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The controlled evolution of ideal quantum systems offers com-
putational resources more powerful than classical computers. 
On the basis of results in quantum chaos1–11 and computational 

complexity theory12–17, we propose an experiment for characterizing 
‘quantum supremacy’18 in the presence of errors in the near term. 
Quantum supremacy is achieved when a formal computational task 
is performed with an existing quantum device, but the same task 
cannot be performed using any known algorithm running on an 
existing classical supercomputer in a reasonable amount of time.

Time-accurate simulations of classical dynamical systems with 
chaotic behaviour are among the hardest numerical tasks. Examples 
include turbulence and population dynamics, essential for the study 
of meteorology, biology, finance and so on. In all of these cases, a 
direct numerical simulation is required to get an accurate descrip-
tion of the system state after a finite time. Our minimal-resource 
demonstration of quantum supremacy is based on the implemen-
tation of (pseudo-)random quantum circuits with gates sampled 
from a universal gate set. These are examples of quantum chaotic 
evolutions that naturally lend themselves to the quantum compu-
tational framework1,3,6. A circuit, corresponding to a unitary trans-
formation U, is a sequence of d clock cycles of one- and two-qubit 
gates, with gates applied to different qubits in the same cycle. With 
realistic superconducting hardware constraints19,20, gates act in par-
allel on distinct sets of qubits restricted to a one-dimensional (1D) 
or 2D lattice. The cycle number t plays the role of time in the cha-
otic dynamics of the quantum state |ψt〉​. In analogy with classical 
Lyapunov exponents, a signature of quantum chaos is the decrease 
of the overlap ψ ψ∣ ∣ ∣ε

t t
2 of the quantum state |ψt〉​ with the state ψ∣ ε

t  
resulting from a small perturbation ε to the Hamiltonian that evolves 
|ψt〉​ (refs 2,21–23). The overlap decreases exponentially in the evolution 
time t and ε because chaotic evolutions give rise to delocalization 
of quantum states1,24. Such states are closely related to ensembles  

of random unitary matrices studied in random matrix theory24,25, 
they possess no symmetries, and they are spread over Hilbert space. 
Therefore, as in the case of classical chaos, obtaining a description 
of |ψt〉​ requires a high-fidelity classical simulation. This challenge 
is compounded by the exponential growth of the Hilbert space 
dimension N =​ 2n with the number of qubits n.

We introduce cross-entropy benchmarking as a method to esti-
mate the fidelity of complex multi-qubit implementations. The 
cross-entropy difference is a measure of correspondence between 
experimentally obtained samples and the output distribution of the 
ideal circuit. We study numerically the convergence of the distribu-
tion of output probabilities to the exponential distribution, which 
in this context we call the Porter–Thomas distribution26, character-
istic of quantum chaos27. We find a good convergence for the first 
10 moments and the entropy at depth ~20 with circuits of up to 
7 ×​ 6 qubits in a 2D lattice. Using chaos theory, the properties of 
the Porter–Thomas distribution, and numerical simulations, we 
argue that the cross-entropy is closely related to the circuit fidelity. 
State-of-the-art supercomputers cannot simulate universal random 
circuits of sufficient depth (approximately 40 clock cycles) in a 2D 
lattice of approximately 7 ×​ 7 qubits with any known algorithm and 
significant fidelity.

Sampling random quantum circuits
Given a random quantum circuit U of depth d, we are interested in 
sampling from the distribution pU(x) ≡​ |〈​x|ψd〉​|2 of bit-strings in the 
computational basis {|x〉​}. It has been argued that classically solv-
ing related sampling problems requires computational resources 
with asymptotic exponential scaling12–15,17. Examples include 
BosonSampling14 and approximate simulation of commuting quan-
tum computations, so-called instantaneous quantum polynomial-
time (IQP) circuits13,17.
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Hypersensitivity to perturbations is a signature of chaos2.  
We study the sensitivity of the distribution pU(x) to small perturba-
tions numerically: the distribution obtained after a single random 
X or Z gate (error) is added to the circuit is almost uncorrelated 
with pU(x) (see Fig. 1a). Therefore, it is natural to conjecture that 
sampling from the distribution pU(x) requires a high-fidelity simu-
lation of the quantum circuit, and that approximate classical simu-
lations are very likely to fail (see Supplementary Information and 
ref. 28). It follows that unless a classical algorithm uses resources 
that grow exponentially in n, its output would be almost statisti-
cally uncorrelated with the output distribution of a quantum cir-
cuit of enough depth.

