

Kai A. Olsen

Praktisk programmering

Marte Heian-Engdal

Israel
Historie, politikk og samfunn

© CAPPELEN DAMM AS, Oslo, 2018

ISBN e-bok: 978-82-02-63000-3

ISBN trykt bok: 978-82-02-60647-3
1. utgave, 1. opplag 2018

Boken har fått støtte av Høgskolen i Molde, avdeling for logistikk.

Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser.
Uten særskilt avtale med Cappelen Damm AS er enhver eksemplarfremstilling
og tilgjengeliggjøring bare tillatt i den utstrekning det er hjemlet i lov eller
tillatt gjennom avtale med Kopinor, interesseorgan for rettighetshavere til
åndsverk.

Omslagsdesign: Cappelen Damm AS
Sats: Kai A. Olsen
Trykk og innbinding: Livonia Print SIA, Latvia

www.cda.no
akademisk@cappelendamm.no

3

Forord

De fleste programmeringsbøker handler om nettopp det – programmering.
Problemet er at vi ofte ønsker å bruke kunnskapen om programmering til
å lage nyttige systemer. Da må vi håndtere import av data, lagring og
strukturering av data, et brukergrensesnitt (slik at brukerne våre kan styre
systemet) og rapportering – i tillegg til selve programmeringsdelen.

I denne boken skal vi konsentrere oss om helheten, slik at en får en
overordnet forståelse for både systemutvikling og programmering.
Samtidig skal vi lage systemer som kan brukes til noe. For å få til dette
skal vi bruke Microsoft Access. Dette systemet har alt vi trenger:
Programmeringsspråk, database, brukergrensesnitt og et rapportverktøy.
Det vi skal se, er at veien til målet, til et ferdig uttestet system, vil være
langt enklere med Access enn med de fleste andre systemer. Det er viktig.
Programmering er vanskelig nok om vi ikke skal slite med tungvinte
verktøy.

Min erfaring fra en lang rekke systemutviklingsprosjekter for næringslivet,
er at en kan komme i mål langt hurtigere og med lavere kostnad med
Access enn med andre systemer. Det betyr ikke at Access er det beste
valget i alle situasjoner. Er det strenge krav til sikkerhet, eller om det er
tusenvis av brukere, vil jeg ikke valgt Access. Da finnes det tyngre
verktøy. Ulempen med disse er akkurat det, når alle aspekter skal dekkes
opp blir utviklingen mer tidkrevende og mer kostbar.

For å lære programmering er det tre ting som er viktig – arbeid, arbeid og
arbeid! Det er dessverre sant. Problemet er at programmering har mange
nivåer. For å kunne arbeide på toppnivået, der vi kanskje forsøker å se
hvordan en maskin kan ta seg av en oppgave som tidligere er gjort av
mennesker, må vi også beherske alle nivåene under. For å mestre det
vanskelige, må vi beherske det enkle. Eneste måten å få dette til på er å
opparbeide en rutine. Når de enkle delene går glatt, kan vi da ta fatt på å
forstå neste nivå.

Vår løsning på disse utfordringene er gjennom rutine. Vi skal starte med
enkle oppgaver, programmere disse, og gjenta dette med nye oppgaver.
Etter hvert vil du beherske de enkle delene. Da skal vi opp et nytt nivå og
takle noe vanskeligere oppgaver. Til slutt skal vi også prøve oss på
virkelige systemer: fakturerings- og regnskapssystemer, bestillingssyste-

 4

mer for hotell, restaurant og fly, systemer for å beregne gjennomsnittshas-
tighet, m.m.

Istedenfor å bruke mye tid på å lære basisbegrepene skal vi gå rett på
programmeringen. Det er som moderne språkkurs. Der snakker en det
fremmede språket fra dag 1. Vi skal altså programmere systemer fra dag 1.
Så er ideen at forståelsen av basiskomponentene skal komme til etter
hvert. Etter å ha introdusert begrepene i praktiske eksempler, vil jeg
summere opp og si mer om både programmering og Access.

