
 Electronic copy available at: https://ssrn.com/abstract=3282600 

Optimal Dynamic Auctions are Virtual Welfare Maximizers∗

Vahab Mirrokni† Renato Paes Leme† Pingzhong Tang‡

Song Zuo†
†Google Research, {mirrokni,renatoppl,szuo}@google.com

‡Tsinghua University, kenshinping@gmail.com

Abstract

We are interested in the setting where a seller sells sequentially arriving items, one per
period, via a dynamic auction. At the beginning of each period, each buyer draws a private
valuation for the item to be sold in that period and this valuation is independent across buyers
and periods. The auction can be dynamic in the sense that the auction at period t can be
conditional on the bids in that period and all previous periods, subject to certain appropriately
defined incentive compatible and individually rational conditions. Perhaps not surprisingly, the
revenue optimal dynamic auctions are computationally hard to find and existing literatures that
aim to approximate the optimal auctions are all based on solving complex dynamic programs.
It remains largely open on the structural interpretability of the optimal dynamic auctions.

In this paper, we show that any optimal dynamic auction is a virtual welfare maximizer sub-
ject to some monotone allocation constraints. In particular, the explicit definition of the virtual
value function above arises naturally from the primal-dual analysis by relaxing the monotone
constraints. We further develop an ironing technique that gets rid of the monotone allocation
constraints. Quite different from Myerson’s ironing approach, our technique is more technically
involved due to the interdependence of the virtual value functions across buyers. We neverthe-
less show that ironing can be done approximately and efficiently, which in turn leads to a Fully
Polynomial Time Approximation Scheme of the optimal dynamic auction.

∗The authors thank the anonymous reviewers for their helpful comments.

1



 Electronic copy available at: https://ssrn.com/abstract=3282600 

1 Introduction

Recently, the problem of designing multi-period dynamic mechanisms has been shown to be both
theoretically challenging and practically important. In particular, when running a sequence of
repeated auctions on online advertising platforms, using dynamic auctions optimized across different
time periods could potentially bring significant gains both in terms of revenue and social welfare.
The power of dynamic mechanisms has been investigated by a number of recent papers [Bergemann
and Välimäki, 2002; Parkes and Singh, 2004; Cavallo, 2008; Athey and Segal, 2013; Kakade et al.,
2013; Pai and Vohra, 2013; Pavan et al., 2014; Devanur et al., 2015; Balseiro et al., 2016; Chawla et
al., 2016; Bergemann et al., 2017; Balseiro et al., 2017a,b; Lobel and Paes Leme, 2017; Shen et al.,
2018; Balseiro et al., 2019]. We refer to Bergemann and Said [2011] and Bergemann and Välimäki
[2017] for comprehensive surveys on the subject.

In particular, we consider a setting where a seller repeatedly interacts with a set of buyers and
sells one item per period. The value of each buyer for the item at each period are independently
drawn from commonly known prior distributions (no need to be identical) at the beginning of
that period. The seller is allowed to sell the item of each period not only depending on the bids
submitted in the current period, but also the histories, i.e., all the bids submitted in past periods.
In the meanwhile, the seller must guarantee the dynamic auctions to be ex-post individual rational
— the cumulative utility for each buyer is always positive, and dynamic incentive compatible —
bidding truthfully (i.e., submitting private values as bids) to the auction is optimal for each buyer
by taking into consideration the effect of current bids on future outcomes.

Even though dynamic mechanisms can be much more effective in maximizing revenue and social
welfare [Jackson and Sonnenschein, 2007; Papadimitriou et al., 2016], they have not been widely
adopted in practice. The main issue of implementing dynamic mechanisms in practice is their high
complexity. The complexity induced by the exponentially growing design space makes it difficult
to solve or even to describe such mechanisms.

A series of recent work has made progress to resolve the complexity issue described above. For
example, Ashlagi et al. [2016] and Mirrokni et al. [2018b] show that it is enough for the optimal
dynamic auction to depend on scalar summaries of histories instead of the full history. However,
the approximately optimal mechanisms described in these papers are solutions of complex dynamic
programs that are written into a large table. It is therefore very difficult to understand the structure
of these mechanisms. It remains open whether there is an intuitive structural characterization of
the optimal dynamic auction.

In this paper, we show that the exact optimal dynamic auction has a very simple structural
interpretation: the optimal dynamic auction in each period is a second price auction on a certain
appropriately defined virtual value space.1 More specifically, such virtual values (before ironing23)
are quite similar to Myerson’s virtual value [Myerson, 1981], i.e., they have the form of linear
combinations of private values and Myerson’s virtual values (before ironing). However, just like
Myerson’s auction, to make the virtual welfare4 maximizing allocation rule monotone, one need to
first iron the virtual values. Unlike the ironing in Myerson’s auction, the ironing step in our case is
interdependent across the values of different buyers. In other words, one’s virtual value after ironing

1A virtual value function is a map from buyer value space to real numbers. A virtual value is the corresponding
real number of some private value of the buyer.

2Informally, the ironing of a virtual value function is an operation that maps the virtual value function to another
virtual value function (we call an ironed virtual value function) while preserving the expectation. For the formal
definition, see Definition 3.1.

3Some recent works on virtual value and ironing [Elkind, 2007; Roughgarden and Schrijvers, 2016].
4Virtual welfare is the sum of virtual values of the buyers who get the item. For expected virtual welfare, the

expectation is taken over the randomness from the allocation rules.

2



 Electronic copy available at: https://ssrn.com/abstract=3282600 

not only depends on his/her own value, but also on other buyers’ values. Although the ironing
step here is not as simple as the ironing in Myerson’s auction, its computation is still efficient for
constant many buyer cases. Moreover, we provide a Fully Polynomial Time Approximation Scheme
to compute the virtual values for any period of the dynamic auction given the histories so far, and
such virtual values induce a dynamic auction with revenue arbitrarily close to the optimal.

Techniques There are two main techniques used in our analysis for optimal dynamic auctions.
The first is the so-called bank account mechanisms which are a subset of dynamic auctions with
simple structures and can achieve the optimal revenue of all the dynamic auctions [Mirrokni et al.,
2016a,c, 2018a,b]. Briefly speaking, a bank account mechanism keeps a state for each buyer as the
summary of the history of each buyer, which is a scalar called balance. Each period depends on
the previous periods through the vector of buyer balances. With the bank account framework, the
designer only needs to specify single-period auctions that are single-period incentive compatible
together with a valid balance update policy. In other words, the design of an entire dynamic
auction breaks into the design of a series of single-period auctions and a balance update policy.
The decomposition greatly simplifies the problem and enables clean mathematical programs for
each period.

