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Forord og
bruksanvisning
I denne boka gjennomgår vi de viktigste matematiske verktøyene du trenger
i et bachelorstudium i økonomisk-administrative fag. Vi har bestrebet oss
på å gjøre gjennomgangen så klar, enkel og avmystifiserende som mulig.
Samtidig forsøker vi å vise hvordan det matematiske analyseapparatet
kan brukes til å løse en rekke økonomiske problemstillinger.

Hvordan bør du bruke boka? Her er et forslag til bruksanvisning og
en leseveiledning:

Første del av boka dekker alle relevante tema fra obligatorisk skole-
gang. Stoffet er skrevet spesielt for de som har valgt minstekravet i mate-
matikk på videregående skole, eller som har behov for repetisjon.

Andre del av boka tar for seg typiske hovedtemaer i innføringskurs
i matematikk for økonomistudenter.

Boka er basert på studentaktiv lesing. Strukturen følger følgende
prinsipp:

� Bittelitt teori.

� Et konkret eksempel for å vise denne lille biten teori.

� En oppgave av samme form som det konkrete eksempelet.

Jobb aktivt med eksempler og oppgaver, gjerne først med hjelp av løsnings-
forslagene i boka. Deretter gjør du de samme eksemplene og oppgavene
på nytt, helt til du er sikker på at du kan løse oppgavene uten å se på
fasiten. Legg vekk mobilen og datamaskinen så mye som mulig. La hjernen
din få tid og rom til å lage koblinger.

Stopp opp underveis og tenk etter hva temaet du holder på med egentlig
handler om: Reflekter, drodle, filosofer og ha det litt gøy med ideene og
den tankeverdenen som åpner seg.



Takk
Vi vil takke Andreas Nybø i Fagbokforlaget, som har vært en entusiastisk
og engasjerende redaktør for denne boka. Hans evige optimisme og mange
gode ideer har vært til stor hjelp og inspirasjon under arbeidet. Vi har satt
stor pris på hans aldri sviktende tro på prosjektet. Det er akkurat en
slik redaktør alle forfattere ønsker seg.

En stor takk går til Vegard Brekke for ypperlig hjelp med typesetting
og figurtegning, Bodil Kjenstad for pertentlig språkkorrektur og produk-
sjonskoordinator Laura Giminska for generell stålkontroll.

Forlegger Arno Vigmostad, med alle gode medarbeidere i Fagbokforlaget,
har på aller beste vis støttet prosjektet slik at denne boka ble skrevet.
Med hans hjelp fikk vi utløp for mange års skrivekløe. Og kanskje
kommer det en spennende fortsettelse.

Takk til gode kollegaer ved Handelshøyskolen BI for å bidra til et godt
sted for matematikkundervisning og et fantastisk fint fagfellesskap.

Og ikke minst: Takk til alle studentene våre som har inspirert oss til
å skrive denne boka. Vi håper den vil føles som en god hjelp.

Oslo og Iguazu Falls, april 2025

Kristina Rognlien Dahl og Robert G. Hansen

Å skrive bok er hardt arbeid, men det går lettere om man samarbeider
og hvis man har smågodt. Slik er det også med å studere. Vi anbefaler derfor
å jobbe sammen i grupper. Og å bruke smågodt som belønning.
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DEL 1

Grunnleggende
matematikk





KAPITTEL 1

Grafer



I dette kapitlet skal vi snakke om en del av matematikken man ofte møter
både i dagliglivet og arbeidslivet: grafer. Når du ser nyheter, møter du
ulike grafer hele tiden. Grafer brukes for å vise avhengighet mellom to
ulike størrelser. For eksempel kan du møte på grafer som viser utviklingen
over tid av brutto nasjonalprodukt, rentebanen, fruktbarhetstall eller
oppslutning for ulike partier ved stortingsvalg. Grunnlaget for alle grafer
er det som kalles et koordinatsystem, og dette er igjen bygd opp av de
såkalte aksene. Disse aksene er egentlig tallinjer, så for å forstå grafer,
må vi først forstå tallinja.

