to outputs),

and extracting the output of that layer [2]. In our case, we use the
Inception v3 network trained on the ImageNet dataset.

3.5 Multimodal Model
Once both visual and textual embeddings are generated, the last
stage of the pipeline is a multimodal model that fuses both signals
to produce a final image classification. The input to this model
consists of the concatenation of features from the 1024-dimensional
visual embedding and the 200-dimensional textual embedding. The
resulting vector is input to a multi-stage fully connected neural
network, with the output softmax layer predicting probabilities
associated with classes according to the target taxonomy. Notice
that while we use a rather simple model to demonstrate the benefit
of leveraging textual information generated from image pixels,
other fusion techniques such as MLB [20] and MUTAN [1] could
be easily applied.

In Section 4, we present experiments where mutimodal models
were trained using the WebVision and OpenImages training sets. In
each case, input images are fed at training time through the entire
pipeline of Figure 3 to produce the visual and textual embeddings
that constitute the input to the multimodal model.

4 EXPERIMENTAL EVALUATION
In this section, we compare our work against state-of-the-art meth-
ods for image classification using standard benchmarks. We addi-
tionally quantify the benefits of our multimodal approach when
provided a limited amount of training data, and we further analyze
the performance of the phrase generation model.

4.1 Experimental Setup
In addition to ImageNet, we employed the following standard bench-
marks for evaluation:

• WebVision. [24] This dataset contains an imbalanced set
of 2.4 million training examples and 50,000 test examples,
with blurry images and label ambiguity mimicking the poor
quality of real-world data. It uses the same taxonomy as
ImageNet, consisting of 1,000 labels, but is much noisier than
ImageNet data due to its curation via weak supervision.

• OpenImages v4. [22] To the best of our knowledge, Open-
Images is the largest image classification benchmark cur-
rently available. It consists of 9 million images and 21,000
classes. Unlike WebVision, OpenImages data are labeled for
multi-label prediction, where each image may be associated
with multiple labels in the ground truth.

We train the multimodal model using training data from the
aforementioned benchmarks. Its input, consisting of visual and
textual embeddings, is obtained by processing training images with
the pipeline in Figure 3. The visual embedding model is pre-trained
with data from ImageNet, the phrase generation model is trained
with image-query associations, and the textual embedding model
is trained with query-query associations.

4.2 Ablating Textual Signals
In this section, we validate our hypothesis that generating textual
signals as an intermediate artifact leads to better performance. For
this purpose, we compare our multimodal framework against a



baseline consisting of an ablation of textual signals from the frame-
work. In particular, the baseline consists of a fully connected neural
network with the same architecture as the multimodal model, ex-
cept for the input layer, which consists only of the visual signals.
The visual signals are the same that we use in our framework; that
is, pre-trained visual embeddings.

We also validate the hypothesis that the weaker the visual signals,
the more effective our approach based on generating textual signals
becomes. For this purpose, we conduct experiments where we vary
the “strength” of the visual embeddings by controlling the amount
of data that is used to pre-train them (using Inception v3 for a visual
embedding generator as in Section 3.4).

4.2.1 Results on the ImageNet benchmark. We begin by presenting
results on the ImageNet dataset. In particular, our framework uti-
lizes textual embeddings and visual embeddings pre-trained with
the full ImageNet training dataset, while the baseline consists of
a model solely using the visual embeddings. In this setting, our
multimodal model achieves a top-1 accuracy of 77.74% and top-5
accuracy of 93.62%, compared to the baseline model top-1 accuracy
of 76.93% and top-5 accuracy of 92.84%. The ability of our multi-
modal model to improve upon the results of a highly optimized,
state-of-the-art visual model on ImageNet data is evidence of the
merit of our approach.

