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Abstract

Advertising is becoming more and more complex, and there is a strong demand for meas-
urement tools that are capable of keeping up. In tandem with new measurement problems and
solutions, new capabilities for evaluating measurement methodologies are needed. Given the
complex marketing environment and the multitude of analytical methods available, simulation
can be an essential tool for evaluating and comparing analysis options.

This paper describes the Aggregate Marketing System Simulator (AMSS), a simulation tool
capable of generating aggregate-level time series data related to marketing measurement (e.g.,
channel-level marketing spend, website visits, competitor spend, pricing, sales volume). It is
flexible enough to model a wide variety of marketing situations that include different mixes of
advertising spend, levels of ad effectiveness, types of ad targeting, sales seasonality, competitor
activity, and much more. A key feature of AMSS is that it generates ground truth for market-
ing performance metrics, including return on advertising spend (ROAS) and marginal ROAS
(mROAS). The capabilities provided by AMSS create a foundation for evaluating and improving
measurement methods, including media mix models (MMMSs), campaign optimization (Scott,
2015), and geo experiments (Vaver & Koehler, 2011), across complex modeling scenarios.

1 Introduction

The desire to create more effective marketing strategies drives strong demand for marketing per-
formance measurement. Marketers need to understand the long and short term impact of media
advertising, trade promotion, and other marketing tools in order to create effective tactical and stra-
tegic marketing plans. Quantitative analysis is expected to provide accurate, reliable measurement
of key performance metrics and the effects of various marketing strategies.

When available, randomized experiments provide the most reliable way to measure the causal effects
of advertising (Kohavi, Longbotham, Sommerfield, & Henne, 2009)). Some marketing platforms
provide an integrated experimental capability; Facebook and Google report incremental advertising
effects measured through randomized experiments in their Conversion Lift and Brand Lift products,
respectively (Google, 2011; Facebook, [2015]). On the other hand, experimental capabilities in other
media, such as national television, are rare. Also, while randomized experiments are well understood
and offer reliable results if implemented properly, they can be expensive, impractical, or infeasible
(Lewis & Rao, 2015; Kohavi et al., 2009)). Measuring media effects across many channels, for
example, requires complex experimental designs, significant advanced planning, and extended test
periods. Accurately measuring small effects requires large sample size. Experimental designs also
impose constraints on marketing flexibility. Finally, experimental studies generally provide only
snapshot views of the marketing environment.



When randomized experiments are not viable, marketers must turn to other types of quantitat-
ive analysis. Many commonly used techniques, such as media mix modeling (MMM) and digital
attribution, rely on either aggregate or user-level observational data (Dekimpe & Hanssens, 2000,
2010; Manchanda, Rossi, & Chintagunta, [2004). These methods generate conclusions by analyzing
historical data, rather than data generated from an experiment. While historical data may be
readily accessible, drawing causal conclusions from observational data is difficult, as summed up
by the oft-repeated warning, “Correlation does not imply causation” (Holland, [1986; Ehrenberg &
Barnard, 2000; Imbens & Rubin, 2015; Pearl, |2009; Chan & Perry, 2017). Drawing causal con-
clusions requires modeling assumptions concerning the nature of the marketing environment (e.g.,
how advertising changes user behavior, how ad channels interact, how pricing impacts sales, etc.).
These assumptions will be inaccurate to varying degrees, with potentially harmful effects on the
reliability of model-generated estimates. In many situations these assumptions are unstated and/or
unidentified. They are also often unverified, and indeed in some cases, unverifiable. On top of this,
results from observational models may be biased due to hidden (unobserved) confounding variables
and issues related to data scope and data granularity (Lewis & Rao, 2015).

Both observational and experimental methods require evaluation and validation. Given the statist-
ical issues that can affect the reliability of results derived from observational studies, it is important
to have a source of truth against which the accuracy of estimates can be verified. Simulation can
also be used to analyze experimental designs. A realistic ad system, which includes the complex
interplay between consumers, marketing tools, and environmental phenomena, is also too complex
for analytical validation. However, it is possible to represent these complexities in a simulated ad
system. With simulation, it is feasible and inexpensive to consider a wide variety of scenarios for
methodology evaluation and to run virtual experiments to measure marketing impact[] Working
with simulated datasets generated by a simulated ad system, which has a marketing environment
that is specified and known, allows modelers to explore statistical issues, verify model performance,
and compare competing models. By simulating across a variety of reasonable market conditions,
we can understand the situations under which methods do and do not work. These insights help
modelers develop measurement methods that are robust to different market conditions.

The Aggregate Marketing System Simulator (AMSS) was developed to provide a mechanism for
evaluating models based on observational and experimental aggregate time series data. AMSS is
capable of capturing key aspects of consumer behavior, including complex purchase behavior and
response to marketing techniques. It is also capable of replicating data features such as different
levels of aggregation and hidden confounders. Data can be generated with varying degrees of
ad system complexity to better understand the capabilities and limitations of analytical models.
Furthermore, because the simulator makes it possible to run virtual experiments, it also provides
ground truth for the evaluation of any measurement approach grounded in the analysis of aggregate
data.

This paper begins with a detailed description of AMSS’s design and data generation methodology.
We follow up by showing how simulated data can be used in model evaluation with an example
application to media mix modeling.

LA virtual experiment is implemented in the virtual world of the simulation rather than in the real world.



2 Data generating model

AMSS is designed to generate the aggregate time-series data resulting from natural consumer be-
havior and changes in this behavior due to marketing interventions. It does this by segmenting the
consumer population into distinct groups based on several key features that characterize the con-
sumer’s relationship with the category and the brand. Consumers in different segments have differ-
ent media consumption patterns, responses to advertising, purchase behavior, etc. Over the course
of time, a consumer’s relationship with the category and/or the brand may change in response to
uncontrolled forces (e.g., seasonality and competitive activity) as well as advertiser-controlled mar-
keting interventions. These changes are reflected in the simulation by the migration of consumers
to segments that reflect their new mindsets. The changes in population segmentation then lead
to changes in the aggregate behavior of the population. For example, marketing interventions in-
crease advertiser sales by moving consumers to more favorable segments, which correspond to higher
probabilities of making purchases in the category and/or purchasing the advertiser brand.
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Figure 1: Overview of simulator structure

The process of modeling population migrations and generating observable variables is illustrated
in Figure |1} This figure shows a simplified scenario in which the simulator tracks a population of
one hundred individuals divided into four segmentsE] The various market forces driving consumer
behavior are conceptualized as an ordered sequence of events that repeat across time intervals.
Each event corresponds to a specific non-actionable or actionable force with its own impact on
consumer disposition and behavior. Changes in consumer disposition are reflected by the migration
of consumers from pre-event to post-event population segmentations. Also, each event generates
observable data. In particular, Figure [1| depicts a scenario with four repeating events: seasonality,
television, paid search, and sales. The ‘seasonality’ event reflects non-actionable forces that change
the size of the market over time, and drives consumer migrations in and out of the market for the

%In Section we discuss the segments implemented in AMSS. For now, we forgo this specification and think
of these as generic indicators of behavioral tendencies (e.g., uninterested in the brand/category, investigating the
category, ready to purchase).



category. Television and paid search are marketing interventions controlled by the advertiser. They
drive migrations that are generally favorable to the advertiser, and they also generate related data
such as the media volume and spend. The last event is the ‘sales’ event, which generates advertiser
and competitor sales. It may also drive migrations; for example, a consumer’s loyalty to, or opinion
of, the advertiser brand may change as part of a post-purchase evaluation process.

Due to the sequential nature of AMSS, each event impacts all subsequent events through changes
to the population segmentation. This naturally supports the modeling of interactions between
different marketing forces (e.g., television advertisements can encourage brand queries, thereby
increasing the volume of search inventory) and is critical to accurately representing the complex
relationships that can exist within a marketing system.

AMSS provides flexibility in the set of events, their design, and their sequencing. Modelers have
the freedom to add or remove specific market forces from the simulation and to change event
specifications and sequencing to reflect different models of consumer behavior. Examining the
performance of analytical methods over a wide range of scenarios allows modelers to find and
design methodologies that are robust to a wide range of statistical issues.

The sections below describe the simulation process in more detail. We first discuss how the popu-
lation is segmented in Section Section focuses on how the migration of consumers between
different segments reflects the impact of different market forces on the consumer mindset. Sec-
tion describes the models used for certain key marketing interventions in more detail; this
includes a model for simulating the behavior of a traditional media channel and a model for paid
search. The sales event is described in Section 2.4l

2.1 Population segmentation

AMSS conceptualizes the consumer mindset, with regard to both the category and the advertiser
brand, as a discrete hidden variable; it then uses consumer mindset to segment the population.
Between segments, differences in consumer mindset lead to differences in all aspects of consumer
behavior, from media consumption and response to purchase behavior. The aggregate behavior of
the population is determined by the size of each segment. For example, if a high proportion of
consumers belong to segments corresponding to high brand loyalty, the advertiser brand will have
high market share.

2.1.1 Features of the consumer mindset

The population is segmented in several dimensions, based on common concepts in modeling con-
sumer behavior (Sharp, 2010; Millward Brown, 2009)). In total, AMSS segments the population
along six dimensions, each tracking a particular aspect of the consumer’s relationship with the cat-
egory or the brand. The first three dimensions track the consumer’s relationship with the category
and are referred to as ‘category states.” The last three track the consumer’s relationship with the
advertiser brand and are referred to as ‘brand states.” Let s = (s1,s2,... ,56)—r be a population
segment, with each s; describing the consumer mindset in the I-th dimension. Let &; be the set of
values the consumer mindset may take in the I-th dimension, so that s; € §; for all [ € {1,...,6}.
The six category and brand states and the corresponding &; are listed in Table [1} More details on
the meaning and usage of each category and brand state follow below.



State type [ Potential values S

Category
Market (I =1) in-market, out-of-market
Satiation (I = 2) satiated, unsatiated
Activity (I = 3) inactive, exploratory, purchase
Brand

Favorability (I =4) | unaware, unfavorable, neutral,
somewhat favorable, favorable
Loyalty (I = 5) switcher, loyal, competitor-loyal
Availability (I = 6) | low, average, high

Table 1: Individual category and brand states, and their potential values

Market state. The market state specifies whether members of the population should be considered
part of the pool of potential customers for the category. This allows us to label part of the
population as being entirely uninterested in the category, even under the most purchase-friendly
conditions (e.g., high marketing pressure, low pricing). As an example, the market for a medication
treating hypertension consists of only those individuals who have been diagnosed with the condition.
Those not suffering from hypertension would never consider purchasing, regardless of any marketing
interventions.

AMSS splits the population into ‘in-market’ and ‘out-of-market’ individuals. The number of in-
dividuals in the market for a certain category of goods can change over time. Some changes are
seasonal, i.e., they repeat in a regular pattern, say once a year. For example, the travel category
has an annual seasonality that responds to the school year, national holidays, weather patterns,
etc. There can also be more general trends that affect ‘in-market’ population. Examples include
the rising adoption of smartphones leads to a growing market for apps, the effect of economic
factors on luxury goods, and the effect of gasoline prices on SUV sales. AMSS allows the modeler
to specify both seasonal patterns and more general trends in the rate of market participation. See
Section 2.2.1] for more details.

