
Mixed Negative Sampling for Learning Two-tower Neural
Networks in Recommendations

Ji Yang
Google

jiyangjy@google.com

Xinyang Yi
Google

xinyang@google.com

Derek Zhiyuan Cheng
Google

zcheng@google.com

Lichan Hong
Google

lichan@google.com

Yang Li
Google

ngli@google.com

Simon Xiaoming Wang
Google

wxm@google.com

Taibai Xu
Google

taibaixu@google.com

Ed H. Chi
Google

edchi@google.com

ABSTRACT
Learning query and item representations is important for building
large scale recommendation systems. In many real applications
where there is a huge catalog of items to recommend, the problem
of efficiently retrieving top k items given user’s query from deep
corpus leads to a family of factorized modeling approaches where
queries and items are jointly embedded into a low-dimensional
space. In this paper, we first showcase how to apply a two-tower
neural network framework, which is also known as dual encoder in
the natural language community, to improve a large-scale, produc-
tion app recommendation system. Furthermore, we offer a novel
negative sampling approach calledMixed Negative Sampling (MNS).
In particular, different from commonly used batch or unigram sam-
pling methods, MNS uses a mixture of batch and uniformly sampled
negatives to tackle the selection bias of implicit user feedback. We
conduct extensive offline experiments using large-scale production
dataset and show that MNS outperforms other baseline sampling
methods. We also conduct online A/B testing and demonstrate that
the two-tower retrieval model based on MNS significantly improves
retrieval quality by encouraging more high-quality app installs.

KEYWORDS
Information Retrieval, Neural Networks, Context-aware Recom-
mender Systems, Extreme Classification

ACM Reference Format:
Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon
Xiaoming Wang, Taibai Xu, and Ed H. Chi. 2020. Mixed Negative Sam-
pling for Learning Two-tower Neural Networks in Recommendations. In
Companion Proceedings of the Web Conference 2020 (WWW ’20 Compan-
ion), April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3366424.3386195

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7024-0/20/04.
https://doi.org/10.1145/3366424.3386195

1 INTRODUCTION
Recommendation systems are important in connecting users to a
large number of relevant items and content. One of the most critical
challenges in building real-world recommenders is to accurately
score millions to billions of items in real time. Many industry-scale
systems [7, 9] have a two-stage architecture where a retrieval model
first retrieves a small fraction of relevant items from item corpus,
and a ranking model is applied to re-ranks the retrieved items based
on users’ feedback such as clicks or ratings on impressions. In this
paper, we focus on the retrieval problem and showcase how we
improve the app retrieval system of Google Play, one of the largest
commercial mobile app stores, by jointly learning query and app
representations via deep neural networks.

Recently, lots of research has been developed on embedding-
based retrieval models. Matrix factorization (MF) (e.g., [14]) is one
of most popular approaches for learning query and item latent
factors in building retrieval systems. One challenge of MF is cold-
start, i.e., it’s hard for this method to generalize to items that have
no user interaction. A body of recommendation research (e.g., [4, 13,
21]) addresses this challenge by further leveraging item’s content
features, which can be loosely defined as a wide variety of features
describing items beyond their ids. For instance, content features
of an app could be text descriptions, creators, categories, etc. As
deep learning has demonstrated tremendous successes in computer
vision and natural language processing, there are many works [3, 7]
that apply extreme multi-class classification model to learn query
embedding viamulti-layer perceptions. Despite the non-linearity on
the query side, each item is still represented by a single embedding.
Hence, similar to MF, this method fails to represent a collection of
items features with various formats.

Most recently, two-tower neural networks, with towers referring
to encoders based on deep neural network (DNN), attains growing
interests [24], and are applied to tackle the challenge of cold-start
issue of MF and multi-class extreme classification models. The
basic idea is to further incorporate items’ content features through
a multi-layer neural network that would generalize to fresh or tail
items with no training data. See Figure 1 for an illustration of the
model architecture. This model framework is also closely connected
to the dual encoder framework [8, 23] in language models. This
paper lies in this line of work. We focus on applying the two-tower

441

https://doi.org/10.1145/3366424.3386195
https://doi.org/10.1145/3366424.3386195


WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaoming Wang, Taibai Xu, and Ed H. Chi

DNN 
Encoder

Query Input

Query Embedding

DNN 
Encoder

Item Input

Item Embedding

Figure 1: Two-tower Neural Network.

framework to improve the retrieval system of Google Play, which
is one of the largest commercial mobile app stores, connecting
millions of apps to billions of users across the world.