The second is a primal-dual analysis and a sensitivity analysis of the parametric mathematical
programs. In fact, primal-dual analysis is commonly used in economic studies [Nisan et al., 2007,
Chapter 5, Daskalakis et al., 2013; Cai et al., 2016; Cai and Zhao, 2017; Daskalakis et al., 2017]. In
particular, for our problem, we can prove that these programs are convex and satisfy the Slater’s
conditions. Hence the solution is optimal if and only if the KKT conditions are satisfied. From
these conditions, we show that the auction in each period maximizes some virtual welfare and
we also discover the exact form of the virtual values with partial relaxation on the monotonicity
constraints of allocation. Furthermore, we show that adding these relaxed constraints back to the
program indeed corresponds to ironing the virtual values. As we mentioned previously, the ironing
step here is interdependent across the values of the buyers and hence different from the ironing step
in Myerson’s auction. To resolve this difficulty, we show a method to algorithmically accomplish
the ironing step.

2 Preliminaries

We study a setting where a seller repeatedly interacts with k buyers selling one item per period
over T periods. The value of each buyer i ∈ [k] for the item in period t ∈ [T ] is vti ∈ V. If
xti ∈ [0, 1] represents the probability that buyer i is allocated the item in period t, his utility is
vti · xti. Throughout this paper, (i) we use subscripts as the indices of buyers, bold fonts for vectors
of all the buyers (i.e., a = (a1, . . . , ak)), and subscript −i for the vector except the i-th element
(i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , ak)); (ii) we use superscripts as the indices of periods and a1..t

to denote the sequence a1, . . . , at.
The values vti are assumed to be drawn from independent distributions F ti .

56 The distributions
F ti are assumed to be common knowledge but the realizations of the random variables are initially
unknown for both the buyers and the designer. At each period, the following events happen:

1. each buyer i learns his value vti ∼ F ti ;
5In practice, it is still fair to assume that the values of the buyers (advertisers) are independent conditional on

each particular inventory and cookie.
6If the distributions are not independent, then the weak version of truthfulness still holds, i.e., truthful if all other

buyers bid truthfully.

3



 Electronic copy available at: https://ssrn.com/abstract=3282600 

2. each buyer i reports value v̂ti to the designer;

3. the designer implements an outcome xt ∈ [0, 1]k and charges the buyers pt;

4. each buyer accrues utility uti = vti · xti − pti.

A dynamic mechanism can then be described in terms of a pair of maps for each period, which
associate the history of reports v̂1..t = (v̂1, v̂2, . . . , v̂t) to an outcome xt and payment pt:

Outcome: xt : Vkt → [0, 1]k Payment: pt : Vkt → Rk.

Therefore we can define: uti(v
t
i ; v̂

1..t) = vti · xti(v̂
1..t)− pti(v̂

1..t).

2.1 Dynamic Incentive Compatibility

A mechanism is incentive compatible if it provides incentives for buyers to reveal their true types
in each iteration. Such conditions for dynamic mechanisms can be easily defined by backward
induction: in the last period, regardless of the history so far and other buyers’ reports, it should be
incentive compatible for each buyer to report his true value. This corresponds to the usual notion
of incentive compatibility in (static) mechanism design:

vTi = argmaxv̂Ti
uTi (vTi ; v̂1..T )

for all i, v̂1..T−1, v̂T−i, v
T
i . To simplify notations, from now on we will omit the ‘for-all’ quantification

and assume all expressions are quantified as ‘for-all’ in its free variables. For the next-to-last-period,
it should be incentive compatible for the buyer to report his true value given that he will report
his true value in the following period:

vT−1i = argmaxv̂T−1
i

uT−1i (vT−1i ; v̂1..T−1) + EvTi [uTi (vTi ; v̂1..T−1, vTi , v̂
T
−i)].

Proceeding by backward induction, we require that:

vti = argmaxv̂ti u
t
i(v

t
i ; v̂

1..t) + U ti (v̂
1..t
i |v̂1..T−i ) (DIC)

where the second term is the continuation utility, i.e., the expected utility obtained from the
subsequent periods of the mechanism assuming the buyer reports truthfully:

U ti (v̂
1..t
i |v̂1..T−i ) := Evt+1..T

i

[∑T
τ=t+1 u

τ
i (vτi ; v̂1..t, vt+1..τ

i , v̂t+1..τ
−i )

]
A well-known fact in dynamic mechanism design is that DIC implies that buyer i’s expected overall
utility U0

i (v̂1..T−i ) is maximized by reporting truthfully in each period.

2.2 Ex-Post Individual Rationality

Another desirable constraint is ex-post individual rationality which says that a buyer should derive
non-negative utility from the mechanism for every realization of the values:∑T

t=1 u
t
i(v

t
i ;v

1..t) ≥ 0 (eP-IR)

We focus on the problem of maximizing revenue subject to DIC, eP-IR, and feasibility constraints:

max Rev = E[
∑T

t=1

∑k
i=1 p

t
i(v

1..t)]

s.t. (DIC), (eP-IR), and feasibility:
∑k

i=1 x
t
i(v

1..t) ≤ 1

4



 Electronic copy available at: https://ssrn.com/abstract=3282600 

2.3 Bank Account Mechanisms

The space of mechanisms satisfying DIC and eP-IR is very broad and unstructured. We restrict our
attention in this section to a subclass of dynamic mechanisms introduced by Mirrokni et al. [2016a]
called bank account mechanisms. The mechanisms are simple, dynamic incentive compatible by
design and have the following notable features:

Lemma 2.1 (Mirrokni et al. [2016b]). Given any dynamic mechanism satisfying DIC and eP-IR,
there exists a bank account mechanism with at least the same revenue and at least the same welfare.

In particular, for any given setting, there is a revenue-optimal mechanism in the form of a bank
account mechanism.

Bank account mechanisms keep a state for each buyer, which is a scalar called balance. Each
period depends on the previous periods through the vector of buyer balances. Another main
feature is that in this framework, the designer needs to specify single-period auctions that are
single-period incentive compatible together with a valid balance update policy. That is, once a
valid balance update policy is in place, all the designer needs to worry about are single-period
incentive compatibility constraints.

A bank account mechanism B is defined in terms of the following functions for each period:

• A static single-period auction xB,t(vt, b), pB,t(vt, b) parameterized by a balance vector b ∈ Rk+
that is (single-period) incentive-compatible for each b, i.e.:

vti · x
B,t
i (vt, b)− pB,ti (vt, b) ≥ vti · x

B,t
i (v̂ti , v

t
−i, b)− p

B,t
i (v̂ti , v

t
−i, b) (IC)

• Note that we do not require the mechanism to be (single-period) individually rational. We
also require the utility of the buyer to be balance independent in expectation, i.e., that:

E
vti∼F t

i

[
vti · x

B,t
i (vt, b)− pB,ti (vt, b)

]
is a non-negative constant not depending on b (BI)

• A balance update policy bB,t(vt, b) which maps the previous balances and the reports to the
current balances, satisfying the following balance update conditions:

0 ≤ bB,ti (vt, b) ≤ bi + vti · x
B,t
i (vt, b)− pB,ti (vt, b) (BU)

Given the balance update functions, we can define bt : Vt → Rk+ recursively as:

b0 = 0 and b1(v1) = bB,1(v1,0) and bt(v1..t) = bB,t(vt, bB,t−1(v1..t−1))

which allows us to define a dynamic mechanism in the standard sense as:

xt(v1..t) = xB,t(vt, bt−1), pt(v1..t) = pB,t(vt, bt−1).

