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Abstract

Many advertisers rely on attribution to make a
variety of tactical and strategic marketing de-
cisions, and there is no shortage of attribution
models for advertisers to consider. In the end,
most advertisers choose an attribution model
based on their preconceived notions about how
attribution credit should be allocated. A mis-
guided selection can lead an advertiser to use
erroneous information in making marketing de-
cisions. In this paper, we address this issue by
identifying a well-defined objective for attribu-
tion modeling and proposing a systematic ap-
proach for evaluating and comparing attribution
model performance using simulation. Following
this process also leads to a better understanding
of the conditions under which attribution models
are able to provide useful and reliable informa-
tion for advertisers.

1 Introduction

Advertisers are interested in understanding and
measuring the impact that campaigns have on
consumer behavior. In the digital world, when a
user converts (i.e. makes a purchase, signs up for
a mailing list, etc.) it is useful to know how that
user arrived on the advertiser’s website (e.g.,
paid search click, organic click, direct naviga-
tion, email link, etc.). This information provides
insight into consumer behavior and preferences,
which can be interpreted and translated into tac-
tical and strategic marketing actions. This desire
to know where users come from before converting
is the origin of digital attribution. The earliest
and simplest form of digital attribution is the last

interaction, or last event, model [Help, 2017b].
This model gives “credit” to the last event in a
user’s browsing path prior to conversion. This
last event information is readily available in the
referring URL and the output of this model is
easy to understand.

With advancements in digital technology,
largely the widespread use of cookies and ad tag-
ging, it became possible to account for website
visits and marketing interventions that are fur-
ther upstream from a conversion. These new
data sources made it possible to generalize the
notion of crediting user activity to conversions.
However, the question that results is how should
this credit be assigned across multiple events?

Many different approaches have been devel-
oped to address this question. In addition to
the last interaction model, there are other “rules-
based” models that assign fractional credit ac-
cording to weights that are determined by the
position and number of events in the user path.
Two examples are the first interaction and lin-
ear attribution models [Help, 2017b]. Data-
driven attribution (DDA) models are more so-
phisticated and distribute credit across multi-
ple touch points by considering converting and
non-converting paths to model the probability
of conversion across different paths. Upstream
DDA allocates credit based on the probability of
conversion, as determined by matching upstream
events of users exposed and unexposed to an ad
event [Sapp and Vaver, 2016]. Models introduced
by Shao and Li [2011] and Dalessandro et al.
[2012] use logistic regression to predict the oc-
currence of conversions following ad events, and
Li and Kannan [2014] describes an attribution
model that works within a Bayesian framework.
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These are just a few examples of the attribu-
tion models described in the literature, and it
is likely that there are many others used by ad-
vertisers and third party measurement providers
that have not been described publically.

Ultimately, advertisers must choose among
this abundance of attribution models. This
choice is typically made without tangible evi-
dence that one model will objectively outperform
another in the most important and relevant sit-
uations. A formal process for evaluating attri-
bution models is needed to fill this gap. Hav-
ing such a process has additional benefits. It
can identify the situations in which models have
differentiated performance, help set realistic ex-
pectations for model performance, and indicate
where models need improvement. This paper de-
scribes a process for evaluating attribution mod-
els that relies on simulation.

This paper is organized as follows. Section 2
provides a framework of current attribution ex-
pectations and assumptions. Section 3 defines
the primary attribution objective used in this
paper. In Section 4, the simulation process used
to evaluate attribution models is presented, and
Section 5 describes the different ways in which
advertising can impact user behavior within the
simulation. Section 6 contains a categorization
of advertising conditions, metrics for scoring,
and a discussion of evaluation results. A brief
summary and conclusion are provided in Sec-
tion 7.

2 Attribution Expectations

The proliferation of attribution models may lead
advertisers to place a great deal of focus on at-
tribution model selection. However, this deci-
sion cannot be made without taking other con-
siderations into account. The quality of informa-
tion generated by an attribution model also de-
pends on reporting constraints, the type of user-
level event data that is available (i.e., the data
scope), and the identified modeling objective (as
discussed in Section 3).

The last interaction model associates a single
unit of credit with every conversion that has a

trackable upstream event. The number of credits
assigned within each path equals the number of
conversions within that path, and the total cred-
its assigned to user-level events equals the total
number of “attributable” conversions. We refer
to this property as the “last event accounting
principle.” Due to its familiarity, convenience,
and interpretability, this principle has been pre-
served in the development of newer attribution
models. However, this principle does not align
with the objective of measuring ad effectiveness.
For example, in user paths where there is only
a single paid ad event followed by a conversion,
the accounting principle requires that full credit
be assigned to the paid ad, even if the ad is com-
pletely ineffective. In these cases, the advertiser
will be misled about ad effectiveness since credit
is assigned to an event that did not actually im-
pact the outcome.

A separate issue, which compounds the prob-
lems caused by conforming to last event account-
ing, is that not all marketing events are avail-
able in the attribution modeling process. These
events are “out-of-scope” for attribution model-
ing. Offline advertising is one source of out-of-
scope advertising, which includes television ad-
vertising. However, even digital ads can be fully,
or partially, out-of-scope. Clicks are more easily
tracked than impressions, so paid ad clicks might
be in-scope, while the associated impressions are
out-of-scope. Assignment of credit to ineffective
events can also occur when there are multiple
events in a path because the effective advertising
events are out-of-scope. For example, advertis-
ers may not have complete information regarding
exposures to advertising events on a third party
website. Reporting is limited to in-scope events,
even though out-of-scope events may have im-
pacted user behavior. This data completeness
issue can lead to incorrect allocation of credit to
in-scope advertising events.

Although attribution has the stated goal of al-
locating conversion credit, this goal is not consis-
tent with the goal of understanding advertising
effectiveness. Beyond this mismatch, the goal of
allocating conversion credit does not have an ob-
jective truth, and attribution model evaluation
and comparison requires this information. In or-
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der to evaluate and compare the effectiveness of
attribution models, it is necessary to identify a
well-defined attribution objective.

3 Causality as an Attribution
Objective

A scientific evaluation of attribution model per-
formance must begin with a clearly stated ob-
jective. Advertisers need to understand the ef-
fect of ads on consumer behavior with the ulti-
mate goal of quantifying the impact on conver-
sion volume. Therefore, attribution should be
considered a causal estimation problem. Causal
measurement makes it possible to say how ef-
fective advertising is at changing user behavior.
So, we have made it the cornerstone for evaluat-
ing attribution models [Kelly et al., 2018]. The
optimal way to measure causal impact is to con-
duct a fully randomized controlled experiment
and compare the outcomes of treated versus un-
treated subjects [Rubin, 1974]. In advertising,
the treatment is ad exposure and the subjects
are the users.

Different experiments are needed for different
causal measurement objectives. Estimating the
number of incremental conversions (IC) gener-
ated by each ad channel, the marginal IC (mIC)
rate of each ad channel, and the incremental con-
versions generated by each individual ad event
are all objectives of potential interest to adver-
tisers. For IC, the objective is to measure the dif-
ference between the number of conversions with
an ad channel present versus not present (the ad
channel on versus the ad channel off). The eval-
uation process described in this paper concen-
trates on this IC objective, although a similar
process is applicable for other causal measure-
ment objectives.