Similar to language tasks, negative sampling plays a critical role
in training two-tower neural networks in recommendations. Es-
pecially, in recommendation, users’ positive feedback are often
collected, and counterfactuals on items not shown are very hard to
obtain. A popular sampling approach [1, 7] for fitting a softmax out-
put distribution is to sample according to the unigram distribution
of items. The work in [24] extends unigram sampling to the two-
tower setting by using batch negatives, i.e., using the positive items
in a mini batch as shared negatives for all queries in the same batch.
We note that unigram-sampled or batch negatives have the limit
of selection bias in training data. This is because the training data
is derived from user feedback logs, and users often interact with
a small set of popular items suggested by existing recommender
system. Items that are not favored by the existing system are less
likely to get user feedback. Accordingly, sampling batch negatives
only from training data will end up with a model lacking resolution
for long-tail apps, which seldom appear in the training data.

Inspired by the aforementioned constraint of batch negatives,
we propose a novel sampling approach called Mixed Negative Sam-
pling (MNS), where the idea is to use a mixture of unigram and
uniform distributions. In particular, in addition to the negatives
sampled from batch training data, we uniformly sample negatives
from the candidate corpus to serve as additional negatives. This
two-stream negative sampling enables us to: (1) reduce selection
bias by bringing in samples from the entire candidate corpus; (2)
adjust the sampling distribution by changing the number of addi-
tional negative samples from the corpus. We further demonstrate
the effectiveness of our retrieval systemwith both offline and online
experiments on Google Play. Offline studies showed that MNS sig-
nificantly improves retrieval quality. In addition, online A/B testing
shows that the two-tower model trained with MNS leads to more
high-quality app installs from for Google Play. The lessons from
this case study sheds light for other large-scale recommendation
systems dealing with huge item catalogs.

In summary, our contributions are:
• Real-world application. We showcase how to apply the
dual-encoder framework to improve a large scale, production
app recommendation system. In particular, we show how

to leverage the item tower to mitigate the well-known cold-
start problem of embedding-based approaches.

• Mixed negative sampling.We present the problem of se-
lection bias in the commonly used unigram and batch neg-
ative sampling methods, and and propose a novel negative
sampling approach called mixed negative sampling.

• Offline and online experiments. We conduct extensive
offline and online experiments in Google Play to demonstrate
the effectiveness of MNS, and report that the new system
we build can encourage significantly more high-quality app
installs from users.

2 RELATEDWORK
In the decade, deep learning has demonstrated tremendous suc-
cesses in recommender systems, ranging from video recommenda-
tion [7], news recommendation [20], to visual discovery in social
networks [15, 25]. Cheng et al. [5] introduces a wide-n-deep frame-
work for reranking task in app recommendations. For the retrieval
task, there has also been growing interests in applying DNN-based
representation learning approaches. Covington et al. [7] treats the
retrieval task as an extreme multi-class classification trained with
multi-layer perceptron (MLP) [10] model using sampled softmax
as its loss function. Despite achieving lots of success, such a model
architecture relies on a predetermined item vocabulary and does
not generalize well to new items.

A big challenge in training multi-class classification model with
softmax is the training cost when the number of classes is huge
(e.g., millions). Hierarchical softmax [11, 18] and sampled softmax
[1, 2] are two most common approaches used to improve training
speed. Hierarchical softmax defines a tree for categories based on
their attributes and makes hierarchical decisions traversing the
tree to get the final category. On the other hand, sampled softmax
specifies a sampling distributionQ from which a subset of the label
space is drawn to approximate the gradient. Researchers usually
use simple distributions, e.g., unigram or bigram distributions based
on sample frequency [1, 2], or a power-raised distribution of the
unigram [17]. However, neither hierarchical softmax nor sampled
softmax is applicable to our two-tower architecture where label is
associated with a rich set of content features.

People started to adopt two-tower DNNs to learn representation
from content features in language models [6, 16, 19]. Two-tower
DNNs have also been introduced for retrieval task to leverage rich
content feature on item side in recommender systems with applica-
tion in video recommendations [24], where batch negative sampling
based on item frequency estimation is adopted to correct sampling
bias. In contrast, our work found it important to reduce the selec-
tion bias brought by batch negative sampling in the application for
app recommendations, which has not been considered in existing
works to the best of our knowledge.