Satiation state. The satiation state specifies whether a person’s demand for the category has
been satisfied by a past purchase. In AMSS, consumers are either ‘satiated’ or ‘un-satiated.” Un-
satiated individuals may become satiated after a purchase in the category; satiated individuals will
eventually become un-satiated over time. Tracking satiation allows AMSS to model effects such
as dips in sales following price-promotions. Both the advertiser’s own promotions and competitor
promotions can create depressed demand in succeeding weeks, since this is a category-wide effect. In
the real world, the time it takes satiation effects to wear off depends on the category. In categories
where demand cycles quickly, such as perishable foods, satiation fades quickly. It fades more slowly
in categories with longer intervals between purchases, such as travel or durable goods categories.
In the simulation, the rate of decay is part of the model specification (see Section .

Activity state. The activity state tracks the consumer’s location along the path to purchase. AMSS
segments the population into three activity states: ‘inactive,” ‘exploratory,” and ‘purchase.” Con-
sumers in different activity states have different media consumption behaviors, different responses
to marketing, and different purchase behavior. Figure [2/shows an example of the actions a consumer
might perform, and the marketing activity that might occur, in each activity state.

‘Inactive’ individuals are not currently engaged in any activities related to the category. Certainly,



Activity inactive exploratory purchase
State
Marketing display ad magazine  discuss  search: youtube purchase
Interactions exposure exposure with  query (brand  view: at brand
and friends comparison) product  website
Purchase + paid ad review
Activities exposure (no

click)

Figure 2: Example user actions at different activity states

they do not make purchases in the category. They also do not show any observable interest in
the category, say by making category-related search queries or online site visits. ‘Exploratory’
individuals are considering making a purchase, and conducting related activities to help them make
their decision. For example, the ‘exploratory’ population may make generic and branded search
queries as part of the decision-making process. They still have not decided to make a purchase in
the category. Individuals who reach the ‘purchase’ state are in the process of making a purchase.
This may be at a brand-specific location such as the brand website, or a non-specific location such
as a department store, grocery store, fare aggregator. The brand chosen by individuals who are
in the process of making a purchase depends on factors such as brand favorability, brand loyalty,
brand availability, and price at the point of purchase.

Tracking the consumer’s activity state allows the simulator to differentiate marketing tools that
target different audiences, both in terms of reach and precision. Mass marketing media formats
such as television and radio will reach consumers in a wide range of activity states, while other
media like paid search will tend to target a smaller number of consumers further along the path
to purchase. Tracking activity state also allows the simulator to follow natural and marketing-
influenced progress along the path to purchase. It is necessary for the consumer to reach the
‘purchase’ state in order for the advertiser to make a sale.

Brand favorability state. Brand favorability measures a consumer’s opinion of the brand. Generally,
high levels of brand favorability correspond to higher probabilities of purchase of the advertiser’s
brand. In AMSS, consumers are segmented into five groups based on brand favorability: ‘unaware,’
‘unfavorable,” ‘neutral,” ‘somewhat favorable,” and ‘favorable’ consumers. Marketing tools may
increase brand sales by increasing brand favorability. Note that brand favorability can be high
for multiple brands simultaneously, so high brand favorability does not automatically imply brand
purchase or brand loyalty. For further details on how brand states, including brand favorability
affect consumer purchase proabilities, refer to Section [2.4]

Brand loyalty state. Brand loyalty is another key aspect of consumer behavior (Sharp, 2010,
ch. 7). Consumers can be loyal to the advertiser’s brand, loyal to a competitor, or have divided
loyalties. AMSS tracks brand loyalty through the brand loyalty state; consumers have state ‘loyal,’
‘competitor-loyal,” or ‘switcher.” It is important to differentiate between brand favorability and
brand loyalty. Brand loyalty is exclusive, as opposed to brand favorability; consumers can have
highly favorable opinions of multiple brands. Consumers loyal to a particular brand have low



probability of buying from a competitor. Consumers that are loyal neither to the advertiser nor
to its competitors are labeled as ‘switchers’; at time of purchase, these consumers choose from
multiple brands based on price, convenience, and other factors.

Brand availability state. Brand availability refers to the physical and mental availability of the
advertiser brand to the consumer (Sharp, [2010, ch. 12). In other words, brand availability is how
physically or mentally easy the brand is to buy. Brand availability is physically affected by brand
distribution, i.e., the presence of the brand at retail locations. Certain marketing interventions grab
consumer attention for the brand or increase its convenience; these increase the mental availability
of the brand. For example, point-of-purchase displays bring the advertised brand to the attention of
the consumer through prominent placement at the point of sale. In the online space, search ads bring
brands greater prominence on the search results page, increasing the brand’s mental availability.
This can be key in drawing sales from ‘switchers’ with no strong brand preference.

In AMSS, brand availability can be ‘low,” ‘average,” or ‘high’ for each consumer. Consider, for
example, modeling the impact of physical distribution on sales of breakfast cereal. If a brand
of cereal is available at only 70% of grocery and convenience stores, brand availability should be
‘average’ for the 70% of consumers purchasing breakfast cereal from stores carrying the brand, and
‘low’ for the other 30% of the population. Efforts to increase distribution increase brand availability
for some consumers from ‘low’ to ‘average.” In-store displays increase brand availability for some
consumers from ‘average’ to ‘high.’

2.1.2 Full segmentation

The set of all segments is S, a subset of the Cartesian product &1 x --- x Sg representing all
combinations of the individual features of consumer mindset. Two rules are used to restrict S
to a total of 198 segments. First, only consumers that are both ‘in-market’ and ‘un-satiated’
may move out of the ‘inactive’ activity state. This enforces the concept that ‘out-of-market’ or
‘satiated’ individuals have no interest in making a purchase in the category and will not engage in
purchase-related activities. As a result, there are 6 valid category segments (s1, s2,53) ", and these
are listed in Table Second, only consumers with ‘favorable’ brand favorability can be loyal to
the advertiser. The 33 resulting brand segments (s4, 55, 5¢) | are listed in Table

Market Satiation Activity
out-of-market  satiated inactive
out-of-market unsatiated inactive

in-market satiated inactive
in-market unsatiated inactive
in-market unsatiated exploratory
in-market unsatiated  purchase

Table 2: The six category segments.

2.2 Population Migration

Consumer mindsets change over time, due to the impact of various market forces. AMSS tracks
the population associated with each of the segments s € S described in Section [2.1



Favorability Loyalty

unaware switcher
unfavorable switcher
neutral switcher
somewhat favorable switcher Availability
favorable switcher low
favorable loyal X average
unaware competitor-loyal high
unfavorable competitor-loyal
neutral competitor-loyal
somewhat favorable competitor-loyal
favorable competitor-loyal

Table 3: The 33 brand segments, from a cross of 11 brand favorability /loyalty states and 3 brand availability
segments.

Recall from Figure [I} which graphically depicts the simulator structure, that a sequence of ordered
events drives migration between segments. The modeler specifies an ordered sequence of events
k=1,2,...,K that is applied once within each time interval ¢t € {1,2,...,T}. Let the size of the
population assigned to a segment s € S before the k-th event of time interval ¢ be n;y s. Also,
we can consider groupings of segments. Thus for A C S, let ng g4 = > c 4Nt ks- The overall
segmentation of the population at time ¢ is denoted by the vector m; . = (n¢k,s)ses- The k-th
event drives an update in the segmentation from n; . to ns p11,., reflecting a change in consumer
mindset. The changing consumer mindset affects observable consumer behavior, such as media
consumption, product investigation, and purchase behavior. Flexibility in the design and ordering
of the events allows AMSS to accommodate a variety of marketing environments.

Consumer migration is probabilistic and controlled by a sequence of transition matrices. The k-
th event of the t-th time interval affects a population of size a;y ., where a; s < myy s for all

s € §. Individuals in the affected population migrate between population segments according to
a transition matrix Q4% = ( S’Sk,))gxs, where qitsk,) is the probability of migration from segment
s to segment s’. The size of the affected population in each segment, a; ., and the migration
probabilities, qg’:j), are determined by the pre-event population segmentation, n;y ., and the event
specifications. The migration of individuals during the k-th event of the ¢-th time interval can be

expressed as

. . t,k t,k
M s, = (Mikss)sres ~ Multinomial(ag ks, ¢ = (¢ ses), (1)

where my i, s ¢ is the number of people migrating from segment s to segment s’. The post-event
population segmentation is thus

’
Nt k41,8 = Nt ks’ — Qt ks’ + E Mikss' S € S. (2)
seS

There are many different kinds of events, each driving consumer migration in its own particular
way. For instance, even in the absence of marketing intervention, the disposition of consumers
toward a category and brand will vary and evolve over time. Some events reflect these natural
forces that drive changes in the consumer mindset. Other events reflect the effects of marketing
interventions, such as media advertising. The action of making a purchase in the category can



also change the consumer mindset—for example, the consumer can become satiated or loyal. We
discuss how consumers migrate between segments according to specific forces below.

2.2.1 Changing market size

The size of the market for a particular category of goods changes naturally over time. For example,
the market size for a travel category such as vacation cruises is impacted by consumers’ leisure time
and discretionary income. Variation in the market due to annual holiday and vacation schedules
is seasonal. The travel market also responds to changes in the economy, which impact consumers’
discretionary income.

The natural migration of population between ‘in-market’ and ‘out-of-market’ segments accounts for
both seasonal changes and more general trends in the population’s interest in the category. It is the
first event within each time interval, i.e., K = 1. Thus the natural forces determine a starting point,
with marketing interventions building on the resulting baseline. When natural migration brings
a large number of people into ‘in-market’ segments, marketing forces have more opportunities
to encourage brand purchases; periods with low market participation limit the effectiveness of
marketing.

We define the market rate to be the proportion of the population with state ‘in-market.” Let
A ={s €S8 :s = ‘in-market’} be the set of segments where the population is ‘in-market.” The
market rate before the k-th event of the ¢-th time interval is

Ttk = nt,k,A/nt,k,S-

The simulator allows the modeler to specify target market rates p = (p;)1.7 for each time interval.
The target market rate is meant to reflect the modeler’s understanding of seasonal and nonseasonal
trends in the size of the category. For convenience, the specification is split into a seasonal market
rate p*¢@s) and a trend p(®e"d)  such that p; = pgseas) . pgtrend). AMSS attempts to attain the
desired market rate with minimal migration. If ;1 > p;, individuals in ‘in-market’ segments A
migrate to ‘out-of-market’ segments S \ A with probability (r:1 — pt)/7+1, so that the expected

post-migration market rate is

1 —
E[Tt’Q] =Tt1 * |:1 - t,0t:| = Pt
Tt1

Similarly, if 1 < p¢, individuals migrate from ‘out-of-market’ segments S \ A to ‘in-market’
segments A with probability (p; —r¢,1)/(1 — r¢,1). Then,

s
Elria) = req + (1 —ry1) % 22100 =
1-— ’r‘t71

If newly ‘in-market’ consumers are ‘un-satiated,” they may also change activity state. For more

details on this migration, refer to Appendix

2.2.2 De-satiation

Consumers become satiated and no longer open to further purchases after making a purchase in a
category; this occurs during the sales event (see Section [2.2.5). The concept of satiation makes it



possible, for example, to reproduce dips in sales following big price promotions. Following satiation,
consumers will eventually de-satiate and once more become open to purchasing in the category.
The migration of consumers from satiated to un-satiated segments is the second event of each
time interval, i.e., K = 2. De-satiation is controlled by a parameter specifying the de-satiation
rate A, which is the probability that satiated individuals become un-satiated.If newly ‘un-satiated’
consumers are ‘in-market,” they may also change activity state. For details, see Appendix[B.2]

2.2.3 Marketing interventions

Marketing interventions attempt to influence consumer mindsets and drive brand sales; in AMSS,
this is equivalent to driving population migration between segments. Generally, marketing is ex-
pected to move individuals from less favorable to more favorable states, and thus increase the total
number of purchasers in the category and the proportion purchasing the advertiser brand rather
than a competitor’s. Marketing can drive changes in activity state, brand favorability, brand loy-
alty, and brand availability. The other two states, marketing state and satiation state, cannot
be affected by marketing interventions. Individuals that are ‘out-of-market’ and/or ‘satiated’ are
limited to the activity state of ‘inactive.” Thus, high levels of satiation or a small market size will
reduce the number of activity state migrations driven by a media channel and prevent increasing
brand interest from generating purchases.