Conducting a real world experiment is the
ideal mechanism for generating causal measure-
ments that can be used to evaluate attribution
models. However, this is a costly and impracti-
cal approach due to the potentially large number
of ad channels, the complexity of ad campaigns,
and the reluctance of advertisers to forego the
opportunity to serve ads [Chan et al., 2010].

Evaluating attribution models requires an alter-
native approach. We leverage the DASS tool in-
troduced in Sapp et al. [2016] to accomplish this
goal.

4 Simulation

The Digital Advertising System Simulation
(DASS) is a flexible framework developed for
modeling advertising and its impact on user be-
havior Sapp et al. [2016]. DASS has the ability
to generate sets of path data under a wide vari-
ety of marketing conditions. A Markov process
models user behavior in the absence of advertis-
ing, and ads are injected into the user’s browsing
stream. These ads have the ability to modify the
transition matrix of the Markov process thereby
affecting user behavior, which can increase the
probability of conversion. Through the specifi-
cation of simulation parameters, the system pro-
vides control of browsing activities, user charac-
teristics, the mix of users in a simulation, types
of advertising, how ads are served to users, the
impact of ads, and more.

Events in the original DASS model do not in-
clude time stamps, and therefore it has a lim-
ited ability to model ad impact that changes
over time. Since these situations are of inter-
est for this paper, and other applications, DASS
has been extended to address this shortcoming.
This time-based version of DASS is described in
Appendix A. It closely follows the original DASS
framework with additional parameters that gen-
eralize the ad impact model.

It is possible to run “virtual experiments” with
both versions of DASS. For each ad channel bj ,
where j = 1, . . . , J are the channels included in
the simulation, an experiment is run. In each
experiment, two sets of path data are gener-
ated; one with all ad channels 1, . . . , J on and
the other with a single ad channel, k, turned
off. The difference between the number of con-
versions generated by these two sets of paths is
the incremental value of the kth ad channel. The
results of such experiments provide the ground
truth needed to evaluate and compare attribu-
tion models. It also aligns the evaluation with
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the causal objective described above. However,
the key to the evaluation is the specification of
the underlying simulation parameters, which de-
termine the marketing conditions under which
the attribution models are being asked to per-
form.

5 Types of Ad Effectiveness

Advertising can impact user behavior in various
ways. Within the simulator, we can specify both
the mechanism and strength of ad impact on user
behavior. Figure 1 illustrates different ways that
a search ad can impact user behavior.

The most direct impact that a search ad im-
pression can have on user behavior is to encour-
age the user to visit the advertiser’s website di-
rectly via a paid click, which provides the op-
portunity to make a purchase (i.e., to generate
a conversion). The magnitude of this impact is
controlled via the Click Through Rate (CTR) for
an ad. An additional click-related factor is the
bounce rate. This indicates the probability that
the user finds the advertiser’s website to be ir-
relevant, or accidentally clicks, and immediately
resumes their previous browsing activity without
impact.

Alternatively, a search ad may have a less
direct impact on user behavior. See the “im-
pression effect” and “click effect” connectors in
Figure 1. For example, search ad impressions
and/or search ad clicks, may encourage users
to change their downstream browsing behavior.
At a later time, exposed users may be more
likely to do another search, perform a branded
search, or visit the advertiser’s website directly.
These behavioral changes are realized in DASS
through modifications of the user transition ma-
trix, which controls user browsing behavior. Fig-
ure 1 also reflects the possibility that a search im-
pression could impact the rate at which a user
will convert, conditioned on a visit to the ad-
vertiser’s website, without otherwise impacting
the user’s downstream browsing behavior. This
impact is analogous to the impact that brand ad-
vertising can have on offline purchases. A brand
ad may not drive a user to the store, but it may

help with brand selection once the user is in the
store.

Downstream impact on user behavior can be
temporary, diminishing very quickly after ad ex-
posure, or persistent, permanently impacting all
future browsing behavior. When a user is ex-
posed to an ad, components of that user’s tran-
sition matrix are scaled to reflect ad impact and,
as time passes, the transition matrix will revert
towards its initial specification. The persistency
of ad impact (i.e., the rate of reversion) is con-
trolled by separate parameters for impressions
and clicks. These parameters are another way
that ad effectiveness can be modulated in the
simulation.

Finally, ads may be preferentially served to a
specified set of users. That is, DASS allows for
ad targeting, and each type of ad can have a dif-
ferent type or magnitude of impact across users.
So, many combinations of ad channels, types of
ad impact, magnitudes of ad impact, and audi-
ences can be considered in an individual DASS
scenario. Each scenario represents a different
challenge for an attribution model, and we would
like to know how well an attribution model esti-
mates the causal objective under the advertising
situation posed by the scenario. More interesting
still is an assessment of an attribution model’s
ability to estimate a causal objective across a
wide range of reasonable and informative DASS
scenarios. This exercise is most useful when sce-
narios are created and organized with the goal of
shining a light on the fundamental capabilities
and limitations of an attribution model. This
organization of these scenarios is discussed next.

6 Evaluation

An important aspect of attribution model eval-
uation is recognition of the range of marketing
conditions under which the evaluation is taking
place. In this paper, these conditions are speci-
fied by the parameters of the DASS simulation.
We define a “scenario” as the specification of
a single set of DASS parameters. A “scenario
family” corresponds to multiple sets of closely
related parameter specifications. These specifi-
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Figure 1: Diagram of the types of ad effectiveness. Serving a search ad to a user has the potential to
impact user behavior in different ways. The ad may result in a direct click through to the advertiser’s
website, or it could have a downstream effect on the user’s browsing behavior, or increase the
likelihood to convert once the user is on the advertiser’s website. Any of these mechanisms could
lead to additional conversions.

cations differ by one, or at most two, parameter
values. Most often, the parameter that is var-
ied changes the magnitude of the ad impact so
that the scenario family can be used to deter-
mine an attribution model’s ability to measure
ad effectiveness under different mechanisms of
advertising impact, as described above.

6.1 Scenario Family Categorization

DASS is highly flexible and the list of advertis-
ing scenarios that can be created is innumerable.
Although we have considered over 40 advertising
scenario families, we confine the following discus-
sion to a more limited canonical set that focuses
on the search and display ad formats. These
scenario families are most informative in terms
of identifying primary algorithm capabilities and
limitations and are sufficient for demonstrating
a systematic evaluation process. They are clas-
sified into four main categories:

1. Foundational : Single ad channel where ad
effectiveness varies.

2. Variable Ad Effectiveness: Ad impact de-
cays over time and/or varies with ad fre-
quency (i.e., there is ad burn-in and fa-
tigue).

3. Multiple Channel : Situations in which mul-
tiple ad channels are present.

4. Ad Targeting : Ads are preferentially served
to a group of users with traits or behaviors
that differ from others.

6.1.1 Foundational Scenario Families

Scenario families in the foundational class in-
clude a single advertising channel with a single
mode of ad effectiveness. The magnitude of ad
effectiveness varies across the scenarios within
this scenario family. The objective is to under-
stand how well attribution models can capture
and account for the modes of ad effectiveness de-
scribed in Section 5.

1. Search Click Through: A search ad impacts
user behavior by increasing the probability
of a visit to the advertiser’s website via a
paid click. The CTR varies across scenarios
in this scenario family.

2. Search with Click Effect: A search ad
permanently impacts a user’s downstream
browsing behavior via a click on the ad.
Clicking on a search ad increases the prob-
ability of performing brand related searches
and visiting the advertiser’s website directly.
The click effect parameter varies across sce-
narios in this scenario family.