3 MODELING FRAMEWORK
In this section, we first provide a mathematical formulation for
the retrieval task in large-corpus recommender systems. We then
present the modeling approach based on a two-tower deep neu-
ral network and describe how we train the model using in-batch

442



Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

negative sampling. Finally, we introduce the Mixed Negative Sam-
pling (MNS) technique to address the selection bias of the batch
negatives.

3.1 Problem Formulation
The retrieval task in recommendation systems aims to quickly select
hundreds to thousands of candidate items from the entire item
corpus given a certain query. In particular, a query could be a piece
of text, an item (e.g., an app), a user, or a mixture of these. Here both
queries and items can be represented as feature vectors capturing
wide variety of information. We treat the retrieval problem as a
multi-class classification problem, and the likelihood of suggesting
an item from a large corpus (classes) C is formulated as a softmax
probability:

P(y |x) =
eε (x,y)∑

j ∈C eε (x,yj )
, (1)

where ε(x ,y) denotes the logits provided by the retrieval model,
with feature vectors x and y representing the query and the item
respectively.

3.2 Modeling Approach
We adopt a two-tower DNN model architecture for computing
logits ε(x ,y). As shown in Figure 1, the left tower and right tower
learn latent representations of given query and item separately.
Formally, we denote the two DNN towers by functions u(x ;θ ) and
v(y;θ ), which map query and item features x and y to a shared
embedding space. Here θ denotes all the model parameters. The
model outputs the inner product of query and item embeddings as
logits in Equation (1), i.e.,

ε(x ,y) = ⟨u(x ;θ ), v(y;θ )⟩.

To simplify notations, we denote u as the embedding for a given
query x and vj as the embedding for item j from the corpus C . The
cross-entropy loss for a {query (x), item (yl , positive label)} pair
becomes:

L = − log(P(yl |x)) = − log

(
e ⟨u,vl ⟩)∑
j ∈C e ⟨u,vj ⟩

)
. (2)

Taking gradient of Equation (2) with respect to parameter θ gives

∇θ (− log P(yl |x)) (3)

= −∇θ (⟨u,vl ⟩) +
∑
j ∈C

e ⟨u,vj ⟩∑
j ∈C e ⟨u,vj ⟩

∇θ (⟨u,vj ⟩)

= −∇θ (⟨u,vl ⟩) +
∑
j ∈C

P(yj |x)∇θ (⟨u,vj ⟩).

The second term represents the expectation of ∇θ (⟨u,vj ⟩) with
respect to P(·|x) (referred to as target distribution). It is generally
impractical to compute the second term over all items in a huge
corpus. As a result, we approximate this expectation by sampling a
small number of items using importance sampling [2].

Specifically, we sample a subset of itemsC ′ from the corpus with
a predefined distribution Q with Q j being the sampling probability
of item j and estimate the second term in Equation (3) as:

Query Embedding 1

...

Query Embedding B - 1

Query Embedding B

Candidate Item Embedding 1

...

Candidate Item Embedding B - 1

Candidate Item Embedding B

Training data
(Query-item pairs) 
Batch B

B

B

Query Embeddings Item Embeddings Logits matrix

Label matrix

B

B

1
1

1

.
.

.
.0

0

Figure 2: Batch negative sampling for training two-tower
DNN model.

EP [∇θ (⟨u,vj ⟩)] ≈
∑
j ∈C ′

ωj∑
j′∈C ′ ωj′

∇θ (⟨u,vj ⟩), (4)

where ωj = e ⟨u,vj ⟩−loд(Q j ) incorporates the logQ correction uti-
lized in sampled softmax [1, 2].

A commonly-used sampling strategy for two-tower DNN model
is the batch negative sampling. Specifically, batch negative sampling
treats other items in the same training batch as sampled negatives
and therefore the sampling distribution Q follows the unigram
distribution based on item frequency. It avoids feeding additional
negative samples to the right tower and thus saves computation
cost. Figure 2 shows the computation process in one training batch.
Given B pairs of {query, item} in a batch, features of B queries and B
items go through the left and right towers of the model, respectively,
producing B ×K (K is the embedding dimension) embedding matri-
ces U and V . Then the logits matrix can be calculated as L = UVT .
While the batch negative sampling significantly improves training
speed, we discuss its problems in the next sub-section and propose
an alternative sampling strategy accordingly.

