Hamiltonian Monte Carlo in Inverse Problems

Ill-conditioning and multi-modality

Ian Langmore (presenting)
Michael Dikovsky
Scott Geraedts
Peter Nordgaard
Rob von Behren
Inverse Problems
Norman: Experimental FRC Plasma Generator

Plasma formed on each end, then fired into center vessel

Plasma confined by magnetic fields, heated/stabilized by neutral beams

Goal: Learn to confine plasma long enough, at high enough temperatures, en route to net positive energy (in later machine)

Ports provide access for measurement devices
Measurements in \(\rightarrow \) Reconstructed plasma out

Interferometer traces

Cross section

\(N_e \) profile

Mode profiles

Mode N=3 vs time

Dikovsky. 2021
Reconstruction Flow Chart

Prior Assumptions: Smoothness, not too large,...

(Interferometer)
Forward + Noise Model

\[m = AN_e + \sqrt{\sigma_{const}^2 + \sigma_{prop}^2} A N_e \cdot \epsilon, \quad \text{with} \quad \epsilon \sim N(0, I) \]

\[(AN_e)_i \approx C \int_{-1}^{1} N_e(x_i + \ell \nu) d\ell \]
Reconstructions are Samples of Plasmas

Samples of random variables

Map to samples of plasmas
Model for Electron Density \((N_e) \)

\[
N_e(r, \theta) = \log \left[1 + \exp \left\{ \sum_{k=1}^{K} \xi_k u_k(r) \right\} \right], \quad \text{where} \quad \sum_{k=1}^{\infty} u_k(r)u_k(r') \to \exp \left\{ -\frac{|r - r'|^2}{2(0.15)^2} \right\}, \quad \text{and} \quad \xi_k \sim \mathcal{N}(0, (0.1)^2)
\]

\[(r \cos \theta, r \sin \theta) \mapsto (r \cos \theta - \delta_x, r \sin \theta - \delta_y), \quad \text{where} \quad \delta_x, \delta_y \sim \mathcal{N}(0, (0.1)^2)\]

\[
N_e(r, \theta) \mapsto N_e(r, \theta) \left[1 + \text{Bound}_{-1,1} \left(\sum_{n=1}^{N} \eta_n \sin(n\theta) \right) \right], \quad \text{where} \quad \eta_n \sim \mathcal{N}(0, 1/n^2).
\]

Now turn every random variable into a random process in time...
Do you need a Bayesian reconstruction?

Interferometer traces

Gives uncertainty quantification.

UQ is meaningful only if...

- measurements + model \Rightarrow more than one acceptable solution
- your prior is reasonable

Mode profiles

Helps determine structures too difficult to infer in your head

- e.g. if your measurements have many angles or states (temperature/density/...)
 - ...regularized optimization would do this too
Sampling Difficulties
Reparameterized Gaussian Inverse Problem

\[Y = A\varphi(X) + \epsilon \]

- \(Y \in \mathbb{R}^m \) is one measurement
- \(A \in \mathbb{R}^{m \times n} \) is a linear measurement operator
- \(\varphi \) is a nonlinear parameterization of the plasma
- \(X \in \mathbb{R}^n \) is the unknown
- \(\epsilon \) is noise

Difficulties include

- Nonlinear parameterization + low noise \(\Rightarrow \) samples come from thin layer around complex surface
- Measurements are sparse and biased
- Parameterization often cannot fit the data
Gaussian Toy Problem

\[Y = AX + \epsilon \]

- \(Y \in \mathbb{R}^M \) is one measurement
- \(X \in \mathbb{R}^N \) are unknown parameters
- \(\epsilon \sim \text{Normal}(0, \sigma^2 I_M) \)

"Solve" the equation

\[X = A^{-1}(Y - \epsilon) \]

equivalently

\[X \sim \text{Normal}(A^{-1}Y, \sigma^2 (A^T A)^{-1}) \]

Not really a solution
- Doesn't work if \(A \) is singular
- Doesn't take priors into account

Nonetheless,
- Is the Bayesian solution with a "flat prior"
- Shows you need the right equation to get right answer

