Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits

Branislav Kveton 1 Csaba Szepesvári 2 3 Sharan Vaswani 4 Zheng Wen 5 Mohammad Ghavamzadeh 6 Tor Lattimore 2

Abstract

We propose a bandit algorithm that explores by randomizing its history of rewards. Specifically, it pulls the arm with the highest mean reward in a non-parametric bootstrap sample of its history with pseudo rewards. We design the pseudo rewards such that the bootstrap mean is optimistic with a sufficiently high probability. We call our algorithm Giro, which stands for garbage in, reward out. We analyze Giro in a Bernoulli bandit and derive a $O(K \Delta^{-1} \log n)$ bound on its n-round regret, where Δ is the difference in the expected rewards of the optimal and the best sub-optimal arms, and K is the number of arms. The main advantage of our exploration design is that it easily generalizes to structured problems. To show this, we propose contextual Giro with an arbitrary reward generalization model. We evaluate Giro and its contextual variant on multiple synthetic and real-world problems, and observe that it performs well.

1. Introduction

A multi-armed bandit (Lai and Robbins, 1985; Auer et al., 2002; Lattimore and Szepesvari, 2019) is an online learning problem where actions of the learning agent are represented by arms. The arms can be treatments in a clinical trial or ads on a website. After the arm is pulled, the agent receives its stochastic reward. The objective of the agent is to maximize its expected cumulative reward. The agent does not know the expected rewards of the arms and thus faces the so-called exploration-exploitation dilemma: explore, and learn more about arms; or exploit, and pull the arm with the highest estimated reward thus far.

A contextual bandit (Li et al., 2010; Agrawal and Goyal, 2013b) is a generalization of a multi-armed bandit where the learning agent has access to additional context in each round. The context can encode the medical data of a patient in a clinical trial or the demographic information of a targeted user on a website. In this case, the expected reward is an unknown function of the arm and context. This function is often parametric and its parameters are learned. In linear bandits (Rusmevichientong and Tsitsiklis, 2010; Dani et al., 2008; Abbasi-Yadkori et al., 2011), this function is linear; and the expected reward is the dot product of a known context vector and an unknown parameter vector. Arguably, the most used and studied exploration strategies in multi-armed and contextual bandits are Thompson sampling (Thompson, 1933; Agrawal and Goyal, 2013a), the optimism in the face of uncertainty (Auer et al., 2002; Abbasi-Yadkori et al., 2011), and the ϵ-greedy policy (Sutton and Barto, 1998; Auer et al., 2002). The ϵ-greedy policy is general and thus widely used in practice. However, it is also statistically suboptimal. Its performance heavily depends on the value of ϵ and the strategy for annealing it.

Optimism in the face of uncertainty (OFU) relies on high-probability confidence sets. These sets are statistically and computationally efficient in multi-armed and linear bandits (Auer et al., 2002; Abbasi-Yadkori et al., 2011). However, when the reward function is non-linear in context, we only know how to construct approximate confidence sets (Filippi et al., 2010; Zhang et al., 2016; Li et al., 2017; Jun et al., 2017). These sets tend to be conservative (Filippi et al., 2010) and statistically suboptimal.

The key idea in Thompson sampling (TS) is to maintain a posterior distribution over model parameters and then act optimistically with respect to samples from it. TS is computationally efficient when the posterior distribution has a closed form, as in multi-armed bandits with Bernoulli and Gaussian rewards. If the posterior does not have a closed form, it has to be approximated. Computationally efficient approximations exist in multi-armed bandits with $[0, 1]$ rewards (Agrawal and Goyal, 2013a). Such approximations are costly in general (Gopalan et al., 2014; Kawale et al., 2015; Lu and Van Roy, 2017; Riquelme et al., 2018).

To address these problems, bootstrapping exploration has been proposed in both multi-armed and contextual bandits...
Let each arm receive its reward. The reward of arm \(i\), denoted by \(\mu_i\), is its expected cumulative reward in \(n\) rounds (Lattimore and Szepesvari, 2019). Bootstrap has two advantages over existing exploration strategies. First, unlike OFU and TS, it is easy to implement in any problem, because it does not require problem-specific confidence sets or posteriors. Second, unlike the \(\epsilon\)-greedy policy, it is data driven and not sensitive to tuning. Despite its advantages and good empirical performance, exploration by bootstrapping is poorly understood theoretically. The strongest theoretical result is that of Osband and Van Roy (2015), who showed that a form of bootstrapping in a Bernoulli bandit is equivalent to Thompson sampling.

We make the following contributions in this paper. First, we propose a general randomized algorithm that explores conditioned on its history. We show that some instances of this algorithm are not sound. Second, we propose \(\text{Giro}\), an algorithm that pulls the arm with the highest mean reward in a non-parametric bootstrap sample of its history with pseudo rewards. We design the pseudo rewards such that the bootstrap mean is optimistic with a high probability. Third, we analyze \(\text{Giro}\) in a \(K\)-armed Bernoulli bandit and prove a \(O(K \Delta^{-1} \log n)\) bound on its \(n\)-round regret, where \(\Delta\) is the difference in the expected rewards of the optimal and the best suboptimal arms. Our analyses of the general randomized algorithm and \(\text{Giro}\) provide novel insights on how randomness helps with exploration. Fourth, we propose contextual \(\text{Giro}\). Finally, we empirically evaluate \(\text{Giro}\) and its contextual variant on both synthetic and real-world problems, and observe good performance.

2. Setting

We adopt the following notation. The set \(\{1, \ldots, n\}\) is denoted by \([n]\). We define \(\text{Ber}(x; p) = p^x(1 - p)^{1-x}\) and let \(\text{Ber}(p)\) be the corresponding Bernoulli distribution. In addition, we define \(B(x; n, p) = \binom{n}{x}p^x(1-p)^{n-x}\) and let \(B(n, p)\) be the corresponding binomial distribution. For any event \(E\), \(\mathbb{1}\{E\} = 1\) if event \(E\) occurs and \(\mathbb{1}\{E\} = 0\) otherwise. We introduce multi-armed and contextual bandits below.

A multi-armed bandit (Lai and Robbins, 1985; Auer et al., 2002; Lattimore and Szepesvari, 2019) is an online learning problem where the learning agent pulls \(K\) arms in \(n\) rounds. In round \(t\) \(\in [n]\), the agent pulls arm \(I_t \in [K]\) and receives its reward. The reward of arm \(i \in [K]\) in round \(t\), \(Y_{i,t}\), is drawn i.i.d. from a distribution of arm \(i\), \(P_i\), with mean \(\mu_i\) and support \([0, 1]\). The means are unknown to the learning agent. The objective of the agent is to maximize its expected cumulative reward in \(n\) rounds.

We assume that arm 1 is optimal, that is \(\mu_1 \geq \max_{i>1} \mu_i\). Let \(\Delta_i = \mu_1 - \mu_i\) be the gap of arm \(i\), the difference in the expected rewards of arms 1 and \(i\). Then maximization of the expected \(n\)-round reward can be viewed as minimizing the expected \(n\)-round regret, which we define as

\[
R(n) = \sum_{i=2}^{K} \Delta_i \mathbb{E} \left[\sum_{t=1}^{n} \mathbb{1}\{I_t = i\} \right].
\]

A contextual bandit (Li et al., 2010; Agrawal and Goyal, 2013b) is a generalization of a multi-armed bandit where the learning agent observes context \(x_i \in \mathbb{R}^d\) at the beginning of each round \(t\). The reward of arm \(i\) in round \(t\) is drawn i.i.d. from a distribution that depends on both arm \(i\) and \(x_i\). One example is a logistic reward model, where

\[
Y_{i,t} \sim \text{Ber}(1/(1 + \exp[-x_i^T \theta_i]))
\]

and \(\theta_i \in \mathbb{R}^d\) is the parameter vector associated with arm \(i\). The learning agent does not know \(\theta_i\).

If the reward \(Y_{i,t}\) was generated as in (2), we could solve our contextual bandit problem as a generalized linear bandit (Filippi et al., 2010). However, if \(Y_{i,t}\) was generated by a more complex function of context \(x_i\), such as a neural network, we would not know how to design a sound bandit algorithm. The difficulty is not in modeling uncertainty; it is in the lack of computationally efficient methods to do it. For instance, Thompson sampling can be analyzed in very general settings (Gopalan et al., 2014). However, as discussed in Section 1, accurate posterior approximations are computationally expensive.