I boken har vi brukt fargekodene fra alpinbakken. Grønt for det som er
greit, blått for det som er mer krevende, rødt for det vanskelige og sort
for det avanserte. Om en skulle ta eksamen i Praktisk programmering, vil
oppgavene her fordeles fra grønt til rødt, ikke sort. Når vi tar med det
sorte, er det for at du som programmerer skal vite litt om de mer avanserte
løsningene.

Kommer du gjennom dette, mestrer du det å programmere. Du vil da ha et
verktøy som kan brukes for å gjøre arbeidsdagen din mer effektiv, og ikke
minst – til å hjelpe andre, slik at de også kan jobbe mer effektivt. Med
kunnskap om programmering kan vi bidra til å digitalisere arbeidsoppga-
ver, som oftest de kjedelige og rutinepregede oppgavene. Det er helt
nødvendig om vi skal klare å opprettholde en høy levestandard og et høyt
lønnsnivå i Norge. Med kunnskap fra denne boken kan du bidra i dette
viktige arbeidet.

 5

Innhold

1 Introduksjon ... 7
2 Access – Komme i gang .. 14
3 Access – Konstruere skjema (form)... 19
4 Case – Fibonacci-tall ... 24
5 Programmering – Kjøring og debugging 30
6 Programmering – Typer, variabler, For-setning 36
7 Øving – Vår egen tallrekke .. 41
8 Case – Fibonacci, begrensning på antall tall.................................... 42
9 Case – Fibonacci, begrensning på verdi .. 45
10 Case – Fibonacci, verdibegrensning (ver. 2) 48
11 Programmeringsspråk – If og logiske uttrykk 50
12 Case – I hvilke år er det skuddår?.. 53
13 Case – Konvertering, Fahrenheit og Celsius................................ 55
14 Case – En enkel kalkulator .. 57
15 Øving – Omregning meter til fot ... 60
16 Case – Når kommer 1. påskedag?.. 61
17 Øving – Utvidet kalkulator .. 64
18 Case – Arbeide med tekst .. 65
19 Case – Kryptering .. 70
20 Øving – Pasientjournal... 73
21 Case – Beregning av gjennomsnittstemperatur............................ 74
22 Øving – Summering av utgifter ... 82
23 Access – Tabeller... 83
24 Koble et skjema til en tabell... 86
25 Case – Global oppvarming .. 89
26 Programmering – Håndtering av feil ... 97
27 Access – Database og SQL.. 102
28 Øving – Omregning av lengdemål... 106
29 Case – Salgsstatistikk... 108
30 Øving – Opptelling av materialer .. 114
31 Case – Fartsmåling... 115
32 Øving – Automatisk kutting av lister... 121
33 Case – Høydemeter .. 122
34 Øving – Innlesing fra tekstfil ... 128
35 Case – Tekstanalyse... 129
36 Øving – Lesbarhetsindeks.. 133
37 Case T9 – En adaptiv ordbok... 135
38 Case – Forlag, registrering av bøker .. 140

 6

39 Case – Forlag, registrering av leveringer 144
40 Øving – Pakkekontroll.. 148
41 Access – Debugging av SQL setninger...................................... 149
42 Case – Forlag, registrere utgifter.. 152
43 Case – Forlag, fakturering .. 158
44 Case – Forlag, regnskapssystem... 167
45 Access – Rapporter... 172
46 Øving – Kvittering for materialsalg ... 174
47 Case – Felles fakturering av bompenger 175
48 Access i den virkelige verden – Turbokforlaget 181
49 Case – Karakterstatistikk, en karakter.. 190
50 Programmering – Array.. 194
51 Øving – Beregning av finérplater... 197
52 Øving – Finne primtall ... 198
53 Case – Sammenligning av to karakterer..................................... 199
54 Case - Samordna opptak... 203
55 Access – Egne datatyper (record typer) 209
56 Case – Fotballstatistikk .. 211
57 Programmering – Subrutiner og funksjoner............................... 220
58 Øving – Ruteoversikt.. 223
59 Case – Bestillingssystem for et hotell .. 225
60 Øving – Bestilling av parkering ... 232
61 Case – Bordbestilling på restaurant.. 233
62 Case – Matteprogram ... 238
63 Øving – Yatzy .. 246
64 Case – VBA i Word.. 248
65 Avansert case – Billettbestilling for fly...................................... 252
66 Avansert case – Sudoku ... 259
67 Access i den virkelige verden – Oshaug Metall 265
68 Access i den virkelige verden – ShipNor AS............................. 272
69 Programmering – en kunstform?.. 277
70 Om forfatteren .. 279
Indeks ... 280