3.3 Mixed Negative Sampling
Controlling bias and variance of the gradient estimator is critical to
model quality. There are two ways to reduce bias and variance [2]:
(1) increasing the sample size; (2) reducing the discrepancy between
proposed Q distribution and target distribution P .

In case of training two-tower DNN models, batch negative sam-
pling implicitly sets sampling distribution Q to be unigram item
frequency distribution. It has 2 problems in recommedation scenar-
ios:

• (1) Selection bias: for example, an item with no user feed-
back will not be included as a candidate app in the training
data. Thus it will never be sampled as a negative with batch
negative sampling. Consequently, the model lacks capability
to differentiate items with sparse feedback w.r.t other items.

• (2) Lack of flexibility to adjust sampling distribution:
The implicit sampling distribution Q is determined by the
training data and cannot be further adjusted. Deviation of

443



WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaoming Wang, Taibai Xu, and Ed H. Chi

Query Embedding 1

...

Query Embedding B - 1

Query Embedding B

Candidate Item Embedding 1

...

Candidate Item Embedding B - 1

Candidate Item Embedding B

Training data
(Query-item pairs) 
Batch B

Index data (Item Corpus)
Batch B’

Candidate Item Embedding 1

...

Candidate Item Embedding B’

B

B + B’

Query Embeddings Item Embeddings Logits matrix

Label matrix

B

B + B’

1
1

1

.
.

.
.0

0
0

Figure 3: Illustration of MNS for training two-tower DNN
model.

Q from target distribution P might result in a significant
amount of bias.

We propose Mixed Negative Sampling (MNS) to tackle these
problems. It uniformly samples B′ items from another data stream.
We refer the additional data stream as index data, which is a set
composed of items from the entire corpus. These items serve as
additional negatives for every single batch. Figure 3 shows the com-
putation process for a training batch. In addition to the B ×K query
embedding matrix UB , and the B × K candidate item embedding
matrix VB , B′ candidate items uniformly sampled from the index
data are fed into the right tower to produce a B′ × K candidate
item embedding matrix V ′

B . We concatenate VB and V ′
B to get a

(B + B′) × K candidate item embedding matrix V . Eventually we
have the B × (B + B′) logits matrix L = UVT . The label matrix
therefore becomes B×(B+B′)with an all 0 B×B′ matrix appended
to the original B×B diagonal matrix. Accordingly, the loss function
for a training batch becomes

LB ≈ −
1
B

∑
i ∈[B]

log(
e ⟨ui ,vi ⟩

e ⟨ui ,vi ⟩ +
∑
j ∈[B+B′], j,i wi j

), (5)

where wi j = e ⟨ui ,vj ⟩−loд(Q
∗
j ) with ui being the ith row of U and

vj denoting the jth row of V . Here the sampling distribution Q∗

becomes a mixture of item frequency based unigram sampling and
uniform sampling, characterized by a ratio between the batch size
B and B′.

MNS tackles the two problems associated with batch softmax
described above: (1) Reducing selection bias: all items in the corpus
have a chance to serve as negatives so that the retrieval model has
better resolution towards fresh and long-tail items; (2) Enabling
more flexibility in controlling sampling distribution: the effective
sampling distribution Q is a mixture of item frequency based uni-
gram distribution from training data and uniform distribution from
index data. With a fixed batch size B, we are able to experiment
with different Q by adjusting B′. B′ here can be tuned as a hyper-
parameter.

App Corpus

Retrieval Stage

Query:
<User, Context, Seed App>

Rerank Stage

Item:
<Candidate App, Content>

App 1
App 2

….

Ranked Apps

Dozons

Hundreds

Millions

Figure 4: Overview of Google Play app recommendations.

4 CASE STUDY: GOOGLE PLAY APP
RECOMMENDATION

This section introduces howwe apply the two-tower DNNmodeling
approach for the app recommendation in Google Play, as a real-
world case study to experiment with our proposed method.