In what follows we will abuse notations by dropping the superscript B and refer to xt(v1..t)
and xt(vt, bt−1) interchangeably. One important theorem from previous studies is that any bank
account mechanism satisfies stronger notions of DIC and eP-IR.

Lemma 2.2 (Mirrokni et al. [2016b]). Any bank account mechanism satisfying IC, BI, and BU is
DIC and eP-IR.

5



 Electronic copy available at: https://ssrn.com/abstract=3282600 

3 The Structure of Optimal Bank Account Mechanisms

In this section, we show our first main result that identifies the underlying structure of the optimal
bank account mechanism (hence also the optimal dynamic auctions). Interestingly, the dynamic
auctions with the structure can be interpreted as an ironed virtual welfare maximizing auction,
where the ironed virtual value is defined as follows.

Definition 3.1 (Ironing). The ironing operation on the virtual value functions of all buyers trans-
fers these virtual value functions into some other virtual value functions (called ironed virtual value
functions) while preserving the following properties:

• Monotonicity: The allocation rule that maximizes the ironed virtual welfare is monotone, i.e.,
for each buyer i, the allocation probability is weakly increasing in vi for any fixed v−i.

• Limited transfer: The expectation of virtual value conditional on each allocation equivalence
class is unchanged. An allocation equivalence class of buyer i with any given v−i is a maximal
subset of his/her private values where the allocation probability to buyer i is a constant. Again,
the allocation rule here is the one that maximizes the ironed virtual welfare.

• First order dominance: The ironed virtual value is first order dominated by the virtual value
before ironing.

Informally, we have the following theorem:

Theorem 3.2 (Informal). Any revenue optimal bank account mechanism is maximizing some vir-
tual value (after ironing) for each period.

We will restate the formal version of this theorem after introducing all necessary notations
(Theorem 3.8). In particular, the specific form of the virtual value (before ironing) will be provided.

3.1 Formalizing the subprogram for each period

We start with the subproblem of optimizing period t while all other periods are fixed. In particular,
the problem can be formalized as a convex program.

Lemma 3.3 (Convex program). For each period t, any valid balance bt, and fixed expected utility
for period t, if mechanism is fixed for the remaining periods (t+ 1 to T ), then the optimal auction
for period t can be solved via a convex program.

To proof this statement smoothly, we show how to formalize the program step by step in the
rest of this subsection rather than putting everything into a single proof environment. For the ease
of presentation, we will hide the superscript t while focusing on a single period.

Let b be the bank account balance given at the beginning of this period and

ξi(v−i) := Evi [vi · x(v, b)− p(v, b)] (1)

be the expected utility of buyer i in this period. Note that by (BI), it is independent of the bank
account balance b, while it could be different for different bids from other buyers, i.e., v−i. In fact,
the ξ are some parameters we will need to determine later based on the distribution of b induced
by the auctions in each period.

6



 Electronic copy available at: https://ssrn.com/abstract=3282600 

Objective The expected revenue acquired within this period can be computed by the expected
social welfare minus the expected utility of all the buyers,

PeriodRev(b, ξ) = Ev

[∑
i
(vi · xi(v, b)− ξi(v−i))

]
.

Besides the expected revenue from the current period, we also need to include the expected revenue
for future periods in the objective. We then use g(b′|M) to denote the expected total revenue the
seller can collect from all upcoming periods by following a given bank account mechanism M in
these periods, where b′ is the vector of the bank account balance at the end of the current period.
In fact, b′ = b+ ∆b(v) is a function of buyers’ bids v in this period, where ∆b(v) are the changes
in the bank accounts.

Then the expected revenue since current period is,

Rev(b, ξ) = Ev

[∑
i
(vi · xi(v, b)− ξi(v−i)) + g(∆b(v) + b|M)

]
. (2)

Constraints Now we proceed to the constraints of the optimization. According to Lemma 2.2,
the mechanism must satisfy constraint (IC), (BI), and (BU). Note that (BI) is guaranteed by the
definition of ξi(v−i), we then formalize constraint (IC) and (BU).

For (IC), as we won’t introduce the payment variables, it is enough to require the monotonicity
for the allocation rules only, i.e.,

(IC) ⇐⇒ xi(v, b) is monotone in vi for fixed v−i. (3)

Since by the Envelope theorem [Rochet, 1985],

∂(vi · xi(v, b)− pi(v, b))
∂vi

= xi(v, b) =⇒ ui(v, b) = ui(0, v−i, b) +

∫ vi

0
xi(s, v−i, b)ds.

In other words, letting p′i(v, b) := pi(v, b) − pi(0, v−i, b) and u′i(v, b) := vi · xi(v, b) − p′i(v, b), we
conclude that the utility of buyer i in this period is fully determined by the allocation function
xi(·, b) and the minimum payment pi(0, v−i, b):

u′i(v, b) = ui(v, b) + pi(0, v−i, b) = ui(v, b)− ui(0, v−i, b) + 0 · xi(0, v−i, b) =
∫ vi
0 xi(s, v−i, b)ds.

Recall that for (BU), we require (i) the increase of balance cannot be more than the utility
obtained in the current period and (ii) the updated balance must be nonnegative. Note that by
the definition of ξi(v−i) (1):

Evi [u′i(v, b)− pi(0, v−i, b)] = Evi [ui(v, b)] = ξi(v−i) ⇐⇒ pi(0, v−i, b) = Evi [u′i(v, b)]− ξi(v−i).

Hence on one hand, for (i) and (ii), we can rewrite it as follows:

0 ≤ bi + ∆bi(v) ≤ bi + ui(v, b)

⇐⇒ − bi ≤ ∆bi(v) ≤ ui(v, b) = u′i(v, b)− pi(0, v−i, b) = u′i(v, b)− Evi [u′i(v, b)] + ξi(v−i).

On the other hand, to ensure the set of the possible balance increment ∆bi(v) satisfying (i) and
(ii) is not empty, we need bi + ui(v, b) ≥ 0. Note that bi is given and ui(v, b) reaches the minimum
when vi = 0, it is equivalent to:

bi + ui(0, v−i, b) = bi − pi(0, v−i, b) ≥ 0 ⇐⇒ Evi [u′i(v, b)] ≤ bi + ξi(v−i).