3. General Randomized Exploration

In this section, we present a general randomized algorithm that explores conditioned on its history and context. Later, in Sections 4 and 5, we propose and analyze an instance of this algorithm with sublinear regret.

We use the following notation. The history of arm \(i\) after \(s\) pulls is a vector \(\mathcal{H}_{i,s}\) of length \(s\). The \(j\)-th entry of \(\mathcal{H}_{i,s}\) is a pair \((x_{i,\ell}, Y_{i,\ell})\), where \(\ell\) is the index of the round where arm \(i\) is pulled for the \(j\)-th time. We define \(\mathcal{H}_{i,0} = ()\). The number of pulls of arm \(i\) in the first \(T\) rounds is denoted by \(T_{i,T}\) and defined as \(T_{i,T} = \sum_{t=1}^{T} \mathbb{1}\{I_t = i\}\).

Our meta algorithm is presented in Algorithm 1. In round \(t\), the algorithm draws the value of each arm \(i\), \(\hat{\mu}_{i,t}\), from distribution \(P_i\) (line 5), which depends on the history of the arm \(\mathcal{H}_{i,s}\) and the context \(x_i\) in round \(t\). The arm with the highest value is pulled (line 6), and its history is extended by a pair of context \(x_{i,\ell}\) and the reward of arm \(I_{\ell}\) (line 11). We denote by \(u \oplus v\) the concatenation of vectors \(u\) and \(v\).

We present a general contextual algorithm because we return to it in Sections 4.3 and 6.2. For now, we restrict our attention to multi-armed bandits. To simplify exposition, we omit context from the entries of \(\mathcal{H}_{i,s}\).
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits

Algorithm 1 General randomized exploration.

1: ∀i ∈ [K] : Ti,0 ← 0, ˆH,i,0 ← () ▷ Initialization
2: for t = 1, . . . , n do
3: for i = 1, . . . , K do ▷ Estimate arm values
4: s ← T,i,t−1
5: Draw ˆµi,t ∼ p(H,i,s, xt)
6: I,t ← arg maxi∈[K]µi,t ▷ Pulled arm
7: Pull arm I,t and observe Y,i,t
8: for i = 1, . . . , K do ▷ Update statistics
9: if i = I,t then
10: T,i,t ← T,i,t−1 + 1
11: ˆH,i,T,t ← ˆH,i,T,t−1 + (x,t, Y,i,t))
12: else
13: T,i,t ← T,i,t−1

Algorithm 1 is instantiated by designing the distribution p in line 5. This distribution can be designed in many ways. In Bernoulli TS (Agrawal and Goyal, 2013a), for instance, p is a beta posterior distribution. A less direct approach to designing p is to resample the history of rewards in each round, as in bootstrapping exploration (Section 7). More specifically, let B,i,s be a non-parametric bootstrap sample (Efron and Tibshirani, 1986) of arm i after s pulls. We let B,i,s be a vector of the same length as H,i,s and assume that its entries are drawn with replacement from the entries of H,i,s in each round. Then the value of arm i in round t is estimated as

\[\hat{\mu}_{i,t} = \frac{1}{|B,i,s|} \sum_{y \in B,i,s} y, \]

where s = T,i,t−1. Note that we slightly abuse our notation and treat vectors as sets. In the next section, we show that this natural instance of Algorithm 1 can have linear regret.

3.1. Linear Regret

The variant of Algorithm 1 in (3) can have linear regret in a Bernoulli bandit with K = 2 arms. More specifically, if the first reward of the optimal arm is 0, its estimated value remains 0 until the arm is pulled again, which may never happen if the estimated value of the other arm is positive. We formally state this result below.

Without loss of generality, let µ1 > µ2. Algorithm 1 is implemented as follows. Both arms are initially pulled once, arm 1 in round 1 and arm 2 in round 2. The value of arm i in round t is computed as in (3). If \(\hat{\mu}_{1,t} = \hat{\mu}_{2,t} \), the tie is broken by a fixed rule that is chosen randomly in advance, as is common in multi-armed bandits. In particular, Algorithm 1 draws \(Z \sim \text{Ber}(1/2) \) before the start of round 1. If \(\hat{\mu}_{1,t} = \hat{\mu}_{2,t}, I,t = \mathbb{1}\{Z = 1\} + 1 \). We bound the regret of this algorithm below.

Lemma 1. In a Bernoulli bandit with 2 arms, the expected n-round regret of the above variant of Algorithm 1 can be bounded from below as \(R(n) \geq 0.5 (1 - \mu_1) \Delta_2(n - 1) \).

Proof. By design, the algorithm does not pull arm 1 after event \(E = \{Z = 1, \mathcal{H}_{1,1} = (0)\} \) occurs. Since the events \(Z = 1 \) and \(\mathcal{H}_{1,1} = (0) \) are independent,

\[\mathbb{P}(E) = \mathbb{P}(Z = 1) \mathbb{P}(\mathcal{H}_{1,1} = (0)) = 0.5 (1 - \mu_1). \]

Moreover, if event \(\mathcal{H}_{1,1} = (0) \) occurs, it must occur by the end of round 1 because the algorithm pulls arm 1 in round 1. Now we combine the above two facts and get

\[R(n) \geq \mathbb{E} \left[\sum_{t=2}^{n} \Delta_2(1 \{I,t = 2\}) \mathbb{1}\{E\} \right] \]

\[= \mathbb{E} \left[\sum_{t=2}^{n} \Delta_2(1 \{I,t = 2\}) E \right] \mathbb{P}(E) \]

\[= 0.5 (1 - \mu_1) \Delta_2(n - 1). \]

This concludes the proof. \(\blacksquare \)

A similar lower bound, \(R(n) \geq 0.5 (1 - \mu_1)^2 \Delta_2(n - k) \), can be derived in the setting where each arm is initialized by k pulls. This form of forced exploration was proposed in bootstrapping bandits earlier (Tang et al., 2015; Elmachtoub et al., 2017), and is clearly not sound. A similar argument to Lemma 1, although less formal, is in Section 3.1 of Osband and Van Roy (2015).

4. Garbage In, Reward Out

One solution to the issues in Section 3.1 is to add positive and negative pseudo rewards, 1 and 0, to \(\mathcal{H}_{i,s} \). This increases the variance of the bootstrap mean in (3) and may lead to exploration. However, the pseudo rewards also introduce bias that has to be controlled. In the next section, we present a design that trades off these two quantities.

4.1. Algorithm Giro

We propose Algorithm 2, which increases the variance of the bootstrap mean in (3) by adding pseudo rewards to the history of the pulled arm (line 18). The algorithm is called Giro, which stands for garbage in, reward out. This is an informal description of our exploration strategy, which adds seemingly useless extreme rewards to the history of the pulled arm. We call them pseudo rewards, to distinguish them from observed rewards. Giro has one tunable parameter \(a \), the number of positive and negative pseudo rewards in the history for each observed reward.

Giro does not seem sound, because the number of pseudo rewards in history \(\mathcal{H}_{i,s} \) grows linearly with s. In fact, this
is the key idea in our design. We justify it informally in the next section and bound its regret in Section 5.

4.2. Informal Justification

In this section, we informally justify the design of Giro in a Bernoulli bandit. Our argument has two parts. First, we show that $\hat{\mu}_{i,t}$ in line 8 concentrates at the scaled and shifted expected reward of arm i, which preserves the order of the arms. Second, we show that $\hat{\mu}_{i,t}$ is optimistic, its value is higher than the scaled and shifted expected reward of arm i, with a sufficiently high probability. This is sufficient for the regret analysis in Section 5.