Bayesian Inverse Problems = Solving equations with random coefficients
Gaussian Toy Problem: Bayesian Solution

\[Y = AX + \epsilon \]

- \(Y \in \mathbb{R}^M \) is one measurement
- \(X \in \mathbb{R}^N \) are unknown parameters
- \(\epsilon \sim \text{Normal}(0, \sigma^2 I_M) \)

The forward model implies a likelihood
\[p(y|x) \propto e^{-\|y-Ax\|^2/(2\sigma^2)} \]

Add prior knowledge
\[p(x) \propto e^{-x^T C_{pr}^{-1} x/2} \]

Get the (Gaussian) posterior
\[p(x|y) \propto p(x)p(y|x) \]
Ill-Conditioned Posterior Covariance

Measurements constrain some directions

Other directions are unconstrained

If $C = LL^T$, then sampling is slowed down (roughly) by the condition number of L
Multi-Modal Posteriors

Rotation direction is *not resolved* by Interferometer alone.

Multi-Modality

Markov Chains get stuck

Probability of chain jumping between modes is

\[\sim \exp\{-\frac{(\mu/\sigma)^2}{2}\} \]
Hamiltonian Monte Carlo
Metropolis Hastings recipe to sample from $p(z)$

1. Initialize $z = z^0$
2. Propose a move $z \rightarrow y \sim q(y|z)$
3. Accept with probability $\min \left\{1, \frac{q(z|y)p(y)}{q(y|z)p(z)} \right\}$
 - 1. If Accept, set $z^1 = y$
 - 2. If Reject, set $z^1 = z^0$
4. Iterate...

Random Walk Metropolis-Hastings if $q(y|z) \sim \mathcal{N}(y; z, \sigma^2 I)$ is Gaussian

Random Walk behavior \Rightarrow Need (O(N)) evaluations of Log[p(z)] for each effective sample.
HMC: A proposal that scales well

HMC = MCMC with the following proposal:

1. Let $U(z) := \log[p(z)]$ define a surface in \mathbb{R}^N
2. Start a ball at z^0
3. Give the ball a Gaussian “kick”
4. Let the ball roll for time T, giving you the proposal

If well tuned, the “rolling” allows the proposal to travel a long distance

\Rightarrow Need $O(N^{1/4})$ evaluations of $\nabla \log[p(z)]$ for each effective sample.

Neal. 2012
HMC: A few details

Increase dimension $\mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$ by adding “momentum” ζ, and then...

1. Initialize $(z, \zeta) = (z^0, \zeta^0)$, where $\zeta^0 \sim \mathcal{N}(0, I)$
2. Define $H(z, \zeta) := -\log p(z) + ||\zeta||^2 / 2$
3. Propose $(z(T), \zeta(T))$, the time-T (numerical) solution to the initial value problem:

$\dot{z}(t) = \frac{\partial H}{\partial \zeta}, \quad z(0) = z^0,$

$\dot{\zeta}(t) = -\frac{\partial H}{\partial z}, \quad \zeta(0) = \zeta^0,$

4. Accept with probability

$$\min \{1, \exp\{H(z^0, \zeta^0) - H(z(T), \zeta(T))\}\}$$

This produces samples $[(z^0, \zeta^0), \ldots, (z^K, \zeta^K)]$ from $p(z, \zeta) \propto \exp\{-H(z, \zeta)\}$

The samples $(\zeta^0, \ldots, \zeta^K)$ may be discarded.

The samples (z^0, \ldots, z^K) are from $p(z)$.
Barriers to using HMC in Inverse Problems

Need to compute gradients of the log prior/likelihood

→ Auto-differentiating software “required”
 ◆ requires writing forward model in TensorFlow/Jax/PyTorch/etc...
→ GPUs highly recommended

Sampling may still be slow

→ Ill-Conditioning + Multi-modality (this talk!)
 ◆ All methods have issues with these
MCMC in an Industrial Research Setting

New experimental data arrives daily

- Reconstructions must be done/re-done for 1000's of experiments
- New experiments ⇒ new artifacts appear and old model may not work

Physicists modify the model weekly.