7



 Electronic copy available at: https://ssrn.com/abstract=3282600 

In summary,

(BU) ⇐⇒
{
−bi ≤ ∆bi(v) ≤ u′i(v, b)− Evi [u′i(v, b)] + ξi(v−i)
Evi [u′i(v, b)] ≤ bi + ξi(v−i)

. (4)

Finally, we also need the feasibility constraint of the allocation rule, that is, the total allocation
of each item cannot be more than 1: ∑

i xi(v, b) ≤ 1. (5)

Therefore, combining the objective (2) and the constraints (3), (4), and (5), for given b and g,
the optimization program for current period can be written as:

max Rev(b, ξ) = Ev

[∑
i
(vi · xi(v)− ξi(v−i)) + g(∆b(v) + b|M)

]
(6)

subj.t. xi(v) is monotone in vi for any fixed v−i

Evi [u′i(v)] ≤ bi + ξi(v−i), ∀i, v−i
− bi ≤ ∆bi(v) ≤ u′i(v)− E

vi
[u′i(v)] + ξi(v−i), ∀i,v∑

i∈[n] xi(v) ≤ 1, ∀v

xi(v) ≥ 0,∆bi(v) ≥ 0, ∀i,v

where we hide the b in the input to xi(v, b) and u′i(v, b) to emphasize that b is extraneous.

Simplification We then simplify the optimization program for optimal bank account mecha-
nisms. One key observation is that with any fixed ξ (for all periods), the optimization with any
finite horizon can be solved via backward induction.

In the program for the last period T , the expected revenue for the future, gT , is always zero.
For any parameter b of the last period, the optimal value of the program defines a function with
respect to the balance vector b, which, in fact, is the expected revenue for the last period where
the mechanism in the last period M∗T is optimal (for given b and ξ).

In other words, the optimal solution of the program for period T defines the function gT−1(b|M∗T ),
where the mechanism for period T is fixed to be optimal. Similarly, the optimal mechanism for
each period M∗t and the corresponding gt(b|M∗t+1..T ) functions in the program for each period can
be determined by backward induction. From now on, by omitting the mechanism being conditional
on in gt, we mean the gt function is conditional on the optimal M∗t+1..T , i.e.,

gt(b) := gt(b|M∗t+1..T ) = max
M

gt(b|M).

Note that the maximum always exists because the domain of the mechanisms is compact and the
revenue is a continuous function of the mechanism.

Lemma 3.4. gt(b) is weakly increasing.

We place the proof of Lemma 3.4 in Section A.1. Hence we can eliminate variable ∆b(v) from
the original program (6): Since gt(b) is weakly increasing, it is without loss of generality to enforce

∆bi(v) = u′i(v)− Evi [u′i(v)] + ξi(v−i), ∀i,v.

Meanwhile, by the following Myerson’s lemma, we can further rewrite Evi [u′i(v)].

8



 Electronic copy available at: https://ssrn.com/abstract=3282600 

Lemma 3.5 (Myerson [1981]). For any incentive compatible single item auction, the expected
payment of buyer i equals to the expected (Myerson’s) virtual welfare contribution of buyer i:

∀i, v−i, Evi [pi(v)] = Evi [(vi − ϑi(v)) · xi(v)],

where ϑi(v) = vi · (1− Fi(vi))/fi(vi) is the value divided by the hazard rate.7

Therefore,8

Evi [u′i(v)] = Evi [vi · xi(v)− p′i(v)] = Evi [vi · xi(v)− (vi − ϑi(v)) · xi(v)] = Evi [ϑi(v) · xi(v)]. (7)

Thus, program (6) can be simplified as follows, where ∆bi(v), u′i(v), and ū′i(v−i) are notations,
not variables.

max Rev(b, ξ) = Ev

[∑
i
(vi · xi(v)− ξi(v−i)) + g(∆b(v) + b)

]
(8)

subj.t. xi(v) is monotone in vi for fixed v−i

ū′i(v−i) := Evi [u′i(v)] = Evi [ϑi(v)xi(v)] ≤ bi + ξi(v−i), ∀i, v−i
∆bi(v) = u′i(v)− ū′i(v−i) + ξi(v−i), ∀i,v∑

i∈[n] xi(v) ≤ 1, ∀v

xi(v) ≥ 0, ∀i,v

Convexity We remains to show that the program is convex. In fact, we have the following lemma.

Lemma 3.6. gt(b) is and concave.

We place the proof of Lemma 3.6 in Section A.1. Since gt(b) is concave, the objective function
(8) is also concave. Meanwhile, all the constraints are linear, so the program is a convex program
(note that a standard convex program is minimizing a convex objective function or maximizing a
concave objective function).

3.2 Duality, virtual values, and ironing

We first consider the optimal solution to the program with the monotonicity constraint (3) on x(v)
relaxed. Later in Appendix B, we generalize the analysis to the original program. Although the
optimal solution to the relaxed program is not a feasible solution, the analysis does capture the
most interesting insight to this problem and provides the explicit form of the virtual values (before
ironing). In fact, we show in Appendix B, that adding the monotonicity constraint (3) back to the
program corresponds to applying the ironing operation on the virtual values.

For the following relaxed program, let λi(v−i) be the Lagrange multiplier of the constraint
Evi [ϑi(v)xi(v)] ≤ bi + ξi(v−i) and µ(v) be the Lagrange multiplier of the feasibility constraint (5).

max Rev(b, ξ) = Ev

[∑
i
(vi · xi(v)− ξi(v−i)) + g(∆b(v) + b)

]
Lagrange multipliers (9)

subj.t. ū′i(v−i) := Evi [u′i(v)] = Evi [ϑi(v)xi(v)] ≤ bi + ξi(v−i), ∀v−i λi(v−i)

∆bi(v) = u′i(v)− ū′i(v−i) + ξi(v−i), ∀i,v ∅∑
i∈[n] xi(v) ≤ 1, ∀v µ(v)

xi(v) ≥ 0, ∀i,v
7Fi must be absolutely integrable.
8ϑi(v) is called virtual value for utility and equation (7) is from [Hartline and Roughgarden, 2008, Lemma 2.6].

9



 Electronic copy available at: https://ssrn.com/abstract=3282600 

Then the Lagrange L := L(x(v), λi(v−i), µ(v)) is

L =Ev [
∑

i(vi · xi(v)− ξi(v−i)) + g(∆b(v) + b)]

−
∑

i,v−i
λi(v−i) (Evi [ϑi(v)xi(v)]− bi − ξi(v−i))−

∑
v µ(v) (

∑
i xi(v)− 1) .

Note that all constraints in program (9) are linear, therefore the Slater’s condition is satisfied
and the KKT conditions [Boyd and Vandenberghe, 2004, Chapter 5] are necessary and sufficient
for any optimal solution to (9). In particular, the explicit form of the virtual values can be derived
from the KKT conditions.

Let gi denote the partial derivative of g with respect to the i-th dimension, i.e., gi(b) =
∂g(b)/∂bi. Let α and β be defined as follows,

αi(v) := 1 + gi(∆b(v) + b) βi(v−i) := λi(v−i)
f(v−i)

+ Evi [gi(∆b(v) + b)].

Lemma 3.7 (Virtual welfare maximizer). Any optimal solution to (9) must maximize the expected
virtual welfare, where the virtual value function φi(v) is given as follows:

φi(v) = αi(v) · vi − βi(v−i) · ϑi(v).

We place the detailed proof of this lemma in Section A.2.