Fix arm i and the number of its pulls s. Let $V_{i,s}$ denote the number of ones in history $H_{i,s}$, which includes a positive and negative pseudo rewards for each observed reward of arm i. By definition, $V_{i,s} - as$ is the number of positive observed rewards of arm i. These rewards are drawn i.i.d. from $Ber(\alpha)$. Thus $V_{i,s} - as \sim B(s, \mu)$ and we have

$$E[V_{i,s}] = (\mu + a)s, \quad \text{var}[V_{i,s}] = \mu(1 - \mu)s. \quad (4)$$

Now we define $\alpha = 2a + 1$ and let $U_{i,s}$ be the number of ones in bootstrap sample $B_{i,s}$. Since drawing αs samples with replacement from $H_{i,s}$ is equivalent to drawing αs i.i.d. samples from $Ber(V_{i,s}/(\alpha s))$, we have $U_{i,s} \mid V_{i,s} \sim B(\alpha s, V_{i,s}/(\alpha s))$. From the definition of $U_{i,s}$, we have for any $V_{i,s}$,

$$E[U_{i,s} \mid V_{i,s}] = V_{i,s}, \quad \text{var}[U_{i,s} \mid V_{i,s}] = V_{i,s} \left(1 - \frac{V_{i,s}}{\alpha s}\right). \quad (5)$$

$$E[\bar{\mu} \mid V_{i,s}] = \frac{V_{i,s}}{\alpha s}, \quad \text{var}[\bar{\mu} \mid V_{i,s}] = \frac{V_{i,s} \left(1 - \frac{V_{i,s}}{\alpha s}\right)}{\alpha^2 s^2}. \quad (6)$$

Let $\bar{\mu} = U_{i,s}/(\alpha s)$ be the mean reward in $B_{i,s}$. First, we argue that $\bar{\mu}$ concentrates. From the properties of $U_{i,s}$ in (5) and (6), for any $V_{i,s}$, we have

$$E[\bar{\mu} \mid V_{i,s}] = \frac{V_{i,s}}{\alpha s}, \quad \text{var}[\bar{\mu} \mid V_{i,s}] = \frac{V_{i,s} \left(1 - \frac{V_{i,s}}{\alpha s}\right)}{\alpha^2 s^2}. \quad (7)$$

Since $V_{i,s} \in [as, (a + 1)s]$, we have $E[\bar{\mu} \mid V_{i,s}] = O(1/s)$ and $\bar{\mu} \rightarrow V_{i,s}/(\alpha s)$ as s increases. Moreover, from the properties of $V_{i,s}$ in (4), we have

$$\frac{V_{i,s}}{\alpha s} = \frac{\mu + a}{\alpha}, \quad \frac{V_{i,s}/\alpha}{s^2} = \frac{\mu(1 - \mu)}{\alpha^2 s^2}. \quad (8)$$

So, $V_{i,s}/(\alpha s) \rightarrow (\mu + a)/\alpha$ as s increases. By transitivity, $\bar{\mu} \rightarrow (\mu + a)/\alpha$, which is the scaled and shifted expected reward of arm i. This transformation preserves the order of the arms; but it changes the gaps, the differences in the expected rewards of the optimal and suboptimal arms.

Second, we argue that $\bar{\mu}$ is optimistic, that any unfavorable history is less likely than being optimistic under that history. In particular, let $E = \{V_{i,s}/(\alpha s) = (\mu + a)/\alpha - \varepsilon\}$ be the event that the mean reward in the history deviates from its expectation by $\varepsilon > 0$. Then

$$\mathbb{P}\left(\bar{\mu} \geq \frac{(\mu + a)}{\alpha} \mid E\right) \geq \mathbb{P}\left(E\right) \quad (9)$$

holds for any $\varepsilon > 0$ such that $\mathbb{P}(E) > 0$.

Trivially, $\mathbb{P}(E) \leq \mathbb{P}(V_{i,s}/(\alpha s) \leq (\mu + a)/\alpha - \varepsilon)$ holds for any $\varepsilon > 0$. Therefore, if both $V_{i,s}/(\alpha s)$ and $\bar{\mu} \mid V_{i,s}$ were normally distributed, inequality (7) would hold if for any $V_{i,s}$, $\text{var}[\bar{\mu} \mid V_{i,s}] \geq \text{var}[V_{i,s}/(\alpha s)]$. We compare the variances below. Since $V_{i,s} \in [as, (a + 1)s]$, we have

$$\text{var}[\bar{\mu} \mid V_{i,s}] \geq \frac{1}{\alpha s} \min_{v \in [as, (a + 1)s]} \frac{v}{\alpha s} \left(1 - \frac{v}{\alpha s}\right) \geq \frac{1}{\alpha s} \frac{a(a + 1)}{\alpha s} = \frac{a(a + 1)}{\alpha^2 s^2}. \quad (10)$$

Trivially, $\text{var}[V_{i,s}/(\alpha s)] \leq 1/(4\alpha^2 s^2)$. Therefore, for any a such that $a(a + 1)/\alpha \geq 1/4$, roughly $a \geq 1/3$, $\bar{\mu}$ is optimistic. We formalize this intuition in Section 5. A formal proof is necessary because our assumption of normality was unrealistic.

4.3. Contextual Giro

We generalize Giro to a contextual bandit in Algorithm 3. The main difference in Algorithm 3 is that it fits a reward generalization model to $B_{i,s}$ and then estimates the value
Algorithm 3 Contextual Giro with \([0, 1]\) rewards.

1: Inputs: Pseudo rewards per unit of history \(\theta\)
2: \(\forall i \in [K]: T_{i,0} \leftarrow 0, H_{i,0} \leftarrow ()\) ▷ Initialization
3: for \(t = 1, \ldots, n\) do
4: for \(i = 1, \ldots, K\) do ▷ Estimate arm values
5: if \(T_{i,t-1} = 0\) then
6: \(s \leftarrow T_{i,t-1}\)
7: \(B_{i,s} \leftarrow \text{Sample } [H_{i,s}] \text{ times from } H_{i,s}\) with replacement
8: else
9: \(\hat{\mu}_{i,t} \leftarrow \text{Estimate } E[Y_{i,t} | B_{i,s}, x_t]\)
10: end
11: \(I_t \leftarrow \arg\max_{i \in [K]} \hat{\mu}_{i,t}\) ▷ Pulled arm
12: Pull arm \(I_t\) and get reward \(Y_{i,t}\)
13: for \(i = 1, \ldots, K\) do ▷ Update statistics
14: if \(i = I_t\) then
15: \(T_{i,t} \leftarrow T_{i,t-1} + 1\)
16: \(H_{i,T_{i,t}} \leftarrow H_{i,T_{i,t-1}} \oplus (x_t, Y_{i,t})\)
17: for \(\ell = 1, \ldots, a\) do ▷ Pseudo rewards
18: \(H_{i,T_{i,t}} \leftarrow H_{i,T_{i,t}} \oplus (x_t, 0, (x_t, 1))\)
19: end
20: \(T_{i,t} \leftarrow T_{i,t-1}\)

of arm \(i\) in context \(x_t\) (line 8) based on this model. If this model was linear with parameters \(\theta_i\), the estimated value would be \(x_t^\top \theta_i\). The other difference is that the pseudo rewards are associated with context \(x_t\) (line 18), to increase the conditional variance of the estimates given \(x_t\).

The value of arm \(i\) in round \(t\), \(E[Y_{i,t} | B_{i,s}, x_t]\), can be approximated by any function of \(x_t\) that can be learned from \(B_{i,s}\). The approximation should permit any constant shift of any representable function. In linear models, this can be achieved by adding a bias term to \(x_t\). We experiment with multiple reward generalization models in Section 6.2.

5. Analysis

In Section 5.1, we prove an upper bound on the expected \(n\)-round regret of Algorithm 1. In Section 5.2, we prove an upper bound on the expected \(n\)-round regret of Giro in a Bernoulli bandit. In Section 5.3, we discuss the results of our analysis. Note that our analysis is in the multi-armed bandit setting.

5.1. General Randomized Exploration

We prove an upper bound on the regret of Algorithm 1 in a multi-armed bandit with \(K\) arms below. The setting and regret are formally defined in Section 2. The distribution \(p\) in line 5 of Algorithm 1 is a function of the history of the arm. For \(s \in [n] \cup \{0\}\), let

\[
Q_{i,s}(\tau) = \mathbb{P}(\hat{\mu} \geq \tau | \hat{\mu} \sim p(H_{i,s}), H_{i,s}) \tag{8}
\]

be the tail probability that \(\hat{\mu}\) conditioned on history \(H_{i,s}\) is at least \(\tau\) for some tunable parameter \(\tau\).

Theorem 1. For any tunable parameters \((\tau_i)_{i=1}^K \in \mathbb{R}_{-1}^K\), the expected \(n\)-round regret of Algorithm 1 can be bounded from above as

\[
R(n) \leq \sum_{i=2}^{K} \Delta_i \left[\frac{16(2a+1)c}{\Delta_i^2} \log n + 2 \right] \tag{9}
\]

where \(b = (2a + 1)/[a(a + 1)]\) and

\[
c = \frac{2e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp \left[-\frac{8b}{2 - b} \right] \left(1 + \sqrt{\frac{2\pi}{4 - 2b}} \right)
\]

is an upper bound on the expected inverse probability of being optimistic, which is derived in Appendix C.