4.2.2 Results on the WebVision benchmark. We next present re-
sults on the WebVision dataset. Our framework and the baseline
are trained and evaluated using WebVision data, and both use vi-
sual embeddings pre-trained with image datasets of varying sizes
(subsampled from ImageNet). As evident in Table 1, our multimodal
method consistently outperforms the baseline approach, with sig-
nificant gains on all fractions of ImageNet used for pre-training
visual embeddings. Furthermore, improvements become more pro-
nounced when the visual embeddings are “weaker”; that is, when
the visual embedding framework is pre-trained with smaller frac-
tions of ImageNet data. For example, if the visual embeddings are
pre-trained with 10% of ImageNet, we observe a multimodal gain of
9.43% in top-1 accuracy; if they are trained with 70% of ImageNet,
the top-1 accuracy gain is 5.08%.

Even when all of ImageNet is used to pre-train visual embed-
dings, we continue to see significant gains. In fact, the result that
we obtain in this case outperforms the best result reported so far in
the literature for the WebVision benchmark (a curriculum-based
approach by Jiang et al. [18]). In particular, Jiang et al. report a
72.60% top-1 accuracy when training with WebVision data and pre-
training their teacher network with ImageNet. Replicating the same
setting (training on WebVision and pre-training our visual embed-
ding model with ImageNet), we obtain a 73.15% top-1 accuracy.

4.2.3 Results on the OpenImages benchmark. In addition to con-
ducting multi-class evaluation with WebVision and ImageNet, we
performed evaluation in a multi-label setting using the OpenIm-
ages benchmark. The setting for OpenImages evaluation is the
same as for WebVision, where the baseline consists of an ablated
model that uses only visual signals. As we show in Figure 4, our
method significantly outperforms the baseline at most points on
the precision-recall curve. For example, at 80% precision, we ob-
serve a 31.1% improvement in recall (37.2% and 68.3% recall for

Figure 4: Precision-recall curve representing the efficacy of
themultimodalmodel (blue) and baseline visual-onlymodel
(red) on OpenImages hierarchy verticals.

the baseline and our multimodal model, respectively). Furthermore,
on trainable classes (defined in [22] as “classes with at least 100
positive human-verified labels in the train split”), the multimodal
model achieves an mAP of 0.741, a 7.2% relative improvement over
the baseline model’s mAP of 0.691.

We further analyzed model performance on a per-label basis,
observing larger multimodal improvements on labels with fewer
training examples. For instance, “fictional character” is the label
with the least number of examples (1,069 examples, accounting for
just 0.009% of the training set). For this label, the average precision
of our method is 0.63 as opposed to 0.58 for the baseline. In other
words, we observe a 9% relative improvement over the baseline
for this label, as opposed to a 7.2% relative improvement across all
trainable classes. These results reinforce our intuition that textual
information improves classification when insufficient training data
is available for pixel-based classifiers. In the next section, we study
this hypothesis in more detail.

4.3 Ablating Visual Features and the
Multimodal Model via a Zero-Shot Baseline

Given the construction of the phrase generation model, a natural
question involves the value of the visual features and multimodal
model. In particular, can one obtain a similar performance by us-
ing a simpler mapping from the phrase generation model to the
target taxonomy? We perform another ablation to quantify the
improvement of our approach over such a mapping.

Recall that the phrase generationmodel produces a 64-dimensional
bottleneck layer representing image feature embeddings. These bot-
tleneck layer embeddings are subsequently input to a softmax layer
that outputs a probability distribution over 40 million queries. We
will refer to these queries as our base query set. Since each column
of the weight matrix of the softmax layer represents the queries,
the weight matrix yields an implicit co-embedding of textual and
visual information.

The aforementioned co-embedding allows us to generate em-
beddings for images and taxonomy labels in the same space, and
suggests the following zero-shot baseline comparison. We generate
query embeddings for each label in the taxonomy by looking at



WebVision (top-1) WebVision (top-5)

ImageNet Fraction Inception v3 Multimodal Improvement Inception v3 Multimodal Improvement

Text Only - 57.74 - - 75.09 -
10% 54.41 63.84 +9.43% 76.76 83.80 +7.04%
30% 60.09 67.81 +7.72% 80.87 86.39 +5.52%
50% 62.45 69.41 +6.76% 82.61 87.57 +4.96%
70% 65.94 71.02 +5.08% 85.01 88.72 +3.71%
100% 72.37 73.15 +0.78% 88.83 89.73 +0.90%