1.1 Tallinja
Stort sett alt vi omgir oss med, er endelig: endelig mange mennesker
i verden, endelig mange liter olje på jorda og endelig mange ressurser.
Denne endeligheten gjelder derimot ikke for tall: Det finnes uendelig
mange tall. I neste kapittel skal vi snakke nærmere om tallsystemet og
ulike kategorier av tall, men for nå nøyer vi oss med å huske på at vi har
uendelig mange tall. Disse tallene kan vi framstille grafisk, altså med en
figur, ved å tegne den såkalte tallinja. I figur 1.1 ser du denne tallinja.
Vi kan tenke oss at hvert tall representeres med en liten prikk på arket.
Beveger vi oss mot høyre, får vi større tall, beveger vi oss mot venstre,
får vi mindre tall. For eksempel er prikken for tallet 5 til høyre for prikken
for tallet 3.

6543210‒1‒2‒3‒4‒5
Figur 1.1 Tallinja.

Tallinja fungerer som en linjal. Derfor, hvis man tegner presist, skal
avstanden mellom tallene være lik. For eksempel vil avstanden mellom
5-prikken og 3-prikken være to enheter. Dette er det samme som
avstanden mellom 2-prikken og 0-prikken. Dette er vist i figur 1.2.

6543210

Samme avstand: 2 enheter

Figur 1.2 Tallinja med avstander markert.

Den sammenhengende tallinje-streken illustrerer at det finnes uendelig
mange tall, for hvis man skal tegne en sammenhengende strek, må man
tegne uendelig mange prikker. Siden det finnes uendelig mange tall,
har vi ikke plass på arket til å faktisk skrive opp alle tallene. Derfor er det
vanlig kun å markere de tallene man har behov for i den aktuelle situa-
sjonen på tallinja. Er vi f.eks. interessert i tallene 3, 5 og 8, så markerer vi
kun dem. Se figur 1.3.
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853
Figur 1.3 Tallinja med kun de relevante punktene, her 3; 5 og 8, markert.

Tallinja tegnes vanligvis med en pil som peker bortover i høyre ende.
Dette er for å markere at selv om linja visuelt stopper, så tenker vi oss at
den fortsetter uendelig langt bortover: Arket er bare ikke stort nok. Selv
om det ikke tegnes en pil i venstre ende, så tenker vi at tallinja fortsetter
i det uendelige i denne retningen også.

Oppgave 1.1 Tegn ei tallinje og marker følgende tall:

a) 0 b) 6 c) �3 d)
1
2

e) �2,8

Ofte er vi ikke bare interessert i ett tall, men å vise avhengigheten mellom
to ulike størrelser. For eksempel kan vi se på tid og folketall: Hvor mange
mennesker var det i Norge i år 1947? Og i 1984? Og i 2021? osv.
Da strekker ikke tallinja til. Det vi egentlig trenger, er ei tallinje for tiden
og ei tallinje for folketallet. Altså trenger vi faktisk to tallinjer. Disse to
tallinjene setter vi slik at de danner et rett kryss. Det vi da ender opp med,
er koordinatsystemet.

1.2 Koordinatsystemet
Koordinatsystemet brukes for å vise fram to ulike størrelser på en gang.
La oss kalle disse størrelsene x og y. Vi lager ei tallinje for x og ei tallinje
for y og setter de i et rett kryss for å danne et koordinatsystem. Disse to
tallinjene kalles aksene. Den vannrette aksen kalles horisontalaksen, mens
den loddrette aksen kalles vertikalaksen. Ofte sier man også x-aksen og
y-aksen.1 Dette kan du se illustrert i figur 1.4.

x-akse /
horisontalakse

y-akse /
vertikalakse

Figur 1.4 Koordinatsystemet.

1 Akkurat ordene x-akse og y-akse er litt upresise i de tilfellene aksebenevningene
ikke heter x og y, men f.eks. «tid» og «folketall». Horisontal- og vertikalakse er
derimot alltid riktig.
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Legg merke til at y ¼ 0 langs hele x-aksen, se figur 1.5.

x

y

3

2

1

y = 0
langs hele

x-aksen
Figur 1.5 y ¼ 0 langs hele x-aksen.

Faktisk er det slik at dersom vi lager en horisontal linje gjennom et punkt
på y-aksen, f.eks. gjennom y ¼ 5, så vil y være konstant lik 5 på hele
denne horisontale linja. Se figur 1.6.

x

y

4

3

2

1

Linja y = 5

6

5

Figur 1.6 Den horisontale linja y ¼ 5.