States generated by pseudo-random circuits approximate 
aspects of the uniform distribution in Hilbert space with increas-
ing depth3,7,8. A consequence of this is that the distribution of 
output bit-string probabilities {p =​ pU(x)} approaches the expo-
nential or Porter–Thomas distribution Ne−pN with mean 1/N 
(see Fig. 1b and Supplementary Information). We study numeri-
cally the convergence to the Porter–Thomas distribution entropy 

γ− ∑ → − +p x p x N( )log ( ) log 1j U j U j , where γ is Euler's constant, and 

moments ∑ → ∕ −p x k N( ) !j U j
k k 1, up to k =​ 10. The specific ensem-

ble we consider, which we find to converge rapidly to the Porter–
Thomas distribution, starts with an initial layer of Hadamard gates 
to rotate to the X basis, because for this study we use only controlled-
Z (CZ) two-qubit gates. The next d cycles alternate between eight 
configurations of CZ gates similar to Fig. 2a. We also place one-
qubit gates from the set {X1/2,Y1/2,T} at qubits not occupied by CZ 
gates at the same cycle. The gate X1/2 (Y1/2) is a π​/2 rotation around 
the X (Y) axis of the Bloch sphere, and the non-Clifford T gate is 
the diagonal matrix {1,eiπ/4}. One-qubit gates are placed subject to 
the following rules: the first one-qubit gate for each qubit after the 
initial cycle of Hadamard gates is always a T gate; and we place a 
one-qubit gate only in the next cycle after a CZ gate in the same 
qubit. If this qubit has already seen a T gate, the gate is chosen with 
equal probability between the two gates different from the last one-
qubit gate applied to this qubit. We obtain good convergence for 
circuits acting on as many as 7 ×​ 6 qubits at depth ~20 (see Fig. 2b,c).  

We also numerically validate that the required depth grows sublin-
early in the number of qubits, consistent with related results8,29.

Cross-entropy benchmarking
Consider a sample S =​ {x1, …​ , xm} of bit-strings xj in the computa-
tional basis. For a typical sample S, and using that the pU(x) terms are  
approximately independent and identically distributed according to  
the Porter–Thomas distribution, the central limit theorem implies 
that logPrU(S) =​ −​m(logN −​ 1 +​ γ) +​ O(m1/2) (where γ is Euler's con-
stant, see Supplementary Information). As a baseline, consider now 
a sample = …S x x{ , , }munc 1

unc unc  taken from a distribution uncorre-
lated with pU(x). We now focus on the probability PrU(Sunc) that this 
sample Sunc is observed from the output |ψd〉​ of the circuit U. The cen-
tral limit theorem implies that logPrU(Sunc) =​ −​mH(punc,pU) +​ O(m1/2), 
where ≡ − ∑ =H p p p x p x( , ) ( )log ( )U j

N
j U junc 1 unc

 is the cross-entropy 
between punc(x) and pU(x). Averaging over the ensemble {U} 
can be done independently for punc(x) and logpU(x) to obtain 
E E E= − ∑ =H p p p x p x[ ( , )] [ ( )] [log ( )]U U j

N
U j U U junc 1 unc

. For fixed xj, 
the distribution of values {pU(xj)} also converges towards the Porter–
Thomas form if we use sufficiently deep random quantum circuits. 
This allows us to define the quantity E γ≡ − = +H p x N[log ( )] logU U j0 .  
Then we obtain that the difference between the average of the log of 
the probabilities of an m-sample from the ideal circuit and from an 
uncorrelated distribution is E − =S S m[logPr ( ) logPr ( )]U U U unc . This 
equation reveals that a typical m-sample S from a random circuit U 
represents a unique signature of that circuit.

We can measure the quality of any algorithm A to sample bit-
strings from the distribution pU(x) as the difference between its 
cross-entropy and H0. We call this the cross-entropy difference  
Δ​H(pA) ≡​ H0−​H(pA,pU). This quantity is unity for the ideal random 
circuit and zero for an uncorrelated distribution over bit-strings 
when averaging over U. We refer to an experimental implementa-
tion of a quantum circuit U as Aexp(U) and associate with it the prob-
ability distribution pexp(xj|U) and samples Sexp. The experimental 
cross-entropy difference is Eα Δ≡ H p[ ( )]U exp