Table 1: Visual embedding quality vs.multi-class accuracy onWebVision. The Inception v3 column represents the performance
of our baseline model, using only visual embeddings pre-trained with the specified fraction of ImageNet in the “ImageNet
Fraction” column. The Multimodal column represents the performance of our multimodal framework, which utilizes textual
embeddings alongside the same pre-trained visual embeddings employed in the corresponding baseline model.

the terms in the synset corresponding to the label and selecting
the embedding corresponding to a term if it is present in our base
query set. If the synset is not present, we generate embeddings
for the terms with a model trained on the base query set to pro-
duce an embedding for arbitrary input text. At inference time, we
compute the bottleneck layer embedding of the input image in the
phrase generation model and predict the output label to be the one
whose term embedding is closest to the image embedding in cosine
distance. If there is more than one term in the synset for a label,
we consider the embedding that is closest to the inference image
embedding.

For evaluation, we used test data from ImageNet. The proposed
simple zero-shot framework achieves a top-1 accuracy of 48.29%
on the ImageNet validation set, compared to the top-1 accuracy of
76.93% achieved by our multimodal model trained with ImageNet
data. These results suggest the necessity of our multimodal frame-
work on top of the phrase generation model in order to achieve
state-of-the-art performance.

4.4 Ablating Textual Embeddings
Recall that our framework explicitly generates textual embeddings
with an encoder framework described in Section 3.3 after obtaining
the predicted queries from the phrase generation model. The phrase
generation model produces these queries according to Equation (3),
where each prototype ϕc represents a query, and the query corre-
sponding to the prototype vector closest to the bottleneck layer
embeddings x in cosine distance is selected as the output phrase.
This raises the question of whether the explicit generation of the
phrase is necessary and whether working with the bottleneck layer
embeddings is sufficient.

To evaluate the benefits of separately embedding textual informa-
tion instead of utilizing the bottleneck embeddings from the phrase
generation model, we trained and compared two supplementary
models on the WebVision dataset. The first model takes visual fea-
tures and the bottleneck embedding from the phrase generation
model as input, while the second includes textual embeddings of
the generated phrases in addition to visual features and the phrase
generator’s bottleneck embedding as input. To diminish the im-
pact of visual features, a fair amount of data (∼20% of ImageNet)
is used to pre-train the visual features. The first model yielded a

ImageNet Fraction Small Output Space Large Output Space

Text Only 47.02 57.74
10% 60.35 63.84
30% 63.05 67.81
50% 63.43 69.41
70% 66.22 71.02
100% 72.90 73.15

Table 2: Multimodal top-1 accuracies onWebVision with dif-
fering phrase generation output spaces.

top-1 accuracy of 66.90% and the second a top-1 accuracy of 67.80%,
indicating that the explicit generation of the text phrases and using
their textual embeddings improves model performance by effec-
tively bridging gaps between images that are visually distinct but
contextually similar.

4.5 Understanding the Phrase Generation
Output Space

Having verified each component of our multimodal model via abla-
tion studies in the previous subsections, we now turn to understand-
ing the implications of the very large output space of the phrase
generation model after constructing query prototypes. Recall in
Section 3.2 that our initial phrase generation model is trained on a
dataset of 260 million images and 40 million unique queries, and
its output space is subsequently expanded to a much larger space
using techniques derived from prototypical networks. Here, we
consider a series of experiments on WebVision and OpenImages
to verify the benefits of expanding the phrase generation model
output space. In particular, we consider identical experimental se-
tups as in Section 4.2, but we compare two versions of the phrase
generation model: the first utilizing the initial output space of 40
million queries, and the second utilizing the expanded output space
obtained via computing query prototypes. In doing so, we hope to
understand the importance of the scale of the phrase generation
output space in the quality of multimodal predictions.