 7

1 Introduksjon
Tenk deg at du skal gå på et forfatterkurs og lære å skrive romaner. Det
vil være krevende nok, men nå har du meldt deg på et forfatterkurs i
kinesisk. Her får du nye tegn, ny grammatikk og så skal du samtidig lære
å skrive romaner. Heldigvis er det ikke fullt så vanskelig å lære program-
mering. Du vil kjenne igjen deler fra skolematematikken. Tegnene er
heldigvis våre vanlige latinske, men du vil måtte lære en ny grammatikk.
Fordelen er at dette er en mye mer stringent grammatikk enn den vi er
vant med fra vanlige (naturlige) språk. Dernest må du forstå på hvilket
nivå maskinen arbeider – hva som er dens styrke og begrensning. Det er
nødvendig når du skal ta oppgaver fra den virkelige verden og beskrive
disse som programmer.

Som vi ser, skal en ikke bare lære programmering, men også beherske et
verktøy. Det er ikke ”rocket science”, men i starten vil du bruke mye tid
på å finne fram. Nå vil denne boken gi en detaljert oppskrift, men også
det kan feile – for eksempel om du har trykket en feil knapp. Da må du
selv finne tilbake til der du var. Det kan ta tid. Og etter å ha rotet rundt i
Access-grensesnittet en stund, har du kanskje glemt hva du egentlig skulle
gjøre. Eneste svar på dette er å bruke verktøyet så mye at det blir rutine.

1.1 Utvikling av datasystemer

Hvorfor skal vi lære å utvikle datasystemer? Vi kan spørre oss om ikke
alle de nyttige systemene allerede er utviklet. Dette er et godt spørsmål. I
dag finner vi systemer og apper for det meste. Det ville ikke være særlig
fornuftig å utvikle ditt eget tekstbehandlingssystem, når du kan få
Microsoft Word for en billig penge, eller andre systemer gratis. Vi kan
også diskutere om det er så mye å hente på å utvikle apper. Da konkurre-
rer vi med millioner av andre programmerere over hele verden. Alle
utvikler apper og det finnes hundrevis, ofte tusenvis, av apper for hvert
eneste formål. Leter du for eksempel etter en kalender-app, finner du flere
tusen, både på Google Play og på App Store. Skal du få noen til å bruke
din app, må du nok gi den bort gratis og isteden håpe på å tjene penger på
fremtidige utgaver.

Derimot vil vi, i de aller fleste bedrifter, finne oppgaver som ikke er
dekket av standard programvare. Vi skal gi flere eksempler i denne boken
der det kan ha vært store besparelser på å lage egne systemer. Det kan
også tenkes at hyllevaren, standard programpakker som vi kan kjøpe, kan
være for kompleks eller kostbar, samtidig som den ikke dekker jobben
fullt ut. Igjen en mulighet for en som kan programmere. I dette markedet

 8

er det liten konkurranse. Min erfaring er at det i enhver bedrift finnes
mange uløste programmeringsoppgaver.

Dersom du kan programmere, eller kode som mange kaller det, vil du stå
sterkt i arbeidslivet. Kunnskap om informasjonsteknologi (IT) er blitt
nødvendig i dag innen de fleste jobber. Her står kompetanse i program-
mering sentralt. Det gjelder spesielt om du også har utdanning eller
erfaring fra et annet område. Da kan du bruke din programmeringskunn-
skap til å lage systemer innenfor dette området. For eksempel, om du vet
mye om å lage møbler og programmering, er det ikke så sikkert at det er
mange andre som har denne kombinasjonen. Da kan du utvikle systemer
som er nyttige for dette anvendelsesområdet, uten å møte stor konkurran-
se fra ferdige systemer. Der de tilgjengelige systemene i markedet er laget
for en generell bedrift, kan du lage noe som er tilpasset den bedriften der
du arbeider, enten det er en møbelfabrikk, et salgsfirma, en eiendomsmeg-
ler, dagligvarebutikk, eller hva som helst annet.