4.1 System Overview
The app recommendation system for the app landing page in Google
Play provides a slate of recommended apps to users when they are
browsing a particular app (referred to as seed app). Figure 4 il-
lustrates the high-level architecture of the system. Given a query
represented as a concatenation of user, context, and seed app fea-
tures, the system serves personalized app recommendations in a
two-phase manner. The system contains multiple candidate genera-
tion modules for retrieval, including both human-crafted rules and
machine-learned models. These modules retrieve hundreds of apps
from the app corpus. Afterwards, all the apps retrieved are ranked
by a reranking model.

4.2 Google Play’s Two-tower DNN Model
We apply two-tower DNN model architecture for the retrieval prob-
lem in Google Play app recommendation. As shown in Figure 5,
the left tower and right tower learn latent representations of given
query and candidate app, respectively. Here query features can be a
mixture of features representing user, context and seed app, while
candidate app features can be both sparse app IDs and content
features (e.g., the category of an app). Our training data is con-
structed from logged user implicit feedback in the form of {query,
candidate app} pairs, where candidate app is the next app which
user installed from recommended apps. To apply MNS, we prepare
an index data including all of the candidate apps and corresponding
content features with values from the most recent snapshot.

4.3 Indexing and Model Serving
In order to serve recommendations specially tailored based users’
real-time updates, we compute query embedding on the fly via the
left tower in the model, while the candidate app embeddings are
computed and indexed offline. We build a fast nearest neighbor
search service to retrieve top K most relevant candidate apps in

444



Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

ReLu

ReLu

ReLu

ReLu

Candidate App Features

dot product

Cross-entropy Loss

Indexed for 
serving

Query embedding u App embedding v

Context Features Seed App FeaturesUser Features

Figure 5: Two-tower model architecture for Google Play app recommendation.

the embedding space. The indexer of the nearest neighbor search
is built off-line by applying quantizied hashing and tree search
algorithms [12, 22], enabling us to efficiently retrieve hundreds of
candidate apps in real-time from a large corpus of millions of apps.

5 EXPERIMENT RESULTS
We demonstrate the effectiveness of our proposed technique via
extensive offline experiments on real-world Google Play data. In
addition, live experiments on Google Play also show that the two-
tower model with MNS delivered significant top-line metric wins.

5.1 Offline Studies
We train the model on 30 days’ rolling window of Google Play’s
logged data and evaluate on the 31st day. To account for weekly
pattern, we repeat the evaluation for 7 times and each time wemove
the rolling window by 1 day. We report the average metric across
the 7 train-eval datasets. For a given {query, candidate app} pair in
the eval-set, we find the top k nearest neighbors in the embedding
space for the query. Recall is the main optimization objective in the
retrieval phase of our app recommendation system. We thus report
Recall@K, i.e., the average probability for the candidate apps to
appear among the top k nearest neighbors retrieved for the query,
as our offline metric.

Effectiveness of MNS. To understand the effectiveness of MNS,
we experiment with the following 3 algorithms: (1) MLP with sam-
pled softmax without app content features. This is the latest produc-
tion retrieval system and thus serves as our baseline; (2) Two-tower
DNN with batch negative sampling; (3) Two-tower DNN with MNS.
Table 1 reports the results.

For MLP with sampled softmax model, we use a two-layer DNN
with hidden layer sizes [1024, 128] to encode query. For the two-
tower model, we use feed forward layers with hidden layer sizes

[512, 128] for both left and right towers. It is worth noting that
the two-tower and MLP models have roughly the same number of
model parameters, since each of the two towers has half the size of
the MLP model and the same embedding sizes are used for the input
features across all models. We ensure that the effective sample size
in negative sampling is 2048 across all the 3 models as shown in
Table 1. We train both types of models using Adagrad as optimizer
with learning rate at 0.01. ReLU is used as activation function for
all hidden layers except that no activation is used for top hidden
layers.

From Table 1, we observe that batch negative sampling performs
worse than sampled softmax even it incorporates extra app content
features. We observe quite a few irrelevant tail apps in its retrieval
results. This observation supports our hypothesis that batch soft-
max suffers from selection bias. Low-quality tail apps do not appear
as negatives frequent enough. As such, they are not demoted as they
should have been during training. Another observation from Table
1 is that Mixed Negative Sampling performs the best as expected.
Compared with MLP with sampled softmax, MNS includes extra
app content features. Compared with batch negative sampling, it
reduces the selection bias.