3. Display with Impression Effect: Exposure to
(or viewing) a display ad permanently im-
pacts a user’s downstream browsing behav-
ior by increasing the probability of search-
ing or visiting the advertiser’s website di-
rectly. The impression effect parameter
varies across scenarios in this scenario fam-
ily.
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A foundational scenario family that we do
not use in this evaluation is the scenario in
which search ad impressions impact downstream
user browsing behavior. Currently, search im-
pressions are not available to attribution mod-
els. Without search impressions, no attribution
model is capable of measuring the value of search
when there is impression value, as Figure 6 in
Sapp et al. [2016] illustrates. The scenario does
not provide useful differentiating evidence across
the models and so we do not include it in this
model evaluation.

6.1.2 Scenario Families with Variable Ad
Effectiveness

Scenario families in the Variable Ad Effective-
ness category also include a single mode of ad
effectiveness and a magnitude of ad effectiveness
that varies across scenarios. However, in these
scenario families, the impact of an ad can vary
with frequency and decay over time. The objec-
tive is to understand how well attribution models
work when these types of variations in ad effec-
tiveness are present.

1. Decaying Ad Impact: A display ad impacts
the downstream behavior of a user by in-
creasing the probability of a related search
or direct visit to the advertiser’s website.
This impact decays across time as specified
by a parameter that specifies the half-life of
ad impact. This half-life parameter varies
across scenarios in this scenario family.

2. Burn-in: Exposure to a display ad perma-
nently impacts downstream browsing be-
havior of a user by increasing the probabil-
ity of searching or visiting the advertiser’s
website directly. However, successive ad ex-
posures have an increasing, or decreasing,
marginal impact. Burn-in is controlled by
a parameter that changes the number of ad
exposures required to reach the ad exposure
with the maximum marginal impact on user
behavior. This parameter varies across sce-
narios in this scenario family.

In the interest of brevity, an additional and
related variable ad effectiveness scenario family

is not included in this example evaluation. In
this scenario family, display ads experience fa-
tigue over multiple ad impressions. Fatigue is
controlled by a parameter that changes the rate
at which the marginal effectiveness of ad impres-
sions approaches zero across multiple ad expo-
sures.

6.1.3 Scenario Families with Multiple
Channels

Scenarios with multiple channels help identify
the extent to which the effectiveness of one chan-
nel might be erroneously attributed to another.
In these scenarios, the ad effectiveness of one ad
channel remains fixed while the other is allowed
to vary.

1. Two Display Channels: Two display chan-
nels are served on different browsing states,
and both channels permanently impact
downstream browsing behavior of a user
by increasing the probability of searching
or visiting the advertiser’s website directly.
The magnitude of ad impact of one chan-
nel varies by increasing the impression effect
parameter. Ideally, increasing the impact of
this channel should not impact the conver-
sions attributed to the second channel.

2. Two Search Channels Click Through:
Generic search and branded search chan-
nels, served on different states (i.e., with
independent sets of keywords), are both
present in this scenario family. Both search
ad channels impact user behavior by directly
increasing the probability of a visit to the
advertiser’s website via a paid click through.
The CTR of the generic search channel only
varies across scenarios in this scenario fam-
ily.

3. Independent Search Channels: Generic
search and branded search channels, served
with independent sets of keywords on dif-
ferent states, are both present in this sce-
nario family. Branded search ads impact
user behavior by increasing the probability
of a visit to the advertiser’s website via a
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paid click. Generic search ads impact the
downstream browsing behavior of a user by
increasing branded and generic searches and
increasing direct visits to the advertiser’s
website. Ad impact varies for the generic
search channel only.

4. Search and Display Channels: Both search
and display ad channels are included in this
scenario family. Search ads impact user be-
havior by increasing the probability of a
visit to the advertiser’s website via a paid
click. Display ads impact downstream user
behavior by driving additional branded and
generic searches and direct visits to the ad-
vertiser’s website. Display ad effectiveness
varies in this scenario family by increasing
the magnitude of the impression effect pa-
rameter.

6.1.4 Scenario Families with Demo-
graphic Ad Targeting

Scenarios families with ad targeting help identify
the extent to which attribution models provide
useful information in the presence of ad target-
ing. In these scenario families, users who are
more likely to be served ads are, in some way, de-
mographically different from users who are less
likely to be served ads. The magnitude of dif-
ference between these two sets of users is var-
ied across the scenarios in each scenario family.
These are challenging situations for attribution
models because it is difficult to find an appropri-
ate set of unexposed users to compare with the
set of exposed users.

1. Ad Targeting For Display Ad Channel: The
inherent probability of conversion is varied
across two groups of users. For example,
these user groups may be thought of as hav-
ing different age and gender demographic
distributions which result in different levels
of baseline interest in the advertiser. Fur-
thermore, the advertiser is more interested
in showing ads to the user group with the
higher level of baseline interest. In this sce-
nario family, a single display ad channel can
impact the downstream behavior of a user.

The intensity of display ad targeting is sim-
ulated by increasing the rate at which the
more targeted user group will be exposed
to, and impacted by, display ads relative to
the less targeted user group.

6.1.5 Other Potential Scenario Families

There are many other possible scenario families
that can be considered in evaluating attribution
models. We expect the number of useful sce-
nario families to change as analysis needs grow
and attribution models advance over time. How-
ever, for a scenario family to provide discrimina-
tory value between models, at least one attribu-
tion model needs to be sufficiently capable within
that scenario family. Scenario families that are
not differentiating can provide insight into at-
tribution model limitations, but are not helpful
with model selection. A few examples of other
potential scenario families include: the cannibal-
ization of organic clicks by paid clicks, behavioral
ad targeting (re-targeting users who have a his-
tory of interaction with the advertiser), and un-
observable ad channels (e.g., offline advertising
and digital channels that are beyond the attribu-
tion model’s data scope). These are challenging
scenarios for any attribution model.

6.2 Scoring

6.2.1 Scenario Level Scoring

Attribution ground truth is generated by run-
ning a virtual experiment, and this experiment
depends on the causal measurement objective, as
discussed in Section 3. In this paper, the target
objective is the number of incremental conver-
sions (IC) generated by each channel. Let xT
be the number of conversions generated by run-
ning the simulation with all ad types on, where T
indicates all ads are included in the simulation.
Let xj be the number of conversions generated
by running the simulation with all ad types on
except for ad type bj . Then, the IC for ad type
bj is δj = xT − xj . This value is the number of
conversions lost when bj is not present.

The objective of estimating bj is very sensi-
ble. It directly corresponds to a real world ex-
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periment that an advertiser might run to assess
ad effectiveness (i.e. turn off channel bj for a
subset of users and estimate the number of con-
versions that are lost as a result). However, this
objective does not conform to the “last event ac-
counting principle” described in Section 2, since∑

j δj usually will not match the total number
of observed conversions when all channels are on.
More importantly, we would like to include rules-
based attribution models, which do conform to
the “last event accounting principle”, in our eval-
uations and comparisons without disadvantaging
them. Consequently, we relax the objective and
require attribution models to allocate the cor-
rect proportion of incremental conversions across
paid ad channels.