Jeg har utviklet store programsystemer for flere bedrifter. Utgangspunktet
har vært at det enten ikke var et tilbud av ferdige systemer, at disse
systemene ikke dekket behovet, eller at de var for kostbare. En dramatisk
fordel med å lage et eget system, er at det gir en konkurransefordel. Om
en bedrift velger å bruke ferdige systemer, kommer en ikke bedre ut enn
konkurrentene da disse bruker den samme programvaren, kanskje også de
samme konsulentene. Da blir IT som elektrisitet, noe en må ha, men som
ikke gir noe fortrinn overfor konkurrentene. Lager en noe eget, som ingen
andre har, kan en få en strategisk konkurransefordel.

Disse eksemplene er dekket utførlig i boken. Ideen er å vise at overgang-
en fra de systemene vi programmerer i denne boken til komplette
systemer for den virkelige verden ikke er så stor. Dvs. om du lærer deg
systemutvikling, slik vi beskriver det her, kan du også utvikle nyttige og
viktige systemer.

1.2 Hvorfor Microsoft Access?

Access er et anvendelig verktøy som kan brukes til både små og store
oppgaver. Om du har 1, 10, 100 eller 1000 brukere kan Access gjøre
jobben. Når det er sagt, ville jeg nok ikke bruke Access om det var snakk
om å lage hovedsystemer for store banker eller forsikringsselskap.
Derimot kan vi gjerne lage hovedsystemer for mindre bedrifter i Access.
Som vi skal se, er Access spesielt egnet for mindre systemer. En sentral
egenskap med verktøyet er at vi kan komme i mål med begrenset innsats,
både i tid og penger.

 9

For å ta et eksempel. Jeg fikk i oppdrag fra en av mine kunder, fra en
bedrift der jeg har utviklet hovedsystemet, om å bygge inn mulighet for å
oppgi priser i forskjellige valutaer. For å få til det trengte jeg en tabell
med kurser, altså med valutakode (for eksempel USD, EUR) og kurs. I
tillegg måtte jeg gi brukeren mulighet til å velge valuta for et prosjekt, og
å konvertere til denne valutaen i alle utskrifter med priser. For dette
fakturerte jeg to timer. Vanskeligere var det ikke. Samtidig, i et oppdrag
for en annen kunde der jeg var rådgiver, og andre stod for programme-
ringen, fikk vi et estimat på 60 timer for akkurat samme jobben. I
utgangspunktet synes vi dette var altfor mye, men etter å ha sett nærmere
på estimatet fant vi ut at dette var realistisk. Med de verktøyene som ble
brukt for dette prosjektet ville det ta 60 timer å gjøre jobben.

Dersom du ikke jobber for DNB, Gjensidige, Hydro eller en annen stor
bedrift, bør Access vurderes som utviklingsverktøy. Og selv i store
bedrifter kan en bruke Access til mindre funksjoner, eller til å lage en
prototype. Siden det er så kjapt og effektivt å lage Access-applikasjoner
kan det ofte lønne seg først å lage systemet i Access, bruke dette til å få
erfaring med oppgaven, og så programmere i det verktøyet kunden krever
at vi skal benytte. I min virksomhet over mange år har jeg flere ganger
angret sterkt på at vi ikke har utviklet systemet i Access først. Det ville ha
spart oss for unødige kostnader.