The efficacy of a particular marketing intervention in driving population migration depends on
the pre-intervention population segmentation 7,y . and the nature of the intervention itself. For
example, the amount of migration driven by a media channel like television in a particular week
depends on the size of the television audience, that audience’s frequency of ad exposure, and the
efficacy of the ad campaign. More details on how AMSS models particular types of media channels
can be found in Section 2.3

2.2.4 Lagged Effects

Marketing activity can shift consumers into more desirable population segments (e.g., segments
with higher brand favorability). Although these shifts are not permanent, they may persist beyond
the immediate marketing experience and lead to a lagged increase in sales. In the simulation,
lagged impact is controlled by the pressure of natural migrations that, in the absence of persistent
marketing activity, push the allocation of population across segments toward a natural equilibrium.
The stronger the pressure toward the natural equilibrium, the more short-lived the impact of
marketing interventions.

Natural migration in each state that may be affected by marketing activity—activity state (I = 3),
brand favorability state (I = 4), brand availability state (I = 5), and brand loyalty state (I = 6)—
is controlled by a separate event k& = 3,4,5,6. Natural migration for the [-th state is specified
by a transition matrix Q), which determines both the natural equilibrium for that state and
the strength of the pressure toward that equilibrium. Appendix provides more detail on the
migration process for activity state. The related processes for other dimensions are completely
analogous. Subsection [B.3.1] focuses on the relationship between the pressure of natural migration
and lagged effects.

10



2.2.5 Post-purchase migration

Each time interval finishes with the K-th event, the sales eventE] In addition to generating brand
and competitor sales, the sales event drives population migration, since consumer mindsets some-
times change as a result of a purchase. In particular, the sales event has impact on brand favorab-
ility, brand loyalty, and satiation.

Following a successful purchase, consumers may become habituated to or develop a strong preference
for a particular brand. During the sales event, some consumers will make a purchase in the category,
from either the advertiser or competitor brands. Depending on the consumer’s satisfaction with
the product, his or her brand favorability and/or brand loyalty may change. More detail on these
migrations can be found in Section [2.4]

In addition to changes in consumer loyalty and brand favorability, all purchasers in the category
become temporarily satiated. This satiation effect will decay in future time intervals according the
the rate of de-satiation (see Section [2.2.2)).

2.3 Modeling specific marketing interventions

One of the key features of AMSS is its ability to simulate the combined effects of multiple marketing
interventions on a single consumer population, with each marketing intervention having its own
characteristic behavior. For example, when simulating the effect of media advertising, it is possible
to specify how advertising is implemented (e.g., target audience), how advertising works (e.g.,
increase category and product awareness), and how ad channels interact with one another (ad
channel synergy).

AMSS uses a separate event to simulate the behavior (e.g., the channel’s audience targeting and ad
effectiveness) of each ad channel, and then sequences these events into a custom simulation scenario.
Each event is a function that takes the current population segmentation as input and returns an
updated population segmentation, along with related output variables. Example output variables
include media spend and media volume. Specification of events is standardized by ‘media modules,’
which provide a flexible framework for specifying interrelated media variables such as spend and
volume, and their effect on the population segmentation. A particular media channel’s behavior is
specified by the parameterization of an appropriate media module. For example, the paid search
module specifies the manner in which query volume, paid impressions, paid clicks, and search spend
are generated. Different parameterizations specifying the query rates and click-through rates for
each population segment can be used to create separate branded and generic search events from
the same module. We describe two example ‘media modules’ below.

2.3.1 Traditional media module

The traditional media module is sufficient for simulating the key features of a relatively simple
media channel such as television. Modelers using the module can specify the values of parameters
controlling the media channel’s audience size and composition, the media volume and spend, and
the media effectiveness, according to their simulation needs.

3This is the sales event from the perspective of the advertiser, or the purchase event from the perspective of the
consumer.
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Figure [3| depicts the structure of the traditional media module. This module can be used to
simulate the behavior of a traditional media format such as television or radio. This module has

population population
segmentation " | segmentation
(before) (after)
reachability . L maximum
audience reach migration
(by segment) effect
——
media cost . Hill function
volume frequency effect scaling
parameters parameters
S budget
flighting spend budget parameters

Figure 3: Design for the traditional media module. This figure depicts the dependencies between the
modeler-specified input parameters (ovals) and the hidden (shaded) and observed (unshaded) variables (rect-
angles) generated by the module.

four main components: audience, spend, volume, and effect. Some of the variables generated by
this module, such as the weekly spend, are observed, while others are hidden. In particular, the
population migration caused by the media is calculated as the ‘effect’ of the media module, and
this information is not typically available in a real-world analysis, such as an MMM study. Below,

we describe how each of these components is calculated in the traditional media module. Further
technical details can be found in Appendix

1. Calculate the media audience.

Each media channel has its own audience, i.e., the population that interacts with the media.
This audience is the maximum population reachable through advertising in the media channel.
Let a population segment’s reachability be the probability a consumer from the segment is part
of the media channel’s audience during the current time interval. Heterogeneity in reachability
across population segments reflects the media channel’s ability to target consumers with
different levels of interest in the category and/or the brand. Mass marketing tools such as
television will reach broad segments of the population, with very coarse targeting. More
targeted media reach individuals with a prior interest in the category and/or the brand at
higher rates.

In AMSS, the modeler specifies the reachability, wé“), of each population segment. Then the
audience size, a;, . is calculated based on the current size of the segment, n;y s, and the
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reachability, wga) :

ar . s ~ Binomial(ng ks, wﬁ“)).

. Calculate the weekly spend.

The weekly spend is calculated from the media channel’s budget and flighting pattern. In the
simulation settings, the time intervals are divided into groups called budget periods, and each
budget period is given a target spend called the budget. The budget assigned to a budget
period, say a year, is one of the main levers an advertiser can use to control their media plan.
The budget is split into a weekly spend based on the flighting pattern, which specifies the
proportion of the budget to assign to each week in the budget period. To illustrate, suppose
the modeler specifies a budget of $100 to be spent over a 4-week budget period, with flighting
pattern (0.20,0.00,0.65,0.15). Then the advertiser would spend $20 the first week, $0 the
second, $65 the third, and $15 the fourth.

. Calculate media volume.

The volume v, s, i.e., the total number of exposures to media k for consumers in segment
s during time interval ¢, is calculated from the weekly spend based on a cost function. The
simplest cost function is a unit cost per exposure c¢;; we allow for variability in the weekly
unit cost through mean and variance parameters.

. Reach and frequency.

The reach ayp s over a population segment s is defined as the number of consumers in the
segment who are exposed to the advertiser’s ads in the k-th media channel at least once
during the ¢-th time interval. It is calculated based on the audience size aj, , and the total
volume of exposures for the segment v; j, s. This is accomplished via a normal approximation
based on the assumption that ad exposures for each individual occur as independent Poisson
processes. The average frequency is the average number of ad exposures among consumers
with at least one ad exposure. It is calculated as

ft,k,s = Ut,k,s/“t,k,&

. Update the population segmentation.

The amount of migration in population segmentation driven by the k-th media channel during
the ¢-th time interval depends on both the reach and frequency; the former determines the
affected population (those with the potential to migrate) and the latter determines their
migration probabilities.

Only consumers exposed to advertising have the potential to migrate to new population
segments; thus the affected population in each segment is the reach a 5.

Migration probabilities depend on the frequency of ad exposure and the effectiveness of those
ads. At high frequencies, consumers in the media audience will migrate between segments

according to a transition matrix Q%) specifying maximal migration probabilities Qikg, between
segments s # s’. To reduce the parameter space, O(k) is defined as the product of successive

transitions in each dimension affected by marketing (I = 3,4,5,6). Transitions in the [-th
dimension are specified by a matrix

Ol = (Og?l))sl xS,
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For example, transitions in activity state are determined by Q%) To specify a 20% chance
of converting ‘inactive’ individuals to the activity state of ‘exploratory,” and a 10% chance of

converting them to an activity state of ‘purchase,” a modeler would set the first row of Q3)
to (53
¢‘in,active’,- = (07’ 02’ 01)

(t.k)

o 5 Of migrating from segment s to some other segment

At lower frequencies, the probability ¢

s’ # s is less than Qi,kg,. The maximal probability Qi,kg, is scaled against the frequency f; 1 s of

exposure according to a Hill equation. Hill equations are sigmoidal, making them convenient
for parameterizing increasing (at small frequencies) and diminishing (at large frequencies)
returns for media channels (Hill, |1910; Gesztelyi et al., 2012; Jin, Wang, Sun, Chan, &
Koehler, 2017)).
1
H(f;k,()=———. 3
(5.0 = T 3)
The parameter x is the half maximal effective concentration (EC50), i.e., the frequency at
which H(f) = 1/2. The parameter ( is the maximal slope of the curve H(f). We let
t.k k
") = H(fipsir Q0 s#4.
The Hill transformation has several desirable properties; at the right limit, H(co) = 1, en-
forcing the definition of Q%) as defining the maximal migration probabilities, and the Hill
transformation also creates diminishing returns as average frequency increases.

The traditional media module described here is sufficient for modeling the behavior of many tra-
ditional media channels, such as television, radio, and print. Using different parameterizations of
this module, a modeler can include various media channels, each with its own reach, targeting,
frequency of exposure, spend, and effectiveness in driving sales.

2.3.2 Paid search media module.

Some media channels have a different structure than the traditional media channel described above
and require their own customized specifications. Paid search, for example, has limited inventory
and an auction-based pricing system.

