MLIR in TensorFlow Ecosystem

C4ML II at CGO 2020
Agenda

● Update on year past
 ○ MLIR announced at C4ML last year

● Brief introduction to MLIR

● MLIR in TensorFlow ecosystem
 ○ Uses current and future in TF
 ○ An aside on simple ML inference engine

● MLIR community
 ○ Excluding the other talks today …
 ○ … and Albert Cohen's talk yesterday or Chris Lattner and Tatiana Shpeisman's talk at CGO

● Getting involved
The past year
Year since C4ML in review

~ MLIR announced @ C4ML 2019, Feb 17

~ MLIR open sourced
 - Core @ Mar 29th & TF/MLIR @ Jun 27

~ Partner announcement &
 proposal to contribute to LLVM @ Sep 9

~ MLIR core moved to LLVM project Dec 23rd
 - “Landing as a great Christmas present for LLVM developers
 interested in heterogeneous hardware compilation ...”

~ TF / TFLite converter replaced @ Feb 19 2020
What is MLIR?
A collection of modular and reusable software components that enables the progressive lowering of high level operations, to efficiently target hardware in a common way.
Multi-Level Intermediate Representation

- MLIR: New compiler infrastructure
- TensorFlow (TF): Originally built by TensorFlow team
- Part of LLVM project
How is MLIR different?

State of Art Compiler Technology
MLIR is NOT just a common graph serialization format nor is there anything like it.

Modular & Extensible
From graph representation through optimization to code generation.

Not opinionated
Choose the level of representation that is right for your device.

New shared industry abstractions spanning languages ("OMP" dialect?)

Mix and match representations to fit problem space

We want to enable whole new class of compiler research
A toolkit for representing and transforming “code”

Represent and transform IR ⇄↺⇓

Represent Multiple Levels of
- tree-based IRs (ASTs),
- graph-based IRs (TF Graph, HLO),
- machine instructions (LLVM IR)

IR at the same time

While enabling

Common compiler infrastructure
- location tracking
- richer type system
- common set of conversion passes

And much more
Operations, Not Instructions

- No predefined set of instructions
- Operations are like “opaque functions” to MLIR

```plaintext
%res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 } : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">) loc(callsite("foo" at "mysource.cc":10:8))
```
%results:2 = "d.operation"(%arg0, %arg1) {{
 // Regions belong to Ops.
 ^block(%argument: !d.type):
 // Ops have function types
 %value = "nested.operation"() {{
 // Nested region
 "d.op"(): () -> ()
 })(): () -> (!d.other_type)
 "consume.value"(%value): (!d.other_type) -> ()
 }other_block:
 "d.terminator"()[^block(%argument : !d.type)]: () -> ()
}}
// Ops have a list of attributes
{attribute="value" : !d.type}: () -> (!d.type, !d.other_type)
Dialects

A MLIR dialect is a logical grouping including:

- A prefix ("namespace" reservation)
- A list of custom types, each defined by a C++ class.
- A list of operations, each its name and C++ class implementation:
 - Verifier for operation invariants
 - Semantics (has-no-side-effects, constant-folding, CSE-allowed,)
- Possibly custom parser and assembly printer
- A list of passes (for analysis, transformations, and dialect conversions)
Interfaces

- Decouple transformations from dialect and operation definitions
 - LoopLike, Inlining
- Apply transformations across dialects
- Design passes to operate on characteristics/structure rather than specific ops
- Easily extend to new dialects/ops
Interfaces

- Decouple transformations from dialect and operation definitions
 - LoopLike, Inlining
- Apply transformations across dialects
- Design passes to operate on characteristics/structure rather than specific ops
- Easily extend to new dialects/ops

Much more info
- defining ops
- declarative patterns (DAG -> DAG)
- declarative ASM syntax

... But that's a whole tutorial (see online and next iteration @ EuroLLVM!)
MLIR in TensorFlow ecosystem
TF Optimization & Compilation

Optimization & Legalization

Code Generation

- CPU
- GPU
- TPU
- TFLite
- TensorFlow.js
- Edge TPU
- ?PU
Goal: Global improvements to TensorFlow infrastructure

SSA-based designs to generalize and improve ML “graphs”:
- Better side effect modeling and control flow representation
- Improve generality of the lowering passes
- Dramatically increase code reuse
- Fix location tracking and other pervasive issues for better user experience
TensorFlow usage (current/ongoing/future)
Computational Graph Dialect

```python
func @foo(%arg0 : tensor<i1>, %arg1 : tensor<...>) ...
{
    %X = tf.X
    %Y = tf.Y
    %Z:2 = tf.Z

    return %Z#0, %Z#1
}
```
Control Flow and Concurrency

Control flow and dynamic features of TF1, TF2
- Conversion from control to data flow
- Lazy evaluation

Concurrency
- Sequential execution in blocks
- Distribution
- Offloading
- Implicit concurrency in `tf.graph` regions
 - Implicit `futures` for SSA-friendly, asynchronous task parallelism

→ Research: task parallelism, memory models, separation logic
Control Flow and Concurrency

%0 = tf.graph (%arg0 : tensor<f32>, %arg1 : tensor<f32>,
 %arg2 : !tf.resource) {
 // Execution of these operations is asynchronous, the %control
 // return value can be used to impose extra runtime ordering,
 // for example the assignment to the variable %arg2 is ordered
 // after the read explicitly below.
 %1, %control = tf.ReadVariableOp(%arg2)
 : (!tf.resource) -> (tensor<f32>, !tf.control)
 %2, %control_1 = tf.Add(%arg0, %1)
 : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
 %control_2 = tf.AssignVariableOp(%arg2, %2, %control)
 : (!tf.resource, tensor<f32>) -> !tf.control
 %3, %control_3 = tf.Add(%2, %arg1)
 : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
 tf.fetch %3, %control_2 : tensor<f32>, !tf.control
}
TFLite: inference on the edge