Programmeringsspråket i Access er VBA – Visual Basic for applications.
Som navnet sier, er dette et Visual Basic-språk, med små avvik fra
programmeringsspråket Visual Basic (VB). Kan du programmere i VBA,
kan du også programmere i VB. Det kan være praktisk. Selv om Access
kjører de fleste jobber fort og effektivt, kan det være situasjoner der vi
trenger rask prosessering. I motsetning til VBA kan Visual Basic gi deg
en exe-fil, altså en meget effektiv, kompilert, kjørbar versjon. Det at den
er kompilert betyr at programsystemet har oversatt koden fra det nivået vi
benytter når vi programmerer, til et langt mer effektivt maskinnært nivå.
For at de aller fleste oppgaver er dette uten betydning. Men, som sagt, kan
du VBA kan du også VB.

Veien fra VBA til andre programmeringsspråk, som C++, Java og
lignende, er kort. En fordel med VBA er at det også inngår i alle andre
Office-programmer, i Word, Excel og Outlook. Det kan være nyttig. Som
vist senere i denne boken, kan vi bygge videre på disse programsysteme-
ne for å tilpasse disse akkurat til vårt formål. Dette gjelder også selve
verktøyet, Microsoft Access. Vi må lære å bruke dette for å kunne
programmere. Ingenting er vanskelig. Access er godt designet. Problemet

 10

er at vi må beherske så mange deler. I boken viser vi hvordan alt skal
gjøres – en gang. Neste gang du skal gjøre en operasjon, for eksempel
opprette en tabell eller et skjema, må du klare det selv. I begynnelsen går
det tregt. Ideen er å gjøre alt mange ganger. Da sitter det.

Access er et verktøy som lar oss komme fort til målet. Det budsjettet vi
har for å lage hele systemet, kan være på samme størrelse som det andre,
som anvender tyngre verktøy, kan bruke på en ”kick off”.

Nå har det sine klare fordeler at Access kan kjøre den koden du har
skrevet inn direkte, uten oversetting til et mer maskinnært språk. Denne
form for prosessering kaller vi interpretering. Mens det koster oss noe i
kjøretid, har det meget store fordeler, ikke minst når vi skal debugge
(feilsjekke) programmet. I Access kan vi styre kjøringen selv. Vi kan
stoppe, klikke på de forskjellige delene av programmet for å se hvilke
verdier disse har, vi kan til og med kjøre setninger om igjen. Har vi gjort
en feil i en programsetning, kan vi rette feilen under kjøring, og så
repetere kjøringen. For nybegynnere er dette ubetalelig. Ikke bare er det
lett å feilsjekke systemet, men vi kaster ikke bort tid når vi skal rette feil. I
tillegg, når vi i starten skal forsøke å forstå hvordan maskinen tolker det
programmet vi har laget, er mulighetene til å kjøre en og en programlinje
av stor pedagogisk betydning. Her kan du stoppe kjøringen på en linje,
vurdere situasjonen og deretter be systemet kjøre en linje til.

En ulempe med Access er at den i utgangspunktet ikke er tilgjengelig på
Apples maskiner. De som har valgt å melde seg opp som student (se
under), vil få tilgang til Access via en nettside. Om du har en Apple-
maskin, og ikke er student, må du installere en virtuell Windows-maskin
og kjøre Access på denne.

Selv om vi har valgt Microsoft Access som verktøy, er ikke hensikten å gi
en utførlig beskrivelse av dette verktøyet. Vår jobb er å bruke Access for
å lære programmering og å lage nyttige systemer, ikke å utforske alle
detaljene. Dersom en er interessert i det, finner en mye innføringsstoff på
nett.

I boken har jeg valgt å bruke engelsk versjon av Access. Dette blir en
smakssak, men fordelen med å bruke engelsk versjon er at setningene i
programmene uansett skrives med engelske symboler (For, If Then, Exit,
osv.). I tillegg, om du vil vite mer om skjema i Access og søker på nett får
du langt flere treff om du søker på ”Microsoft Access Form” enn
med ”Microsoft Access Skjema”. Søker du på mer obskure begreper er
det ikke sikkert at du finner noe treff på norsk. Videre, mye av læremate-

 11

riellet, eksempler og ferdig kode på nett, er på engelsk. Som datafolk kan
vi like godt innarbeide de internasjonale begrepene med en gang.

