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Forord og
bruksanvisning

I denne boka gjennomgér vi de viktigste matematiske verktayene du trenger
i et bachelorstudium i gkonomisk-administrative fag. Vi har bestrebet oss
pa a gjore gjennomgangen sa klar, enkel og avmystifiserende som mulig.
Samtidig forseker vi & vise hvordan det matematiske analyseapparatet
kan brukes til a lgse en rekke gkonomiske problemstillinger.

Hvordan ber du bruke boka? Her er et forslag til bruksanvisning og
en leseveiledning:

Forste del av boka dekker alle relevante tema fra obligatorisk skole-
gang. Stoffet er skrevet spesielt for de som har valgt minstekravet i mate-
matikk pa videregdende skole, eller som har behov for repetisjon.

Andre del av boka tar for seg typiske hovedtemaer i innferingskurs
i matematikk for gkonomistudenter.

Boka er basert pa studentaktiv lesing. Strukturen folger folgende

prinsipp:
e Bittelitt teori.

e Et konkret eksempel for & vise denne lille biten teori.

e En oppgave av samme form som det konkrete eksempelet.

Jobb aktivt med eksempler og oppgaver, gjerne forst med hjelp av lesnings-
forslagene i boka. Deretter gjor du de samme eksemplene og oppgavene
pa nytt, helt til du er sikker pa at du kan lese oppgavene uten & se pa
fasiten. Legg vekk mobilen og datamaskinen sa mye som mulig. La hjernen
din fa tid og rom til & lage koblinger.

Stopp opp underveis og tenk etter hva temaet du holder pa med egentlig
handler om: Reflekter, drodle, filosofer og ha det litt ggy med ideene og
den tankeverdenen som apner seg.
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I dette kapitlet skal vi snakke om en del av matematikken man ofte mater
béde i dagliglivet og arbeidslivet: grafer. Nar du ser nyheter, mater du
ulike grafer hele tiden. Grafer brukes for & vise avhengighet mellom to
ulike storrelser. For eksempel kan du mete pa grafer som viser utviklingen
over tid av brutto nasjonalprodukt, rentebanen, fruktbarhetstall eller
oppslutning for ulike partier ved stortingsvalg. Grunnlaget for alle grafer
er det som kalles et koordinatsystem, og dette er igjen bygd opp av de
sakalte aksene. Disse aksene er egentlig tallinjer, sa for & forsta grafer,
ma vi forst forsté tallinja.

1.1 Tallinja

Stort sett alt vi omgir oss med, er endelig: endelig mange mennesker
i verden, endelig mange liter olje pa jorda og endelig mange ressurser.
Denne endeligheten gjelder derimot ikke for tall: Det finnes uendelig
mange tall. I neste kapittel skal vi snakke neermere om tallsystemet og
ulike kategorier av tall, men for nd neyer vi oss med a huske pa at vi har
uendelig mange tall. Disse tallene kan vi framstille grafisk, altsd med en
figur, ved & tegne den sékalte tallinja. 1 figur 1.1 ser du denne tallinja.
Vi kan tenke oss at hvert tall representeres med en liten prikk pa arket.
Beveger vi oss mot hayre, far vi sterre tall, beveger vi oss mot venstre,
far vi mindre tall. For eksempel er prikken for tallet 5 til hayre for prikken
for tallet 3.

I I I I I I I I I I I I
T T T T T T T T T T

-5 4 -3 -2 -1 0 1 2 3 4 5 6
Figur 1.1 Tallinja.

v

Tallinja fungerer som en linjal. Derfor, hvis man tegner presist, skal
avstanden mellom tallene veere lik. For eksempel vil avstanden mellom
5-prikken og 3-prikken veere to enheter. Dette er det samme som
avstanden mellom 2-prikken og 0-prikken. Dette er vist i figur 1.2.

Samme avstand: 2 enheter

N

T T T T T

0 1 2 3 4 5 6
Figur 1.2 Tallinja med avstander markert.

Den sammenhengende tallinje-streken illustrerer at det finnes uendelig
mange tall, for hvis man skal tegne en sammenhengende strek, ma man
tegne uendelig mange prikker. Siden det finnes uendelig mange tall,
har vi ikke plass pa arket til a faktisk skrive opp alle tallene. Derfor er det
vanlig kun & markere de tallene man har behov for i den aktuelle situa-
sjonen pa tallinja. Er vi f.eks. interessert i tallene 3, 5 og 8, s& markerer vi
kun dem. Se figur 1.3.



| | | AN
T T T

3 5 8
Figur 1.3 Tallinja med kun de relevante punktene, her 3,5 og 8, markert.

Tallinja tegnes vanligvis med en pil som peker bortover i hgyre ende.
Dette er for & markere at selv om linja visuelt stopper, sa tenker vi oss at
den fortsetter uendelig langt bortover: Arket er bare ikke stort nok. Selv
om det ikke tegnes en pil i venstre ende, s tenker vi at tallinja fortsetter
i det uendelige i denne retningen ogsa.