The search media module is depicted in Figure[d Its design is in some ways analogous to that of the
traditional media module, but added complexities allow search to interact with other media channels
and seasonal changes in the population in complex ways. In particular, previous events in the
simulation path that change the state of the population can affect the volume of paid search and its
effectiveness. Activity state, for example, affects a consumer’s probability of conducting a relevant
generic search, and both activity state and brand state can affect the consumer’s probability of
conducting a relevant branded search. Brand favorability and brand loyalty also affect a consumer’s
click-through rate (CTR), i.e., their probability of clicking on the brand’s paid search ads. The
paid search module also accounts for other features of search, such as organic search activity in
the absence of paid ads; this allows modelers to identify the incremental effect of paid search over
organic search.

The process for generating search-related variables and calculating its effect on population seg-
mentation is described below. More details can be found in Appendix
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Figure 4: Design for the paid search module. This figure depicts the dependencies between the modeler-
specified input parameters (ovals) and the hidden (shaded) and observed (unshaded) variables (rectangles)
generated by the module.

1. Determine the campaign settings from the budget.
The modeler specifies how the campaign settingsﬂ for search will change in response to the
budget. As in the traditional media module, the budget represents the target spend in the
channel over a fixed budget period, say a year. An advertiser may control search spend
through adjustments to the weekly spend cap, the bid, or the keyword list.

(a) Compute the weekly spend cap.
The modeler specifies a function that maps the budget to a weekly spend cap. For
example, the budget may be divided evenly among the weeks in the budget period. Or,
an advertiser may have uncapped spend (cap = 00), and affect the volume of paid search
spend through other controls (b) and/or (c).

(b) Compute the bid.
The modeler specifies a function that maps the budget to a weekly bidE] An advertiser
may, for example increase its bid linearly with the yearly budget. Or, it could have a
constant bid and adjust spend through the weekly spend cap (a) and/or the keyword
list (c).

4Campaign settings include the weekly spend cap, the bid, and the keyword list.
This is simplified to a single number for the campaign, rather than a per-keyword bid.

15



(c) Compute the keyword list length.
The modeler specifies a function that maps the budget to the length of the keyword
list. As the keyword list grows, so does the volume of matching queries made by the
population.

2. Calculate query volume.
Members of each population segment have different levels of interest in the category and/or
the brand, and thus different probabilities of making relevant queries. This is an important
consideration for studying media with different levels of targeting.

(a) Determine the audience.
The audience is the number of people making queries that match the keyword list. It
is calculated based on the population of each segment, the probability members of each
segment have of making a relevant query, and the proportion of those queries covered
by the keyword list.

Consumers in different segments have different probabilities of making generic and
branded queries, depending on their level of interest in the category and/or the brand.
Paid search generally is targeted to higher levels of category and/or brand interest. Gen-
eric search ads, for example, target individuals in the ‘exploratory’ or ‘purchase’ activity
states. Branded search ads targets segments with higher levels of brand favorability and
brand loyalty. Targeting gives advertisers confidence that the population exposed to
search ads has a higher and more immediate level of interest in the category and/or the
brand. Modeling multiple channels with different levels of targeting allows modelers to
explore challenges related to selection bias.

(b) Determine the query volume.
Each member of the audience makes queries matching the keyword list according to a
Poisson process with rate A(*)| specified by the modeler.

3. Calculate impressions, clicks, and spend.
Based on the campaign settings and the query activity coming from each segment, we calculate
the volume of paid search and the associated spend.

(a) Calculate the average cost-per-click (CPC) and mazimum share of voice (SOV)H
The CPC ¢; and the maximum SOV pgu) both increase with the advertiser’s bid cj.
The pricing of paid search is parameterized by the maximum bid nt(m) at which the
advertiser loses all auctions (and thus places no paid search ads) and the minimum bid

nt(M) necessary to win all auctions. These values bound the CPC, which is calculated as

. M
Ct Zﬁgm) V¢ /\7775 )7

where a V b is the maximum of ¢ and b and a A b is the minimum. The maximum SOV
: . (m) (M),
increases linearly from 0 at n; " to 1 at n," '

(u) Ct — My
pi- =0V — M
' — ™

5The mazimum SOV is the fraction of search queries matching the keyword list whose auctions the advertiser can
win at the current bid. The final SOV attained by the advertiser may be less than the maximum when impressions
are limited by the spend cap.
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The parameters ngm) and ngM) can be adjusted to fit the modeler’s needs. For example,

Google’s paid search system rewards ads for relevancy through its quality score system
(Google, [2016). In branded search campaigns, the advertiser benefits from a competitive
advantage and can win auctions at lower bids; the modeler can simulate this with low

7™ and ™.

(b) Awailable impressions, available clicks.

Based on the query volume w; s and the SOV pgu), calculate the number of impressions

available to the advertiser for purchase,

u; glw Bi ial (w)
¢ slwis ~ Binomial(wy s, p; 7).

Then use the click-through rate (CTR) to calculate the number of clicks generated by
those impressions. Individuals from different segments have different click-through rates
(CTR), depending on their levels of category and brand interest.

(¢) Calculate paid impressions, paid clicks, and spend.
The spend is calculated by multiplying the number of paid clicks by the CPC. If the cost
of the available clicks is less than the week’s spend cap, then the advertiser purchases
all impressions available at the current bid. Otherwise, the number of paid impressions
and paid clicks is limited to honor the spend cap.

4. Update the population segmentation.

Both paid and organic search can drive migration between segments. Each segment has
individuals with different exposure to search. Individuals making queries may (a) see no paid
ads from the advertiser, resulting in an organic-only experience (b) see the advertiser’s paid
search ad but not click on it (though they may click on the organic result), or (c) see the paid
ad and click on it. The probability of migrating to a new population segment depends on
both the segment of origin and which of these groups the consumer belongs to. In particular,
the migration probabilities assigned to exposure type (a) account for migrations driven by
organic search results.

Migration probabilities are parameterized by

e A transition matrix Q®) specifying maximal transition probabilities between segments.
As in the traditional media module, to reduce the parameter space, Q) is specified via
a series of transition matrices Q%) specifying transition probabilities in each dimension
[ =3,4,5,6 of the population segmentation that can be affected by marketing.

e The relative effectiveness %) = ( z(uk)a ’(uk)a %Zh(;k)) of each exposure type (organic search
only, paid exposure without paid click, paid click) is used to scale the migration prob-
abilities.

The relative effectiveness of each exposure type allows the modeler to control the incremental
effect of paid search over organic activity. This incremental effect can be measured by setting
the search budget to zero, which will force everyone making queries into group (a). See
Section for more discussion on measuring the incremental impact of a marketing channel.

Other marketing interventions. The previously described modules suffice for describing the be-
havior of many common media channels. In addition, new modules can be written to fit the essential
characteristics of other marketing interventions. By creating a specific sequence of these modules,
each with its own parameterization, modelers can describe complex marketing environments.
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2.4 Sales event

The final, K-th, event modeled over each time interval is the sales event. During this event, AMSS
calculates the advertiser sales per segment, y;. = (yt,s)scs, and the competitor sales per segment,
zi. = (21,5)ses, for the current time interval t. In addition, post-purchase changes in consumer
mindset cause changes in the population segmentation.

2.4.1 Calculating sales

AMSS takes into account the effects of pricing and competition on advertiser and competitor sales.
It also takes into account differences in purchase behavior between consumers belonging to different
population segments.

Let us first consider consumer purchase behavior in the absence of competition. In each segment s
whose consumers have purchase intent, i.e., s € {s’ € S : s§ = ‘purchase’}, the relationship between
the advertiser’s product’s price and the probability of purchase by any consumer in the segment
is specified by a linear demand curve. The demand curves in each segment are parameterize their
y-intercept and negative slope,

o a = (ag)ses. Each ag € [0, 1] specifies the probability a consumer in segment s will purchase
the advertiser’s brand at unit price 0, in the absence of competition.

e B = (Bs)ses. Each Bs € (—o0,00) specifies the decrease in purchase probability per unit
increase in price, in the absence of competition. It controls the sensitivity of consumers in
the segment to price. Generally, 85 > 0 so that sales decrease as price increases.

Thus, in a competition free environment, each consumer in segment s will purchase the advertiser’s
brand with probability

rgy ) = (s — Bspt) VOAL,
given product unit price p; > 0 during time interval .

The demand curves reflect differences in purchase behavior between segments. Generally, con-
sumers in segments with high brand favorability, brand loyalty, and/or brand availability are more
likely to purchase the advertiser’s brand over its competitors’ brands; thus these segments should
have higher values of as and smaller values of 85 > 0. An example set of demand curves respecting
these guidelines is plotted in Figure[5| Previously examined marketing interventions such as media
advertising encourage sales by changing consumer mindset, causing migration to population seg-
ments with more favorable demand curves. Alternatively, pricing strategies, such as promotional
discounts. encourage sales by moving consumers along the demand curve to lower price points with
higher purchase probabilities.

To avoid the complexity of simulating competitor activity at the same level of detail as advertiser
activity, competitor strength is summarized with two time-varying parameters in the sales module.
They specify the current strength of the advertiser’s competitors and the degree to which the
competitor and advertiser sales replace each other:

e v = (Vs)11)xs- Each ys € [0,1] specifies the probability consumers in segment s will
purchase the competitor’s brand at time ¢ when the advertiser’s product’s unit price is very
high, and thus the advertiser is not making any sales.
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Probability of Purchase

Figure 5: Demand curves for multiple segments in a competition-free environment. The plotted population
segments have activity state ‘purchase,’” brand loyalty ‘switcher,” and brand availability ‘average.” The brand
favorability is favorable (solid), somewhat favorable (dash), neutral (dot), unaware (long dash), or negative
(dot-dash).

® w= (wis)1:1)xs- Bach wy s € [0,1] specifies the degree to which brand and competitor sales
are replacements for each other. When w; s = 1, competitor sales are unaffected by advertiser
pricing, and competitor sales replace advertiser sales to the greatest degree possible. This is
the default setting for segments where consumers are ‘competitor-loyal,” and is illustrated in
the top plot of Figure @ When w; s = 0, advertiser sales are unaffected by the presence of
the competitor, and advertiser sales replace competitor sales to the greatest degree possible.
This is the default setting for segments where consumers are ‘loyal.” See the bottom plot in
Figure [6] for illustration. By default, ‘switchers’ balance the tradeoff between the advertiser’s
and its competitors’ brands with w; s = 0.5, as illustrated in the middle plot of Figure [6}

Given the price p;, consumers purchase a competitor brand with probability
’I“t(;) = {’Yt,s - (1- wt,s)rgi )} V0.
They purchase the advertiser’s brand with probability

(v) ( (y*) ) (2)

Ty = MaxX(\Ty s Ves) = Tt s

The population of each segment is divided into those who did not make a purchase in the category,

those who purchased the advertiser’s brand, and those who purchased a competitor’s brand. The

size of each of these groups is, respectively, a%{) o a%){ ¢ and agzl){ s+ These quantities are generated

following a multinomial distribution:
(aiulgs, agyf){s, aizl)<s> ~ Multinomial (nt7K7s, (1 — rgls) — rgij, rt(;ys), rt(?)) .

Let A® be the average number of units purchased by any purchaser in the category. The total
brand sales y; s from population segment s during time interval ¢ is

Yt.s ~ as/}gs + Poisson(ai?}(’s()\(y) —1)).

