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Abstract— We propose a self-supervised approach for learn-
ing representations of objects from monocular videos and
demonstrate it is particularly useful for robotics. The main
contributions of this paper are: 1) a self-supervised model
called Object-Contrastive Network (OCN) that can discover
and disentangle object attributes from video without using any
labels; 2) we leverage self-supervision for online adaptation:
the longer our online model looks at objects in a video, the
lower the object identification error, while the offline baseline
remains with a large fixed error; 3) we show the usefulness of
our approach for a robotic pointing task; a robot can point
to objects similar to the one presented in front of it. Videos
illustrating online object adaptation and robotic pointing are
provided as supplementary material.

I. INTRODUCTION

One of the biggest challenges in real world robotics
is robustness and adaptability to new situations. A robot
deployed in the real world is likely to encounter a number of
objects it has never seen before. Even if it can identify the
class of an object, it may be useful to recognize a particular
instance of it. Relying on human supervision in this context
is unrealistic. Instead if a robot can self-supervise its under-
standing of objects, it can adapt to new situations when using
online learning. Online self-supervision is key to robustness
and adaptability and arguably a prerequisite to real-world
deployment. Moreover, removing human supervision has the
potential to enable learning richer and less biased continuous
representations than those obtained by supervised training
and a limited set of discrete labels. Unbiased representations
can prove useful in unknown future environments different
from the ones seen during supervision, a typical challenge
for robotics. Furthermore, the ability to autonomously train to
recognize and differentiate previously unseen objects as well
as to infer general properties and attributes is an important
skill for robotic agents.

In this work we focus on situated settings (i.e. an agent
is embedded in an environment), which allows us to use
temporal continuity as the basis for self-supervising corre-
spondences between different views of objects. We present
a self-supervised method that learns representations to dis-
entangle perceptual and semantic object attributes such as
class, function, and color. Assuming a pre-existing objectness
detector, we extract objects from random frames of a scene
containing the same objects, and let a metric learning system
decide how to assign positive and negative pairs of embed-
dings. Representations that generalize across objects natu-
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Fig. 1. The longer our model looks at objects in a video, the lower
the object identification error. Left: example frames of a work bench
video along with the detected objects. Right: result of online training on
the same video. Our model self-supervises object representations as the
video progresses and converges to 2% object identification error while the
offline baseline remains at 52% error.

rally emerge despite not being given groundtruth matches.
Unlike previous methods, we abstain from employing ad-
ditional self-supervisory training signals such as depth or
those used for tracking. The only input to the system are
monocular videos. This simplifies data collection and allows
our embedding to integrate into existing end-to-end learning
pipelines. We demonstrate that a trained Object-Contrastive
Network (OCN) embedding allows us to reliably identify
object instances based on their visual features such as color
and shape. Moreover, we show that objects are also organized
along their semantic or functional properties. For example,
a cup might not only be associated with other cups, but also
with other containers like bowls or vases.

Fig. 1 shows the effectiveness of online training: we
randomly selected frames of a continuous video sequence
(top), OCN can adapt to the present objects and thereby
lower the object identification error. The graph (bottom)
shows the object identification error obtained by training
on progressively longer sub-sequences of a 200 seconds
video. While the supervised baseline remains at a high error
rate (52.4%), OCN converges to a 2.2% error.

The key contributions of this work are: (1) a self-
supervised objective trained with contrastive learning that
can discover and disentangle object attributes from video
without using any labels; (2) we leverage object self-
supervision for online adaptation: the longer our model looks
at objects in a video, the lower the object identification
error, while the offline baseline remains with a large fixed



error; (3) we let a robot collect data, then train on it with
our self-supervised training scheme, and show the robot can
point to objects similar to the one presented in front of it,
demonstrating generalization of identifying object attributes.

II. RELATED WORK

Object discovery from visual media. Identifying ob-
jects and their attributes has a long history in computer
vision and robotics [39]. Traditionally, approaches focus
on identifying regions in unlabeled images to locate and
identify objects [36], [2]. Discovering objects based on the
notion of ’objectness’ instead of specific categories enables
more principled strategies for object recognition [40], [32].
Several methods address the challenge to discover, track,
and segment objects in videos based on supervised [42] or
unsupervised [18], [34], [11] techniques. The spatio-temporal
signal present in videos can also help to reveal additional
cues that allow to identify objects [43], [16]. In the context of
robotics, methods also focus on exploiting depth to discover
objects and their properties [22], [17].