Tilsvarende er x ¼ 0 langs hele y-aksen, se figur 1.7.

x

y

54321‒1‒2

x = 0 langs hele y-aksen

Figur 1.7 x ¼ 0 langs y-aksen.
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Dersom vi lager en vertikal linje gjennom et punkt på x-aksen, f.eks.
gjennom x ¼ 2, så vil x være konstant lik 2 på hele denne vertikale linja.
Se figur 1.8.

x

y

5431‒1‒2

Linja x = 2

2

Figur 1.8 Den vertikale linja x ¼ 2.

Oppgave 1.2 Lag et koordinatsystem. I det samme koordinatsystemet
tegn inn rette linjer der følgende er oppfylt:

a) x ¼ �1 b) x ¼ 4

c) y ¼ 5 d) y ¼ �3

Fra figuren din: Greier du å finne et punkt der x ¼ �1 og y ¼ 5? Hva med
et punkt der x ¼ 4 og y ¼ �3?

Vi kan tegne ulike kombinasjoner av x og y inn i koordinatsystemet. Hvis
f.eks. x ¼ 2 og y ¼ 5, så skriver vi dette punktet eller koordinatet som

ðx, yÞ ¼ ð2, 5Þ:

For å tegne dette punktet i koordinatsystemet finner vi først stedet på
x-aksen der x ¼ 2. Så lenge vi beveger oss loddrett opp eller ned fra dette
stedet, vil x være 2, som vist i figur 1.8. Deretter finner vi stedet på
y-aksen der y ¼ 5. Så lenge vi beveger oss vannrett fra dette stedet, vil y
være 5, som vist i figur 1.6. Hvis vi tegner både den loddrette og den
vannrette linja i samme koordinatsystem, finner vi at de to linjene krysser
i et punkt. I dette punktet må både x ¼ 2 og y ¼ 5, for punktet ligger
både på linja der x er 2, og på linja der y ¼ 5, se figur 1.9.

Punktet vi nå har funnet, oppfyller derfor at x ¼ 2 og y ¼ 5. Dermed
har vi nå tegnet inn punktet ð2, 5Þ. Tilsvarende kan man gjøre for å tegne
alle andre punkter inn i et koordinatsystem. I figur 1.10 ser du flere ulike
punkter tegnet inn. Når du ser på figuren, sjekk for hvert enkelt punkt at
du forstår hvorfor det er tegnet inn akkurat der det er.
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x

y

4

3

2

1

Linja y = 5

6

5

1 3 4 5 6 7‒1 2

Linja x = 2

Punktet der x = 2 og y = 5:
(x, y) = (2, 5)

Figur 1.9 Punkt der x ¼ 2 og y ¼ 5, dvs. ðx, yÞ ¼ ð2, 5Þ.

x

y

3

2

1

‒1

‒2

‒3

4321

(‒2, ‒1)

(‒1, 1)

(1, 2)

(3, ‒2)

‒1‒2‒3

Figur 1.10 Ulike punkter i koordinatsystemet.

Oppgave 1.3 Lag et koordinatsystem, og tegn inn følgende punkter:

a) ðx, yÞ ¼ ð4, 5Þ b) ðx, yÞ ¼ ð�1, �3Þ

c) ðx, yÞ ¼ �
5
2

, 3
� �

d) ðx, yÞ ¼ 1,
3
2

� �

Ett punkt som skiller seg ut i koordinatsystemet, er selve krysningspunktet
mellom horisontalaksen og vertikalaksen. Dette punktet kalles origo.
Origo har koordinater ðx, yÞ ¼ ð0, 0Þ, altså er både x og y lik 0 i akkurat
dette punktet.

Oppgave 1.4 Bruk tallinjene i koordinatsystemet til å forklare hvorfor
x ¼ 0 og y ¼ 0 i nettopp origo.
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Hvis vi ser nærmere på eksemplene og oppgaven over, ser vi at det er
en sammenheng mellom plasseringen til punktene i koordinatsystemet og
fortegnene til x- og y-koordinatene. Faktisk ser vi at koordinatsystemet
består av fire ulike deler. Disse delene kalles kvadranter: 1. kvadrant,
2. kvadrant, 3. kvadrant og 4. kvadrant. Se figur 1.11.

1. kvadrant2. kvadrant

4. kvadrant3. kvadrant

Figur 1.11 Kvadrantene.