Ironing As we mentioned at the beginning of this subsection, the optimal solution to the original
program (8) must maximize the expected ironed virtual welfare defined according to the ironed vir-
tual values φ̃i(v). Moreover, the ironed virtual value φ̃i(v) is the transformation of φi(v) according
to the ironing rules (Definition 3.1). We omit the details of the analysis here and incorporate the
conclusion in the formal version of our first main theorem (Theorem 3.8). We refer the readers to
Appendix B for the complete proof.

3.3 Sensitivity analysis and the optimality across the periods

So far we have determined the optimal auction for each period when the expected buyer utilities
of each period ξ are fixed. Now we show how to optimize the remaining parameters ξ through
sensitivity analysis. Let R(ξ) denote the optimal revenue when the auctions in each period are
optimal for the given ξ. Then we show how to determine the partial derivatives of R(ξ) via
sensitivity analysis and hence enable the gradient descent algorithm to find the optimal ξ∗. In
particular, R(ξ) is a concave function.9

The standard sensitivity analysis [Boyd and Vandenberghe, 2004, Chapter 5.6] indicates how
much the optimal objective value of a program will change if some constraints become slightly
looser or tighter. Such quantities usually have important physical meanings in economic setups.
For example, consider gt(b) = maxRevt(b, ξ) (we brought back the superscript t to distinguish the
variables for different periods). By sensitivity analysis,10 we have:

gti(b) = Evt [gt+1
i (∆b(v) + b)] +

∑
vt−i

λti(v
t
−i).

Then gti(b), by definition, is the marginal contribution of the balance of buyer i in period t to the
expected revenue since the t-th period. Similarly, Evt [gt+1

i (∆b(v)+b)] is the marginal contribution

9Since by simply taking any convex combination of different ξ and ξ′, the revenue obtained is also the convex
combination of the revenue resulted by ξ and ξ′.

10If gt is not differentiable at b, the right-hand-side is a subgradient of gt.

10



 Electronic copy available at: https://ssrn.com/abstract=3282600 

of bi to the expected revenue since the (t + 1)-th period. Hence their difference,
∑

vt−i
λti(v

t
−i), is

the marginal contribution of bi to the expected revenue of the t-th period. In particular, λti(v
t
−i) is

the marginal contribution if the values of other buyers are vt−i.
Moreover, we can conclude the concrete form of the partial derivatives of R(ξ) by sensitivity

analysis:

∂gt(b)
∂ξti (v

t
−i)

= −f t(vt−i) + f t(vt−i) · Evti [g
t+1
i (∆b(v) + b)] + λti(v

t
−i) = (βti(v

t
−i)− 1)f t(vt−i)

=⇒ ∂R(ξ)
∂ξti (v

t
−i)

=
∂ Eb[gt(b)]
∂ξti (v

t
−i)

= (Eb

[
βti(v

t
−i)
]
− 1)f t(vt−i),

where the expectation taken over b is computed by simulating the auctions in previous periods. In
particular, ξ is selected optimally, if and only if:

Eb

[
βti(v

t
−i)
]

= 1 or ξt(vt−i) = 0, Eb

[
βti(v

t
−i)
]
≤ 1.

3.4 Summary

As a summary, we formally restate Theorem 3.2.

Theorem 3.8 (Formal). A bank account mechanism is optimal if and only if all the following
conditions are satisfied:

• it satisfies all the basic constraints, (IC), (BI), (BU) and the feasibility constraint (5);

• its allocation rule maximizes the ironed virtual welfare, where the virtual value (before ironing)
φ(v) has the following form:

φ(v) = αi(v)vi − βi(v−i)ϑi(v),

which can be seen as the combination of the Myerson’s virtual value and the private value;

• finally, the expected utility of each period ξ is selected optimally, i.e.,

Eb

[
βti(v

t
−i)
]

= 1 or ξt(vt−i) = 0, Eb

[
βti(v

t
−i)
]
≤ 1.

4 An Algorithmic Approach to the Structure

So far we showed that the optimal bank account mechanism maximizes the ironed virtual welfare in
each period. Although the explicit form of the virtual values (before ironing) is given in Lemma 3.7
and the ironing rule is given in Definition 3.1, how to accomplish the ironing operation is still
unknown. One of the major difficulty of the ironing comes from the fact that one’s virtual value
not only depends on his/her own private value, but also depends on the private values of other
buyers through the term αi(v). In the presence of such interdependence across different buyers on
virtual values, monotone virtual value function does not imply monotone allocation rules.

In this section, we algorithmically resolve the difficulty of ironing. In particular, we show a
Fully Polynomial Time Approximation Scheme (FPTAS) that can accomplish the ironing step for
any constant many buyer cases and hence compute the ironed virtual values. Moreover, the bank
account mechanism induced by the ironed virtual values computed is (multiplicatively) (1 − ε)-
approximately optimal in terms of revenue.

We also emphasize that the hard core of computing the exact optimal solution is not directly
from the ironing step but the step of approximating the concave functions gt(b). Note that gt(b)

11



 Electronic copy available at: https://ssrn.com/abstract=3282600 

is a continuous function without closed forms and the main effort of this section is to show that
we can arbitrarily approximate gt(b) with piece-wise linear functions and guarantee that (i) the
number of pieces is polynomial in the input size and (ii) the final result is approximately optimal.

Recall the program (12), in particular, we bring back the superscripts t to emphasize the periods:

max gt−1(bt) = Rev(bt, ξt) = Evt

[∑
i
(vti · xti(vt)− ξti(vt−i)) + gt(∆bt(vt) + bt)

]
subj.t. xti(v

t
i , v

t
−i)− xti(vti

′
, vt−i) ≤ 0, ∀i, vt−i, vti

′
> vti

ūti(v
t
−i) := Evti [u

t
i
′
] = Evti [ϑ

t
i(v

t)xti(v
t)] ≤ bti + ξti(v

t
−i), ∀vt−i

∆bti(v
t) = uti

′
(vt)− ūti(vt−i) + ξti(v

t
−i), ∀i,vt∑

i∈[n] x
t
i(v

t) ≤ 1, ∀vt

xti(v
t) ≥ 0, ∀i,vt

In what follows, we formalize the FPTAS via dynamic programming to compute the optimal
ironed virtual values for the discrete type case.

Theorem 4.1. The ironed virtual values of the optimal bank account mechanism can be computed
through a dynamic programming based algorithm.

Moreover, for any ε > 0, there is an FPTAS to achieve an ε-approximation (multiplicative) of
the optimal revenue.

We first outline the main idea of the algorithm: (i) for any fixed ξ, compute the ironed virtual
values of the approximately optimal bank account mechanism; (ii) compute the optimal ξ using
gradient descent. Since we have shown that the revenue of the bank account mechanism is a concave
function with respect to ξ, the second step is standard and can be done with polynomially many
queries to the (approximately) optimal revenue as a function of ξ. In what follows, we will focus
on the first step.