En ulempe med å bruke engelsk utgave av Access er at språket i denne
boken blir litt både og. Siden vi bruker engelske begreper så ofte, form,
record, query, m.m. har jeg valgt å bruke disse direkte, uten å sette på
anførselstegn. Sluttproduktet blir praktisk, om enn ikke så veldig elegant.

1.3 Programmering

En liten tue kan velte et stort lass. Ingen steder er dette mer riktig enn i
programmering. Har du glemt et komma, brukt komma istedenfor
punktum, enkel apostrof (’) istedenfor dobbel (”), eller tusen andre mulige
feil, vil ikke programmet fungere. De enkleste feilene, der vi har feil
syntaks (grammatikk), har brukt begreper vi ikke har beskrevet, osv. tar
VBA seg av. Vi får da en feilmelding med angivelse av hvor feilen er.
Noen feil oppdages først når programmet kjøres, for eksempel om vi
dividerer med 0 eller skriver galt navn når vi skal lese fra en tabell i
databasen.

En slik feil, en programmerer hadde glemt et element i en programsetning,
førte til at deler av telefonsystemet i USA kollapset. Det var i 1990. Siden
den gang har vi sett utallige spektakulære programmeringsfeil, som har
hatt enorme konsekvenser, også tap av menneskeliv. Heldigvis skal ikke
vi utvikle slike livskritiske oppgaver – i hvertfall ikke i starten.

Andre feil kan det tenkes at en ikke oppdager før programmet har vært i
bruk i lang tid. Jeg fikk melding om en slik feil i dag – i en meget stor
ordre var antallet av en komponent blitt så stort at Access ikke fikk plass i
det feltet som var avsatt for dette i rapporten. Siden det å finne feil er en
viktig oppgave for en programmerer skal vi legge vekt på denne oppga-
ven. Nå er vi så heldige at det er få språk som er så velegnet for feilfin-
ning (debugging) som Access.

Det som er virkelig spennende, er at når vi har lært å programmere og
behersker verktøyet, ja da har vi noe vi kan erobre verden med. Kanskje
ikke verden, men vi vil ha et verktøy som vi kan bruke til å forenkle vår
egen hverdag, jobben vår og jobben til andre. Mange har beskrevet
programmering som en kunstform. Det gjør jeg også i et sluttkapittel i
boken.

1.4 Hvordan bruke boken

Ideen med denne boken er at vi skal lære programmering ved å program-
mere. Vi starter med enkle case (eksempler) og går videre med mer

 12

avanserte. Boken må leses sekvensielt. Etter at vi har innført grunnleg-
gende begreper i tidlige kapitler, skal vi bruke disse i senere kapitler. For
hvert nytt case anbefaler jeg at du først leser gjennom hele kapittelet, for
deretter å programmere løsningen selv.

I tillegg til boken finnes det materiell åpent tilgjengelig på nett. Søk på
Canvas og IBE151. Det siste er emnekoden for Praktisk Programmering
ved Høgskolen i Molde. På nett finner en Access-filer av alle programek-
semplene i boken. Men ikke vær redd for å taste inn programkoden på
nytt. Det er mye å lære av dette. Ikke minst får du da øye for detaljene.

På nett finner du også videoer for hvert kapittel i boken. Videoene er lagt
inn med screencast, altså slik at jeg programmerer mens castingen
kopierer det som skjer på skjermen, samt det jeg sier. Videoene følger
denne læreboken kapittel for kapittel, case for case. Fordelen med
læreboken er at en kan tilegne seg stoffet i sitt eget tempo, gå tilbake til
tidligere kapitler (noe som er viktig her) og bruke boken for oppslag (bak
i boken finner du en komplett indeks). Mens en kan se en video en gang,
kan en arbeide med boken.

Læreboken er på papir. En kunne kanskje tenke seg å ha denne på
skjermen. Problemet er at du skal programmere de eksemplene som
boken omtaler. Da ville det bli lite plass på skjermen om du både skulle
ha programmene og boken der. Vær derfor glad for den ekstra plassen du
får når boken er på papir. Dersom du kun har en laptop, vil jeg anbefale at
du vurderer å kjøpe en større skjerm. Når programmene etter hvert blir
store, vil det være viktig å få full oversikt over koden. Det gjelder spesielt
når den dag kommer at du skal bruke det du har lært til å lage nyttige
systemer. Selv har jeg to 32” skjermer på kontoret med stor oppløsning.
Det er praktisk når systemene kommer opp i titusenvis av linjer med
kode.