Oppgave 1.1 Tegn ei tallinje og marker folgende tall:

a) 0 b) 6 c) -3 d)% e) —2,8

Ofte er vi ikke bare interessert i ett tall, men a vise avhengigheten mellom
to ulike storrelser. For eksempel kan vi se pa tid og folketall: Hvor mange
mennesker var det i Norge i ar 1947? Og i 1984? Og i 2021? osv.
Da strekker ikke tallinja til. Det vi egentlig trenger, er ei tallinje for tiden
og ei tallinje for folketallet. Altsa trenger vi faktisk to tallinjer. Disse to
tallinjene setter vi slik at de danner et rett kryss. Det vi da ender opp med,
er koordinatsystemet.

1.2 Koordinatsystemet

Koordinatsystemet brukes for a vise fram to ulike storrelser pa en gang.
La oss kalle disse storrelsene x og y. Vi lager ei tallinje for x og ei tallinje
for y og setter de i et rett kryss for & danne et koordinatsystem. Disse to
tallinjene kalles aksene. Den vannrette aksen kalles horisontalaksen, mens
den loddrette aksen kalles vertikalaksen. Ofte sier man ogsa x-aksen og
y-aksen.! Dette kan du se illustrert i figur 1.4.

y-akse /
vertikalakse

x-akse /
horisontalakse

Figur 1.4 Koordinatsystemet.

! Akkurat ordene x-akse og y-akse er litt upresise i de tilfellene aksebenevningene
ikke heter x og y, men feks. «tid» og «folketall». Horisontal- og vertikalakse er
derimot alltid riktig.

KAPITTEL 1

GRAFER

19



20

INNF@RING | MATEMATIKK FOR @KONOMISTUDENTER

Legg merke til at y = 0 langs hele x-aksen, se figur 1.5.

/ x

Figur 1.5 y = 0 langs hele x-aksen.

y=0
langs hele
x-aksen

Faktisk er det slik at dersom vi lager en horisontal linje gjennom et punkt
pé y-aksen, feks. giennom y =5, sa vil y veere konstant lik 5 pa hele
denne horisontale linja. Se figur 1.6.

4+ kLinjay =5

Figur 1.6 Den horisontale linja y = 5.

Tilsvarende er x = 0 langs hele y-aksen, se figur 1.7.

y

| |
X2345x

x = 0 langs hele y-aksen

Figur 1.7 x = 0 langs y-aksen.



Dersom vi lager en vertikal linje gjennom et punkt pa x-aksen, f.eks.
gjennom x = 2, sa vil x veere konstant lik 2 pa hele denne vertikale linja.
Se figur 1.8.

y

/Linjax =2

Figur 1.8 Den vertikale linja x = 2.

Oppgave 1.2 Lag et koordinatsystem. I det samme koordinatsystemet
tegn inn rette linjer der folgende er oppfylt:

a) x = —1 b) x = 4
¢ y=5 d)y=-3
Fra figuren din: Greier du & finne et punkt der x = —1 og y = 5? Hva med

et punkt der x =4 og y = —3?

Vi kan tegne ulike kombinasjoner av x og y inn i koordinatsystemet. Hvis
feks. x = 2 og y = 5, sa skriver vi dette punktet eller koordinatet som

(% ) = (2, 5).

For a tegne dette punktet i koordinatsystemet finner vi forst stedet pa
x-aksen der x = 2. Sa lenge vi beveger oss loddrett opp eller ned fra dette
stedet, vil x veere 2, som vist i figur 1.8. Deretter finner vi stedet pa
y-aksen der y = 5. S& lenge vi beveger oss vannrett fra dette stedet, vil y
veere 5, som vist i figur 1.6. Hvis vi tegner bade den loddrette og den
vannrette linja i ssmme koordinatsystem, finner vi at de to linjene krysser
i et punkt. I dette punktet ma bade x = 2 og y = 5, for punktet ligger
bade pa linja der x er 2, og pa linja der y = 5, se figur 1.9.

Punktet vi nad har funnet, oppfyller derfor at x = 2 og y = 5. Dermed
har vi na tegnet inn punktet (2, 5). Tilsvarende kan man gjore for 4 tegne
alle andre punkter inn i et koordinatsystem. I figur 1.10 ser du flere ulike
punkter tegnet inn. Nar du ser pa figuren, sjekk for hvert enkelt punkt at
du forstar hvorfor det er tegnet inn akkurat der det er.
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Punktet derx =2 ogy =5:

6T / (% 9) = (2,5)
4.4 kLinjay =5

34
24
14 /Linjax=2

1 1 ———+—

-1 1 3 4 5 6 7 x

T
=
—
=
+----0
T
|
o
:

Figur 1.10 Ulike punkter i koordinatsystemet.

Oppgave 1.3 Lag et koordinatsystem, og tegn inn folgende punkter:
a) (xv,y)=(45) b) (x,y) = (-1, -3)

o (%) = <—§ 3) d) (x,y) = (1, g)

Ett punkt som skiller seg ut i koordinatsystemet, er selve krysningspunktet
mellom horisontalaksen og vertikalaksen. Dette punktet kalles origo.
Origo har koordinater (x, y) = (0, 0), altsa er bade x og y lik 0 i akkurat
dette punktet.