Hvis vi ser på figur 1.10, ser vi at fortegnene på x- og y-koordinatene
varierer avhengig av hvilken kvadrant vi befinner oss i. I 1. kvadrant
er både x og y positive. I 2. kvadrant er x negativ, mens y er positiv.
I 3. kvadrant er både x og y negative, mens i 4. kvadrant er x positiv og y
negativ. På denne måten kan vi se plasseringen til et punkt direkte fra
fortegnene til x- og y-koordinatene. For eksempel vil punktet ð3, �4Þ
ligge i 4. kvadrant fordi x er positiv og y er negativ.

Oppgave 1.5 I hvilken kvadrant ligger følgende punkter? Tegn punktene
inn i et koordinatsystem for å sjekke.

a) ð2, 2Þ b) ð�5, 8Þ c) ð�9, �1Þ d) ð4, �2Þ

Når vi nå har en god forståelse for koordinatsystemet og hvordan det kan
brukes til å tegne punkter, kan vi bruke dette til å vise fram informasjon
fra en tabell grafisk. La oss si at vi har følgende tabell med årstall og
tilhørende folketall i Norge:

Årstall Folketall

1947 3 146 497
1984 4 134 353
2021 5 391 369
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Denne informasjonen kan vi nå framstille grafisk i koordinatsystemet vårt.
På punktform blir informasjonen i tabellen som følger:

ð1947, 3 146 497Þ, ð1984, 4 134 353Þ, ð2021, 5 391 369Þ:

Vi må tegne disse punktene inn i et koordinatsystem med aksebenevninger,
hhv. «tid» på horisontalaksen og «folketall» på vertikalaksen. Grunnen til
at vi velger å ha tid, ikke folketall, på horisontalaksen, er at denne aksen
typisk brukes til den uavhengige variabelen (input-variabelen). Vertikal-
aksen brukes til den avhengige variabelen (output-variabelen). I dette
eksempelet er det slik at folketallet avhenger av tiden, dermed er
folketallet den avhengige variabelen.2

Siden størrelsen på tallene på folketallaksen er så stor sammenlignet
med størrelsen på tallene på tidsaksen, må vi bruke ulik skala på de to
aksene. Dette er ikke noe problem og veldig vanlig i praktiske problemer.
I figur 1.12 er punktene fra tabellen markert inn.

Årstall

Folketall

5 mill.

4 mill.

3 mill.

2 mill.

1 mill.

1947 1984 2021
Figur 1.12 Folketallspunktene tegnet inn i koordinatsystemet. Tid på horisontalaksen.
Folketall på vertikalaksen.

2 Alternativet ville være at tiden avhenger av folketallet, som ikke stemmer.
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1.3 Tabeller
Mye informasjon vi er interessert i, kommer i form av tabeller. En tabell
kan være i ulike formater, men her skal vi fokusere på tabeller som består
av to kolonner. Hos Statistisk sentralbyrå (SSB) finnes det tusentalls av
tabeller på nettopp denne formen. I figur 1.13 ser du et utsnitt av en
tabell som viser den historiske utviklingen av folketallet i Norge:

Figur 1.13 Utsnitt av tabell fra SSB som viser utviklingen av folketallet i Norge.
Årstall i venstre kolonne, folketall i høyre.
Kilde: SSB, CC BY 4.0, https://www.ssb.no/befolkning/faktaside/befolkningen

I figur 1.13 viser første kolonne årstallet og andre kolonne folketallet det
tilhørende året. For eksempel var folketallet i 1766 på 722 269 personer,
mens folketallet i 1777 var på 754 040 personer. Tabellen viser altså
hvordan folketallet avhenger av årstallet.

Oppgave 1.6 Bruk tabellutsnittet i figur 1.13 til å svare på følgende
spørsmål. Hva var folketallet i:

a) 1773? b) 1781?

Hvilke(t) år var folketallet:

c) 753 835? d) 767 005?

Tabellen i figur 1.13 er relativt liten og dermed er det ganske greit å tolke
informasjonen. Hvis vi derimot hadde sett på den tilsvarende tabellen for
utviklingen av folketallet fra 1776 til 2024, har vi plutselig 250 ulike
årstall–folketall-kombinasjoner. Dette er kaotisk og vanskelig å prosessere.
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