Bok, videoer og nettside er bare hjelpemidler. Skal du lære å programme-
re så må du gjøre det selv. Derfor har jeg oppgaver i slutten av hvert
kapittel. Det anbefales å jobbe med disse. Helt bevisst gir jeg ingen
løsninger på disse oppgavene. I tillegg til disse mindre oppgavene finner
du et sett større oppgaver – det jeg har kalt øvinger. Dersom du velger å
melde deg opp i emnet IBE151 og ta eksamen, må du levere inn løsninger
på øvingene. En løsning skal være et tekstdokument med en analysedel,
programkoden og en forklarende del, altså akkurat slik jeg presenterer
case i denne boken.

 13

1.5 Eksamen og studiepoeng

Boken er lagt opp for selvstudium. I tillegg vil du ha støtte i videoene på
nett. Det viktige er at du lærer å programmere og å lage nyttige systemer.
Men skal du bruke din kompetanse til å få jobb, kan det være greit med
dokumentasjon på at du kan programmere. For å få det kan du melde deg
opp som emnestudent i faget IBE151 ved Høgskolen i Molde (søk på
IBE151 og Canvas).

Som student vil en kunne laste ned Access fra Høgskolen, eventuelt bruke
Access via en virtuell maskin som er tilgjengelig på nett. Har du planer
om å gå opp til eksamen må du levere inn øvingene til de frister som er
oppgitt. Du vil da også få hjelp av faglærere og øvingslærer. Eksamen må
tas i Molde.

IBE151 inngår i årsstudiet i Informatikk og digitalisering. Mens emnet gir
15 studiepoeng, gir hele årsstudiet 60 studiepoeng. En kan imidlertid ta
fagene i den rekkefølgen en vil, gjerne over flere år. Se www.himolde.no

 14

2 Access – Komme i gang
Microsoft Access er en del av Office Pro-pakken. Har en denne vil en
finne Access her. Alternativt kan en leie tilgang til Access. Det får en for
en billig penge. Studenter vil ofte kunne få gratis tilgang gjennom sin
institusjon. Merk at du må ha utviklingsversjonen av Access.

Access finnes i mange versjoner. I praksis er det likegyldig hvilken
utgave du bruker, men en av de nyere kan være en fordel. Selv bruker jeg
Access 2013. Det finnes nyere versjoner, men det kan være en fordel å
ligge litt på etterskudd her. Da er vi mer sikre på at feil er rettet før vi tar
versjonen i bruk.

Som ved andre Office-produkter kan vi velge visnings-språk (display-
språk). For min del har jeg valgt engelsk. Eksemplene i boken er derfor
med engelsk versjon av Access. Selv om vi bruker engelsk som display-
språk, kan vi selvfølgelig sette opp norsk tastatur og, om vi vil, norske
hjelpetekster. Jeg vil imidlertid advare mot det siste. Mesteparten av
hjelpetekstene er maskinoversatt. Det blir dårlig norsk, så for de fleste er
det nok lettere å lese originalteksten på engelsk.

2.1 Starte Access

Etter å ha installert Access og lagt ikonet på skrivebordet starter du
systemet med et dobbeltklikk.

Du får nå mange valg, mellom en rekke ferdige systemer. Vi velger
imidlertid Blank desktop database, og får så anledning til å gi navn på
systemet og velge hvor det skal lagres:

 15

Vi skriver inn navn på Access-filen, her first.accdb (se figuren under) og
trykker Create. Extension accdb gis til alle Access-filer (akkurat som
.docx i Word og .xlsx i Excel). Med Access kan vi også lage en .accde
versjon. Her har brukeren ikke tilgang til koden, men det har liten hensikt
for oss.