Proof. A detailed proof is in Appendix A. It is motivated by the proof of Thompson sampling (Agrawal and Goyal, 2013a). Our main contribution is that we state and prove the claim such that it can be reused for the regret analysis of any sampling distribution in Algorithm 1.

Theorem 1 says that the regret of Algorithm 1 is low when \(Q_{i,s}(\tau_i) \to 0\) and \(Q_{i,s}(\tau_i) \to 1\) as \(s \to \infty\). This suggests the following setting of the tunable parameter \(\tau_i\) for \(i > 1\). When \(p(H_{i,s})\) concentrates at \(\mu_i\) and \(\mu_i < \mu_{i-1}\), \(\tau_i \) should be chosen from interval \((\mu_i, \mu_{i-1})\). Then \(Q_{i,s}(\tau_i) \to 0\) and \(Q_{i,s}(\tau_i) \to 1\) would follow by concentration as \(s \to \infty\). In general, when \(p(H_{i,s})\) concentrates at \(\mu'_i\) and \(\mu'_i < \mu'_i\), \(\tau_i \) should be chosen from interval \((\mu'_i, \mu'_i)\).

5.2. Bernoulli Giro

We analyze Giro in a K-armed Bernoulli bandit. We make an additional assumption over Section 5.1 that the rewards are binary. Our regret bound is stated below.

Theorem 2. For any \(a > 1/\sqrt{2}\), the expected \(n\)-round regret of Giro is bounded from above as

\[
R(n) \leq \sum_{i=2}^{K} \Delta_i \left[\frac{8(2a + 1)}{\Delta_i^2} \log n + 2 \right],
\]

where \(b = (2a + 1)/[a(a + 1)]\) and

\[
c = \frac{2e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp \left[-\frac{8b}{2 - b} \right] \left(1 + \sqrt{\frac{2\pi}{4 - 2b}} \right)
\]

is an upper bound on the expected inverse probability of being optimistic, which is derived in Appendix C.
Proof. The claim is proved in Appendix B. The key steps in the analysis are outlined below. ■

Since Giro is an instance of Algorithm 1, we prove Theorem 2 using Theorem 1, where we instantiate distribution specific artifacts. In the notation of Section 5.1, \(Q_{i,s}(\tau) \) in (8) is the probability that the mean reward in the bootstrap sample \(B_{i,s} \) of arm \(i \) after \(s \) pulls is at least \(\tau \), conditioned on history \(H_{i,s} \).

Fix any suboptimal arm \(i \). Based on Section 4.2, the mean reward in \(B_{i,s} \) concentrates at \(\mu'_i = (\mu_i + a)/\alpha \), where \(\alpha = 2a + 1 \). Following the discussion on the choice of \(\tau_i \) in Section 5.1, we set \(\tau_i = (\mu_i + a)/\alpha + \Delta_i/(2\alpha) \), which is the average of \(\mu'_i \) and \(\mu_i' \). Recall that \(V_{i,s} \) is the number of ones in its bootstrap sample \(B_{i,s} \). Then \(Q_{i,s}(\tau_i) \) can be written as

\[
Q_{i,s}(\tau_i) = \Pr\left(\frac{U_{i,s}}{\alpha s} \geq \frac{\mu_i + a}{\alpha} + \frac{\Delta_i}{2\alpha} \middle| V_{i,s} \right) \quad \text{for } s > 0, \\
Q_{i,0}(\tau_i) = 1,
\]

where \(Q_{i,0}(\tau_i) = 1 \) because of the initialization in line 10 of Giro. We define \(Q_{1,s}(\tau_i) \) analogously, by replacing \(U_{i,s} \) with \(U_{1,s} \) and \(V_{i,s} \) with \(V_{1,s} \).

The bound in Theorem 2 is proved as follows. To simplify notation, we introduce \(a_{i,s} = \mathbb{E}\left[\min\{1/Q_{1,s}(\tau_i) - 1, n\} \right] \) and \(b_{i,s} = \Pr\{Q_{i,s}(\tau_i) > 1/n\} \). By concentration, \(a_{i,s} \) and \(b_{i,s} \) are small when the number of pulls \(s \) is large, on the order of \(\Delta_i^{-2} \log n \). When the number of pulls \(s \) is small, we bound \(b_{i,s} \) trivially by 1 and \(a_{i,s} \) as

\[
a_{i,s} \leq \mathbb{E}\left[1/\Pr\left(U_{1,s} \geq (\mu_i + a)s \middle| V_{1,s} \right) \right],
\]

where the right-hand side is bounded in Appendix C. The analysis in Appendix C is novel and shows that sampling from a binomial distribution with pseudo rewards is sufficiently optimistic.

5.3. Discussion

The regret of Giro is bounded from above in Theorem 2. Our bound is \(O(K\Delta^{-1}\log n) \), where \(K \) is the number of arms, \(\Delta = \min_{i>1} \Delta_i \) is the minimum gap, and \(n \) is the number of rounds. The bound matches the regret bound of UCB1 in all quantities of interest.

We would like to discuss constants \(a \) and \(c \) in Theorem 2. The bound increases with the number of pseudo rewards \(a \). This is expected, because \(a \) positive and negative pseudo rewards yield \(2a + 1 \) times smaller gaps than in the original problem (Section 4.2). The benefit is that exploration becomes easy. Although the gaps are smaller, Giro outperforms UCB1 in all experiments in Section 6.1, even for \(a = 1 \). The experiments also show that the regret of Giro increases with \(a \), as suggested by our bound.

The constant \(c \) in Theorem 2 is defined for all \(a > 1/\sqrt{2} \) and can be large due to the term \(f(b) = \exp[8b/(2 - b)] \). For instance, for \(a = 1, b = 3/2 \) and \(f(b) \approx e^{12} \). Fortunately, \(f(b) \) decreases quickly as \(a \) increases. For \(a = 2, b = 5/6 \) and \(f(b) \approx e^{3.7} \); and for \(a = 3, b = 7/12 \) and \(f(b) \approx e^{3.3} \). Because Giro performs well empirically, as shown in Section 6.1, the theoretically-suggested value of \(c \) is likely to be loose.

6. Experiments

We conduct two experiments. In Section 6.1, we evaluate Giro on multi-armed bandit problems. In Section 6.2, we evaluate Giro in the contextual bandit setting.

6.1. Multi-Armed Bandit

We run Giro with three different values of \(a: 1, 1/3, \) and \(1/10 \). Our regret analysis in Section 5.3 justifies the value of \(a = 1 \). The informal argument in Section 4.2 suggests a less conservative value of \(a = 1/3 \). We implement Giro with real \(a > 0 \) as follows. For each arm \(i \), we have two histories after \(s \) pulls, with \([as]\) and \([as]\) pseudo rewards of each kind. The value of \(\hat{\mu}_{i,t} \) is estimated from the \([as]\) and \([as]\) histories with probabilities \(as - [as] \) and \([as] - as \), respectively. This interpolation seems natural.

Giro is compared to UCB1 (Auer et al., 2002), Bernoulli TS (Agrawal and Goyal, 2013a), and KL-UCB (Garivier and Cappe, 2011). The prior in Bernoulli TS is Beta(1, 1). We implement TS and KL-UCB with \([0, 1]\) rewards as described in Agrawal and Goyal (2013a). Specifically, for any \(Y_{i,t} \in [0, 1] \), we draw pseudo reward \(\hat{Y}_{i,t} \sim \text{Ber}(Y_{i,t}) \) and use it instead of \(Y_{i,t} \).

We experiment with two classes of \(K \)-armed bandit problems where the reward distribution \(P_i \) of arm \(i \) is parameterized by its expected reward \(\mu_i \in [0, 1] \). The first class is a Bernoulli bandit, where \(P_i = \text{Ber}(\mu_i) \). Both KL-UCB and TS are near optimal in this class. The second class is a beta bandit, where \(P_i = \text{Beta}(v\mu_i, v(1 - \mu_i)) \) for \(v \geq 1 \). Both KL-UCB and TS can solve such problems, but are not statistically optimal anymore. We experiment with \(v = 4 \), which leads to rewards of higher variances; and \(v = 16 \), which leads to rewards of lower variances. The number of arms is \(K = 10 \) and their means are chosen uniformly at random from \([0.25, 0.75]\). The horizon is \(n = 10k \) rounds.