- Cannot tune code for each model: Require automatic parameter choices
- Sampling code has to be fast/accurate
- Sampling code should give informative answer

Figure: Stuck chains mean the correct values cannot be determined.
Ill-Conditioned Posterior Covariance
HMC Efficiency Tradeoff

Smaller numerical integration step size ⇒

- Lower integration error
- Higher Prob[Accept]

But also...

- number of steps needed
 \(~ O(1 / \text{step_size})\)

Rough best practice:

1. Adjust step_size until P[Accept] ≈ 0.68
2. Set num_leapfrog_steps ~
 LargestScale / step_size

Integration error due to finite step size

Beskos. 2010
What are the optimal parameters?

What are the optimal step size h^* and number of integration steps ℓ^*?

Assume...

- Gaussian target $p(z)$
- Eig(Covariance[Z]) is $\sigma_1^2 \geq \cdots \geq \sigma_N^2 > 0$

Then

- Must have stable integration along smallest scales
 \[\Rightarrow h^* < 2\sigma_N \]
- $T = h^* \ell^*$ must be large enough to traverse largest scales
 \[\Rightarrow h^* \ell^* = c\sigma_1 \]
 \[\Rightarrow \ell^* > \frac{c}{2} \frac{\sigma_1}{\sigma_N} \]

The correct asymptotics are

\[h^* \propto \left(\sum_{i=1}^{n} \frac{1}{\sigma_i^4} \right)^{-1/4}, \quad \ell^* \propto \kappa := \left(\sum_{i=1}^{n} \frac{\sigma_i^4}{1} \right)^{1/4} \]
Preconditioning

To sample random variable X...

- Find diffeomorphism F so that $Z := F^{-1}(X) \approx \mathcal{N}(0, I)$
- Sample Z_1, Z_2, \ldots
- Transform back: $X_n = F(Z_n)$ to obtain X_1, X_2, \ldots

Generic Preconditioning

For example, if we estimate $\text{Covariance}(X) \approx C = LL^T$

Linear Preconditioning

- Set $Z = L^{-1}X$
- $\text{Covariance}(Z) \approx I$
- We hope $Z \approx \mathcal{N}(0, I)$
Preconditioning through a nonlinearity

To sample random variable X...

- Find diffeomorphism F so that $Z := F^{-1}(X) \approx \mathcal{N}(0, I)$
- Sample Z_1, Z_2, \ldots
- Transform back: $X_n = F(Z_n)$ to obtain X_1, X_2, \ldots

Generic Preconditioning

Often our prior is a nonlinear function of a Gaussian. E.g.

- $X = G(W)$, where $W \sim \mathcal{N}(0, I)$

We remove this nonlinearity before computing covariance

- Estimate the factor L such that Covariance $(G^{-1}(X)) = LL^T$
- Set $Z = L^{-1}G^{-1}(X)$
- \Rightarrow Covariance$(Z) \approx I$

Quasi-Linear Preconditioning
Preconditioning with standard deviations

Let $D = \text{Diag}(\sigma_1, \ldots, \sigma_N)$ be the matrix of standard deviations.

Proposition 4.1. Suppose $C = LL^T$ is diagonally dominant with, for every i, $\sum_{j \neq i} |C_{ij}/C_{ii}| \leq \delta < 1$. Then,

$$\kappa(D^{-1}L) \leq N^{1/4} \sqrt{\frac{1 + \delta}{1 - \delta}}.$$

Works well if C is diagonally dominant.

Is close to the ideal diagonal preconditioner.

Proposition 4.2. Let D_{opt} be a preconditioner minimizing $\kappa(G^{-1}L)$ over all diagonal matrices G. Then,

$$\kappa(D^{-1}L) \leq \sqrt{N} \kappa(D_{opt}^{-1}L).$$

Furthermore, if at most K entries in each row of LL^T are nonzero, then

$$\kappa(D^{-1}L) \leq \sqrt{K} \kappa(D_{opt}^{-1}L).$$
Precondition with \textit{sample} standard deviations

Let $D\hat{}$ be the (diagonal) matrix of \textit{sample} standard deviations.