Let x0 be the number of conversions with all
ads off. The attribution objective, relative incre-
mental conversions for ad type j, is given by,

ρj = (xT − x0)× δj∑
i δi

. (1)

In the evaluations below, the share of the relative
IC for paid ad channels that is typically reported
is given by,

ρshare
j =

ρj
x0 +

∑
i ρi

. (2)

It is worth noting that ρj is not suitable for
situations in which

∑
i δi is zero, or close to zero

(e.g., all ad channels are completely ineffective).
For these cases, we use an alternative scoring,
which is defined in Appendix B.

6.2.2 Aggregate Scoring

Attribution model evaluation requires a way to
measure model performance for an individual
scenario and across the scenarios of a scenario
family. For each paid ad channel in each scenario
within a scenario family, the relative incremen-
tal conversions are computed as described above.
These results are standardized before being com-
bined. The standard error of the estimate for rel-
ative incremental conversions is found by boot-
strapping the user paths. Let ρj,k be the target
share of incremental conversions for the jth paid
channel in scenario k, and let SE(ρj,k) be the

standard error of ρj,k. An estimate ρ̂j,k of ρj,k
can be calculated for each attribution model i.
The error score of model i for the jth paid chan-
nel in scenario k is

e
(i)
j,k =

|ρ̂(i)
j,k − ρj,k|
SE(ρj,k)

. (3)

The scenario specific average error score for
attribution model i across the J paid ad channels
is

e
(i)
k =

∑
j

wje
(i)
j,k, (4)

where wj are the ad channel specific weights that
can be determined depending on the importance
of each ad channel within a scenario. Therefore,
for scenario family S composed of K scenarios
and J paid ad channels, the error score for attri-
bution model i is the average error across each
paid ad channel and scenario,

Err
(i)
S =

∑
k

vke
(i)
k , (5)

where vk are scenario specific weights. Similar
to specification of wj , the vk can be assigned to
reflect the relative importance of each scenario.
These errors can be used to compare model per-
formance for a scenario family.

In this evaluation example, we weight the J
ad channels and K scenarios uniformly across
scenario families. However, weighting can be
non-uniformly distributed, depending on the im-
portance of ad channels and the known, or per-
ceived, relevance of scenarios within a scenario
family. For example, it may be desirable to set
wj of Equation 4 to be proportional to the ex-
pected frequency of ad events for each channel
j.

As we are primarily interested in determining
which model performs best overall, scenario fam-
ily errors can be further rolled up for each al-
gorithm to rank attribution models in an eval-
uation (i.e. a scenario family category, or a
specified group of scenario families of interest).
This overall error score Q(i) is determined by a
weighted average of the scenario family errors in
an evaluation,

Q(i) =

∑
SWSErr

(i)
S∑

SWS
, (6)
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where scenario family specific weights WS can be
assigned based on the known, or perceived, im-
portance of individual scenario families. Some
scenario families may be more representative of
real world situations for certain advertisers, mak-
ing it more appropriate to favor algorithms that
perform well in those cases. For example, an
advertiser whose advertising budget goes exclu-
sively to search may be less concerned about
model performance on display focused scenario
families.

6.2.3 Qualitative Scoring

While the scenario level and aggregate level scor-
ing methods are useful in ranking model perfor-
mance, these metrics do not always convey the
full performance story as they only measure the
average error across scenarios. A more complex
scoring system might be able to account for ad-
ditional qualitative considerations, but for now
we give them separate attention.

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

0

2000

4000

6000

0.00 0.25 0.50 0.75 1.00
Parameter

O
ut

co
m

e

●

●

●

Truth

Model A (ErrA = 5.03)

Model B (ErrB = 3.28)

Qualitative Scoring

Figure 2: Illustration of the importance of qual-
itative considerations in assessing model perfor-
mance. Although Model B has a lower scenario
family error score, it does not capture the shape
of the Truth curve as well as Model A.

In Figure 2, Model A captures the increasing
trend of the ground truth with a relatively sta-
ble offset across all parameter values. Model B,

on the other hand, does not perform well in cap-
turing the trend, but has a lower error score. In
this example, Model B outperforms Model A if
only score is considered. However, Model A has
desirable characteristics that are not captured in
the score comparison, as it is able to appropri-
ately track the changes in the varying parame-
ter. Figure 2 illustrates why it is important to
consider both quantitative and qualitative meth-
ods in evaluating and understanding model per-
formance. In the scenario family examples that
follow, both methods will be used in discussing
model performance.

6.3 Results

We evaluate the first interaction, last interac-
tion, linear, matched-pairs DDA (MP-DDA),
and MUDDA attribution models [Help, 2017b,a,
Kelly et al., 2018] with the scenario families
described in Section 6.1. The first interaction
model assigns full credit to the first observable
event in a converting path. Similarly, the last
interaction model assigns full credit to the last
observable event prior to the conversion. Un-
like first and last interaction, the linear model is
a multi-touch attribution model in which credit
is distributed evenly across all observable events
preceding the conversion. The MP-DDA and
MUDDA algorithms are data-driven approaches
to attribution. These models compare the prob-
abilities of conversion in converting and non-
converting paths to assign credit to a target ad-
vertising event. The counterfactual gain of each
event in a path (comparison of conversion proba-
bility for paths with the event compared to paths
without the event) is found. The primary dif-
ference between these two models is that MP-
DDA looks at all permutations of touch points
for K events prior to conversion in a path [Help,
2017a], while MUDDA only considers the se-
quence of events upstream from the target ad-
vertising event whose impact is being evaluated.
Among these models, MUDDA is the only one
that is aligned with a causal view of attribution
[Rubin, 1974].

For this evaluation, we assume the attribution
data scope includes organic search clicks, direct
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navigations to the advertiser’s website, display
ad impressions and clicks, search ad clicks, and
conversions. Search impressions are not observ-
able. The evaluation is performed in the context
of this data scope and the reporting requirements
of the last event accounting principle, discussed
previously, are met by all of the attribution al-
gorithms.

Table 1 provides a quantitative summary of
model performance across scenario families. Al-

gorithm errors Err
(i)
S are reported for each sce-

nario family and the overall error score Q(i)

is determined using equal weighting across sce-
nario families. The causal attribution model,
MUDDA, performs best in most scenarios.

As noted previously, it is important to look
beyond the evaluation scores to better under-
stand the relative and absolute model perfor-
mance. So, next we include a qualitative dis-
cussion of performance for each scenario family.

Foundational Scenarios. In the first two sce-
nario families, only the search ad channel is
present and we vary the level of ad effective-
ness in different ways. In the first scenario
family, we vary click through rate. No impres-
sion or persistent click effects are present. The
CTR parameter controls the rate that users click
through to the advertiser’s website from a search
ad. This scenario family evaluates model per-
formance when an ad has a direct and immedi-
ate impact on user behavior with no subsequent
downstream impact. In the second scenario, we
vary the impact of an ad click on downstream
browsing behavior. There is a small fixed CTR
and no impression effect. In this scenario fam-
ily, clicks on search ads increase the likelihood of
brand related searches and visits to the adver-
tiser’s website by organic clicks and direct navi-
gations.

Figure 3 is a plot of the true incremental con-
versions and each algorithm’s attributed conver-
sions for different search click through rates. As
the ads become more effective, the number of
true incremental conversions increases. All of the
attribution models do relatively well in tracking
the true number of incremental conversions over
all levels of CTR. Little differentiation is seen

between the models in this scenario family since
there is only one paid channel for the models to
attribute credit. On its own, this scenario fam-
ily is not particularly useful for differentiating
model performance for this evaluation, perhaps
with the exception of the MP-DDA model, which
has a larger discrepancy compared to other mod-
els. However, it is worthwhile to consider this
scenario because it is a simple canonical situation
that an attribution model is expected to handle
well. The opportunity for more differentiation
across models exists when there is more than one
search channel. This is illustrated below in the
multiple channel scenario family category.