Revenue is calculated as the product of sales y; s and price p;.
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Figure 6: Plots of purchase probabilities vs price in a competitive environment. At any price p, the height
of the lightly shaded region corresponds to the probability of purchase for the competitor’s brand, r(*). The
combined height of the darker shaded region corresponds to the probability of purchase for the advertiser’s
brand, 7). The plots show changes in competitor vs advertiser sales at varying levels of w: w = 1 (top),
w =1/2 (middle), w = 0 (bottom).

2.4.2 Post-purchase migration

In addition to calculating sales, revenue, and profit, the sales module also models post-purchase
changes in consumer mindset. In the simulation model, this means updating the pre-event seg-
mentation n; i . to the post-event segmentation, which is also the segmentation at the beginning
of the next time interval, 1,41 1.. This is done as a combination of two migrations.

First, all purchasers become satiated. Let B be the set of ‘un-satiated’ population segments. For
any s € B, let the size of the affected population undergoing migration be

C) (2)
at7K73 - at,K,S + at,K,S’

i.e., the number of people who made a purchase in the category. Let

g(s) := (s1, ‘satiated,’ss, ..., s¢) "
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be the ‘satiated’ population segment corresponding to any ‘un-satiated’ population segment s € B.
All consumers who made a purchase in the category during the current time interval become
satiated, migrating from s to g(s). Thus, the transition probabilities between segments are

t,
a8 = Ly (s),

where 1 4(x) indicates whether z € A. Migration is simulated based on a; g s and Q®K) according
to . .

In addition, the purchase experience can affect brand state; following a successful purchase, con-
sumers may become habituated to or develop a strong preference for a particular brand. This
migration is controlled by matrices O(K D for | = 4,5,6, and the migration process is analogous to
the migrations driven by marketing interventions, except the frequency is ignored in the sales-driven
migrations. See Appendix for a description of marketing intervention-driven migration.

3 Ground truth

For any simulation scenario, the simulator can be used to calculate ground truth for comparison
with modeling results. Several types of results may be generated by a marketing analysis. Generally,
they will be some variant of the following:

e Prediction: Estimate resulting KPI given specified changes in marketing strategy.
e Attribution: Attribute KPI across the existing set of media/marketing channels.
e Optimization: Propose marketing strategies that will increase KPI.

Counterfactual data generation is the key capability required to evaluate these analyses. The
simulator is capable of running virtual experiments that allow the causal consequences of changes
in the simulation settings, such as a change in the budget assigned to each media channel, to be
identified.

3.1 Counterfactual scenarios

We consider a complete specification of the simulation parameters to be a single scenario. The simu-
lator is capable of generating data from modified parameterizations which represent counterfactual
scenarios. Comparing data from the original and counterfactual scenarios allows the modeler to
observe the causal consequences of changes in the marketing environment. For example, a common
comparison may be between a scenario with a positive media budget and a scenario with a media
budget of zero. Comparing results from these two scenarios allows the modeler to observe the
incremental impact of this media spend on sales.

The causal impact of a change in the simulation scenario can be very complex. Multiple variables
can be affected by a single change, and perturbations in one part of the system can affect others
through multiple pathways. Consider, for example the following scenario for two interconnected
media. Suppose we are in a two media channel system, with the two media channels being television
and paid search. Also suppose search has uncapped spend, with paid search volume proportional
to query volume. Spend on television has multiple effects. It can
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e Directly generate sales without any interaction with search

e Increase the number of related category and/or brand queries, which may increase the volume
of paid search.

e Change the disposition of the population making queries, perhaps making them view the
advertiser brand more favorably, which may change the effectiveness of paid search.

Running a virtual experiment that removes television advertising will show the combined impact
of eliminating all of these pathways.

Counterfactual scenarios come in three types:

e Changes to actionable components of the simulation settings, such as the yearly budget
assigned to each media channel.

e Changes to non-actionable components of the simulation settings, such as the seasonality, or
competitor activity.

e Changes that require modification beyond the simulation settings. For example, fixing spend
in paid search is not directly possible within the paid search media module. Doing so would
require changes in the structure, dependencies, and campaign specification described in Sec-

tion 231

AMSS can run virtual experiments simulating the effects of either of the first two scenario types.
However, certain parts of the simulation are not designed to be specifiable. For example, a modeler
cannot simulate the effect of fixing sales to a newly specified level—sales cannot be specified, only
generated based on dependencies embedded in the simulation. Similarly, in certain situations it
is not possible to run a virtual experiment fixing search spend to a pre-specified level. When the
weekly spend cap is not a limiting factor, search spend varies based on query volume, SOV, and
CPC. Query volume fluctuates outside of the modeler’s control, and changes in other media channels
will generally impact consumer mindset in ways that affect query volume. Furthermore, there can
be multiple combinations of campaign settings that achieve a particular spend in search, but with
differing impact on the consumer. This makes the problem of fixing search spend not well-defined.
Thus, rather than specifying search spend when measuring media effectiveness, modelers should
instead specify values for upstream variables such as the budget or the campaign settings.

3.2 Calculating the ground truth

Given a fully specified scenario, the simulator is capable of producing the observable data resulting
from a random instance of that scenario. Ground truth is obtained empirically by generating
multiple random instances of data. The ground truth # may be a quantity such as the expected
weekly sales resulting from the scenario. The simulator reports the ground truth with greater
accuracy as the sample size, i.e., the number of datasets generated, grows. Larger samples are
needed for accurate estimation in scenarios with more variability.

This process is used to report ground truth for quantities such as the return on advertising spend
(ROAS) in a media channel. Consider a scenario with a particular marketing strategy b = (b,,)1.01,
where b,, is the budget for m-th media channel. Let m = 1 represent television. To calculate the
ROAS for television, generate Ny datasets Dy, (b),n1 = 1,..., N;. Let z,, (b) be the total ad spend
in dataset Dy, (b), and let y,, (b) be the revenue. Let b’ represent the counterfactual scenario that
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is identical to b in all respects, except that no budget is assigned to television. Thus, bj = 0 and
b, = bm ¥V m # 1. Generate No datasets D,,(b"),na = 1,..., No from scenario b’, each with ad
spend z,,(b") and revenue y,,(b’). The ROAS 6 is empirically estimated by

1 Yna (b) ~ Yno (b,)

6= .
NN ol Tpy (b) — Ty (b7)

By the law of large numbers, the ground truth reported by the simulator, 9, approaches the true
ROAS, 6. The accuracy of the approximation can be estimated by calculating a margin of error
from the variability in the empirical sample.

4 Sample application to media mix modeling

AMSS is capable of modeling both simple and complex marketing environments. We demonstrate
how the simulator may be used to test the performance of linear regression in estimating ROAS
and marginal ROAS (mROAS). We start from an extremely simple ad system where basic linear
regression performs well, and then consider model performance as we add a single complicating
factor to the scenario; lagged ad impact of increasing strength.

4.1 Simple simulation

4.1.1 Specification

We begin with a simple ad system with two media variables, television and search. We avoid several
complications that would make modeling more difficult. In particular,

e There are no lagged effects.

e There is no satiation effect; consumers remain in-market and active in the category after
making a purchase.

e There is no interaction between the two media channels.
e The seasonality is made known to the model.
e Competitive pressure is constant over time.

The simulation tracks media spend, media volume, and sales across four years of weekly data, for a
total of 208 weeks. The population size is 240 million. There is a strong seasonality in the rate of
market participation over time (see Figure @, which is generated by multiplying a sinusoidal time
series centered vertically at 0.42, with amplitude 0.175 and a 52-week period by an AR1 time series
with mean 1, standard deviation 0.1, and autocorrelation 0.3.

To avoid lagged effects, the activity state and brand favorability state naturally migrate back to
their equilibrium proportions at the beginning of each time interval. For activity state, we use

0.60 0.30 0.10
Q¥ =@Q® = [0.60 0.30 0.10 (4)
0.60 0.30 0.10
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Figure 7: Market rate in the simple simulation.

for an equilibrium distribution of 60% inactive, 30% exploratory, and 10% purchasing, among
‘in-market’ and ‘un-satiated’ individuals. Brand favorability transitions according to

0.03 0.07 0.65 0.20 0.05
0.03 0.07 0.65 0.20 0.05

0W =W =10.03 007 065 020 0.05], (5)
0.03 0.07 0.65 0.20 0.05
0.03 0.07 0.65 0.20 0.05

for an equilibrium distribution of 3% unaware, 7% negative, 65% neutral, 20% somewhat favorable,
and 5% favorable.

The media channels are sequenced with television followed by paid search. Television is treated as
a mass marketing channel with an audience comprised of 40% of the population of each segment. It
has a relatively stable yearly budget of (109,95, 84,91) million dollars per year for years 1-4. There
is strong signal for the effect of television due to large variability in the weekly spend (visible in
the flighting pattern plotted in Figure [8]) and a strong effect size (Chan & Perry, 2017)).

Television’s impact on the population is limited to changes in brand favorability, with maximum

effect
04 0 04 02 0

0 09 01 0 O
O —tv9H 1 0 0 06 04 0
0 0 0 08 0.2
0 0 0 0 1

The above matrix specifies transition probabilities between, in order, ‘unaware,” ‘negative,” ‘neut-
ral,” ‘somewhat favorable,” and ‘favorable’ brand favorability states. Note that television is relat-
ively effective at increasing awareness (40% of the population becomes neutral and 20% becomes
somewhat favorable) and in changing neutral favorability to somewhat favorable (40% of neutral
individuals will migrate to ‘somewhat favorable.”). The effect size scales with the frequency of
exposure according to a Hill transformation with a EC50 £ = 1.56 and maximal slope ( = 1
(see Figure [9).
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Figure 8: Flighting for television. For each week ¢ within a year, the total yearly budget is allocated in
proportion to the flighting coefficient f;.
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Figure 9: Effect size vs frequency of exposure to television shows diminishing returns.

Search has a more targeted audience, showing ads on queries from 1% of inactive, 30% of explor-
atory, and 40% of purchasing individuals. The CTR is higher in more favorable activity states. It
is 0.005 for ‘inactive’ individuals to 0.08 for ‘exploratory’ individuals and 0.10 for ‘purchase’ indi-
viduals. Neither query rates nor click-through-rates depend on brand favorability, in order to avoid
interaction effects between television and paid search in this simple scenario. The volume of paid
impressions and clicks is controlled by the interaction of query volume and CTR with the search
budget and its associated settings. In this simulation, budget affects neither the weekly spend cap
nor the keyword. Both remain fixed; in particular, the weekly spend is uncapped. Instead, the
budget is translated into changes in search spend through the advertiser’s bid. The bid increases
linearly with budget, from a minimum of 0.8 at a budget of 0. The simulation sets a larger budget
for search in each year of the simulation to create some variability in the paid search channel.

The effect of search on consumer behavior is entirely focused on activity state. Including effects
on the consumer’s brand state would create interactions with the effect of television, which we
are avoiding in this simulation. The maximal transition probabilities between activity states (see
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Appendix [C.2]) are

0.05 095 O
O(Search,S) _ Q(Search,S) — 0 0.85 0.15
0 0 1

In addition, relative probabilities of migration for individuals exposed to organic search only, paid
impressions without paid clicks, and paid clicks, are set to ¥*h = (0.0,0.1,1.0), respectively.
Thus,
¢search ) Q(search,?;) — 05%
v

‘inactive,” ‘exploratory’

of ‘inactive’ users who click on a paid ad will become ‘exploratory’ and

search (search,3) .
wv ‘exploratory,” ‘purchase — 15%

of ‘exploratory’ users who click on the paid ad will become purchasersm Those who view the paid
ad without clicking it will have a 9.5% chance or 1.5% chance of those same migrations, since

search — () 1. Those who make queries and only view organic and/or competitor paid results have
a 0% chance of either migration.