On both benchmark datasets, multimodal models utilizing the
phrase generation model with a 40 million query output space pro-
duced poorer results. In particular, WebVision results with differing
fractions of ImageNet to train the visual model are reported in



Figure 5: Comparison of multimodal and baseline (Inception v3) predictions on ImageNet. Contextual information extracted
as per Section 3.2 is included to the right of each image, and the final predictions of the baseline model (left) versus the
multimodal model (right) are presented at bottom, with the correct prediction highlighted in blue.

Table 2, with the larger phrase generation output space provid-
ing significant accuracy boosts regardless of the strength of visual
embeddings. On the OpenImages dataset, the multimodal model
utilizing a phrase generation model with an output space of 40 mil-
lion queries achieved an mAP of 0.702, while the multimodal model
with a larger phrase generation output space achieved an mAP of
0.741. These substantial improvements suggest that a larger diver-
sity of predicted phrases allows our multimodal model to uniquely
identify image nuances that are missed by a visual-only model, ce-
menting the importance of computing query prototypes to expand
the output space of our phrase generation model.

4.6 Qualitative Multimodal Prediction Analysis
Finally, to better understand the benefits and drawbacks of our
multimodal model, Figure 5 shows anecdotal examples of both
successful and erroneous classifications on ImageNet data (as in the
experimental evaluation described in Section 4.2.1). In particular,
images with a green background were predicted correctly by the
multimodal model and incorrectly by the baseline, while images
with a red backgroundwere incorrectly predicted by themultimodal
model and correctly classified by the baseline. While the presented
examples are selected from ImageNet data, they are representative
of trends observed in all benchmark datasets.

As can be seen in the milk can and mosque pictures in the first
column, while the visual structural similarity of the milk can to a
salt shaker and the mosque to a large dome fool traditional convo-
lutional networks, the context-aware multimodal model is able to
incorporate external information to augment and improve pixel-
only predictions. The examples in the second column support such
intuition: while black color and structure of the first image is similar
to that of a space bar, contextual information such as “keyboard
hd image” and “keypad image” aid the multimodal model in recog-
nizing that the image is one of a computer keyboard as opposed
to a singular space bar. The generated phrases for the second im-
age (e.g. “karate outfit for bear”) similarly aid in the multimodal
model’s correct classification of the image as a teddy bear instead
of a bonnet.

Finally, while themultimodal framework yields erroneous results
on images in the third column of Figure 5, these results are easily
explainable. In particular, the image at the top right of the table
does indeed represent a convertible, with the context provided by
textual information producing a prediction more precise than the
one assigned in the label taxonomy. Similarly, themultimodal model
correctly predicted that the rifle at the bottom right of the table
represented an assault rifle (although the ground truth label was
“rifle”), further emphasizing the additional level of detail provided
by the generated contextual phrases.

5 CONCLUSIONS
In this work, we develop a multimodal framework that bridges the
gap between visual and textual modalities by inferring contextual
semantics from images when no text is provided. The developed
framework contains twomajor components: (1) a phrase generation
model that infers contextual semantics from image pixels, and (2)
a multimodal model that combines the text embedding mapped
from the phrase generation model’s output and visual embedding
features learned from image pixels to predict labels in the target
taxonomy. Training the phrase generation model on 40 million
unique queries and expanding its output space by computing query
prototypes allows it to express fine-grained image semantics in
a rich vocabulary, regardless of the target taxonomy for the mul-
timodal classification problem. Moreover, in order to provide an
efficient way to produce contextual signals from an output space
of a very large size, we transform the phrase generation problem
to a nearest neighbor search problem and solve it by quantization
techniques. By fusing the generated textual information with or-
thogonal visual signals, the proposed multimodal model can better
distinguish image content.

In experimental evaluation on the WebVision and OpenImages
benchmark datasets, we show that contextual information improves
prediction quality and provides significant benefits withweak visual
signals. Demonstrations of our results indicate that textual signals
further provide promising implications for few-shot learning and
zero-shot learning while enhancing model interpretability. We hope
to continue pursuing viable approaches to optimize the presented



algorithms in the future, primarily by developing improvements for
the multimodal model and by utilizing language-agnostic textual
embeddings to further improve predictive performance.
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