●●●●●

●

●●●●

●
●●●●

●

●●●●

●

●

●

●

●

0 0.0625 0.125 0.1875 0.25

0%

20%

40%

Search Ad Effectiveness from Paid Click Through

A
lg

or
ith

m
 C

on
ve

rs
io

n 
S

ha
re

●

●

●

●

●

●

Ground Truth
First Interaction
Last Interaction
Linear
MP−DDA
MUDDA

Foundational: Search Click Through

Figure 3: Foundational scenario family with one
search ad channel. This plot shows the at-
tributed IC share to search as search ad click
through rate varies across scenarios.

The second search channel scenario, illus-
trated in Figure 4, indicates that most models
are unable to recognize the change in incremental
conversions for increasing levels of ad effective-
ness. First interaction, linear, and MUDDA are
able to slightly capture the upward slope, but
MP-DDA and last interaction perform poorly.
MP-DDA has a large positive offset but tracks
the changes in varying ad effectiveness. Last in-
teraction is unable to capture the trend across
scenarios, as this model is incompatible with a
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First Interaction Last Interaction Linear MP-DDA MUDDA

Search Click Through 0.84 1.07 0.94 4.01 1.1
Search with Click Effect 0.79 2.98 1.47 7.68 1.23
Display with Impression Effect 13.98 7.54 4.54 5.97 1.05
Decaying Display Ad Impact 15.05 2.55 7.57 2.31 1.22
Display Burn-in 20.8 2.35 10.92 2.16 1.5
Two Display Channels 11.87 6.09 3.83 4.69 0.59
Two Search Channels Click Through 2.24 0.76 1.43 1.61 1.43
Independent Search Channels 0.84 2.2 1.05 4.75 0.79
Search and Display Channels 13.26 5.23 5.22 4.42 0.92
Display Ad Targeting 7.93 3 3.29 1.61 0.92

Overall Error 8.76 3.38 4.03 3.92 1.07

Table 1: Scenario family errors and overall error by algorithm. Cells highlighted in gray indicate
the algorithm with the lowest error score Q(i). Overall, MUDDA performs best in this evaluation.

mechanism of ad effectiveness that affects down-
stream browsing behavior. The performance of
MUDDA can be explained by a combination of
missing information due to scoping, reporting re-
strictions and “user browser dissimilarity”, as in-
troduced in Section 4.2 of Sapp and Vaver [2016].
These are all areas to consider in the process of
improving and better understanding model per-
formance.
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Figure 4: Foundational scenario family with one
search ad channel that has downstream impact
on browsing behavior. This plot shows the at-
tributed IC share to search as persistent ad effec-
tiveness from a search click through varies across
scenarios.

Next, we consider the case in which display
ads impact the downstream browsing behavior
of users. After a display ad impression, users
may become more likely to perform branded and
generic searches and visit the advertiser’s website
through direct navigation.
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Figure 5: Foundational scenario family with one
display ad channel that has downstream impact
on browsing behavior. This plot shows the at-
tributed IC share to display as ad effectiveness
from display impressions vary across scenarios.

Results from this scenario family are captured
in Figure 5. Last interaction is unable to cap-
ture the incremental conversions from the dis-
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play ad because an ad impression can never be
the last interaction prior to a conversion. There
will always be a site visit between an impres-
sion and a conversion and the model attributes
full credit to the event immediately before the
conversion. First interaction is able to capture
the general trend of the incremental conversions,
but has a very significant offset. This model rec-
ognizes the role of attribution, but it is not ca-
pable of identifying the extent to which the im-
pact generates incremental conversions. The lin-
ear model performs better than the other rules-
based models, but it still does not quite capture
the IC share. The MP-DDA model performs
very poorly, which is a result of the downstream
matching that the model performs. In this sce-
nario, ads have downstream impact on brows-
ing behavior, yet MP-DDA requires the down-
stream paths to be the same. Only the MUDDA
model is able to capture the causal impact of
downstream ad effectiveness reasonably well, as
it matches on the paths upstream of the ad event
only.

When a model doesn’t perform well in a foun-
dational scenario family it is an indication that
the model will also have trouble in more com-
plex scenarios. We don’t expect the addition of
complexity to fix the more fundamental short-
comings of a model.

Variable Ad Effectiveness Scenarios. We
present results for two scenario families that vary
the rate at which ad impact decays across time
and saturates with ad frequency. These scenarios
have a single display ad channel in which adver-
tising has a downstream impact on user browsing
behavior and a small click through rate. After an
impression, ad impact can result in users being
more likely to perform generic and brand related
searches and more likely to visit the advertiser’s
website through organic browsing activity.

In the first scenario family, the rate at which
display ad impressions lose effectiveness across
time is varied. As the half-life of ad impact in-
creases, ads have a more sustained impact on
user behavior and ads generate more incremen-
tal conversions, as shown in Figure 6.

Qualitatively, the model performance is simi-
lar to the results of the foundational display ad
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Figure 6: Variable ad effectiveness scenario fam-
ily with a single display ad channel that impacts
downstream browsing behavior. This plot shows
the attributed IC share as the half-life of display
impressions increases.

scenario family described previously. MUDDA
performs reasonably well, while the other mod-
els do not. Yet, in Table 1, MP-DDA and last
interaction are ranked lower than first interac-
tion and linear. This is a result of larger vertical
offsets for the linear and first interaction models,
rather than a true change in the capabilities of
these models to respond to changes in ad effec-
tiveness. This scenario family demonstrates the
importance of considering both quantitative and
qualitative performance in understanding the ca-
pabilities of a model.

In the second variable ad effectiveness scenario
family, we consider the impact of varying the
burn-in of display impressions on model perfor-
mance. A parameter is varied that controls the
number of ad exposures required to reach max-
imum marginal impact. Similar to the previous
scenario family, display ads have a small CTR
and change downstream browsing behavior.

Figure 7 illustrates that only MUDDA is some-
what capable of recognizing ad effectiveness that
diminishes with frequency. Although MUDDA
does not account for this diminished ad effective-
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Figure 7: Variable ad effectiveness scenario fam-
ily with a display ad channel that impacts down-
stream browsing behavior. This plot shows the
attributed IC share as the burn-in of display ad
impressions varies across scenarios. The x-axis
indicates the number of ad impressions required
to reach the maximum marginal effect on user
behavior.

ness at the event level, its matching mechanism
inherently captures the impact.

Multiple Channel Scenarios. We consider four
scenario families to assess model performance
in the presence of multiple channels. In the
first scenario family, two display ad channels are
served on different user activity states. The ef-
fect of an impression in one channel is held con-
stant while the impression effect in the second
channel is varied. Since the campaigns are served
on different activity states, the channels oper-
ate independently. We expect similar results to
the Foundational scenario family with one dis-
play ad (see Figure 5), but the primary objective
is to determine if the increasing effectiveness of
one channel is misattributed to the channel with
fixed ad effectiveness.