Our results are reported in Figure 1. The strong empirical performance of Giro is apparent. Giro outperforms UCB1 in all problems and for all values of \(a \). It also outperforms KL-UCB in the beta bandit for all values of \(a \). Finally, Giro outperforms TS in the beta bandit for \(a = 1/10 \). Although this setting of Giro is purely heuristic, it shows the potential of our proposed method.
The goal of our experiments was to show that Giro performs well in general, not that it outperforms near-optimal algorithms for well-established classes of bandit problems. Giro is meant to be general, as shown in Section 6.2.

6.2. Contextual Bandit

We conduct contextual bandit experiments on multi-class classification problems (Agarwal et al., 2014; Elmachtoub et al., 2017; Riquelme et al., 2018), where arm \(i \in [K] \) corresponds to class \(i \). In round \(t \), the algorithm observes context \(x_t \in \mathbb{R}^d \) and pulls an arm. It receives a reward of one if the pulled arm is the correct class, and zero otherwise. Each arm maintains independent statistics that map context \(x_t \) to a binary reward. We use three datasets from Riquelme et al. (2018): Adult (\(d = 94, K = 14 \)), Statlog (\(d = 9, K = 7 \)), and CovType (\(d = 54, K = 7 \)).

The horizon is \(n = 50k \) rounds and we average our results over 5 runs. Giro is compared to LinUCB (Abbasi-Yadkori et al., 2011), LinTS (Agrawal and Goyal, 2013b), and the \(\epsilon \)-greedy policy (EG) (Auer et al., 2002). We also implemented UCB-GLM (Li et al., 2017). UCB-GLM over-exploded and performed worse than our other baselines. Therefore, we do not report its results in this paper.

We experiment with three reward generalization models in Giro and EG: linear (suffix \(\text{lin} \) in plots), logistic (suffix \(\text{log} \) in plots), and a single hidden-layer fully-connected neural network (suffix \(m \) in plots) with ten hidden neurons. We experimented with different exploration schedules for EG. The best schedule across all datasets was \(\epsilon_t = b/t \), where \(b \) is set to attain 1% exploration in \(n \) rounds. Note that this tuning gives EG an unfair advantage over other algorithms. We tune EG because it performs poorly without tuning.

In Giro, \(a = 1 \) in all experiments. The parameters of the reward generalization model (line 8 in Algorithm 3) are fit in each round using maximum likelihood estimation. We solve the problem using stochastic optimization, which is initialized by the solution in the previous round. In linear and logistic models, we optimize until the error drops below \(10^{-3} \). In neural networks, we make one pass over the whole history. To ensure reproducibility of our results, we use public optimization libraries. For linear and logistic models, we use scikit-learn (Pedregosa et al., 2011) with stochastic optimization and its default settings. For neural networks, we use Keras (Chollet et al., 2015) with a ReLU hidden layer and a sigmoid output layer, along with SGD and its default settings. In comparison, Elmachtoub et al. (2017) and Tang et al. (2015) approximate bootstrapping by an ensemble of models. In general, our approach yields similar results to Elmachtoub et al. (2017) at a lower computational cost, and better results than Tang et al. (2015) without any tuning.
Since we compare different bandit algorithms and reward generalization models, we use the expected per-round reward in \(n \) rounds, \(E \left[\sum_{t=1}^{n} Y_{i,t} \right] / n \), as our metric. We report it for all algorithms in all datasets in Figure 2. We observe the following trends. First, both linear methods, LinTS and LinUCB, perform the worst.\(^1\) Second, linear Giro and EG are comparable in the Statlog and CovType datasets. In the Adult dataset, EG does not explore enough for the relatively larger number of arms. In contrast, Giro explores enough and performs well. Third, the non-linear variants of EG and Giro generally outperform their linear counterparts. The most expressive model, the neural network, outperforms the logistic model in both the Statlog and CovType datasets. In the Adult dataset, the neural network performs the worst and we do not plot it. To investigate this further, we trained a neural network offline for each arm with all available data. Even then, the neural network performed worse than a linear model. We conclude that the poor performance of neural networks is caused by poor generalization and not the lack of exploration.

7. Related Work

Osband and Van Roy (2015) proposed a bandit algorithm, which they call BootstrapThompson: that pulls the arm with the highest bootstrap mean, which is estimated from a history with pseudo rewards. They also showed in a Bernoulli bandit that BootstrapThompson is equivalent to Thompson sampling. Vaswani et al. (2018) generalized this result to categorical and Gaussian rewards. In relation to these works, we make the following contributions. First, Giro is an instance of BootstrapThompson with non-parametric bootstrapping. The novelty in Giro is in the design of pseudo rewards, which are added after each pull of the arm and have extreme values. Second, our regret analysis of Giro is the first proof that justifies the use of non-parametric bootstrapping, the most common form of bootstrapping, for exploration. Finally, Algorithm 1 is more general than BootstrapThompson. Its analysis in Section 5.1 shows that randomization alone, not necessarily by posterior sampling, induces exploration.

Eckles and Kaptein (2014) approximated the posterior of each arm in a multi-armed bandit by multiple bootstrap samples of its history. In round \(t \), the agent chooses randomly one sample per arm and then pulls the arm with the highest mean reward in that sample. The observed reward is added with probability 0.5 to all samples of the history. A similar method was proposed in contextual bandits by Tang et al. (2015). The key difference is that the observed reward is added to all samples of the history with random Poisson weights that control its importance. Elmachtoub et al. (2017) proposed bootstrapping with decision trees in contextual bandits. Tang et al. (2015) and Elmachtoub et al. (2017) also provided limited theoretical justification for bootstrapping as a form of posterior sampling. But this justification is not strong enough to derive regret bounds. We prove regret bounds and do not view bootstrapping as an approximation to posterior sampling.

Baransi et al. (2014) proposed a sampling technique that equalizes the histories of arms in a 2-armed bandit. Let \(n_1 \) and \(n_2 \) be the number of rewards of arms 1 and 2, respectively. Let \(n_1 < n_2 \). Then the value of arm 1 is estimated by its empirical mean and the value of arm 2 is estimated by the empirical mean in the bootstrap sample of its history of size \(n_1 \). Baransi et al. (2014) bounded the regret of their algorithm and Osband and Van Roy (2015) showed empirically that its regret can be linear.

8. Conclusions

We propose Giro, a novel bandit algorithm that pulls the arm with the highest mean reward in a non-parametric bootstrap sample of its history with pseudo rewards. The pseudo rewards are designed such that the bootstrap mean is optimistic with a high probability. We analyze Giro and bound its \(n \)-round regret. This is the first formal proof that justifies the use of non-parametric bootstrapping, the most common form of bootstrapping, for exploration. Giro can be easily applied to structured problems, and we evaluate it on both synthetic and real-world problems.

Our upper bound on the regret of randomized exploration in Theorem 1 is very general, and says that any algorithm that controls the tails of the sampling distribution \(p \) in Algorithm 1 has low regret. This shows that any appropriate randomization, not necessarily posterior sampling, can be used for exploration. In future work, we plan to investigate other randomized algorithms that easily generalize to complex problems, such as pull the arm with the highest empirical mean with randomized pseudo rewards (Kveton et al., 2019a). We believe that the key ideas in the proof of Theorem 1 can be generalized to structured problems, such as linear bandits (Kveton et al., 2019b).

History resampling is computationally expensive, because the history of the arm has to be resampled in each round. This can be avoided in some cases. In a Bernoulli bandit, Giro can be implemented efficiently, because the value of the arm can be drawn from a binomial distribution, as discussed in Section 4.2. A natural computationally-efficient substitute for resampling is an ensemble of fixed perturbations of the history, as in ensemble sampling (Lu and Van Roy, 2017). We plan to investigate it in future work.
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits

References

Francois Chollet et al. Keras. https://keras.io, 2015.

Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits

A. Proof of Theorem 1

We generalize the analysis of Agrawal and Goyal (2013a). Since arm 1 is optimal, the regret can be written as

\[R(n) = \sum_{i=2}^{K} \Delta_i E[\ell_{i,n}] . \]

In the rest of the proof, we bound \(E[\ell_{i,n}] \) for each suboptimal arm \(i \). Fix arm \(i > 1 \). Let \(E_{i,t} = \{ \hat{\mu}_{i,t} \leq \tau_i \} \) and \(\tilde{E}_{i,t} \) be the complement of \(E_{i,t} \). Then \(E[\ell_{i,n}] \) can be decomposed as

\[E[\ell_{i,n}] = E \left[\sum_{t=1}^{n} 1\{ I_t = i, E_{i,t} \text{ occurs} \} \right] + E \left[\sum_{t=1}^{n} 1\{ I_t = i, \tilde{E}_{i,t} \text{ occurs} \} \right] . \quad (10) \]

TERM \(b_i \) IN THE UPPER BOUND

We start with the second term in (10), which corresponds to \(b_i \) in our claim. This term can be tightly bounded based on the observation that event \(\tilde{E}_{i,t} \) is unlikely when \(T_{i,t} \) is “large”. Let \(\mathcal{T} = \{ t \in [n] : Q_{i,T_{i,t-1}}(\tau_i) > 1/n \} \). Then

\[E \left[\sum_{t=1}^{n} 1\{ I_t = i, \tilde{E}_{i,t} \text{ occurs} \} \right] \leq E \left[\sum_{t \in \mathcal{T}} 1\{ I_t = i \} \right] + E \left[\sum_{t \notin \mathcal{T}} 1\{ I_t = i, \tilde{E}_{i,t} \text{ occurs} \} \right] \]

\[\leq E \left[\sum_{s=0}^{n-1} \mathbb{1}\{ Q_{i,s}(\tau_i) > 1/n \} \right] + E \left[\sum_{t \notin \mathcal{T}} \frac{1}{n} \right] \]

\[\leq \sum_{s=0}^{n-1} \mathbb{P}(Q_{i,s}(\tau_i) > 1/n) + 1 . \]

TERM \(a_i \) IN THE UPPER BOUND

Now we focus on the first term in (10), which corresponds to \(a_i \) in our claim. Without loss of generality, we assume that Algorithm 1 is implemented as follows. When arm 1 is pulled for the \(s \)-th time, the algorithm generates an infinite i.i.d. sequence \((\hat{\mu}_{1,t})_t \sim p(H_{1,s}) \). Then, instead of sampling \(\hat{\mu}_{1,t} \sim p(H_{1,s}) \) in round \(t \) when \(T_{1,t-1} = s \), \(\hat{\mu}_{1,t} \) is substituted with \(\hat{\mu}_{1}^{(s)} \). Let \(M = \{ t \in [n] : \max_{j>1} \hat{\mu}_{j,t} \leq \tau_i \} \) be round indices where the values of all suboptimal arms are at most \(\tau_i \) and

\[A_s = \left\{ t \in M : \hat{\mu}_{1,t}^{(s)} \leq \tau_i, T_{1,t-1} = s \right\} \]

be its subset where the value of arm 1 is at most \(\tau_i \) and the arm was pulled \(s \) times before. Then

\[\sum_{t=1}^{n} 1\{ I_t = i, E_{i,t} \text{ occurs} \} \leq \sum_{t=1}^{n} 1\left\{ \max_{j} \hat{\mu}_{j,t} \leq \tau_i \right\} = \sum_{s=0}^{n-1} \sum_{t=1}^{n} 1\left\{ \max_{j} \hat{\mu}_{j,t} \leq \tau_i, T_{1,t-1} = s \right\} \quad |A_s| . \]

In the next step, we bound \(|A_s| \). Let

\[\Lambda_s = \min \left\{ t \in M : \hat{\mu}_{1,t}^{(s)} > \tau_i, T_{1,t-1} \geq s \right\} \]

be the index of the first round in \(M \) where the value of arm 1 is larger than \(\tau_i \) and the arm was pulled at least \(s \) times before. If such \(\Lambda_s \) does not exist, we set \(\Lambda_s = n \). Let

\[B_s = \left\{ t \in M \cap |A_s| : \hat{\mu}_{1,t}^{(s)} \leq \tau_i, T_{1,t-1} \geq s \right\} \]

be a subset of \(M \cap |A_s| \) where the value of arm 1 is at most \(\tau_i \) and the arm was pulled at least \(s \) times before.
We claim that $A_s \subseteq B_s$. By contradiction, suppose that there exists $t \in A_s$ such that $t \not\in B_s$. Then it must be true that $\Lambda_s < t$, from the definitions of A_s and B_s. From the definition of Λ_s, we know that arm 1 was pulled in round Λ_s, after it was pulled at least s times before. Therefore, it cannot be true that $T_{1,t-1} = s$, and thus $t \not\in A_s$. Therefore, $A_s \subseteq B_s$ and $|A_s| \leq |B_s|$. In the next step, we bound $|B_s|$ in expectation.

Let $\mathcal{F}_t = \sigma(H_{1,t}, \ldots, H_{K,T_k}, I_1, \ldots, I_t)$ be the σ-algebra generated by arm histories and pulled arms by the end of round t, for $t \in [n] \cup \{0\}$. Let $P_s = \min\{t \in [n] : T_{1,t-1} = s\}$ be the index of the first round where arm 1 was pulled s times before. If such P_s does not exist, we set $P_s = n + 1$. Note that P_s is a stopping time with respect to filtration $(\mathcal{F}_t)_t$.

Hence, $\mathcal{G}_s = \mathcal{F}_{P_s-1}$ is well-defined and thanks to $|A_s| \leq n$, we have

$$\mathbb{E}[|A_s|] = \mathbb{E}[\min\{\mathbb{E}[|A_s| | \mathcal{G}_s], n\}] \leq \mathbb{E}[\min\{\mathbb{E}[|B_s| | \mathcal{G}_s], n\}] .$$

We claim that $\mathbb{E}[|B_s| | \mathcal{G}_s] \leq 1/Q_{1,s}(\tau_i) - 1$. First, note that $|B_s|$ can be rewritten as

$$|B_s| = \sum_{t=1}^{\Lambda_s} \epsilon_t \rho_t ,$$

where $\epsilon_t = \mathbbm{1}\{\max_{j \neq 1} \tilde{\mu}_{j,t} \leq \tau_i\}$ control which $\rho_t = \mathbbm{1}\{\tilde{\mu}_1^{(s)} \leq \tau_i\}$ contribute to the sum. Now recall Theorem 5.2 from Chapter III of Doob (1953).

Theorem 3. Let X_1, X_2, \ldots and Z_1, Z_2, \ldots be two sequences of random variables and $(\mathcal{F}_t)_t$ be a filtration. Let $(X_t)_t$ be i.i.d., $X_t \in \mathcal{F}_t$ measurable, $Z_t \in \{0, 1\}$, and Z_t be \mathcal{F}_t-measurable. Let $N_t = \min\{t > N_{t-1} : Z_t = 1\}$ for $t \in [m]$, $N_0 = 0$, and assume that $N_{m} < \infty$ almost surely. Let $X_t = X_{N_t}$ for $t \in [m]$. Then $(X_t)_{t=1}^m$ is i.i.d. and its elements have the same distribution as X_1.

By the above theorem and the definition of Λ_s, $|B_s|$ has the same distribution as the number of failed independent draws from $\text{Ber}(Q_{1,s}(\tau_i))$ until the first success, capped at $n - P_s$. It is well known that the expected value of this quantity, without the cap, is bounded by $1/Q_{1,s}(\tau_i) - 1$.

Finally, we chain all inequalities and get

$$\mathbb{E}\left[\sum_{t=1}^{n} \mathbbm{1}\{I_t = i, E_{i,t} \text{ occurs}\}\right] \leq \sum_{s=0}^{n-1} \mathbb{E}[\min\{1/Q_{1,s}(\tau_i) - 1, n\}] .$$

This concludes our proof.

B. Proof of Theorem 2

This proof has two parts.

Upper Bound on b_i in Theorem 1 (Section 5.1)

Fix suboptimal arm i. To simplify notation, we abbreviate $Q_{i,s}(\tau_i)$ as $Q_{i,s}$. Our first objective is to bound

$$b_i = \sum_{s=0}^{n-1} \mathbb{P}(Q_{i,s} > 1/n) + 1 .$$

Fix the number of pulls s. When the number of pulls is “small”, $s \leq \frac{8\alpha}{\Delta_i^2} \log n$, we bound $\mathbb{P}(Q_{i,s} > 1/n)$ trivially by 1.