In the sales module, the price is specified as a constant $40 per unit. All members of the population
are ‘switchers’ with average brand availability. Thus, the demand curve varies solely with brand
favorability, and at $40, the proportion of individuals who will make a brand purchase is set at
(0.014,0,0.2,0.3,0.9) for the ‘unaware,” ‘negative,” ‘neutral,’” ‘somewhat favorable,” and ‘favorable’
brand favorability states. We fix the probability of competitor strength across time with v = 0.8
and avoid competitor effects on advertiser sales by setting w = 0.

As a final note, the first year of data is used as a burn-in period for the simulator, and only data
from years 2-4 are observed and used in the analysis. From here on we refer to time within the
dataset as years and weeks starting from the beginning of Year 2.

4.1.2 Data

We generated 1000 datasets corresponding to the scenario described above. Time series plots from
one of these datasets provide an overview of the data generated using this particular parameter
specification.

Figure [I0] shows the media spend for both channels. Note that television has high variability, while
search more closely follows the underlying seasonality of the market rate.

Figure shows volume for paid search. The three types of search volume all closely follow the
underlying seasonality of the market rate, and are highly correlated with each other within each
budget period (year). Note that, as the budget increases from year to year, the increasing bid in-
creases the advertiser’s SOV; as a result, the height of the dotted line (paid impressions) approaches
that of the solid line (query volume) over time.

The base sales is the sales that the advertiser would generate in the absence of any advertising.
When modeling, it is used to control for seasonality; we assume it is observed in order to avoid
trouble with unobserved seasonality while focusing on other modeling issues, such as lagged media

"Note that despite the high transition probability of ‘inactive’ users becoming ‘exploratory’ users, this only applies
to those ‘inactive’ users who are exposed to and click on the paid search ad. This is a relatively small group, since
this example describes a targeted campaign with low exposure rates for ‘inactive’ users.
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Figure 10: Media spend over time for television (black) and paid search (blue).
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Figure 11: Search volume: query volume (solid), paid impressions (dotted), and paid clicks (dashed).

effects. We generate the base sales by running the counterfactual scenario with all media budgets
set to 0. The average weekly sales over 1000 simulations from this no media scenario are reported
as the base sales. Base sales are approximately 95% of the total sales. Both sales and base sales

over time are plotted in Figure

4.1.3 Ground truth

We calculate the ROAS and mROAS as described in Section .2l The ROAS for television was
calculated using 1000 datasets generated with the original budget, and another 1000 datasets with
a television budget of 0. The ROAS for paid search was calculated analogously. The calculation
for the mROAS is similar to that of the ROAS; instead of generating a counterfactual with zero
budget, we drop the budget of the specified media by 5% to calculate the incremental effect of the

last 5% spent in the channel. The results, by year, are shown in Table
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Figure 12: Sales (solid) and base sales (gray) vs time.

TV Search
year ROAS mROAS ROAS mROAS
2 | 1.79 (0.00) 0.41 (0.02) | 1.90 (0.00) 1.94 (0.03)
3 | 2.11 (0.00) 0.40 (0.02) | 1.85 (0.00) 1.52 (0.03)
4 | 2.23 (0.00) 0.47 (0.02) | 1.86 (0.00) 1.76 (0.08)

Table 4: ROAS and mROAS for the two media channels in the simple simulation. Margins of error reported
in parentheses.

4.1.4 Modeling

For this illustration, we use linear regression to model the effect of media spend on sales. In order
to simplify the task of fitting the model, we assume the seasonality (5¢%) is observed; in reality,
advertiser knowledge of measures of seasonality, such as the base sales (used here), is imperfect.
Our model formula is:

(search

y = 50 + Btvxgtv) + Bsearchxt ) + /Bseasxg

(tv) _(seas) (search) (seas)
+ Btv,seasxt Ty +ﬁsearch,seaszt Ly

4 /Btvl/2 (xgtv))l/Q N /Btvl/?) (xgtv)> 1/3 e (6)

seas)

where ¢; ~ N(0,0?) for some 02 > 0. The media variables are the weekly spend in each media
channel. This is clearly a very simplified representation of the data-generating model, but it
produces reasonable results (see Table [5)).

We show the distribution of the estimates of ROAS and mROAS for each media in Figure We
compare the model estimates of ROAS and mROAS to the ground truth calculated by simulating
from appropriate counterfactuals, as specified in Section The bias and mean squared error
(MSE) of the model estimates are reported in Table There is a small amount of bias in the
estimates of ROAS and mROAS for television, due to lack of model fit for the nonlinear effect of
television.
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Figure 13: Histograms of the regression estimates for ROAS and mROAS for television and paid search,
calculated over 1000 datasets using basic linear regression. The true values provided by the simulator are
plotted as vertical lines.

TV Search
metric | ROAS mROAS | ROAS mROAS
bias -0.16 0.05 -0.10 -0.00
MSE 0.15 0.05 0.14 0.09

Table 5: Bias and MSE of estimates of ROAS and mROAS for television and search in the simple simulation.

4.2 Simulation with lagged effects
4.2.1 Specification

Next, we examine the effect of lagged effects for television on model performance. In the simple
simulation, ad effects do not last beyond the week in which ad exposure occurs. This is because the
segmentation of the population across hidden states is reset at the beginning of each time interval,
thanks to row-identical transition matrices controlling the natural migration of activity state and
brand favorability state. We add lag by increasing weight on the diagonal of the transition matrix
O™ to modify the natural migration of brand favorability, as described in Section m The
increasing tendency of the population to remain in the segment in which it finished the previous
time interval means that changes in the population segmentation caused by marketing interventions
persist beyond the initial time period of exposure. We gradually increase the amount of lag by
running simulations with Q) = Q((f) where Q((f) = (1-a)QW + als, for a = 0.1,0.2,...,0.5.
In addition, we hold the total advertising effect (nearly) constant by scaling the transition matrix
O(tv’4), which controls the initial impact of television, by the same «. In the simulation with

lag a, (v _ (1 — )™ 4 aI5. All other aspects of the scenario remain as in the simple
simulation.
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4.2.2 Ground truth

Table [6] contains the same-year impact of television and search, calculated in Year 4. The same-
year impact of television decreases slightly with increasing «, since television’s initial impact was
normalized to create a constant total impact, but some of the total impact of spend in a particular
year occurs during the beginning of the next year.

TV Search

lag @« | ROAS mROAS | ROAS mROAS
0 2.23 0.47 1.86 1.76
0.1 2.22 0.46 1.86 1.83
0.2 2.20 0.47 1.86 1.94
0.3 2.18 0.49 1.86 1.78
0.4 2.15 0.47 1.86 1.85
0.5 2.11 0.41 1.86 1.69

Table 6: ROAS and mROAS for the two media channels in Year 4, at several values for lag.

4.2.3 Modeling

The original model specified in @ does not account for lagged effects, and is expected to perform
poorly as the lagged effect grows stronger. A simple way to account for lag is to include spend from
earlier time intervals in the linear regression. We add six additional terms to our initial regression
model @ to account for past television spend:

Yt = BO + ﬁtvxgtv) + Btv,lwl(glz)% + ﬁtv,Ql}Eﬁg + ﬂtv,3$£ﬁg

s () s (42
+ Buiz (xgt_iJQ))lm + By (xgﬁjg)l/?

1/3
+ /Btyl/3 (xgtv)) + /BLeearchx;ESCaTCh) + ﬁseasmgseaS)

(tv) (seas
t

+ /Btv,seasxt (SeaTCh)x(SEaS) ' (7)

)
+ /Bsearch,seasxt t

Let Model 1 refer to the original model @, and let Model 2 refers to the new model with lag terms
(7)-

We use the MSE to evaluate Model 1 and Model 2’s ability to estimate the ROAS and the mROAS
of television in Year 4 over increasingly strong lag effects; the results are shown in Table [7] In
addition, Figure [I4] shows the distribution, over 1000 datasets, of the estimates of the ROAS and
the mROAS from each model. It shows that the increasing MSE of Model 1 is driven by the bias.
As the amount of lag grows, Model 1 increasingly underestimates the impact of television. Model
2 mostly corrects this bias in exchange for somewhat larger variance. Note that the correction is
not perfect; the bias still becomes more negative as the lag increases. This same set of simulations
could be used to evaluate alternative models that might be proposed to more accurately account
for lag.
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ROAS mROAS

lag a | Model 1 Model 2 | Model 1 Model 2
0 0.025 0.002 0.003 0.013
0.1 0.191 0.005 0.003 0.006
0.2 0.470 0.010 0.023 0.001
0.3 0.819 0.017 0.068 0.002
0.4 1.215 0.032 0.096 0.005
0.5 1.618 0.067 0.097 0.005

Table 7: MSE of estimates of television ROAS and mROAS in Year 4, generated by the two regression
models, as the amount of lag in the true model increases.

Model 1 Model 2
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Figure 14: Bias in estimates of the ROAS (top) and mROAS (bottom) of television in Year 4, from Model
1 (left) and Model 2 (right). The distribution of estimates at each level of lag is plotted as a violin plot.

5 Concluding Remarks

The increasingly complex marketplace has led to a strong demand for measurement in market-
ing. Numerous methodologies have been developed in response to a wide variety of measurement
needs. Given the complex marketing environment and the multitude of analytical methods that
are available, simulation is an essential tool for evaluating and comparing analysis options. This
paper introduced AMSS, a simulation system created to model marketing and its effect on con-
sumer behavior. AMSS is a very flexible and general framework that can capture many important
aspects of marketing and sales generation. It can be used to evaluate and guide the development
of multiple measurement methods, both observational and experimental.

Here we used a very simple investigation of the performance of regression-based modeling to il-
lustrate the use of AMSS in model evaluation and comparison. While it is not the goal of this
paper to recommend a particular Media Mix Model, AMSS provides the foundation for creating
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a systematic process for doing so. There are many challenging modeling issues related to MMM
that can also be studied using AMSS (Chan & Perry, [2017). These will be described in future
publications.

We'd like to acknowledge the help of Jim Dravillas (jimdravillas@google.com) in understand-
ing current models of consumer behavior. In addition, we thank our reviewers, David Chan
(davidch@google.com), Tony Fagan (tfagan@google.com), Yuxue Jin (yuxue@google.com), Jim
Koehler (jkoehler@google.com), Michael Perry (michaelperry@google.com) and Yunting Sun (yt-
sun@google.com) for their helpful suggestions.

A Notation

Throughout the paper, we utilize the following conventions for mathematical notation.