The results from this scenario are illustrated
in Figure 8. Figure 8(b) shows that the display
channel with fixed ad impact does not take IC
share credit for the display channel with vari-

able ad impact. With respect to model ranking,
these results closely resemble the foundational
case in which only one display channel is present.
Again, MUDDA is the only algorithm capable of
capturing the downstream impact of the display
channel with varying ad effectiveness when two
channels are present in the simulation.

Since the ads are served on different activ-
ity states, the channels do not interact with
each other and Figure 8(b) does not provide
additional information about algorithm perfor-
mance. The models either consistently over-
estimate (first interaction and linear), underes-
timate (MP-DDA and last interaction), or ac-
curately estimate (MUDDA) the IC share for
both channels across all levels of ad effectiveness.
However, in a scenario family in which multiple
ad channels are served on the same state, we ex-
pect the channels to interact with each other and
the models to misattribute credit. We do not in-
clude this scenario family in the evaluation as
the models do not have enough information to
perform well in this situation and so the results
will be non-differentiating across models.

Next, we consider the case in which two search
channels are present; search ads placed against
branded search terms and search ads placed
against generic search terms. Similar to the pre-
vious scenario family, these channels are inde-
pendent and served on unique activity states so
that, effectively, these search campaigns have dif-
ferent sets of keywords. This scenario family
is analogous to the Foundational Search Click
Through scenario family. In this scenario family,
the click through rate is fixed for the branded
search channel and the click through rate varies
across scenarios for the generic search channel.

Figure 9 shows that all models are able to
perform well in attributing credit to the generic
search channel. Table 1 indicates that there is
more differentiation between models compared
to the search CTR scenario with one channel
only, and that last interaction model performs
best. This scenario family is an example of
an advertising situation in which last interac-
tion may outperform the other models, as the
mechanism of ad effectiveness is a direct click
through to the advertiser’s website. The branded
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(a) This plot shows the attributed IC share to the
display ad channel that has varying ad impact from
an impression.
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(b) This plot shows the attributed IC share to the
display ad channel that has fixed ad impact.

Figure 8: Multiple channel scenario family with two display ad channels that have downstream
impact on browsing behavior. The plots indicate that the effectiveness of one channel is not
misattributed to the second display channel with fixed ad effectiveness.

search channel does not take credit away from
the generic search channel with varying click
through rate and so Figure 9 is sufficient to il-
lustrate attribution model performance.

The third scenario family with multiple chan-
nels also has two independent search channels;
search ads placed against branded search terms
and search ads placed against generic search
terms. In this case, the generic search ad has
a fixed click through rate and we vary the mag-
nitude of impact that an ad click has on down-
stream user browsing behavior. The branded
search channel has a fixed click through rate and
no downstream impact on user browsing behav-
ior. As in the scenario family with two display
channels, the primary objective is to determine
if the increasing effectiveness of one channel is
misattributed to the channel with fixed ad effec-
tiveness.

Figure 10 indicates that most of the models
are able to recognize the increasing downstream
impact from generic search ads. As in the sin-
gle search channel scenario family, the last inter-

action algorithm has the most trouble capturing
the upward trend of the incremental conversions.
Since the ads are served independently of each
other, we observe again that the branded search
channel with fixed ad impact does not take credit
for the ad impact of the generic search channel
with varying effectiveness (plot is not shown).

This scenario family can also be developed
with the search channels served on the same
state, and therefore, “competing” with each
other. This would be the case if the campaigns
use overlapping sets of keywords. However, this
scenario family is not included in the evaluation
as the attribution models do not have informa-
tion to understand this overlap. More specifi-
cally, if one channel is turned off there may be
no impact to the number of overall conversions.
This may be due to the ineffectiveness of this
channel, or due to an overlapping channel with
similar ad effectiveness showing ads in place of
this channel. With the modeling objective de-
scribed in Section 3, there is no way for an attri-
bution model to recognize the difference.
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Figure 9: Multiple channel scenario family with
independent “branded” and “generic” search
channels that do not have any downstream ad
effectiveness. This plot shows the attributed IC
share to the generic search channel as the generic
search click through rate varies across scenarios.

The final multiple channel scenario family we
consider has a display and search channel. In
this scenario family, the search channel has a
fixed CTR and no downstream ad impact. Dis-
play impressions can increase the user’s propen-
sity to conduct generic and branded searches and
visit the advertiser’s website from organic activ-
ity. The impact from these impressions changes
across the scenarios of this family.

The results of this scenario family, shown in
Figure 11, closely follow the results from the
foundational display scenario family. As ob-
served in the previous two scenario families with
two ad channels, the models are able to dis-
criminate between the effectiveness of channels
that are served on different activity states. In
this case, the search ad channel does not erro-
neously take credit for display channel effective-
ness. Similarly, in an additional scenario family
not included in this evaluation, we observe that
the display ad channel does not take credit from
a search ad channel when search ad impact varies
and display impact is fixed.
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Figure 10: Multiple channel scenario family with
independent “branded” and “generic” search
channels. This plot shows the attributed IC
share to the generic search channel, which has
a downstream impact on browsing behavior
through search click throughs that is varied along
the x-axis.

Demographic Ad Targeting Scenarios. The
last scenario family we present illustrates the im-
pact of ad targeting when display ads are pref-
erentially served to one group of users over an-
other. In this scenario family, there are two
groups of users. The user groups may have differ-
ent baseline propensities to convert and propen-
sities to be served and impacted by ads. The
degree of ad targeting is controlled by varying
these differences between the user groups, which
users receive ads, which users are impacted by
ads, and which users are more likely to convert.
These differences are varied to change the degree
of ad targeting.

Figure 12 indicates that most models are un-
able to capture the user heterogeneity in the
data. First interaction, linear, and MUDDA ap-
pear to track the increase in incremental conver-
sions, but since these models do not take into
consideration heterogeneous user sets, the mod-
els exhibit an offset from the true IC share and
it is unlikely they will perform well in other ad
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Figure 11: Multiple channel scenario family with
one display and one search ad channel. The
search ad channel has a fixed click through rate
and the display ad channel downstream brows-
ing behavior. This plot shows the attributed IC
share to display as display ad effectiveness varies
across scenarios.

targeting situations. MUDDA performance de-
teriorates as ad targeting increases because, in
matching the exposed and unexposed groups, the
model can not take into consideration the inher-
ently different conversion rates between users.
As there is insufficient information in the attri-
bution data, this scenario may not be worthy of
inclusion in this evaluation.

7 Conclusion

In order to evolve and remain relevant, attribu-
tion modeling needs an impartial model evalua-
tion process with a clearly defined causal mea-
surement objective. This process includes quan-
tifying a model’s ability to handle canonical ad-
vertising scenarios and a means for aggregating
results across these scenarios. It also includes
a hierarchical structure for organizing scenarios
that helps to put results into perspective and fa-
cilitate algorithm improvement.

In this paper, we outline an evaluation process
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Figure 12: Demographic ad targeting scenario
family with one display ad channel that has a
downstream impression impact on user browsing
behavior. The two user groups become more dis-
tinct moving from left to right. This plot shows
the attributed IC share to display as the magni-
tude of ad targeting increases.

based on the Digital Advertising System Simu-
lator (DASS). DASS is an ideal tool for gener-
ating path data for evaluation scenarios due to
its flexibility and its ability to generate the truth
needed for evaluation. The example set of sce-
narios that are described here are by no means
complete. Any catalog of useful scenarios will
undoubtedly grow and evolve over time. New
capabilities will be added to the simulator, at-
tribution models will improve, new data sources
will be made available to attribution models, and
new questions about model capabilities will be
posed.