When the number of pulls is “large”, $s > \frac{8\alpha}{\Delta_i^2} \log n$, we divide the proof based on the event that $V_{i,s}$ is not much larger than its expectation. Define

$$E = \left\{ V_{i,s} - (\mu_i + a)s \leq \frac{\Delta_is}{4} \right\} .$$
On event E,
\[
Q_{i,s} = \mathbb{P} \left(U_{i,s} - (\mu_i + a)s \geq -\frac{\Delta_i s}{2} \left| V_{i,s} \right. \right) \leq \mathbb{P} \left(U_{i,s} - V_{i,s} \geq \frac{\Delta_i s}{4} \left| V_{i,s} \right. \right) \leq \exp \left[-\frac{\Delta_i^2 s}{80} \right] \leq n^{-1},
\]
where the first inequality is from the definition of event E, the second inequality is by Hoeffding’s inequality, and the third inequality is by our assumption on s. On the other hand, event \bar{E} is unlikely because
\[
\mathbb{P} \left(\bar{E} \right) \leq \exp \left[-\frac{\Delta_i^2 s}{80} \right] \leq n^{-1},
\]
where the first inequality is by Hoeffding’s inequality and the last inequality is by our assumption on s. Now we apply the last two inequalities to
\[
\mathbb{P} \left(Q_{i,s} > 1/n \right) = \mathbb{E} \left[\mathbb{P} \left(Q_{i,s} > 1/n \left| V_{i,s} \right. \right) 1 \left\{ E \right. \right] + \mathbb{E} \left[\mathbb{P} \left(Q_{i,s} > 1/n \left| V_{i,s} \right. \right) 1 \left\{ \bar{E} \right. \right] \leq 0 + \mathbb{E} \left[1 \left\{ \bar{E} \right. \right] \leq n^{-1}.
\]
Finally, we chain our upper bounds for all $s \in [n]$ and get the upper bound on b_i in (9).

Upper bound on a_i in Theorem 1 (Section 5.1)

Fix suboptimal arm i. Our second objective is to bound
\[
a_i = \sum_{s=0}^{n-1} \mathbb{E} \left[\min \left\{ \frac{1}{Q_{i,s}(\tau_i)} - 1, n \right\} \right].
\]
We redefine τ_i as $\tau_i = (\mu_i + a)/\alpha - \Delta_i/(2\alpha)$ and abbreviate $Q_{1,s}(\tau_i)$ as $Q_{1,s}$. Since i is fixed, this slight abuse of notation should not cause any confusion. For $s > 0$, we have
\[
Q_{1,s} = \mathbb{P} \left(\frac{U_{1,s}}{\alpha s} \geq \frac{\mu_1 + a}{\alpha} - \frac{\Delta_1}{2\alpha} \left| V_{1,s} \right. \right).
\]
Let $F_s = 1/Q_{1,s} - 1$. Fix the number of pulls s. When $s = 0$, $Q_{1,s} = 1$ and $\mathbb{E} \left[\min \{ F_s, n \} \right] = 0$. When the number of pulls is “small”, $0 < s \leq \frac{16\alpha}{\Delta_1^2} \log n$, we apply the upper bound from Theorem 4 in Appendix C and get
\[
\mathbb{E} \left[\min \{ F_s, n \} \right] \leq \mathbb{E} \left[1/Q_{1,s} \right] \leq \mathbb{E} \left[1/\mathbb{P} \left(U_{1,s} \geq (\mu_1 + a)s \left| V_{1,s} \right. \right) \right] \leq C,
\]
where C is defined in Theorem 2. The last inequality is by Theorem 4 in Appendix C.

When the number of pulls is “large”, $s > \frac{16\alpha}{\Delta_1^2} \log n$, we divide the proof based on the event that $V_{1,s}$ is not much smaller than its expectation. Define
\[
E = \left\{ (\mu_1 + a)s - V_{1,s} \leq \frac{\Delta_1 s}{4} \right\}.
\]
On event E,
\[
Q_{1,s} = \mathbb{P} \left((\mu_1 + a)s - U_{1,s} \leq \frac{\Delta_1 s}{2} \left| V_{1,s} \right. \right) = 1 - \mathbb{P} \left((\mu_1 + a)s - U_{1,s} > \frac{\Delta_1 s}{2} \left| V_{1,s} \right. \right) \geq 1 - \mathbb{P} \left(V_{1,s} - U_{1,s} > \frac{\Delta_1 s}{4} \left| V_{1,s} \right. \right) \geq 1 - \exp \left[-\frac{\Delta_1^2 s}{80} \right] \geq n^2 - \frac{1}{n^2} - 1,
\]
where the first inequality is from the definition of event E, the second inequality is by Hoeffding’s inequality, and the third inequality is by our assumption on s. The above lower bound yields
\[
F_s = \frac{1}{Q_{1,s}} - 1 \leq \frac{n^2}{n^2 - 1} - 1 = \frac{1}{n^2 - 1} \leq n^{-1}.
\]
for $n \geq 2$. On the other hand, event \bar{E} is unlikely because

$$P(\bar{E}) \leq \exp\left[-\frac{\Delta^2 s}{8a}\right] \leq n^{-2},$$

where the first inequality is by Hoeffding’s inequality and the last inequality is by our assumption on s. Now we apply the last two inequalities to

$$E[\min\{F_s, n\}] = E\left[E[\min\{F_s, n\} | V_{1,s}] \mathbb{I}\{E\}\right] + E\left[E[\min\{F_s, n\} | V_{1,s}] \mathbb{I}\{\bar{E}\}\right] \leq E\left[n^{-1} \mathbb{I}\{E\}\right] + E\left[n^{1} \mathbb{I}\{\bar{E}\}\right] \leq 2n^{-1}.$$

Finally, we chain our upper bounds for all $s \in [n]$ and get the upper bound on a_i in (9). This concludes our proof.

C. Upper Bound on the Expected Inverse Probability of Being Optimistic

Theorem 4 provides an upper bound on the expected inverse probability of being optimistic,

$$E\left[\frac{1}{P(U_{1,s} \geq (\mu_1 + a)s | V_{1,s})}\right],$$

which is used in Section 5.2 and Appendix B. In the bound and its analysis, n is s, p is μ_1, x is $V_{1,s} - as$, and y is $U_{1,s}$.

Theorem 4. Let $m = (2a + 1)n$ and $b = \frac{2a + 1}{a(a + 1)} < 2$. Then

$$W = \sum_{x=0}^{n} B(x; n, p) \left[\sum_{y= [(a+p)n]}^{m} B \left(y; m, \frac{an + x}{m} \right) \right]^{-1} \leq \frac{2e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp\left[\frac{8b}{2 - b}\right] \left(1 + \sqrt{\frac{2\pi}{4 - 2b}}\right).$$

Proof. First, we apply the upper bound from Lemma 2 for

$$f(x) = \left[\sum_{y= [(a+p)n]}^{m} B \left(y; m, \frac{an + x}{m} \right) \right]^{-1},$$

Note that this function decreases in x, as required by Lemma 2, because the probability of observing at least $[(a + p)n]$ ones increases with x, for any fixed $[(a + p)n]$. The resulting upper bound is

$$W \leq \sum_{i=0}^{i_0 - 1} \exp[-2i^2] \left[\sum_{y= [(a+p)n]}^{m} B \left(y; m, \frac{(a+p)n - (i + 1)\sqrt{n}}{m} \right) \right]^{-1} + \exp[-2i_0^2] \left[\sum_{y= [(a+p)n]}^{m} B \left(y; m, \frac{an}{m} \right) \right]^{-1},$$

where i_0 is the smallest integer such that $(i_0 + 1)\sqrt{n} \geq pm$, as defined in Lemma 2.