To compute the ironed virtual value, we need to solve the dual program of (12), which, of
course, is equivalent to solve the primal because the strong duality holds. Note that when ξ and
bt are fixed, (12) is a standard convex program with polynomially many linear constraints. Hence
the optimal solution to its dual could be computed efficiently given oracle accesses to the concave
function gt. Then by the definition of gt−1, the value of the optimal solution is gt−1(bt). Therefore,
the concave function gt can be evaluated recursively for each t and hence the ironed virtual values
of the optimal bank account mechanism can be computed via standard dynamic programming as
well.

However, the computation of the entire dynamic programming is not directly efficient: (i) if
each gt is computed recursively upon every query, the depth of the recursion could be up to T and
hence the total number of queries required would be exponential in T ; (ii) if each gt is computed
once for all possible b so that any further queries of gt can be answered from precalculated values,
then the number of input points where gt need to be computed would be unbounded.

The key step to resolve these issues is to approximate the concave functions gt(b) by piece-wise
linear functions each with at most polynomially many pieces. In addition, each of the piece-wise
linear functions can be further expressed as the minimum of a set of affine functions. Hence both the
original convex program (12) at each period t and its dual can be approximated by a polynomially
large linear program.

The following lemma ensures that each gt can be well approximated by a piece-wise linear
function.

12



 Electronic copy available at: https://ssrn.com/abstract=3282600 

Lemma 4.2. For all t ∈ [T ], gt can be κ-approximated by two concave piece-wise linear functions,
gt and ḡt:

∀b, gt(b) ≤ gt(b) ≤ ḡt(b) ≤ gt(b) + κmaxb′ g
t(b′).

Moreover, each of gt and ḡt can be written as the minimum of at most polynomially many pieces.

With such approximations to the concave function gt, we can approximately solve the convex
program (12) by solving the following linear program, where each occurrence of gt is replaced by
ḡt:

max h̄t−1(bt) := Evt

[∑
i
(vti · xti(vt)− ξti(vt−i)) + ḡt(∆bt(vt) + bt)

]
(10)

subj.t. xti(v
t
i , v

t
−i)− xti(vti

′
, vt−i) ≤ 0, ∀i, vt−i, vti

′
> vti

ūti(v
t
−i) := Evti [u

t
i
′
] = Evti [ϑ

t
i(v

t)xti(v
t)] ≤ bti + ξti(v

t
−i), ∀vt−i

∆bti(v
t) = uti

′
(vt)− ūti(vt−i) + ξti(v

t
−i), ∀i,vt∑

i∈[n] x
t
i(v

t) ≤ 1, ∀vt

xti(v
t) ≥ 0, ∀i,vt

ḡt(∆bt(vt) + bt) ≤ αl · (∆bt(vt) + bt) + βl, ∀l,vt (11)

As we mentioned previously, in the last constraint (11), we assume that the function ḡt can be
expressed by the minimum of a set of affine functions, i.e.,

ḡt(b) = minl∈Lαl · b+ βl.

Here we slightly abuse the notation of ḡt(∆bt(vt) + bt) as variables in the linear program. Note
that including the constraints (11) in the linear program (10) suffices to ensure that the variable
values always agree with the corresponding function values. Because on the one hand, by the
constraints, each variable is no more than the corresponding affine functions; on the other hand,
since the coefficients of these variables are always positive in the objective, for each of the variables,
at least one of the constraints in (11) must be binding.

Let h̄t−1(b) denote the optimal value of the linear program (10) when bt = b. Similarly, we can
define ht−1 by simply replacing all ḡt with gt in (10). The following lemma shows that ht−1 and
h̄t−1 are in fact lower and upper bounds of gt−1.

Lemma 4.3. ht−1 and h̄t−1 are concave and

∀b, ht−1(b) ≤ gt−1(b) ≤ h̄t−1(b) ≤ ht−1(b) + max
b′

(ḡt(b′)− gt(b′)).

Proof of Lemma 4.3. Let x∗, x∗, and x̄∗ be the corresponding optimal solution for ht−1(b), gt−1(b),
and h̄t−1(b), respectively. Denote these three programs as P , P , and P̄ , respectively. Note that x∗

is feasible in P , hence by the optimality of x∗,

P (x∗) ≤ P (x∗),

where P (x) denotes the objective value of program P with variables being x.
On the other hand, for any x that is feasible to both P and P , we have,

P (x) ≤ P (x).

13



 Electronic copy available at: https://ssrn.com/abstract=3282600 

Because in the objectives, gt−1 ≤ gt−1. Hence we conclude that

ht−1(b) = P (x∗) ≤ P (x∗) ≤ P (x∗) = gt−1(b).

Similarly, we can prove that gt−1(b) ≤ h̄t−1(b). For the last inequality, denote δ = maxb′(ḡ
t(b′)−

gt(b′)). Note that for the ḡ variables in x̄∗, if we reduce all of them by δ to get x̄∗∗, x̄∗∗ must be
feasible to P and the objective value is reduced by at most δ, hence

P (x∗) ≥ P (x̄∗∗) ≥ P̄ (x̄∗)− δ.

In other words,

ht−1(b) ≥ h̄t−1(b)− δ.

Even through both ht−1 and h̄t−1 are in fact piece-wise linear functions, but they cannot be
directly used for the computation of period t−1, because they may have exponentially many pieces.
However, since they are concave, we can apply Lemma 4.2 to get the lower bound of ht−1 and the
upper bound of h̄t−1:

gt−1(b) ≤ ht−1(b) ≤ gt−1(b) ≤ h̄t−1(b) ≤ ḡt−1(b).

Therefore, we can recursively compute g1, . . . , gT and ḡ1, . . . , ḡT and hence compute the ironed
virtual values of the approximately optimal bank account mechanism for any fixed ξ. Combining
with the fact that ξ could then be optimized using gradient descent, we are done with our algorithm.

References

Itai Ashlagi, Constantinos Daskalakis, and Nima Haghpanah. Sequential mechanisms with ex-
post participation guarantees. In Proceedings of the 2016 ACM Conference on Economics and
Computation, pages 213–214. ACM, 2016. 2

Susan Athey and Ilya Segal. An efficient dynamic mechanism. Econometrica, 81(6):2463–2485,
2013. 2

Santiago Balseiro, Vahab Mirrokni, and Renato Paes Leme. Dynamic mechanisms with martingale
utilities. 2016. 2

Santiago Balseiro, Max Lin, Vahab Mirrokni, Renato Paes Leme, and Song Zuo. Dynamic revenue
sharing. In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages
2678–2686, 2017. 2

Santiago R Balseiro, Vahab S Mirrokni, and Renato Paes Leme. Dynamic mechanisms with mar-
tingale utilities. forthcoming, Management Science, 2017. 2

Santiago Balseiro, Vahab Mirrokni, Renato Paes Leme, and Song Zuo. Dynamic double auctions:
Towards first best. In SODA 2019. SIAM, 2019. 2

C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software (TOMS), 22(4):469–483, 1996. 18

14



 Electronic copy available at: https://ssrn.com/abstract=3282600 

Dirk Bergemann and Maher Said. Dynamic auctions. Wiley Encyclopedia of Operations Research
and Management Science, 2011. 2