- TensorFlow to TFLite converter
 - Adding control flow to TFLite
 - RNN support
- New quantization support
 - Forgot to mention: MLIR has quantized types!
 - Tooling to move state of the art forward
- Model optimization passes
 - Sparsity optimization
CPU/GPU codegen

- Multiple collaboration on TensorFlow codegen
- XLA codegen (emitter style)
- Structured ops (e.g., LinAlg)
- (simplified) Polyhedral (e.g., Affine)

Albert's and other folks here's talks will look at different codegen!
MLIR community
MLIR is a community project

- Important takeaway from C4ML last year:
 - All solving the same problems over and over
 - Effort on common (but very important and not really common) parts take away from value add
- MLIR make it easy to add abstraction & compile down
- Community very important
 - Want to highlight some works
 - ... but not those of folks already presenting here ;-)
Example: Stencil Computations

MLIR for accelerating climate modelling
A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Domain-Science vs Computer-Science

- solve PDE
- finite differences
- structured grid

- element-wise computation
- fixed neighborhood

\[
\text{lap}(i,j) = -4.0 \times \text{in}(i,j) + \text{in}(i-1,j) + \text{in}(i+1,j) + \text{in}(i,j-1) + \text{in}(i,j+1)
\]
Example: Flang: the LLVM Fortran Frontend

- **Flang** is a ground-up implementation of a Fortran front end written in modern C++

FLANG
The LLVM Fortran compiler

- **FIR**: high-level Fortran IR
- Built on the MLIR infrastructure
- Common path from syntactic to static analysis and code gen
- Shrink abstraction gap: core Fortran operational properties
- Focus on writing Fortran aware optimizations
- Separation of concerns: constraints checking vs. optimizing computation
MLIR Pattern Matching and Rewrite

~ Instruction Selection problem.
MLIR Pattern Matching and Rewrite
An MLIR dialect to manipulate MLIR IR!

```mlir
func @matcher(%0 : !Operation) {
  ^bb0:
    CheckArgCount(%0) [^bb1, ^ex0] {count = 2}
    : (!Operation) -> ()
  ^bb1:
    CheckOpName(%0) [^bb2, ^bb5] {name = "add"}
    : (!Operation) -> ()
  ^bb2:
    %1 = GetOperand(%0) {index = 0} : (!Operation) -> !Value
    %2 = GetOperand(%0) {index = 1} : (!Operation) -> !Value
    ValueEqualTo(%1, %2) [^rr0, ^bb3] : (!Value, !Value) -> ()
  ^rr0:
    // Save x
    RegisterResult(%1) [^bb3] {id = 0} : (!Value) -> ()
  ^bb3:
    %3 = GetDefiningOp(%2) : (!Value) -> !Operation
    CheckOpName(%3) [^bb4, ^bb5] {name = "mul"}
    : (!Operation) -> ()
  ^bb4:
    CheckArgCount(%3) [^rr1, ^bb5] {count = 2}
    : (!Operation) -> ()

  ^rr1:
    // Save x, y, and z
    %4 = GetOperand(%3) {index = 0} : (!Operation) -> !Value
    %5 = GetOperand(%4) {index = 1} : (!Operation) -> !Value
    RegisterResult(%1, %4, %5) [^bb5] {id = 1}
    : (!Value, !Value, !Value) -> ()
  ^bb5:
    // Previous calls are not necessarily visible here
    %6 = GetOperand(%0) {index = 0} : (!Operation) -> !Value
    %7 = GetOperand(%0) {index = 1} : (!Operation) -> !Value
    ValueEqualTo(%6, %7) [^bb6, ^ex0] : (!Value, !Value) -> ()
  ^bb6:
    CheckOpName(%0) [^rr2, ^ex0] {name = "mul"}
    : (!Operation) -> ()
  ^rr2:
    // Save x
    RegisterResult(%6) [^ex0] {id = 2} : (!Value) -> ()
  ^ex0:
    return
}
```
Example: Tiny C Inference Engine

- **Problem:**
 - Running ML models in highly resource constrained environments
 - On-device training in an end-to-end fashion with <1kB of on-device code

- **End-to-end toolchain prototype**
 - Stateful model, Multiple model entry points, Structured Python signatures with @tf.function

- **Required less than 1 SWE-week of effort to implement**
Conclusion
MLIR: Reusable Compiler Abstraction Toolbox

IR design involves multiple tradeoffs
- Iterative process, constant learning experience

MLIR allows mixing levels of abstraction with non-obvious compounding benefits
- Dialect-to-dialect lowering is easy
- Ops from different dialects can mix in same IR
 - Lowering from “A” to “D” may skip “B” and “C”
- Avoid lowering too early and losing information
 - Help define hard analyses away

No forced IR impedance mismatch
Fresh look at problems
Recap

MLIR is a great infrastructure for higher-level compilation
- Gradual and partial lowerings to mixed dialects
 - All the way to LLVMIR and execution
- Reduce impedance mismatch at each level

MLIR provides all the infrastructure to build dialects and transformations
- At each level it is the same infrastructure

Toy language tutorial available on github
Getting Involved
Get involved!

Visit us at mlir.llvm.org:
- Code, documentation, tutorial
- Developer forum/mailing list
 LLVM Discourse server
 mlir@tensorflow.org
- Open design meetings / TF MLIR SIG
- Contributions welcome!

Students: We have internship openings still
- Contact at mlir-hiring@google.com
And Google Summer of Code projects
We are hiring!
mlir-hiring@google.com

Thank you to the team!

Questions?

We are hiring!
mlir-hiring@google.com