Notation Represents ‘ Examples
lowercase bold | vectors S, My k..
capital matrices QR | I,
Script capitals | sets S, A B
Greek parameters | O, A, &

Table 8: Mathematical notation

B Detailed mechanics of population migration

B.1 Changing market size

We define the set of ‘in-market’ population segments

A={seS:s =‘in-market’} (8)
and the set of ‘un-satiated’ population segments

B={s €S :sy="‘un-satiated’}. (9)

The market rate before the k-th event of the ¢-th time interval is 75 = n¢p a/nek,.s. Natural
changes in the market rate occur during event k& = 1. During this event, individuals migrate
between segments in A and S\ A, to attain (in expectation) the target market rate p;. The
cases where r;1 > p; and ;1 < p; are described separately, below. When 71 = p;, no migration
occurs.

Case 1, r¢1 < p;. When the current market rate is less than the target market rate, i.e., 74,1 < py,
individuals migrate from S\ A to .A. Thus, the affected population is the set of consumers in S\ A
and the size of the affected population in any segment s is

at1,s = ne1,sLs\ 4(8),

where 1 4(s) indicates whether s € A.
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Changes in market state generally happen without affecting the other dimensions of consumer
mindset. The sole exception is activity state; when un-satiated consumers enter the market, they
have probability v; of migrating to activity state j € Sz, where «; is a modeler-specified distribution
across activity states such that > jess Vi = 1. Satiated consumers must remain inactive. For each

j € Ss, let hg-l) be the function that maps segments s € S\ A to the corresponding segment in A
with activity state j. Then,

hél)(s) _ {(‘in—market,’SQ,j, oy 86) T, seB 7 (10)

(‘in-market,’ss, ‘inactive,’s4, 55, 56) |, 0.W.

and consumers originating in segment s migrate to segments s’ € {hg-l)(s) : j € S3}. Then, for all
s €S8\ Aand s’ €S, the transition probabilities are

t1 1—p¢ Pt — Tt
ot = (1 —r 1> Lisp() + 2 (1_> L ()

r
jESs t,1

The migrations mgt’;,) are randomly generated according to , and the post-migration population

segmentation my o . is calculated according to ([2)).

Case 2, 11 > pi. When the current market rate is greater than the target market rate, i.e.,
req1 > pt, individuals migrate from A to S\ A. Thus, the affected population consists of out-of-
market consumers in A, and the size of the affected population in each segment s € S is

at1,s = nt,l,sﬂA(s)'

)

When consumers leave the market, they also become ‘inactive.” Thus, individuals migrate from
se Ato

-1
(hg?) (s) = (‘out-of-market,’so, ‘inactive,’s4, s5, 5)

This migration occurs with probability (r:1 — p¢)/7¢,1, so that the expected post-migration market
rate is the target rate, E[r;2] = p;. The migration probabilities can be written as the transition
matrix Q%) with entries

(t,l) _ ﬁ 1 S, + <Tt,1 - Pt) 1 - S, )
A5 s (Tt,1> {8}( ) Te1 {(hé?) 1(5)}( )

The migrations mg’sl,) are randomly generated according to , and the post-migration population

segmentation m; o . is calculated according to ([2)).

B.2 De-satiation

Recall from @D that B is the set of ‘un-satiated’ segments. During the de-satiation process, the
affected population is the satiated population, and the size of the affected population in each
segment is

at2.s = nt2,s1s\p(8).
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Each member of the affected population de-satiates with probability A. Some of the de-satiating
consumers are ‘in-market’; these consumers migrate to activity states j € S3 with probability 'yjﬁ

For each j € S3, let hgg) map segments in S\ B to corresponding segments in B with activity state
j. We define

h(g)( ) (s1, ‘un-satiated,’j, ..., se) ", se A (11)
s) = )
(s1, ‘un-satiated,” ‘inactive,’sy, S5, Sﬁ)T, 0.W.

Then the affected population a; 2 s migrates from s € S\ B to s’ € S with probability
(t2) _

gy =1 =N (s)+AD 1 (19}
JES3

B.3 Natural migration in activity state

Natural migration in activity state is limited to consumers in segments s € AN B, i.e., consumers
that are both ‘in-market’ and ‘un-satiated.” Thus, the affected population is

at3,s = Nt 3,s ]l.AﬂB(S)-

The tendency of the population to gravitate toward an equilibrium distribution across activity
states is specified by a transition matrix Q) = (Q,E:O;))SP)ng. Entry @; ; represents the probability
that an individual currently in activity state ¢ will transition to activity state j. Note that, since

0®) is a transition matrix, Zj653 Q;; =1 for all 7 € Ss.

Migration occurs separately for each dimension. During this migration, consumers do not migrate
with respect to any other dimensions [ # 3. For every j € Ss, define the function mapping segments
s € AN B to the corresponding segment with activity state j,

hj(s) = (81, Sg,j, S84, S5, SG)T. (12)

Then consumers migrate from s € AN B to s’ € S with transition probability

3
qits? = (1 - OS3,sg) Ligy(s’) + 053,531{%(3)}(8')-

The migrations m(t 3,) are randomly generated according to , and the post-migration population
segmentation m; 3. is calculated according to ([2)).

Migrations between brand favorability, brand availability, and brand loyalty states are completely
analogous, except in the restrictions on the affected population. Recall that activity state migration
is restricted to states s € AN B that are both ‘in-market’ and ‘un-satiated.” Favorability migration
is restricted to segments with a loyalty state of ‘switcher’ or ‘competitor-loyal’; ad exposure won’t
change the favorability state of an individual who is ‘loyal’. Similarly, only individuals with the
favorability state ‘favorable’ can transition to the loyalty state ‘loyal’ during loyalty migration.

8This is the same v; used previously in Section to calculate transition probabilities for un-satiated consumers
who enter the market.
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B.3.1 Relationship to lagged effects

The transition matrix Q) determines the equilibrium distribution and the strength of the lagged
effect. Consider, for example, the following transition matrix:

0.50 0.30 0.20
Qo = (¢ij)ssxss = | 0.50 0.30 0.20 | . (13)
0.50 0.30 0.20

The matrix Qo is row-identical, i.e., g; j = ¢y j for all 7,7’ € S3. Thus, no matter the current activity
state of a consumer in A N B, he or she has probability 0.50 of migrating to the ‘inactive’ state,
probability 0.30 of migrating to the ‘exploratory’ state, and probability 0.20 of migrating to the
‘purchase’ state. We divide C = A N B into three disjoint sets, based on activity state:

Ci = {seC:s3="‘inactive’}
Co = {seC:s3= "‘exploratory’}
Cs = {seC:s3=‘purchase’}

Given any segmentation 1 = (ng3.¢,,Mn¢,3,,,M,3,c5) Of the population over activity states, an =
[n]|(0.50,0.30,0.20) . Thus, the pressure of natural migration immediately brings the population
back to the equilibrium distribution across activity states, = (0.50,0.30,0.20) ", and changes
in activity state brought on by marketing pressure have no lag. More generally, the matrix Q)
specifies a system with no lag if and only if it is row-identical:

0¥n = ||nlz ¥n < 0F) = (z,z,2)".

Now consider transition matrices @, of the form

Qo = (1 —a)Qo + als, (14)

where I3 refers to the 3 x 3 identity matrix. The amount of lag in activity state varies with a. For
example, when o = 0, is consistent with the definition of Qg in and there is no lag. When
a =1, Q1 = I3 and lagged effects are of infinite duration. In other words, the effect of marketing
interventions on activity state is permanent. To illustrate this, suppose some media changes the
distribution of the consumers in C from the equilibrium @ to n # x. Then an = n and the initial
impact propagates into all subsequent time intervals, until new marketing interventions change the
distribution once again. For a € (0, 1),
Qin=0-a)Qin+alzn=(1-a)||n|lz+ an.

As « increases, the pressure of migration towards the natural equilibrium x weakens, resulting in
stronger lagged impact.

In general, a valid system is specified by any O®) such that 0 < QE? <1 for all (i,7) € S3 x S3 and
> jeSs QE? =1 for all i € S3. Larger diagonal entries QZ(-?;) result in stronger probabilities of staying

in one’s current state and thus stronger lagged impact, while larger off-diagonal entries QE?}) i result
in faster mixing and weaker lag.
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C Media module specification

C.1 Traditional media module

Here, we describe the process used to generate media variables and population migration in the
traditional media module in more detail.

Audience. Every media has an audience, which is the number of people in each population segment
who engage with the specified media. It is the number of viewers of a television program or the
number of households reading a particular newspaper, and is randomly generated based on the
population and reachability of each segment. Suppose the traditional media module is applied as
the k-th event of the ¢-th time interval. The reachability for each segment s, ﬂga), is the probability
a member of s is exposed to the media, and also is the maximum reach of advertising in the media
channel. For each segment s € S, given the probability that members of the segment are in the

audience, wg‘”, and the pre-event population segmentation, 1 ., the media audience is

(a))'

af ks ~ Binomial(n k. s, 75
In the traditional media module, ﬂga) depends only on the activity state, s3, associated with segment
s. The module can easily be modified to allow (% to depend on other aspects of the population
segmentation.

Budget. The traditional media module uses the budget assigned to the media channel to determine
the values of dependent variables, such as the weekly spend and media volume. This budget is an
observed, advertiser-controlled variable. It is defined as the target spend of the media channel over
a specific range of time intervals known as the budget period. For example, an advertiser could
assign one million dollars to the newspaper channel in the fourth quarter of 2016.

Budget is specified by two sets of parameters: v = (14)1.7 specifies the budget period of each time
interval t € {1,...,T}, and B = (Bu){s,) specifies the budget assigned to each budget period w.
Then, each time interval ¢ € {1,...,T} has budget period u; = v, and budget by = /3,,. Since the
budget is the target spend, later, when we calculate the media spend, = (z)1.7, the total spend
over a particular budget period is expected to match the budget:

by, ~ Z x V u.

{t:rug=u}

Spend. The spend for media channel during time interval ¢ in segment s, x; 5, is generated based
on the budget variables b, u;, a parameter ¢; that specifies the flighting pattern for the spend,
and the media audience a; 5. Flighting specifies the distribution of budget across the time intervals
within a budget period, and sums to one over each budget period, i.e., Z{tm:u} pr = 1 for all w.
The spend in each segment is proportional to both the flighting ¢; and the audience a; s, so that

the spend per segment is
Q¢ ks
Tt,s = bt@tia
at k.S
where a; s =) scs at,s is the total audience over all segments at time ¢.