Proposition 4.3. Given $\varepsilon, p \in (0, 1)$,

$$\kappa(\hat{D}^{-1}L) \leq \kappa(D^{-1}L) \sqrt{\frac{1 + \varepsilon}{1 - \varepsilon}},$$

with probability p, as soon as the number of i.i.d. samples S satisfies

$$S \geq \frac{25}{\varepsilon^2} \log \left(\frac{3N}{p} \right).$$

Needs $O(\log[N])$ i.i.d. samples.
By full covariance preconditioning, we mean starting with the sample covariance, \hat{C}, factorizing as $\hat{C} = \hat{L}\hat{L}^T$, then preconditioning with \hat{L}.

Lemma 4.1. Suppose (X^1, \ldots, X^S) are i.i.d. samples of $X \sim \mathcal{N}(0, C)$, and we precondition sampling of X with the S-sample factor \hat{L}. Then, the preconditioned κ follows the law of $\kappa(B)$, for $BB^T \sim \text{InverseWishart}(S, N)$.
Asymptotic Expression for Kappa(InvWishart)

Proposition 4.4. If $BB^T \sim \text{InverseWishart}(N, S)$, and $N \to \infty$ with $S/N \to \omega \in (1, \infty)$, then

$$\frac{\kappa(B)}{N^{1/4}} \to \frac{(1 + \omega^{-1})^{1/4}}{1 - \omega^{-1/2}}$$

Need $\sim 2.5 \times N$ i.i.d. samples
Use Kappa to Decide on Burn-In Size

Algorithm To produce S_f final samples.

Before preconditioning, suppose $\kappa = \kappa_0$, then

1. Gather burn-in samples (Z^1, \ldots, Z^S)
2. Precondition with $\text{Cholesky}(\text{Covariance}((Z^1, \ldots, Z^S))$
3. Gather S_f final samples

Assuming $\text{seconds/ESS} \propto \kappa(S)$, the speedup is

$$\frac{S_f \kappa_0}{S \kappa_0 + S_f \kappa(S)}$$
Optimal number of iid samples

Algorithm To produce S_f final samples.

Before preconditioning, suppose $\kappa = \kappa_0$, then

1. Gather burn-in samples (Z^1, \ldots, Z^S)
2. Precondition with Cholesky(Covariance((Z^1, \ldots, Z^S)))
3. Gather S_f final samples

Assuming $\text{seconds/ESS} \propto \kappa(S)$, the **speedup** is

$$\frac{S_f\kappa_0}{S \kappa_0 + S_f\kappa(S)}$$

To make this work, we must...

- Estimate κ_0
- Get i.i.d., samples
How to measure initial κ?

Don’t use the sample covariance: It requires $> N$ samples, and is not accurate

Instead, use a relation between Kappa, h, $P[Accept]$

$\kappa := \sigma_1 \nu \approx \frac{\sigma_1}{h} 2^{7/4} \sqrt{\Phi^{-1} \left(1 - \frac{\bar{a}}{2}\right)}.$

Meaningful, even if non-Gaussian

![Graph 1](image1)

![Graph 2](image2)
What to Use in Place of IID Samples?

What to use in place of i.i.d. samples?

⇒ Use NUTS samples, keep track of Mean[ESS]

NUTS is slower – luckily, once we precondition we don’t need NUTS
How much speedup do you get in practice?

Results on a non-Gaussian plasma reconstruction problem

Sampling speedup is 30x

Overall speedup is 2x
Multi-Modal Posteriors
Multi-Modal Posteriors

Rotation direction is *not resolved* by Interferometer alone

Multi-Modality

Markov Chains get stuck

Probability of chain jumping between modes is

\[\sim \exp\{-\left(\frac{\mu}{\sigma}\right)^2\} \]
Potential Energy Viewpoint

With p the probability density and U the potential energy:

$$p(x) = e^{-U(x)}$$
Tempered Densities in 1-D

With p the probability density, U the potential energy, and T the temperature:

$$p_T(x) \propto e^{-U(x)/T}$$
Replica Exchange Monte Carlo (REMC)

Local Exploration (HMC)

Swap
Replica Exchange Monte Carlo (REMC)

1. Run R replicas in parallel
2. The r^{th} replica samples with temperature T_r
 a. $1 = T_0 < T_1 < \ldots < T_{R-1}$
3. The $T_0=1$ replica is the target
4. Replicas alternate *local exploration* and swaps