. Quantum supremacy 
is achieved, in practice, when 1 ≥​ α >​ C, where (a lower bound for) C 
is given by the performance of the best known classical algorithm A* 
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Fig. 1 | Sensitivity to errors of the output distribution of chaotic circuits. a, Cross-entropy difference (see text) as a function of depth between the ideal 
output distribution and the distribution after a single Z error (phase-flip) or X error (bit-flip) is applied. Different colours correspond to different sizes: 
4 ×​ 4, 5 ×​ 4 or 6 ×​ 4 qubits. Solid lines correspond to the median over all possible error positions, and error bars to the 0.25 and 0.75 quantiles. The dotted 
lines correspond to a cross-entropy difference of 2−n/2, for n qubits. (The Pearson's correlation coefficient results in a very similar plot.) b, Distribution 
of rescaled output bit-string probabilities Np for a typical random circuit U, with N =​ 2n and {p =​ pU(x)}. The blue curve (r =​ 0) shows the distribution of 
{NpU(x)} obtained from numerical simulations of the ideal random circuit. This distribution is very close to the Porter–Thomas form Pr(Np) =​ e−Np shown 
with blue dots. Curves with different colours show the distributions of probabilities obtained for different Pauli error rates r. More explicitly, each operation 
is followed by a depolarizing error channel with two-qubit error rate =​ measurement error =​ initialization error =​ r, and one-qubit error rate =​ r/10. The 
distributions with increasing error rates converge to the dashed line at Np =​ 1, which corresponds to the uniform distribution over bit-strings δ(p−​1/N). 
These numerics are obtained from simulations of a planar circuit with 5 ×​ 4 qubits and gate depth of 40 (n =​ 20 and N =​ 220).
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executed on an existing classical computer, E Δ=C H p[ ( )]*U . Here p*  
is the output distribution of A*.

The space and time complexity of exactly calculating one out-
put amplitude of a random circuit is exponential in the treewidth 
of the interaction graph of a corresponding Ising model (see below, 
Supplementary Information, the implementation in ref. 30 and also 
refs 31–33). The treewidth is proportional to min(d, n) in a 1D lattice, 
and d n nmin( , ) in a 2D lattice (see Fig. 3a). From the numeri-
cal estimation of the treewidth (and the simulation times reported 
in the Supplementary Information and ref. 30), we estimate that the 
computation of an output amplitude for circuits with 7 ×​ 7 qubits 
and depth of approximately 40 cycles is not currently viable. For 
large depth d, algorithms are limited by the memory required to 
store the wavefunction in random-access memory, which in single 
precision is 2n ×​ 2 ×​ 4 bytes. For n =​ 48 qubits, this requires at least 
2.25 petabytes, which is approximately the limit of what can be done 
on the largest supercomputers of today. For example, Trinity, the 
sixth fastest supercomputer in TOP500 has about two petabytes of 
primary memory, which is one of the largest. For circuits of small 
depth or less than approximately 48 qubits, direct simulation is via-
ble, so C =​ 1 and quantum supremacy is impossible.
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perform two CZ gates simultaneously in two neighbouring superconducting qubits19,20,40. We iterate over these arrangements sequentially, from 1 to 8. 
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Supplementary Information). Error bars are standard deviations among different circuit instances. c, Mean normalized inverse participation ratios k∈​
[2, .., 10] of the output distribution (IPR(k) =​ ∑​jpU(xj)k →​ k!/Nk−1) as a function of depth for circuits with 7 ×​ 6 qubits. They converge, at approximately the 
same depth, to the black dashed line, which corresponds to the Porter–Thomas distribution. Error bars show the standard deviation between different 
circuit instances.

25 30 35 40 45 50

Depth

20

25

30

35

40

45

50

55

Is
in

g 
m

od
el

 tr
ee

w
id

th
 u

pp
er

 b
ou

nd

Size = 6 × 6

Size = 7 × 6

Size = 7 × 7

Fig. 3 | Numerical upper bound for the treewidth. We plot the treewidth 
of the interaction graph of the Ising model corresponding to circuits with 
6 ×​ 6, 7 ×​ 6, and 7 ×​ 7 qubits as a function of the circuit depth. The cost 
of calculating an output amplitude is exponential in the treewidth. We 
estimate that the computation of an output amplitude for a circuit with 
7 ×​ 7 qubits and depth 40 is not viable.
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We now address the question of how the cross-entropy difference 
α can be estimated from an experimental sample of bit-strings Sexp 
obtained by measuring the output of Aexp(U) after m realizations of 
the circuit. For a typical sample Sexp, the central limit theorem implies 
that α ≃ + ∑ =H p xlog ( )

m j
m

U j0
1

1
exp , with statistical error κ ∕ m  and 

n-independent constant κ ≃ 1 (see Supplementary Information). 
Therefore, if we can compute the quantities p xlog ( )U j