Volume. This module calculates media volume from media spend based on unit cost. Unit cost
may vary over time. For example, the size and composition of a television audience varies from
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week to week and this changes the cost per exposure. Since unit cost can vary from week to week,
AMSS allows specification of the mean p(©) and standard deviation o(¢) of the unit cost. The unit

cost at time ¢ is ) )
¢ ~ Gamma <<M(C)/g(c)) ”u(c)/ (U(0)> ) 7

where Gamma(a, 5) refers to the gamma distribution with shape « and rate 5. The volume in
each segment is

Ut ks = xt,s/ct‘
Usually, the aggregate volume over all segments, v, s = > .5Vt ks, is observed. The traditional
media module also generates some other common measures of media volume. For example, televi-
sion volume data often comes in the form of gross rating points (GRP’s), which are calculated as
reach times frequency, i.e., 100v; s/ N k.S-

Reach and frequency. The reach and frequency are determined by the size of the audience a; ;. , and
the volume of exposures vy s in each segment. Let v,y s; be the number of ad exposures,f(’)r the
i-th individual in segment s during the k-th event of time interval ¢t. Assuming that the number of
exposures for each individual in the segment follows an independent Poisson process, the number of
exposures per individual conditioned on the total volume of exposures v, s follows a multinomial
distribution with equal weight assigned to each individual:

. . 1 1
(Vtk,s,i)i=1:az, , [Vt k,s ~ Multinomial (Ut,k,Sa (a* yoe :

%
t.k,s at,k,s

Then the probability that a specific individual is not reached by the media channel is p(a’; ks> Vb, s)

where N
p(a,v) = (1 - > ~e Ve

a

The number of individuals not reached by the media channel has first moment

H1 = a;kz,s ’ p(az:k,s’ 'Ut,k,s)
and second moment
H2 = 1 - (1 + (azlas - 1) 'p(a;tk,k,s - 1>Ut,k‘,s))'
These moments are used to simulate the reach a; s of the k-th media during the ¢-th time interval
in segment s, via a normal approximation. Here reach is defined in the absolute sense, as the total

number of individuals exposed at to the media advertising at least once. The average frequency is
then vk s/at k. s-

Effect. The key feature of a media channel is its effect on consumer mindset, which is realized
by the migration of consumers between population segments. This migration is controlled by the
reach and frequency of the media.

Recall from the introduction to population migration, in Section that the migration process is
limited to an affected population a;y s; in the traditional media module, this is equivalent to the
reach. At maximal frequencies of media exposure, the affected population will migrate between

(%)

segments following the maximal transition probabilities, which are specified by Q%) = (¢ o5 )SXS-

Specifying the matrix Q) directly is tedious, due the large number of entries. Instead, the modeler
specifies transition matrices

o) — <¢§f§vl> , 1=3,4,5,6,

)Sl ><$l
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specifying a sequence of transitions in each dimension affected by marketing, i.e., for activity state,
brand favorability, brand loyalty, and brand availability. Each Q(k’l) is expanded to an S X S matrix
O*(k’l) with entries

kol
oD _ {Oihsz [lrs Uy (sp) s€eRCS

Iig(s’) otherwise

and Q) is the matrix product of these transition matrices, equivalent to performing the transitions
specified by each Q*(k’l) in sequence:

Q(k) _ O* (k,3) O*(kA) O* (k,5) O* (k,6) '

We let R; be the set of population segments that are considered valid points of origin for migration
in the [-th dimension. For example, activity state is only changeable for consumers that are ‘in-
market’ and ‘un-satiated.” Thus, Rs = AN B, where A and B are defined as in Equations , @D
Let

D ={seS:sy= ‘favorable’}

and let
E={seS:s;="loyal’}.

Then brand favorability migration is limited to R4 = S\ £, and brand loyalty migration is limited
to Rs = D. There are no limitations on brand availability migration, so Rg = S.

When ad volume is very large, all members of the audience migrate according to the maximal
effect Q) ie., Q%) = Q). This is generally not the case. Instead, consumers migrate between
segments with probabilities that depend on the average frequency of exposure f;js. For each
segment, we calculate an effect size, e; s € [0,1], and use this to scale the transition probabilities
against the frequency of exposure fi s = vt s/atks. The effect size e ¢ is calculated from the
frequency using the Hill equation :

1
ets = H(ft,k,s;/ia C) = 1+ (ftks/’i)_c.

The sigmoid shape of the Hill function enforces diminishing returns of advertising against higher
frequency of exposure, and the limited maximal effectiveness of the media. The audience migrates
according to the transition matrix

Q"M = ding(e,, ) Q™ + ding(1 — e, ) I,

where for any vector v, diag(v) is the diagonal matrix with diagonal v and for any dimensionality
d, I is the identity matrix of size d x d. This results in entries

k
(bk) _ eLs0 Y s# s
2 (1—ers) +ers0l) s=s

Thus, the migration effect of the media on a segment s is scaled so the probability of migration
away from s is proportional to e;s. The updated population segmentation mn; 1. is calculated

from ny ., ar ., and Q®F) as usual (see , )
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C.2 Paid search media module

Here, we describe the process used to generate media variables and effects in the paid search media
module in more detail.

Campaign settings. As in the traditional media module, downstream variables depend on the
budget assigned to the media channel. However, rather than choosing spend according to a flighting
pattern, in search advertisers choose campaign settings such as a daily spend cap, a keyword list
(the list of search terms on which the advertiser is bidding), and a maximum cost per click (which is
equivalent to a bid). The simulator allows the modeler to specify the relationship between budget
and each of these quantities. For example, a decrease in budget may be realized via a lowering of
bids, and thus a lowering of the CPC and SOV. Alternatively, lowering the budget may be realized
via the throttling of paid search volume through a lower spend cap, a contraction of the keyword
list, or any combination of the above.

Audience. The calculation of audience size, a; .., in paid search is analogous to that in the tradi-
tional media module, except that the probability that individuals from a segment will make match-
ing queries depends on more than just activity state. The probability individuals make matching
queries also depends on brand state; this is essential in modeling branded search campaigns. Since
the audience is limited to those making queries matching the keyword list, the keyword list length
is an additional factor that controls the size of the audience.

Volume and spend. In paid search, there are three types of volume: query, impression, and click
volume. The audience in segment s generates queries following a Poisson distribution with rate
M%) The total number of queries is

wisla g, ~ Poisson(APag . s).

Weekly spend is not directly specifiable through a flighting pattern. Instead, the total number of
impressions available to the advertiser, u; ¢, depends on the query volume, w s, and the maximum

SOV, pgu), that the advertiser can achieve in the current bid landscape. Any query generates an
available impression with probability pgu), so that the total number of impressions available to the
advertiser for the query volume is

uf s|wi,s ~ Binomial(ws, pi")).

The advertiser’s ability to win auctions, and the price at which it wins them, depends on its

bid c¢f. Recall that paid search pricing is parameterized by the minimum nt(m) and maximum

nt(M) CPC during each time interval t. In reality, paid search pricing depends on the actions of

competitor advertisers, who are also making the full set of decisions we describe for the advertiser.
In order to limit the burden on the modeler, we use a simplified competitor model in which the
auction environment is summarized by the range [nfm),ngM)]. This simplifies the competitive
auction dynamics. For example, it doesn’t allow competitors to change their bids in response to

the advertiser’s actions.
The CPC, ¢, increases with the bid, ¢}, and is bounded by [nt(m), 77§M)]:

* M
et =™V A
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When the bid ¢} is less than the minimum CPC ngm), the maximum SOV the advertiser can attain
is 0, and for ¢ > nt(M), the maximum SOV is 1. We calculate the maximum SOV for ¢; within the

range [nlgm), nt(M)] by linear interpolation, so that

(m)

(w) cy —ny
pe=0Voan ML
Un — T

In addition to search volume being limited by the number of impressions available, it may also be

limited by the advertiser?s spend cap, :UEM), which is translated into a cap on the number of clicks,

’Ut(M), through the CPC ¢;:

vt(M) = ng)/ct.

Each impression generates a click via a segment-specific CTR, 7r§”). The CTR is higher for more
favorable and loyal states. The overall CTR is

(v)
v at k,sTs
N

a
seS t.k,S

This calculation weights wgv) by the probability that an impression came from segment s. From the

CTR, we can derive the number of impressions ugM) needed to reach the click limit vt(M) imposed
by the spend cap:
M M . M
ug ) _ Ué )~ NegBln(Ui ),pgv)),
where NegBin(r, p) represents the number of failures until the r-th success given independent trials
with probability of success p.

If the maximum number of clicks is realized within the available number of impressions, the simu-

lator will generate UISM) clicks using uEM) impressions at time ¢. Else, the number of clicks is not

limited by the spend cap and can be calculated from the hypergeometric distribution:

M . M
ur,slu g up™" = minfu s, uf*,
(M) (M)
u (M) (M) _ )Y Uy S“;s
U, S|Urs, Uy S Ups, Uy T = (M) (M) (M) & (M) £
Hyper(v; ™7 ug " — v L ugs)  ug " > ugs

where Hyper(m,n, k) represents the number of successes in k draws from a population with m
successes and n failures. This reduces to the binomial distribution for m = n = oc.

For the next step of calculating the effect of paid search, it is important to know the total number of
queries, impression, and clicks coming from each segment. These volumes are given by the following
multinomial distributions:

o
seS t,k,SpS

(at,k,s <1 - pé“))ses

S ses atks(1— &)

v4,.|vg,s ~ Multinomial (’Ut75,

wp. — v |Us, Vs ~ Multinomial | uy s — vis,
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Wi, — Ug,. |U)t75, ug,s ~ Multinomial(wng — Uut,S, at,k,./at,k,g).
The spend in each segment s € S is Ty 5 = vy 1, 5Ct-

Effect. The calculation of effect is analogous to the calculations in the traditional media model.
The key difference is in the formulation of the effect size, e;s. We allow e; s to vary by query
volume wmﬂ impressions u; s, and clicks v, s. Given the audience and the volume of search, we
can calculate

e the number of people who made a query on the keyword list but were not served the advert-
iser’s paid search ad

e the number of people who were served a paid search ad but did not click on it (e.g., they may
have clicked on a competitor’s result, or one of the advertiser’s organic results)

e the number of people who saw and clicked on the advertiser’s paid search ad.
(u)

t.s be the number

Let ng? be the number of individuals from segment s making queries, let n

viewing paid impressions, and let ngvs) be the number making paid clicks. Conditional on the

aggregate number of queries wy s distributed over the query-making population a; s, the number
of queries made by each individual follows a Multinomial(wy s, (1/ass,...,1/ars)") distribution.

Based on this, we calculate the first and second moments for ng? and simulate from a normal
approximation. The calculation of the number of people exposed to paid impressions given the
total number of impressions u; s and the number of individuals making queries ng? is analogous,
as is the calculation of the number of people making paid clicks given the total number of paid
clicks vy s and the number of individuals exposed to paid impressions ngu)

For query volume w, paid impressions u, and paid clicks v, the modeler specifies the ratios ¢§U’“),

Q(Lk), and wi(,k) of each search volume type’s effectiveness and the maximum effect of search. The
relative effectiveness of each volume type is used to scale the effect of search on individuals who
made queries without seeing a paid impression, on those who saw a paid impression without clicking,

and on those who made a paid click. Generally, paid clicks will be the most effective volume type

)

is possible to assign a high value towl(vk) when simulating the behavior of branded search to account
for paid search replacing organic search rather than adding incremental impact.

and attain relative effectiveness wq(,k = 1. The effectiveness of organic search is specified by wq(f ) It

In addition, the simulator simplifies the effect-frequency relationship so that an individual will feel
the full effect of any search volume at a frequency of 1. Then, the effect size depends only on
the effectiveness and reach of each volume type, and can be calculated as the following weighted
sum:

(w) (u) ()
n —n n —
k) 't,s t,s k) '“t,s
et,s — d}'gj) + ¢1(L ) v
At k. s Q¢ ks at k. s

v) (v)

nzg,s + (k) nt,s )
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