Second, we bound both above reciprocals using Lemma 3. The first term is bounded for $x = pm - (i + 1)\sqrt{n}$ as

$$\left[\sum_{y= [(a+p)n]}^{m} B \left(y; m, \frac{(a+p)n - (i + 1)\sqrt{n}}{m} \right) \right]^{-1} \leq \frac{e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp[b(i + 2)^2].$$

The second term is bounded for $x = 0$ as

$$\left[\sum_{y= [(a+p)n]}^{m} B \left(y; m, \frac{an}{m} \right) \right]^{-1} \leq \frac{e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp\left[\frac{b(pm + \sqrt{n})^2}{n}\right] \leq \frac{e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp[b(i_0 + 2)^2],$$

where the last inequality is from the definition of i_0. Then we chain the above three inequalities and get

$$W \leq \frac{e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \sum_{i=0}^{i_0} \exp[-2i^2 + b(i + 2)^2].$$
Now note that
\[2i^2 - b(i + 2)^2 = (2 - b) \left(i^2 - \frac{4bi}{2 - b} + \frac{4b^2}{(2 - b)^2} \right) - \frac{4b^2}{2 - b} - 4b = (2 - b) \left(i - \frac{2b}{2 - b} \right)^2 - \frac{8b}{2 - b}. \]

It follows that
\[
W \leq \frac{e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \sum_{i=0}^{i_0} \exp \left[-2b \left(i - \frac{2b}{2 - b} \right)^2 + \frac{8b}{2 - b} \right]
\]
\[
\leq \frac{2e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp \left[\frac{8b}{2 - b} \sum_{i=0}^{\infty} \exp \left[-(2 - b)i^2 \right] \right]
\]
\[
\leq \frac{2e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp \left[\frac{8b}{2 - b} \right] \left(1 + \int_{u=0}^{\infty} \exp \left[-\frac{u^2}{4 - 2b} \right] du \right)
\]
\[
\leq \frac{2e^2 \sqrt{2a + 1}}{\sqrt{2\pi}} \exp \left[\frac{8b}{2 - b} \right] \left(1 + \sqrt{\frac{2\pi}{4 - 2b}} \right).
\]

This concludes our proof. ■

Lemma 2. Let \(f(x) \geq 0 \) be a decreasing function of \(x \) and \(i_0 \) be the smallest integer such that \((i_0 + 1)\sqrt{n} \geq pn\). Then
\[
\sum_{x=0}^{n} B(x; n, p)f(x) \leq \sum_{i=0}^{i_0-1} \exp[-2i^2]f(pm - (i + 1)\sqrt{n}) + \exp[-2i_0^2]f(0).
\]

Proof. Let
\[
\mathcal{X}_i = \begin{cases}
\{\max \{pm - \sqrt{n}, 0\}, n\}, & i = 0; \\
\{\max \{pm - (i + 1)\sqrt{n}, 0\}, pn - i\sqrt{n}\}, & i > 0;
\end{cases}
\]
for \(i \in [i_0] \cup \{0\} \). Then \(\{\mathcal{X}_i\}_{i=0}^{i_0} \) is a partition of \([0, n]\). Based on this observation,
\[
\sum_{x=0}^{n} B(x; n, p)f(x) = \sum_{i=0}^{i_0} \sum_{x=0}^{n} 1 \{ x \in \mathcal{X}_i \} B(x; n, p)f(x)
\]
\[
\leq \sum_{i=0}^{i_0-1} f(pm - (i + 1)\sqrt{n}) \sum_{x=0}^{n} 1 \{ x \in \mathcal{X}_i \} B(x; n, p) + f(0) \sum_{x=0}^{n} 1 \{ x \in \mathcal{X}_{i_0} \} B(x; n, p),
\]
where the inequality holds because \(f(x) \) is a decreasing function of \(x \). Now fix \(i > 0 \). Then from the definition of \(\mathcal{X}_i \) and Hoeffding’s inequality,
\[
\sum_{x=0}^{n} 1 \{ x \in \mathcal{X}_i \} B(x; n, p) \leq \mathbb{P} \left(X \leq pn - i\sqrt{n} \mid X \sim B(n, p) \right) \leq \exp[-2i^2].
\]
Trivially, \(\sum_{x=0}^{n} 1 \{ x \in \mathcal{X}_{i_0} \} B(x; n, p) \leq 1 = \exp[-2 \cdot 0^2] \). Finally, we chain all inequalities and get our claim. ■

Lemma 3. Let \(x \in [0, pn] \), \(m = (2a + 1)n \), and \(b = \frac{2a + 1}{a(a + 1)} \). Then for any integer \(n > 0 \),
\[
\sum_{y = \lfloor (a + p)n \rfloor}^{m} B \left(y; m, \frac{an + x}{m} \right) \geq \frac{\sqrt{2\pi}}{e^2 \sqrt{2a + 1}} \exp \left[-b \left(\frac{pm + \sqrt{n} - x}{n} \right)^2 \right].
\]
Proof. By Lemma 4,
\[
B \left(y; m, \frac{an + x}{m} \right) \geq \frac{\sqrt{2\pi}}{e^2} \sqrt{\frac{m}{y(m-y)}} \exp \left[-\frac{(y-an-x)^2}{m \left(\frac{an+x}{m} \right) (a+1)n-x} \right].
\]

Now note that
\[
y(m-y) \leq \frac{1}{m} \frac{m^2}{4} = \frac{(2a+1)n}{4}.
\]

Moreover, since \(x \in [0, pn] \),
\[
\frac{an+x}{m} (a+1)n-x \geq \frac{an}{m} \frac{an(a+1)n}{m} = \frac{a(a+1)n}{2a+1} = \frac{n}{b},
\]

where \(b \) is defined in the claim of this lemma. Now we combine the above three inequalities and have
\[
B \left(y; m, \frac{an + x}{m} \right) \geq \frac{2\sqrt{2\pi}}{e^2 \sqrt{2a+1}} \frac{1}{\sqrt{n}} \exp \left[-\frac{b(y-an-x)^2}{n} \right],
\]

Finally, note the following two facts. First, the above lower bound decreases in \(y \) when \(y \geq (a+p)n \) and \(x \leq pn \). Second, by the pigeonhole principle, there exist at least \(\lceil \sqrt{n} \rceil \) integers between \((a+p)n\) and \((a+p)n+\sqrt{n}\), starting with \((a+p)n\). These observations lead to a trivial lower bound
\[
\sum_{y=\lceil (a+p)n \rceil}^{n} B \left(y; m, \frac{an + x}{m} \right) \geq \frac{\sqrt{n}}{\sqrt{n}} \frac{2\sqrt{2\pi}}{e^2 \sqrt{2a+1}} \frac{1}{\sqrt{n}} \exp \left[-\frac{b(pn+\sqrt{n}-x)^2}{n} \right] \geq \frac{\sqrt{2\pi}}{e^2 \sqrt{2a+1}} \exp \left[-\frac{b(pn+\sqrt{n}-x)^2}{n} \right].
\]

The last inequality is from \(\lceil \sqrt{n} \rceil / \sqrt{n} \geq 1/2 \), which holds for \(n \geq 1 \). This concludes our proof. ■

Lemma 4. For any binomial probability,
\[
B(x; n, p) \geq \frac{\sqrt{2\pi}}{e^2} \sqrt{\frac{n}{x(n-x)}} \exp \left[-\frac{(x-pn)^2}{p(1-p)n} \right].
\]

Proof. By Stirling’s approximation, for any integer \(k \geq 0 \),
\[
\sqrt{2\pi} k^{k+\frac{1}{2}} e^{-k} \leq k! \leq ek^{k+\frac{1}{2}} e^{-k}.
\]

Therefore, any binomial probability can be bounded from below as
\[
B(x; n, p) = \frac{n!}{x!(n-x)!} p^x q^{n-x} \geq \frac{\sqrt{2\pi}}{e^2} \sqrt{\frac{n}{x(n-x)}} \left(\frac{pn}{x} \right)^x \left(\frac{qn}{n-x} \right)^{n-x},
\]

where \(q = 1-p \). Let
\[
d(p_1, p_2) = p_1 \log \frac{p_1}{p_2} + (1-p_1) \log \frac{1-p_1}{1-p_2}
\]

be the KL divergence between Bernoulli random variables with means \(p_1 \) and \(p_2 \). Then
\[
\left(\frac{pn}{x} \right)^x \left(\frac{qn}{n-x} \right)^{n-x} \geq \exp \left[x \log \left(\frac{pn}{x} \right) + (n-x) \log \left(\frac{qn}{n-x} \right) \right]
\]
\[
= \exp \left[-n \left(\frac{x}{p} \log \left(\frac{x}{pn} \right) + \frac{n-x}{n} \log \left(\frac{n-x}{qn} \right) \right) \right]
\]
\[
= \exp \left[-nd \left(\frac{x}{n}, p \right) \right]
\]

where the inequality is from \(d(p_1, p_2) \leq \frac{(p_1 - p_2)^2}{p_2(1-p_2)} \). Finally, we chain all inequalities and get our claim. ■