exp  with the 
aid of a sufficiently powerful classical computer, we can estimate α 
(see Supplementary Information and ref. 30). We note that, for most 
quantum states, the outcome of any fixed measurement concentrates 
exponentially on the average value over Hilbert space34. We have cir-
cumvented this limitation by designing a state-specific global mea-
surement. A close correspondence between experiment, numerics 
and theory provides a reliable foundation from which to extrapo-
late α to larger circuits where the quantities pU(xj) can no longer be 
obtained numerically. After this point, on the basis of the results of 
our numerical studies and aforementioned insights from quantum  
chaos, we assume that the output of a classical algorithm quickly 
becomes statistically uncorrelated with pU(x), and quantum 
supremacy can be achieved. The value of α can be extrapolated from 
circuits that can be simulated because they have either fewer qubits, 
mostly Clifford gates (stabilizer simulations)35 or less depth30.

We now present a theoretical error model for α that can be com-
pared with experiment. The output ρ of the experimental realization 
of a random circuit U is ρ α ψ ψ α σ= ∣ ⟩ ⟨ ∣ + −†U U (1 ) Uf 0 0 f , where  
〈​ψ0|U†σUU|ψ0〉​ =​ 0 and αf is the circuit fidelity. As U is a random 
circuit implementing a chaotic evolution, we see in numerical sim-
ulations that the probabilities pU(x) and 〈​x|σU|x〉​ are almost uncor-
related (see Fig. 1a). Under this ansatz, by the same derivation used 
above, we have σ∑ ⟨ ∣ ∣ ⟩ =x x p x Hlog ( )j j U j U j 0 (see Supplementary 
Information). Therefore, the circuit fidelity αf is approximately equal 
to the cross-entropy difference; that is, α ≈​ αf. This introduces a fun-
damentally new way to estimate the fidelity of complex quantum 
circuits, which we call cross-entropy benchmarking. A common 
approximation for studying circuit fidelities is a digital error model 
where each gate is followed by a depolarizing error channel19,36–40. 
Within this idealized model, a simple estimate of the fidelity is 
α ≈​ exp(−​r1g1−​r2g2−​rinitn−​rresn), where ≪r r, 11 2  are the Pauli error 
rates for one- and two-qubit gates, ≫r r, 1init res  are the initialization 
and measurement error rates and ≫g g, 11 2

 are the numbers of one- 
and two-qubits gates, respectively. We compare numerically cross-
entropy benchmarking with this idealized estimate of the fidelity 
and observe a good fit between these two quantities (see Fig. 4a). 
Furthermore, because random Porter–Thomas distributed states 
are near-maximally entangled5,9–11, we expect that even one Pauli 
error completely destroys correlations with the ideal sampling41.  
We therefore make the ansatz ρ α ψ ψ α= ∣ ⟩ ⟨ ∣ + −K (1 )d d N

1  for the 
output state of a circuit implementation with fidelity α. The cross-
entropy difference Δ​H defined above is given by the probability dis-
tribution of z =​ log(pU(x)) where the bit-strings x are sampled from 
the output ρK of a circuit implementation with fidelity α. Using the 
ansatz for ρK and the Porter–Thomas distribution for pU(x), we 
obtain α= + −α

−zPr ( ) e (1 (e 1))z zez
. We observe an excellent corre-

spondence between this equation and simulations using the digital 
error model (see Fig. 4b).

Computational complexity
The intuitive arguments about the classical cost of sampling from 
pU(x) can be made more rigorous in the asymptotic limit of large n 
using computational complexity theory. Note that approaching this 
limit experimentally requires error correction. It has been shown 
that for IQP circuits, the function ψ= ∣⟨ ∣ ⟩ ∣pU x x( ) d

2 maps directly 
to the partition function of a random complex Ising model13,17 

ψ λ⟨ ∣ ⟩ = ∑ π
x e ,d

i H
s

s( )x4  where = ⋅ + ⋅ ^ ⋅H s h s s J s( )x x  is a classical 

energy, s is a vector of classical spins ±​1, hx is a vector of local fields, 
Ĵ is the coupling matrix, πi

4
 is the inverse imaginary temperature 

and λ is a scaling constant. It is a strongly held conjecture in com-
putational complexity theory that probabilistically approximating 
partition functions with purely imaginary temperatures is much 
harder, in the worst case, than any problem that can be solved with 
an NP oracle13,15,16. Ref. 17 further conjectures that this applies to any 
sufficiently large fraction of partition functions where hx and Ĵ are 
chosen uniformly at random. Finally, ref. 17 proves that if a classical 
algorithm could efficiently approximately (in the ℓ1 norm) sample 
from the output of an IQP circuit, then this would imply there exists 
an algorithm that could use a non-deterministic polynomial time 
(NP) oracle to probabilistically approximate a large fraction of ran-
dom complex Ising models, contradicting their conjecture (see also 
the Supplementary Information).