Attribution model evaluation should be
viewed as an emerging process. For example,
results from a few of the scenario families pre-
sented in this paper demonstrated model sensi-
tivity to parameter settings and scoping. The
model evaluation process can be improved by a
sensitivity analysis that considers a wider range
of DASS simulation parameters and degrees of
missing data.
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Through the scenario families presented
above, we see evidence that models adhering to
a causal view of attribution are likely to per-
form best in estimating the number of incre-
mental conversions generated by marketing ac-
tivity. However, a causally based model is no as-
surance of performance. These models are still
limited by the completeness of data sources, re-
porting requirements, and campaign implemen-
tation. There is plenty of room for improvement
in attribution modeling. A systematic evalua-
tion process is the best way to determine the
strengths and challenges that attribution mod-
eling must overcome to continue to be a useful
and trusted source of measurement.
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Appendix A Time-Based Sim-
ulator

This appendix describes an updated version of
DASS that takes into account the inter-arrival
time of user activities and generalizes the ap-
proach for specifying ad impact across multiple
ad exposures. Scenario families from the Vari-
able Ad Effectiveness category presented in Sec-
tion 6.1.2 were developed with this version of the
simulator.

A.1 Scale Function

In the initial implementation of the DASS simu-
lator, user behavior in the absence of advertising
is specified with a baseline transition matrix. An
ad serving event may impact downstream user

behavior through a scale factor that inflates one,
or more, transition probabilities of the baseline
matrix. For the time-based simulator the scaling
factor evolves across ad frequency and time, as
described in Appendix A.3. A classical S-curve
function is used to model user response to adver-
tising. The scale factor, Sk, is dependent on the
number of ad events shown to the user, nk, up
to the current point in time for channel k. After
the scale factor is applied, the transition matrix
is renormalized and the scaled transition matrix
is used to determine the next user activity.

The scale factor generated by channel k with
nk ads served is given by,

Sk(nk) = a(−1 +
2

1 + exp−b(nk−n0)
) + 1 + c (7)

where n0 is the number of ad serving events that
has the largest impact on the transition proba-
bilities and a, b, and c are additional parameters
that specify the S-curve function. The following
specifications are used to find a, b, and c:

1. Sk(0) = 1.
Before any advertising events from channel
k, user behavior is governed by the baseline
transition matrix.

2. Sk(∞) = Smaxk
.

The largest scale factor that can be gener-
ated by channel k is bounded by a maximum
value of Smaxk

.

3. Rmaxk
= dSk

dnk
Sk(n0).

The maximum scale factor change per ad
served for channel k occurs at n0. Prior to
reaching n0, increases in nk generate an in-
creased scale factor change per ad. After
reaching n0, increases in nk generate a di-
minished scale factor change per ad. The
maximum change is Rmaxk

.

The specification of n0, Smaxk
, and Rmaxk

defines
the scale function. In the context of variable ad
effectiveness, n0 determines the number of ad ex-
posures required to reach the maximum marginal
ad impact (ad burn-in), and Rmaxk

controls the
rate at which marginal ad impact diminishes (ad
fatigue).
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For example, in the display burn-in scenario
family presented in Figure 7, n0 varies and Smaxk

and Rmaxk
are fixed. For the case in which

n0 = 0, Smaxk
= 3.375, and Rmaxk

= 0.5, the
corresponding values of a, b, and c are 2.375,
0.421, and 0, respectively. In this scenario, the
scale functions for various values of n0 are shown
in Figure 13.
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Figure 13: Illustration of the scale functions for
n0 set to 0, 2, 4, 6, and 8 in the display burn-in
scenario family. As n0 gets larger, marginal ad
impact reaches Rmaxk

at a slower rate.

Figure 13 indicates how components of the
transition matrix are scaled as a function of the
ad frequency. The curves are bounded by the
maximum scale factor 3.375. For each curve, the
greatest scale change per ad event, 0.5, is reached
at the nth0 ad.

A.2 Time Dependence

Allowing the impact of an ad event to vary over
time is accomplished by defining a set of param-
eters that govern the inter-arrival time between
events, and by tracking the “effective frequency”
of ad exposures. Before describing these param-
eters, we explain how time is incorporated into
the simulation.

Over time, users engage and unengage with a
category or brand, as indicated by their brows-

ing activities. For example, searching or visiting
an advertiser’s website is a more engaged activ-
ity than visiting a third-party website. In the
simulation, user activity states are characterized
as either “engaged” or “unengaged”, and we ex-
pect the time between activities to vary based
on these labels. This characterization is used to
limit the number of parameters needed to control
the inter-arrival times in the simulation, which
is especially important when a simulation in-
cludes a large number of states. Additionally, the
time between a search and a click-through to the
advertiser’s website is modeled separately, since
this transition is expected to occur on a shorter
time scale.

For each type of transition, (i.e., engaged ac-
tivity to engaged activity, engaged to unengaged,
unengaged to engaged, and unengaged to unen-
gaged), the inter-arrival time τ = log10(ti+1− ti)
is sampled from a linear combination of D Gaus-
sian distributions that depend on the type of
transition. For example, for a transition from an
unengaged activity state to another unengaged
activity state, τ is sampled from the following
distribution,

puu(τ) =
D∑
d=1

αuudN (muud , σ
2
uud

) (8)

where subscript uu indicates an unengaged to
unengaged state transition,

∑D
d=1 αuud = 1, and

each component d may have a unique mean and
variance specification. Unique distributions that
follow the form of Equation 8 are specified for
the following transitions:

• Unengaged to unengaged state (puu)

• Unengaged to engaged state (pue)

• Engaged to unengaged state (peu)

• Engaged to engaged state (pee)

• Search to site visit state, or search click-
through, (pc)

Each distribution may have a unique set of
means, variances, and mixture probabilities. In
the simulation, there is a joint dependence of
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inter-arrival time and the type of consecutive ac-
tivity pair, which requires the inter-arrival time
and the second activity in the pair to be gener-
ated simultaneously. This process is described
below.

A.3 Determining Ad Impact Over
Time

Ad impact is modelled to allow the transition
matrix scaling factor to increase with ad expo-
sure and decrease with lack of ad exposure over
time. This is accomplished using an “effective
frequency” of ad exposure, n̂, which is tracked
across each user’s path for each paid ad chan-
nel. This parameter is dependent on the previ-
ous activities in the user path, the elapsed time
between ad events ∆t, and the half-life of the
effective frequency of ad exposures, td. The pa-
rameter td specifies the rate at which the impact
of ad exposures diminish across time.

Prior to the start of the simulation, the scale
function for channel k is fixed and determined
by the specified values for n0, Rmaxk

, and Smaxk
.

Values are also specified for the means, vari-
ances, and mixture probabilities of the set of
inter-arrival time distributions, and the half-life
of the effective frequency. Additionally, the ac-
tivity states a1, . . . , an are categorized as “en-
gaged” or “unengaged”. The updated simula-
tion that includes time dependent ad impact is
described below for a single user stream.

0. At the start of the simulation, prior to
any ad serving events, user activity is de-
termined by the baseline transition matrix.
The effective frequency of ad exposures is
set to zero (n̂previous = 0). It follows that
Sk(n̂ = 0) = 1, indicating no change to the
baseline transition matrix.