Many recent approaches exploit the effectiveness of con-
volutional deep neural networks to detect objects [31], [20],
[12]. While the detection efficiency of these methods is
unparalleled, they rely on supervised training procedures
and therefore require large amounts of labeled data. Self-
supervised methods for the discovery of object attributes
mostly focus on learning representations by identifying fea-
tures in multi-view imagery [6], [19] and videos [43], or
by stabilizing the training signal through domain random-
ization [7]. Some methods not only operate on RGB images
but also employ additional signals, such as depth [9], [29] or
egomotion [1] to self-supervise the learning process. It has
been recognized, that contrasting observations from multiple
views can provide a view-invariant training signal allowing to
even differentiate subtle cues as relevant features that can be
leveraged for instance categorization and imitation learning
tasks [35].

Unsupervised representation learning. Unlike super-
vised learning techniques, unsupervised methods focus on
learning representations directly from data to enable image
retrieval [27], transfer learning [47], image denoising [41],
learning dense representations [33], [9], [38] and other
tasks [8], [44]. Using data from multiple modalities, such
as imagery of multiple views [35], sound [24], [3], or other
sensory inputs [5], along with the often inherent spatio-
temporal coherence [7], [30], can facilitate the unsupervised
learning of representations and embeddings. For example,
[46] explore multiple architectures to compare image patches
and [26] exploit temporal coherence to learn object-centric
features. [10] rely of spatial proximity of detected objects
to determine attraction in metric learning, OCN operates
similarly but does not require spatial proximity for posi-
tive matches, it does however take advantage of the likely
presence of a same object in any pair of frames within a
video. [48] also take a similar unsupervised metric learning
approach for tracking specific faces, using tracking trajec-
tories and heuristics for matching trajectories and obtain

richer positive matches. While our approach is simpler in
that it does not require tracking or 3D matching, it could be
augmented with extra matching signals.

In robotics and other real-world scenarios where agents
are often only able obtain sparse signals from their envi-
ronment, self-learned embeddings can serve as an efficient
representation to optimize learning objectives. [25] introduce
a curiosity-driven approach to obtain a reward signal from
visual inputs; other methods use similar strategies to enable
grasping [28] and manipulation tasks [35], or to be pose
and background agnostic [14]. [23] jointly uses 3D synthetic
and real data to learn a representation to detect objects and
estimate their pose, even for cluttered configurations. [15]
learn semantic classes of objects in videos by integrating
clustering into a convolutional neural network.

III. LEARNING OF OBJECT REPRESENTATIONS

We propose a model called Object-Contrastive Net-
work (OCN) trained with a metric learning loss based on
the following steps: 1) we randomly extract two frames of
a video sequences, 2) we detect objects in these frames by
using an off-the-shelf objectness detector [31], 3) we use a
standard ConvNet (ResNet50) and individually embed each
object, 4) we use the embeddings to compute a distance
matrix of the objects of one frame against the objects of the
other frame and find the closest matching pairs of objects;
objects of one frame are selected as anchors and their closest
match from the other frame as positives, 5) we train our OCN
model with a metric learning loss (n-pairs loss [37]); nearest
neighbors in the embedding space are pulled together while
being pushed away from dissimilar objects. This training
scheme does not rely on knowing the true correspondence
between objects and therefore does not require any labels.
Fig. 2 shows the steps of our setup.

The fact that this works despite not using any labels
might be counter-intuitive. One of the main findings of
this paper is that given a limited set of objects, object
correspondences will naturally emerge when using metric
learning. One advantage of the self-supervised learning of
object representations is that objects are organized in a con-
tinuous and multi-dimensional (e.g. shape, color, function,
etc.) way; object properties are not biased by or limited to
a discrete set of labels determined by human annotators. We
show these embeddings allow us to discover and disentangle
object attributes and that they generalize to previously unseen
environments. Fig. 3 illustrates how objects of one frame
(anchors) are matched to the objects of another frame after
20K training iterations.