Hyper-parameter B′ for MNS. We further explore the MNS
strategy by looking at how Recall@K changes under different index
data batch size B′ with a fixed training batch size B. Table 2 reports
the results. Our model performs the best when B′ is 8192, according
to offline tuning of B′ as a hyper-parameter. We conjecture that
although further increasing B′ results in a larger sample size, it
leads to a sampling distribution too close to the uniform distribution.
It deviates from the desired serving time distribution and thus hurts
the model quality. Besides, large index batch size B′ significantly
increases the training cost and therefore a reasonable size B′ is
preferred.

445



WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaoming Wang, Taibai Xu, and Ed H. Chi

Table 1: Recall@K of several models in the Google Play dataset.

Model Training Batch Size Index Data Batch Size Recall@10 Recall@50 Recall@100
MLP with Sampled Softmax 2048 N.A. 0.4283 0.7226 0.8351

Two-tower with Batch Negatives 2048 N.A. 0.3987 0.6439 0.7287
Two-tower with MNS 1024 1024 0.4473 0.7474 0.8590

Table 2: Recall@K of two-tower models trained with different index data batch size.

Training Batch Size (B) Index Data Batch Size (B′) Recall@10 Recall@50 Recall@100
1024 1024 0.4473 0.7474 0.8590
1024 2048 0.4501 0.7480 0.8577
1024 4096 0.4549 0.7576 0.8684
1024 8192 0.4780 0.7877 0.8939
1024 12000 0.4589 0.7567 0.8635
1024 16000 0.4443 0.7447 0.8575

Table 3: Live experiment results of 3 models in Google Play.

Model High-quality App Install Gain
MLP with Sampled Softmax +0.00%

Two-tower with Batch Negative Sampling -1.46%
Two-tower withMixed Negative Sampling 1.54%

5.2 Online A/B testing
Beyond offline studies, we conduct live experiments (A/B testing) for
2 weeks. The control group consists of 1% randomly selected users,
who are presented with app suggestions made by the production
recommendation system using a sampled softmax model. Similarly,
we set up two 1% experiment groups to present app suggestions
from two-tower models with batch negative sampling, and with
MNS, respectively. We report High-quality App Install Gain as
our top-line metric here. We define High-quality App Install as
the number of apps that users actually used after installing, as
opposed to uninstalling within 1 day or having no usage. As shown
in Table 3, compared with the production sampled softmax model,
two-tower using batch softmax is significantly worse, while using
MNS improves High-quality App Installs by +1.54% with statistical
significance. In our side-by-side comparisons, we also observe more
relevant app recommendations from two-tower model with MNS.

6 CONCLUSION
This paper introduced novel sampling approach called Mixed Neg-
ative Sampling for training two-tower neural network for large
corpus item retrieval in recommendations. We discussed the selec-
tion bias of the commonly used batch negative sampling method,
and showed that MNS is effective in reducing such bias by addition-
ally sampling uniform negatives from the item corpus. We applied
the MNS-based two-tower modeling approach to build a retrieval
model for Google Play. This new model is able to incorporate rich
content features of apps, and thus resolves the cold-start problem
of the old system. Lastly, we demonstrated the effectiveness of our
approach by showing both offline and online improvements.

REFERENCES
[1] Yoshua Bengio and Jean-Sébastien Sénécal. 2003. Quick Training of Probabilistic

Neural Nets by Importance Sampling. In Proceedings of the conference on Artificial
Intelligence and Statistics (AISTATS).

[2] Y. Bengio and J. S. Senecal. 2008. Adaptive Importance Sampling to Accelerate
Training of a Neural Probabilistic Language Model. Trans. Neur. Netw. 19, 4 (April
2008), 713–722. https://doi.org/10.1109/TNN.2007.912312

[3] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed
Chi. 2018. Top-K Off-Policy Correction for a REINFORCE Recommender System.
arXiv:cs.LG/1812.02353

[4] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong
Yu. 2012. SVDFeature: A Toolkit for Feature-based Collaborative Filtering. J.
Mach. Learn. Res. 13, 1 (Dec. 2012), 3619–3622. http://dl.acm.org/citation.cfm?
id=2503308.2503357

[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. arXiv:1606.07792 (2016).
http://arxiv.org/abs/1606.07792

[6] Muthuraman Chidambaram, Yinfei Yang, Daniel Cer, Steve Yuan, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2018. Learning Cross-Lingual Sentence
Representations via a Multi-task Dual-Encoder Model. CoRR abs/1810.12836
(2018).