We are interested in circuits on a 2D lattice with gates in the set 
{CZ, X1/2, Y1/2, T}. The gates {CZ, T} are diagonal in the compu-
tational basis, while the gates {X1/2, Y1/2} are two-sparse. We show 
that for these circuits ψ⟨ ∣ ⟩ = ∑− ∕ π( )x H x2 exp ( ) ,d

G
s

i
s

2
4

 where G 
is the number of two-sparse gates, ∈ + −s { 1, 1} G and Hs(x) is an 
Ising model with a quasi-3D interaction graph (see Supplementary 
Information). We give the explicit form of the probability distri-
bution of the couplings and local fields for the Ising models cor-
responding to the quantum circuits above in the Supplementary 
Information. It follows that we can write ψ⟨ ∣ ⟩ = − ∕x Z2 ,d

G 2  where 
= ∑ =

π
Z M ej j

i E
0

7 j
2
8  is a partition function, the Ej terms are different 

energies of the Ising model (mod 8) and Mj ~ 2G. As ψ∣ ⟨ ∣ ⟩ ∣ ~ − ∕x 2 ,d
n 2  

the partition function ∣ ∣ ~ − ∕Z 2 G n( ) 2 is exponentially smaller in G 
than the individual terms Mj in its sum. This very strong cancel-
lation seems to prevent any efficient algorithm from being able to 
accurately estimate the quantity ψ⟨ ∣ ⟩ .x d  Furthermore, except for 
the restriction to a quasi-3D interaction, these Ising models are 
similar to the ones obtained from IQP circuits. Therefore, similarly 
to ref. 17, one might also conjecture that, if the treewidth of the inter-
action graph is at least linear in n (corresponding to a depth approx-
imately n ), any sufficiently large fraction of partition functions 
can not be probabilistically approximated using an NP oracle. More 
precisely, if the second moment of the output distribution is close to 
the value of the Porter–Thomas distribution (verified numerically 
for depth approximately n ), the proof of ref. 17 applies. That is, if 
a classical algorithm could approximately (in the ℓ1 norm) sample 
from the output of these circuits, this would contradict the con-
jecture on the complexity of approximating partition functions, as 
above. A related recent conjecture states directly that no polynomial 
classical algorithm can estimate if pU(x) is above the median with 
bias better than ~2−n (ref. 32).

We can use the mapping of pU(x) to the partition function of 
a complex Ising model to define approximate sampling algorithms 
for this distribution. We analyse a Bayesian probabilistic algorithm 
that uses a prior for pU(x) given by the Porter–Thomas distribution 
in the Supplementary Information. The posterior is updated after 
sampling random spin-strings s to approximate the partition func-
tion. We show that the classical cost required to obtain an appre-
ciable improvement scales as N1/22G/4. There exists also a classical 
algorithm for sampling so-called extended stabilizer states35, which 
scales as 20.23t, where t is the number of T gates. Both algorithms are 
prohibitive for circuits with 7 ×​ 7 qubits and depth ≳​40.

Discussion
A crucial aspect of a near-term quantum supremacy proposal is that 
the computational task can be performed classically only through 
a direct simulation with cost exponential in the number of qubits. 
Direct simulations are required for chaotic systems, such as random 
quantum circuits1,2. State-of-the-art supercomputers fail to simulate 
universal random circuits with more than approximately 48 qubits 
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and depth ~40 (see Fig. 3a and Supplementary Information). The 
evaluation of effective error models for large-scale universal quan-
tum circuits is a difficult theoretical and experimental problem 
due to their complex nature. Existing proposals involve an expen-
sive additional unitary transformation to the initial state36 or are 
restricted to non-universal circuits42. We propose cross-entropy 
benchmarking as a novel way of characterizing and validating 
error models, and open quantum system theory in general. This 
method can also be applied to other systems, such as continuous 
chaotic Hamiltonian evolutions43. A successful implementation of 
the experimental proposal outlined in this paper would require an 
error rate of around 0.5% for two-qubit gates and 0.05% for one-
qubit gates (see Fig. 4a) in a 2D arrangement of 7 ×​ 7 qubits. This 
would demonstrate the basic building blocks for a large-scale quan-
tum computer within the operational range of the surface code19,39.

Data availability. The data that support the plots within this paper 
and other findings of this study are available from the correspond-
ing author upon reasonable request.
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