 16

2.2 Oppsett (Options)

Access viser nå:

Dersom du ikke ser kolonnen til venstre, her med All Access Objects
trykker du F11.

Dessverre har en eller annen programmerer hos Microsoft funnet ut at vi
ofte ønsker å starte med å definere en tabell, derfor får vi denne (Table1)
generert automatisk. Dessuten har denne programmereren funnet ut at
tabellen skal ha et ID-felt, m.m. Trykk derfor X til høyre i Table1-linjen
så kvitter vi oss med denne tabellen.

Det vi skal gjøre nå er å sette opp Access slik vi ønsker, slik at vi blant
annet slipper denne automatikken. Trykk på File øverst til venstre
(markert i figuren over), og du får fram denne menyen:

Velg Options (Alternativer i norsk versjon) og du får fram dette bildet:

 17

Det første vi kan sette er General, slik som vist i figuren over. Her kan du
legge inn eget navn og egne initialer, men ingenting her er av særlig
betydning. Det blir annerledes for Current Database (se neste side).

Her kan en gi navn på applikasjonen (i vårt tilfelle First example) og
velge ikon. Under Display form kan en fortelle Access hvilket skjema
(form) en skal starte opp med. Vi skal komme tilbake til denne mulighe-
ten senere (kapittel 48). Av de andre settingene har jeg foretrukket å
operere med Overlapping Windows og ikke Tabbed Documents. Klikk
bort markeringen av ”Enable design changes for tables in Datasheet view”.
Da blir det ikke lenger mulig å endre tabellen under visning av denne, og
vi kan unngå at en bruker roter til databasen vår.

Du står selvfølgelig fritt til å velge dine egne preferanser her, men
eksemplene i boken er satt opp ut fra dette.

 18

Det som er litt kjedelig, er at dette står under Current database. Du må
altså legge inn disse settingene for hver Access-applikasjon. Det kan
imidlertid unngås ved å lagre det vi har gjort nå – trykk OK, deretter File
> Close og vi får lagret first.accdb – en tom fil, men med de settings vi
ønsker. Fra nå av kan vi bare kopiere denne når vi skal lage en ny Access-
applikasjon, og får da med oss oppsettet.

Vi skal senere, i kapittel 5 vise hvordan vi setter oppsettet for programedi-
toren.

 19

3 Access – Konstruere skjema (form)
Hva skal vi gjøre:

Her skal vi først lage en ny Access-fil, deretter opprette et skjema i denne.
Så skal vi vise hvordan vi kan legge inn elementer, her en enkel knapp, i
dette skjemaet. Dette er viktig basiskunnskap for å lage Access-
applikasjoner.

Finn fram til first.accdb, som vi laget i forrige kapittel, og kopier denne
(trykk CTRL C, CTRL V). Gi kopien navn testSkjema.accdb (klikk på
filnavnet og skriv inn det nye). Dobbeltklikk på testSkjema.accdb for å
åpne denne.

3.1 Lage et nytt skjema

Det første vi skal gjøre er å opprette et skjema (form). Her skal vi legge
inn brukergrensesnittet, knapper og felt m.m.

For å lage et nytt skjema trykker vi Create (se over) og velger deretter
Form Design:

Vi får nå opp et blankt skjema (se neste side).

 20

Egenskapene (Properties) til dette
skjemaet står til høyre i et eget
vindu. Om ikke egenskapene vises,
kan du høyreklikke i skjemaet og
velge Properties. Ser du andre
egenskaper enn de over, må du
klikke i det grå området utenfor
skjemaet for å markere at det er
egenskapene til hele skjemaet du
vil se. I første omgang kan du
skrive inn en tekst i feltet Caption
øverst i fanen for Format, for
eksempel ”testskjema”. Vi skal
senere vise hvordan disse
egenskapene kan tilpasses vårt
formål.

Tips: Du kan også velge No
for Record Selectors (en kjapp
måte er å dobbeltklikke i
feltet) og Navigating buttons,
og får med det fjernet en
kommandolinje som Access
plasserer nederst i ethvert
skjema, uvisst av hvilken
grunn.