Oppgave 1.4 Bruk tallinjene i koordinatsystemet til a forklare hvorfor
x =0 og y = 0 i nettopp origo.
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Hvis vi ser neermere pa eksemplene og oppgaven over, ser vi at det er

en sammenheng mellom plasseringen til punktene i koordinatsystemet og

fortegnene til x- og y-koordinatene. Faktisk ser vi at koordinatsystemet
bestar av fire ulike deler. Disse delene kalles kvadranter: 1. kvadrant,
2. kvadrant, 3. kvadrant og 4. kvadrant. Se figur 1.11.

2. kvadrant

1. kvadrant

3. kvadrant

Figur 1.11 Kvadrantene.

4. kvadrant

Hvis vi ser pa figur 1.10, ser vi at fortegnene pa x- og y-koordinatene

varierer avhengig av hvilken kvadrant vi befinner oss i. I 1. kvadrant

er bade x og y positive. I 2. kvadrant er x negativ, mens y er positiv.

I 3. kvadrant er bade x og y negative, mens i 4. kvadrant er x positiv og y

negativ. Pa denne maten kan vi se plasseringen til et punkt direkte fra
fortegnene til x- og y-koordinatene. For eksempel vil punktet (3, —4)
ligge i 4. kvadrant fordi x er positiv og y er negativ.

Oppgave 1.5 Thvilken kvadrant ligger folgende punkter? Tegn punktene
inn i et koordinatsystem for & sjekke.

a) (2,2) b) (-5, 8) < (-9, -1) d) (4, -2)

Nar vi na har en god forstaelse for koordinatsystemet og hvordan det kan
brukes til a tegne punkter, kan vi bruke dette til & vise fram informasjon

fra en tabell grafisk. La oss si at vi har folgende tabell med arstall og
tilhgrende folketall i Norge:

Arstall Folketall
1947 3146 497
1984 4134353
2021 5391369
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Denne informasjonen kan vi né framstille grafisk i koordinatsystemet vért.
Pa punktform blir informasjonen i tabellen som folger:

(1947, 3146497), (1984, 4134:353), (2021, 5391 369).

Vi ma tegne disse punktene inn i et koordinatsystem med aksebenevninger,
hhv. «tid» pa horisontalaksen og «folketall» pa vertikalaksen. Grunnen til
at vi velger a ha tid, ikke folketall, pa horisontalaksen, er at denne aksen
typisk brukes til den uavhengige variabelen (input-variabelen). Vertikal-
aksen brukes til den avhengige variabelen (output-variabelen). I dette
eksempelet er det slik at folketallet avhenger av tiden, dermed er
folketallet den avhengige variabelen.?

Siden storrelsen pa tallene pé folketallaksen er sa stor sammenlignet
med storrelsen pa tallene pa tidsaksen, ma vi bruke ulik skala pa de to
aksene. Dette er ikke noe problem og veldig vanlig i praktiske problemer.
I figur 1.12 er punktene fra tabellen markert inn.

Folketall

5 mill. +
4 mill. +
3 mill. +
2 mill. +

1 mill. +

1947 1984 2021 Arstall

Figur 1.12 Folketallspunktene tegnet inn i koordinatsystemet. Tid pa horisontalaksen.
Folketall pa vertikalaksen.

2 Alternativet ville veere at tiden avhenger av folketallet, som ikke stemmer.



1.3 Tabeller

Mye informasjon vi er interessert i, kommer i form av tabeller. En tabell
kan veere i ulike formater, men her skal vi fokusere pa tabeller som bestér
av to kolonner. Hos Statistisk sentralbyra (SSB) finnes det tusentalls av
tabeller pa nettopp denne formen. I figur 1.13 ser du et utsnitt av en
tabell som viser den historiske utviklingen av folketallet i Norge:

Figur 1.13 Utsnitt av tabell fra SSB som viser utviklingen av folketallet i Norge.
Arstall i venstre kolonne, folketall i hoyre.
Kilde: SSB, CC BY 4.0, https://www.ssb.no/befolkning/faktaside/befolkningen

I figur 1.13 viser forste kolonne arstallet og andre kolonne folketallet det
tilherende aret. For eksempel var folketallet i 1766 pa 722 269 personer,
mens folketallet i 1777 var pa 754040 personer. Tabellen viser altsa
hvordan folketallet avhenger av érstallet.

Oppgave 1.6 Bruk tabellutsnittet i figur 1.13 til & svare pa folgende
sporsmal. Hva var folketallet i:

a) 1773? b) 17817

Hvilke(t) ar var folketallet:
c) 753835? d) 767 005?

Tabellen i figur 1.13 er relativt liten og dermed er det ganske greit a tolke
informasjonen. Hvis vi derimot hadde sett pa den tilsvarende tabellen for
utviklingen av folketallet fra 1776 til 2024, har vi plutselig 250 ulike
arstall—folketall-kombinasjoner. Dette er kaotisk og vanskelig & prosessere.
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