1. At the first ad serving event, set n̂ = 1.

2. Determine the next activity and sample the
corresponding inter-arrival time between ac-
tivities, ta, jointly through the steps out-
lined below.

(a) Determine whether the current activ-
ity state is categorized as “engaged” or

“unengaged”.

(b) Accordingly, sample from the two rel-
evant distributions described in Sec-
tion A.2 to find the two possible inter-
arrival times. One time, te, assumes
a transition to an engaged activity and
the other time, tu, assumes a transition
to an unengaged activity.

(c) For each inter-arrival time, te and tu,
compute the effective frequency and
the associated scaling factor in order
to find the updated transition matri-
ces, Me and Mu, respectively. The ef-
fective frequency is found by,

n̂updated = f(∆t, n̂previous)

= n̂previous(1/2)∆t/td , (9)

where ∆t = ta is the time since the
first ad was shown and td is the half-
life of the effective frequency specified
at the start of the simulation. Using
the corresponding transition matrices,
compute the probability of transition-
ing to an engaged activity, pe, and the
probability of transitioning to an unen-
gaged activity, pu. These probabilities
are found by summing the transition
probabilities of the unengaged or en-
gaged states corresponding to the row
of the current activity state.

(d) Use the normalized engaged or un-
engaged probabilities, pe/(pe + pu) or
pu/(pe+pu), to determine whether the
second activity type, ā, will be sampled
from the “engaged” or “unengaged” set
of states. For example, to determine if
the second activity type is “engaged”,
Bernoulli( pe

pe+pu
) ≡ 1. This sampling

also determines which of the two inter-
arrival times and updated transition
matrices to use.

(e) Find the set of transition probabilities,
q1, . . . , qn, that correspond to a transi-
tion to an activity of type ā with the
updated transition matrix.
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(f) Determine the second activity by
sampling from Multinomial(1, π),
with event probabilities π =
(q1/

∑
i qi, . . . , qn/

∑
i qi).

3. Update the effective frequency with Equa-
tion 9.

4. Scale the relevant transition probabili-
ties in the baseline transition matrix by
Sk(n̂updated) and renormalize in order to de-
termine the next activity in the user path.
If multiple media channels are included in
the simulation, scaling of the transition ma-
trix entries will be the product of the scal-
ings from each media channel. More detail
is provided in Section A.4.

5. Find the next activity, ā, and the corre-
sponding inter-arrival time, ta, between the
previous user activity and the upcoming
user activity according to Step 2. If an ad
is served, set n̂previous = n̂updated and set
n̂updated = n̂previous + 1.

6. Find ∆t, the time since the last ad was
served. Since there may be multiple activi-
ties between ads, ∆t ≥ ta always holds.

7. Update the effective frequency for the ad ex-
posure using Equation 9, where ∆t is now
the time since the last ad was served.

8. Repeat Steps 4-7 until the absorbing ac-
tivity state (typically “end of session”) is
reached.

A.4 Compounding Ad Impact From
Multiple Channels

When multiple ad channels are included in the
simulation, the impact from the scale factors can
be combined to create a compounded effect on
the baseline transition matrix. The compound-
ing impact of cross-channel advertising is con-
trolled by the following procedure:

1. Find the scaling factor Sk for each channel.

2. Let S be the largest transition matrix scal-
ing across all ad channels, and let P be the

product of these channel level scaling fac-
tors.

3. Specify a fixed (global) parameter, β ∈
[0, 1], that is used to control the compound-
ing effects of ads from multiple channels.
When β = 0, there is no compounding ef-
fect, and when β = 1, there is a com-
plete compounding effect of ads from multi-
ple channels.

4. Specify a fixed (global) parameter, S∗,
which can further limit the impact of ads
across all channels.

5. Use the scaling factor s = min[S + β ×
(P − S), S∗] to scale the baseline transition
matrix (as in the single channel case), and
renormalize.

Appendix B Relative Incre-
mental Conver-
sions

The target attribution objective, incremental
conversions (IC), was defined in Section 6.2.1.
Due to reporting restrictions, no channel can be
assigned a negative credit, even an ineffective
one. So, when at least one δj < 0, the for-
mula for the relative share of incremental con-
versions ρshare

j given in Equation 2 must be mod-
ified. This appendix describes IC scoring for sit-
uations in which the absolute IC is less than zero
for one or more ad channels in the simulation.

Classify the absolute incremental conversions
for each ad type bj into one of three disjoint sets:

S0 = {xj |δj = xT − xj = 0}
S− = {xj |δj = xT − xj < 0}
S+ = {xj |δj = xT − xj > 0}

In order to compute a relative IC, S+ 6= ∅1.

1The situation in which S+ 6= ∅ can happen in prac-
tice, and therefore these scenarios are worthy of consider-
ation. For evaluations that include these scenarios, it is
best to use a scoring metric based on the absolute number
of IC generated by each channel that does not attempt to
comply with reporting requirements that preclude nega-
tive credit.
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When S+ 6= ∅ and S− = ∅, the original for-
mula in Equation 2 can be used to find the rel-
ative share of IC for each bj . For the case in
which S+ 6= ∅ and S− 6= ∅, the relative IC share
are computed by rescaling the absolute IC in S+

and S−, as described below. Let fj be the target
share of incremental conversions, similar to the
ρshare
j from Equation 2.
The share of relative IC that occur in the

absence of observed ads in the simulation is
f0 = x0/xT . To find the relative IC share for
each observed ad channel, define

∆− =
∑
i:δi<0

δi

∆+ =
∑
i:δi>0

δi

To account for the negative contributions from
S−, the relative IC share for ads in S+ are in-
flated by the average size of δi in S−, which is

δ̄− = |∆−|
|S−| . Then, the true IC share for each paid

ad channel is

fj =


0 {δj ∈ S0}
(1− f0)× (δALL + δ̄−)

δALL
× δj

∆+ {δj ∈ S+}
(1− f0)× δ̄−

δALL
× δj
|∆−| {δj ∈ S−}

where δALL = xT − x0 is the total IC from all
ads. With this definition, f0 +

∑
fj = 1.0, since∑

δj∈S+
δj

∆+ =
∑

δj∈S−
δj

∆− = 1.

B.1 Example

This section illustrates a calculation of the rel-
ative incremental conversions when the IC of at
least one ad channel in the simulation is not pos-
itive. Suppose we have four ad channels present
in the simulation with the following absolute
number of conversions associated with each ad
type,

x0 x1 x2 x3 x4 xT
Conversions 50 90 80 105 110 100

Table 2: Absolute conversions in virtual experi-
ments.

In this simulation, the disjoint sets of ad types
are: S0 = ∅, {x3, x4} ∈ S−, and {x1, x2} ∈ S+.
Therefore,

∆− = (xT − x3) + (xT − x4) = −15

∆+ = (xT − x1) + (xT − x2) = 30

δ̄− = | − 15|/2 = 7.5

δALL = xT − x0 = 50

The relative IC share for non-ads is f0 =
50/100 = 0.5 and the relative IC share for ad
types 1, 2, 3, and 4 are:

f1 = 0.5× (50 + 7.5)

50
× 10

30
= 0.1917

f2 = 0.5× (50 + 7.5)

50
× 20

30
= 0.3833

f3 = 0.5× (−7.5)

50
× 5

15
= −0.025

f4 = 0.5× (−7.5)

50
× 10

15
= −0.05
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