We propose a self-supervised approach to learn object
representations for the following reasons: (1) make data
collection simple and scalable, (2) increase autonomy in
robotics by continuously learning about new objects without
assistance, (3) discover continuous representations that are
richer and more nuanced than the discrete set of attributes
that humans might provide as supervision, which may not
match future and new environments. All these objectives
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Fig. 2. Object-Contrastive Networks (OCN): we use two randomly selected frames of a video sequence (a) to detect objects based on their objectness
(b). We embed the detected objects with a ConvNet (c) and compute a distance matrix of the objects in one frame against the objects of the other frame (d).
We select the objects of one frame as anchors and the closest objects of the other frame as positives (d). We use n-pairs loss to train an OCN embedding
without any labels (e). Each object is attracted to its closest neighbor while being pushed away from all dissimilar objects. Object pairs may be wrong
(e.g. the same object in two different frames is not matched with itself), however the training still converges toward disentangled object representations.

require a method that can learn about objects and differ-
entiate them without supervision. To bootstrap our learning
signal we leverage two assumptions: (1) we are provided
with a general objectness model so that we can attend to
individual objects in a scene, (2) during an observation
sequence the same objects will be present in most frames.
Given a video sequence of a scene containing multiple
objects, we randomly select two frames I and Î in the
sequence and detect the objects present in each image. Let
us assume the objects N and M are detected in images
I and Î , respectively. Each of the n-th and m-th cropped
object images are embedded in a low dimensional space,
organized by a metric learning objective. Unlike traditional
methods, which rely on human-provided similarity labels to
drive metric learning, we use a self-supervised approach to
mine similarity labels (Fig. 2).

Objectness Detection: To detect objects, we use Faster-
RCNN [31] trained on the COCO object detection
dataset [21]. Faster-RCNN detects objects in two stages:
first generate class-agnostic bounding box proposals of all
objects present in an image (Fig. 2, a, b), second associate
detected objects with class labels. We use OCN to discover
object attributes, and only rely on the first objectness stage
of Faster-R-CNN to detect object candidates.

A. Metric Loss for Object Disentanglement

We denote a cropped object image by x 2 X and compute
its embedding based on a convolutional neural network
f(x) : X ! K. Note that for simplicity we may omit x
from f(x) while f inherits all superscripts and subscripts.
Let us consider two pairs of images I and Î that are taken
at random from the same contiguous observation sequence.
Let us also assume there are n and m objects detected in I
and Î respectively. We denote the n-th and m-th objects in
the images I and Î as xI

n and xÎ
m, respectively. We compute

the distance matrix Dn;m =

q
(f I

n � f Î
m)2; n 2 1::N; m 2
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n; n 2 1::N , we select
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Fig. 3. View-to-view object correspondences: the first column shows all
objects detected in one frame (anchors). Each object is associated to the
objects found in the other frame, objects in the second column are the
nearest neighbors (positives). The third column shows the embedding space
distance of objects. The remaining objects (negatives) are shown from left
to right in descending order according to their distances to the anchor (not
all objects shown).

a positive embedding f Î
m with minimum distance as positive:

f Î
n+ = argmin(Dn;m). Given a batch of (anchor, positive)

pairs f(xi; x+
i )gN

i=1, the n-pair loss is defined as follows [37]:
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The loss learns embeddings that identify ground truth
(anchor, positive)-pairs from all other (anchor, negative)-
pairs in the same batch. It is formulated as a sum of softmax
multi-class cross-entropy losses over a batch, encouraging
the inner product of each (anchor, positive)-pair (fi, f+

i ) to
be larger than all (anchor, negative)-pairs (fi, f+

j 6=i). The final
OCN training objective over a sequence is the sum of npairs
losses over all pairs of individual frames:

LOCN = LN�pair

�
f(xI

n; xÎ
n+)gN

n=1; f
�

+LN�pair

�
f(xÎ

m; xI
m+)gM

m=1; f
�
:

B. Network Architecture and Embedding Space

OCN uses a standard ResNet50 architecture until layer
global pool (which can be initialized with ImageNet pre-
trained weights). We then add three additional convolutional
layers and a fully connected layer to produce the final