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[8] Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar. 2018. End-to-End
Retrieval in Continuous Space. arXiv:cs.IR/1811.08008

[9] Carlos A. Gomez-Uribe and Neil Hunt. 2015. The Netflix Recommender System:
Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4,
Article 13 (Dec. 2015), 19 pages. https://doi.org/10.1145/2843948

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[11] Joshua Goodman. 2001. Classes for Fast Maximum Entropy Training. In ICASSP.
[12] Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-

tization based Fast Inner Product Search. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, Vol. 51. PMLR.

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference onWorld WideWeb (Perth, Australia) (WWW ’17). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,

446

https://doi.org/10.1109/TNN.2007.912312
https://arxiv.org/abs/cs.LG/1812.02353
http://dl.acm.org/citation.cfm?id=2503308.2503357
http://dl.acm.org/citation.cfm?id=2503308.2503357
http://arxiv.org/abs/1606.07792
https://arxiv.org/abs/cs.IR/1811.08008
https://doi.org/10.1145/2843948
http://www.deeplearningbook.org


Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

Switzerland, 173–182. https://doi.org/10.1145/3038912.3052569
[14] Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative Filtering for Implicit

Feedback Datasets. In 2008 Eighth IEEE International Conference on Data Mining.
263–272. https://doi.org/10.1109/ICDM.2008.22

[15] David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C. Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related Pins at Pinterest: The
Evolution of a Real-World Recommender System. In WWW.

[16] Lajanugen Logeswaran and Honglak Lee. 2018. An efficient framework for
learning sentence representations. In International Conference on Learning Repre-
sentations. https://openreview.net/forum?id=rJvJXZb0W

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. abs/1301.3781 (2013).

[18] Frederic Morin and Yoshua Bengio. 2005. Hierarchical Probabilistic Neural
Network Language Model. In AISTATS.

[19] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 2016. Learning Text Sim-
ilarity with Siamese Recurrent Networks. In Proceedings of the 1st Workshop
on Representation Learning for NLP. Association for Computational Linguistics,
Berlin, Germany, 148–157. https://doi.org/10.18653/v1/W16-1617

[20] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017.
Embedding-based News Recommendation for Millions of Users. In KDD.

[21] S. Rendle. 2010. Factorization Machines. In 2010 IEEE International Conference on
Data Mining. 995–1000. https://doi.org/10.1109/ICDM.2010.127

[22] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N
Holtmann-Rice, David Simcha, and Felix Yu. 2017. Multiscale Quantization
for Fast Similarity Search. In Advances in Neural Information Processing Systems
30.

[23] Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-Yi Kong, Noah Constant, Petr Pilar,
Heming Ge, Yun-hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Learning
Semantic Textual Similarity from Conversations. In Proceedings of The Third
Workshop on Representation Learning for NLP. Association for Computational
Linguistics, Melbourne, Australia, 164–174. https://www.aclweb.org/anthology/
W18-3022

[24] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Adi-
tee Ajit Kumthekar, Zhe Zhao, Li Wei, and Ed Chi. 2019. Sampling-Bias-Corrected
Neural Modeling for Large Corpus Item Recommendations. 13th ACM Conference
on Recommender Systems. Copenhagen, Denmark (2019).

[25] Andrew Zhai, Dmitry Kislyuk, Yushi Jing, Michael Feng, Eric Tzeng, Jeff Donahue,
Yue Li Du, and Trevor Darrell. 2017. Visual Discovery at Pinterest. (02 2017).

447

https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1109/ICDM.2008.22
https://openreview.net/forum?id=rJvJXZb0W
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.1109/ICDM.2010.127
https://www.aclweb.org/anthology/W18-3022
https://www.aclweb.org/anthology/W18-3022

	Abstract
	1 Introduction
	2 Related Work
	3 Modeling Framework
	3.1 Problem Formulation
	3.2 Modeling Approach
	3.3 Mixed Negative Sampling

	4 Case Study: Google Play App Recommendation
	4.1 System Overview
	4.2 Google Play's Two-tower DNN Model
	4.3 Indexing and Model Serving

	5 Experiment Results
	5.1 Offline Studies
	5.2 Online A/B testing

	6 Conclusion
	References