Swaps are accepted according to a **Metropolis condition**

$$P[\text{Swap}_{1,2} \mid x_1, x_2] = \min \left\{ 1, \alpha_{1,2}(x_1, x_2) \right\},$$

$$\alpha_{1,2} := \frac{\pi(x_2, x_1, x_3, \ldots)}{\pi(x_1, x_2, x_3, \ldots)} = \frac{\pi_1(x_2)\pi_2(x_1)}{\pi_1(x_1)\pi_2(x_2)}.$$
Likelihood Tempering & Posterior Tempering

Likelihood Tempering
\[p(x)p(y|x)^{1/T} \]

Posterior Tempering
\[p(x)^{1/T} p(y|x)^{1/T} \]
Likelihood Tempering: Better for Us

Posterior Tempering

\[p(x)^{1/T} p(y|x)^{1/T} \]

- Hottest replica ~ HUGE
 - explores beyond the prior
 - unstable as \(T \to \infty \)
- Requires \(O(N^{1/2}) \) replicas
 - \(N \) = dimension of unknown \(X \)
 - (for Gaussian)

Likelihood Tempering

\[p(x)p(y|x)^{1/T} \]

- Hottest replica ~ Prior so...
 - easy to sample from hottest replica
 - stable as \(T \to \infty \)
- Requires \(O(\text{Min}(N^{1/2}, M^{1/2})) \) replicas
 - \(M \) = rank of fwd model
 - (for Gaussian)
Number of HMC Integration Steps can be Small

Since...

- on GPU, every replica should use same # integration steps
- the hottest replica needs to jump between modes – colder replicas can “mix by swapping”
- hottest replica is well conditioned, so requires fewer leapfrog steps
- about $1 / (1 + \Lambda)$ fraction of samples make it from hot to cold

We find...

- can use $\text{NumSteps}^{\text{opt hot}} / \sqrt{1 + \Lambda}$ integration steps for all replicas
 - $\text{NumSteps}^{\text{opt hot}}$ is the optimal number of steps for the hottest replica, without swapping
- between every “hot to cold” sample, hottest replica travels distance $\sim h_{\text{hot}}^{\text{opt hot}}$
REMC on a Spectroscopy Problem

Most efficient when we use heuristic on last slide (leapfrog multiplier = 1)
Random Walk Swap Proposals

Randomly propose either...

- **Even swaps**: Swap(1, 2) AND Swap(3, 4) AND...
- **Odd swaps**: Swap(2, 3) AND Swap(4, 5) AND...

As number of replicas R increases, only $1 / R$ proposals make it from “hot to cold”
Deterministic Even-Odd

Deterministically alternate even & odd swaps

- Less likely to change direction
- As $R \to \infty$, as number of replicas R increases, $1 / (1 + \Lambda)$ fraction of proposals make it from hot to cold
Choosing the highest temperature

T_{max} is chosen to be the lowest temperature such that it, and all temperatures above it, are “mixing well”
After fixing $T_0 = 1$, and T_{max}, we adjust the gap between neighboring temperatures until

$P[\text{Swap replicas } k \rightarrow k+1]$ are all equal
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neal. 2012</td>
<td>MCMC Using Hamiltonian Dynamics.</td>
</tr>
<tr>
<td>Beskos. 2010</td>
<td>Optimal Tuning of the Hybrid Monte Carlo Algorithm.</td>
</tr>
<tr>
<td>L. 2019</td>
<td>A Condition Number for Hamiltonian Monte Carlo.</td>
</tr>
<tr>
<td>Dikovsky. 2021</td>
<td>Multi-instrument Bayesian Reconstruction of Plasma Shape Evolution...</td>
</tr>
<tr>
<td>Syed 2020</td>
<td>Non-reversible Parallel Tempering: A Scalable Highly Parallel MCMC Scheme</td>
</tr>
<tr>
<td>L. 2021</td>
<td>Hamiltonian Monte Carlo for Inverse Problems; Ill-Conditioning and Multi-Modality</td>
</tr>
</tbody>
</table>