Dirk Bergemann and Juuso Välimäki. Information acquisition and efficient mechanism design.
Econometrica, 70(3):1007–1033, 2002. 2

Dirk Bergemann and Juuso Välimäki. Dynamic mechanism design: An introduction. Technical
report, Cowles Foundation for Research in Economics, Yale University, 2017. 2

Dirk Bergemann, Francisco Castro, and Gabriel Weintraub. The scope of sequential screening with
ex post participation constraints. In Proceedings of the 2017 ACM Conference on Economics
and Computation, pages 163–164. ACM, 2017. 2

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
10

Yang Cai and Mingfei Zhao. Simple mechanisms for subadditive buyers via duality. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages
170–183, New York, NY, USA, 2017. ACM. 3

Yang Cai, Nikhil R Devanur, and S Matthew Weinberg. A duality-based unified approach to
bayesian mechanism design. ACM SIGecom Exchanges, 15(1):71–77, 2016. 3

Ruggiero Cavallo. Efficiency and redistribution in dynamic mechanism design. In Proceedings of
the 9th ACM conference on Electronic commerce, pages 220–229. ACM, 2008. 2

Shuchi Chawla, Nikhil R Devanur, Anna R Karlin, and Balasubranianian Sivan. Simple pricing
schemes for consumers with evolving values. In SODA 2016, pages 1476–1490. SIAM, 2016. 2

Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. Mechanism design via optimal
transport. In Proceedings of the fourteenth ACM conference on Electronic commerce, pages 269–
286. ACM, 2013. 3

Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. Strong duality for a multiple-
good monopolist. Econometrica, 85(3):735–767, 2017. 3

Nikhil R Devanur, Yuval Peres, and Balasubramanian Sivan. Perfect bayesian equilibria in repeated
sales. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 983–1002. SIAM, 2015. 2

Edith Elkind. Designing and learning optimal finite support auctions. In SODA 2007, pages
736–745. SIAM, 2007. 2

Jason D. Hartline and Tim Roughgarden. Optimal mechanism design and money burning. In
STOC 2008, pages 75–84, 2008. 9

Matthew O Jackson and Hugo F Sonnenschein. Overcoming incentive constraints by linking deci-
sions. Econometrica, 75(1):241–257, 2007. 2

Sham M Kakade, Ilan Lobel, and Hamid Nazerzadeh. Optimal dynamic mechanism design and the
virtual-pivot mechanism. Operations Research, 61(4):837–854, 2013. 2

Ilan Lobel and Renato Paes Leme. Dynamic mechanism design under positive commitment. 2017.
2

15



 Electronic copy available at: https://ssrn.com/abstract=3282600 

Vahab Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Dynamic auctions with bank
accounts. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 387–393, 2016. 3, 5

Vahab Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Non-clairvoyant dynamic
mechanism design. 2016. 5

Vahab Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Optimal dynamic mechanisms
with ex-post ir via bank accounts. arXiv preprint arXiv:1605.08840, 2016. 3

Vahab Mirrokni, Renato Paes Leme, Rita Ren, and Song Zuo. Dynamic mechanism design in the
field. In Proceedings of the 2018 World Wide Web Conference, WWW ’18, pages 1359–1368.
International World Wide Web Conferences Steering Committee, 2018. 3

Vahab Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Non-clairvoyant dynamic
mechanism design. In Proceedings of the 2018 ACM Conference on Economics and Computation,
pages 169–169. ACM, 2018. 2, 3

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73, 1981.
2, 9

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic game theory,
volume 1. Cambridge University Press Cambridge, 2007. 3

Mallesh M Pai and Rakesh Vohra. Optimal dynamic auctions and simple index rules. Mathematics
of Operations Research, 38(4):682–697, 2013. 2

Christos Papadimitriou, George Pierrakos, Christos-Alexandros Psomas, and Aviad Rubinstein.
On the complexity of dynamic mechanism design. In SODA 2016, pages 1458–1475. SIAM, 2016.
2

David C Parkes and Satinder Singh. An mdp-based approach to online mechanism design. 2004. 2

Alessandro Pavan, Ilya Segal, and Juuso Toikka. Dynamic mechanism design: A myersonian
approach. Econometrica, 82(2):601–653, 2014. 2

Jean-Charles Rochet. The taxation principle and multi-time hamilton-jacobi equations. Journal of
Mathematical Economics, 14(2):113–128, 1985. 7

Tim Roughgarden and Okke Schrijvers. Ironing in the dark. In Proceedings of the 2016 ACM
Conference on Economics and Computation, pages 1–18. ACM, 2016. 2

Weiran Shen, Zihe Wang, and Song Zuo. Ex-post IR dynamic auctions with cost-per-action pay-
ments. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages 505–511, 2018. 2

16



 Electronic copy available at: https://ssrn.com/abstract=3282600 

A Missing Proofs

A.1 Proof of Lemma 3.4 and Lemma 3.6

Proof of Lemma 3.4 and Lemma 3.6. We prove these lemmas by induction from t = T down to 1.
Since gT ≡ 0, all these properties are satisfied for t = T .

Suppose that gt+1(b) is weakly increasing and concave. We first show that gt(b) is weakly
increasing. Consider b′ ≥ b. By definition, gt(b) is the optimal value of program (6) for period t
(with given ξ and b). Note that:

1. The optimal solution for program (6) with balance b is also feasible for the program with
balance b′;

2. The objective is weakly increasing in b even with the same variables. The first part of the
objective, Ev[

∑
i(vi ·xi(v)− ξi(v−i))], is the same for the same allocation rule and the second

part of the objective, E[gt+1(∆b(v) + b)], is weakly increasing in b by induction (with the
same ∆b(v)).

Therefore, gt(b′) ≥ gt(b) is weakly increasing.
We then show that gt(b) is concave, i.e., for any θ ∈ [0, 1],

gt(θb+ (1− θ)b′) ≥ θgt(b) + (1− θ)gt(b′).

Let x∗ and ∆b∗ be the optimal solution for balance vector b and x∗∗ and ∆b∗∗ be the optimal
solution for balance vector b′. Then their convex combination, (θx∗+(1−θ)x∗∗, θ∆b∗+(1−θ)∆b∗∗),
is a feasible solution for balance vector θb+ (1− θ)b′. Meanwhile, the objective function is concave
in the variables,

gt(θb+ (1− θ)b′)

≥ E
v

[∑
i

(vi · (θx∗i (v) + (1− θ)x∗∗i (v))− ξi(v−i)) + gt+1(θ(∆b∗(v) + b) + (1− θ)(∆b∗∗(v) + b′))

]

≥ θE
v

[∑
i

(vi · x∗i (v)− ξi(v−i)) + gt+1(∆b∗(v) + b)

]

+ (1− θ)E
v

[∑
i

(vi · x∗∗i (v)− ξi(v−i)) + gt+1(∆b∗∗(v) + b′)

]
= θgt(b) + (1− θ)gt(b′),

where the first inequality is by the definition of gt(b) and the feasibility of the convex combination
we just argued and the second inequality is by the induction of the concavity of gt+1(b).

A.2 Proof of Lemma 3.7

Proof of Lemma 3.7. By KKT conditions, ∂L/∂xi(v) ≥ 0:11

∂L

∂xi(v)
=

(
vi −

λi(v−i)ϑi(v)

f(v−i)

)
f(v) +

∂ Ev[g(∆b(v) + b)]

∂xi(v)
− µ(v)

=

(
(1 + gi(∆b(v) + b)) vi −

(
λi(v−i)

f(v−i)
+ E
vi

[gi(∆b(v) + b)]

)
ϑi(v)

)
f(v)− µ(v)

= (αi(v)vi − βi(v−i)ϑi(v))f(v)− µ(v),

11If not differentiable, then any sub-gradient must be non-negative.

17



 Electronic copy available at: https://ssrn.com/abstract=3282600 

where

∂ Ev[g(∆b(v) + b)]

∂xi(v)
=
∂ Ev[g(∆b(v) + b)]

∂u′i(v)
· ∂u

′
i(v)

∂xi(v)
+
∂ Ev[g(∆b(v) + b)]

∂ū′i(v−i)
· ∂ū

′
i(v−i)

∂xi(v)

= gi(∆b(v) + b)f(v)vi − E
vi

[gi(∆b(v) + b)]f(v−i) · f(vi)ϑi(v)

and if xi(v) > 0, ∂L/∂xi(v) must be 0, i.e.,

∀i, v, (αi(v)vi − βi(v−i)ϑi(v))f(v)− µ(v) ≤ 0

xi(v) > 0 =⇒ (αi(v)vi − βi(v−i)ϑi(v))f(v)− µ(v) = 0

Then for any xi(v) > 0, we have

αi(v)vi − βi(v−i)ϑi(v) = µ(v)/f(v) ≥ αj(v)vj − βj(v−j)ϑj(v).

In other words, the optimal solution is a virtual value maximizer, where the virtual value φi(v)
is given as

φi(v) = αi(v)vi − βi(v−i)ϑi(v).

In particular, λi(v−i) = 0 when

E
vi

[ϑi(v)xi(v)]− bi − ξi(v−i) < 0,

i.e., the balance of buyer i is not spent out.

A.3 Proof of Lemma 4.2

Proof of Lemma 4.2. The main idea of the proof is to (i) select polynomially many different points
b in the k-dimension space Rk+, (ii) compute g(b) for the selected points, and (iii) use the upper
surface of the convex hull of {(b, g(b))} as h(b).

Note that step (ii) and (iii) can be done very efficiently.12 However, the step (i) is non-trivial.
To illustrate the algorithm, we first highlight that both the maximum value of each bi, g(b),

and the partial derivatives gi(b) are bounded by 2O(N), where N is the input size. In other words,
simply selects points with fixed distance between other nearby points will result in exponentially
many points. Therefore, the distances should be determined adaptively.

The key observation here is to keep track of an upper bound on the uncertainty of the partial
derivative along each direction and the domain of bi where the difference of g(b) and h(b) could
be more than κ · maxb′ g(b′). Then each time pick a point on the boundary of the domain and
the upper of the uncertainty of the partial derivative will be reduced by at least half. Hence after
polynomially many steps, the uncertainty of the partial derivative will be exponentially small and
we can easily select modest numbers of points to get a good enough approximation h(b) to the
target function g(b).

12For (ii), the computation is efficient by hypothesis. For (iii), the convex hull in (k + 1)-dimension can be using
the quickhull algorithm [Barber et al., 1996]. Note that k is a constant here.

18



 Electronic copy available at: https://ssrn.com/abstract=3282600 

B Ironing

We add the monotonicity constraint (3) back and show that this constraint corresponds to applying
ironing operation on the virtual value functions.

Consider the following program without relaxation, where the monotonicity constraint is rewrit-
ten in an explicit way.

max Rev(b, ξ) = E
v

[∑
i
(vi · xi(v)− ξi(v−i)) + g(∆b(v) + b)

]
Lagrange multipliers (12)

subj.t. xi(vi, v−i)− xi(v′i, v−i) ≤ 0, ∀i, v−i, v′i > vi ηi(vi, v
′
i; v−i)

ū′i(v−i) ≤ bi + ξi(v−i), ∀i, v−i λi(v−i)

∆bi(v) = u′i(v)− ū′i(v−i) + ξi(v−i), ∀i,v ∅∑
i∈[n] xi(v) ≤ 1, ∀v µ(v)

xi(v) ≥ 0, ∀i,v

Then the Lagrange for this program is as follows.

L(x,η,λ,µ)

=E
v

[∑
i

(vi · xi(v)− ξi(v−i)) + g(∆b(v) + b)

]

−
∑
i

∑
v

xi(v)

∑
v′i>vi

ηi(vi, v
′
i; v−i)−

∑
v′′i <vi

ηi(v
′′
i , vi; v−i)


−
∑
i,v−i

λi(v−i)

(
E
vi

[ϑi(v)xi(v)]− bi − ξi(v−i)
)
−
∑
v

µ(v)

(∑
i

xi(v)− 1

)
. (L)

By similar argument with the proof of Lemma 3.7, any optimal auction must maximize the ironed
virtual welfare and the ironed virtual value function φ̃i(v) is given as

φ̃i(v) = αi(v)vi − βi(v−i)ϑi(v)− 1

f(v)

∑
v′i>vi

ηi(vi, v
′
i; v−i)−

∑
v′′i <vi

ηi(v
′′
i , vi; v−i)

 .

Note that conditional on any v−i, the expectation of the virtual value with ironing equals to
the expectation of the virtual value without ironing:∑

vi

fi(vi)φi(v) =
∑
vi

fi(vi)φ̃i(v).

Thus ηi(vi, v
′
i; v−i)/f(v−i) defines a mass move of fi(vi)φi(v) within R+. In particular, since

ηi(vi, v
′
i; v−i) ≥ 0, the move is from small vi to large v′i (vi < v′i).

Meanwhile, by complementary slackness,

(xi(vi, v−i)− xi(v′i, v−i))ηi(vi, v′i; v−i) = 0,

which means the mass move must happen within the regions with the same allocation.
Also note that the virtual value φi(v) depend on v−i as well, the ironing does not make φ̃i(v)

an increasing function. Instead, the following function must be weakly increasing,

sgn

[
φ̃i(v)−max

{
0,max

j 6=i
φ̃j(v)

}]
.

Because the allocation maximizes the virtual welfare and must be weakly increasing.

19


	Introduction
	Preliminaries
	Dynamic Incentive Compatibility
	Ex-Post Individual Rationality
	Bank Account Mechanisms

	The Structure of Optimal Bank Account Mechanisms
	Formalizing the subprogram for each period
	Duality, virtual values, and ironing
	Sensitivity analysis and the optimality across the periods
	Summary

	An Algorithmic Approach to the Structure
	Missing Proofs
	Proof of Lemma 3.4 and Lemma 3.6
	Proof of Lemma 3.7
	Proof of Lemma 4.2

	Ironing

