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Abstract

We introduce INTELLECT-2, the first globally distributed reinforcement learning
(RL) training run of a 32 billion parameter model. Unlike traditional centralized
training efforts, INTELLECT-2 trains a reasoning language model using fully asyn-
chronous RL across a dynamic, heterogeneous swarm of permissionless compute
contributors.
To enable a training run with this unique infrastructure, we built various components
from scratch: we introduce PRIME-RL, our training framework purpose-built for
distributed asynchronous reinforcement learning, based on top of novel components
such as TOPLOC, which verifies rollouts from untrusted inference workers, and
SHARDCAST, which efficiently broadcasts policy weights from training nodes to
inference workers.
Beyond infrastructure components, we propose modifications to the standard GRPO
training recipe and data filtering techniques that were crucial to achieve training
stability and ensure that our model successfully learned its training objective,
thus improving upon QwQ-32B, the state of the art reasoning model in the 32B
parameter range.
We open-source INTELLECT-2 along with all of our code and data, hoping to
encourage and enable more open research in the field of decentralized training.
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1 Introduction

Test-time compute scaling with reinforcement learning has emerged as a new scaling axis for large
language models (LLMs), enabling improvements by allowing models to spend more time reasoning.
The success of RL approaches used in models like DeepSeek-R1 [9], QwQ [40], and OpenAI’s o1
[30] in learning reasoning capabilities highlight the power of test-time compute scaling.

However, reinforcement learning training is typically centralized, requiring large clusters of co-
located GPUs and fast interconnect speeds. With INTELLECT-2, we showcase a paradigm shift:
reinforcement learning is inherently more asynchronous and well suited for decentralized, globally
distributed compute.

In this paper, we present the first large-scale experiment to collaboratively train a 32-billion-parameter
language model using reinforcement learning across a permissionless, globally distributed network
of contributors.

We open-source the INTELLECT-2 model, tasks and verifier environments at
huggingface.co/PrimeIntellect/INTELLECT-2 and the PRIME-RL framework for glob-
ally distributed RL training at github.com/PrimeIntellect-ai/prime-rl.

The remainder of this report is organized as follows: Section 2 provides a detailed overview of the
decentralized training infrastructure including PRIME-RL, TOPLOC, SHARDCAST and the compute
orchestration protocol. Section 3 describes the RL training recipe used to train INTELLECT-2.
Section 4 presents the experiments we ran along with training performance metrics and model
evaluation results. Section 5 discusses possible implications of decentralized training in the test-time
compute paradigm. Finally, Section 6 concludes the report and outlines directions for future work.

2 Training Infrastructure

We introduce the following key open-source infrastructure components for training INTELLECT-2:

• PRIME-RL: A fully asynchronous reinforcement learning framework designed for decentral-
ized training. The decoupling of rollout generation, model training, and weight broadcasting,
enables training across heterogeneous, unreliable networks.

• SHARDCAST: A library for distributing large files via a HTTP-based tree-topology network
that efficiently propagates updated model weights to the decentralized inference workers.

• TOPLOC [29]: A locality-sensitive hashing scheme for efficient verifiable inference. It
detects tampering or precision changes in model inference and works reliably across non-
deterministic GPU hardware.

• Protocol Testnet: Provides the infrastructure to aggregate and coordinate global compute
resources.

As shown in Figure 1, the INTELLECT-2 infrastructure, built using these components, is structured
around three primary roles: Inference rollout workers that generate reasoning traces using the current
policy; TOPLOC validators that verify the integrity of these rollouts; and GRPO training workers that
aggregate verified data, update the policy using the GRPO algorithm, and distribute new weights via
SHARDCAST.

This decentralized RL training setup offers several key advantages:

• No communication overhead: By leveraging asynchronous reinforcement learning, the
broadcast of new policy weights is fully overlapped with ongoing inference and train-
ing—eliminating the communication bottleneck.

• Support for heterogeneous nodes: Contributors can generate rollouts at their own pace
using various hardware; there is no requirement for uniform speed across nodes.

• Low resource requirements: Inference workers, which constitute the majority of compute
in this setup, can run on consumer-grade GPUs.

• Efficient validation: TOPLOC performs validation significantly faster than generation.
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Figure 1: System Overview of INTELLECT-2 Distributed RL Training Infrastructure.

2.1 PRIME-RL: A Framework for Distributed Asynchronous Reinforcement Learning

We developed a new framework, PRIME-RL1, to support training and inference workloads for
reinforcement learning. Unlike existing frameworks such as verl [36] and TRL [41], which execute
training and inference sequentially within the same process, PRIME-RL natively enables asynchronous
execution of training and inference. This decoupling allows model updates to be computed on trusted
centralized nodes, while rollouts are independently generated on trustless decentralized nodes.

PRIME-RL’s architecture completely separates training and inference components into distinct exe-
cutable files that communicate only when exchanging data and checkpoints. This clean separation
eliminates the need for centralized orchestrators like Ray [27], and our two-step asynchronous design
effectively hides latency that would typically be associated with data transfers, creating an efficient
distributed reinforcement learning pipeline.

2.1.1 Training

To reduce GPU memory requirements during training, we shard the model weights, gradients, and
optimizer states across GPUs using PyTorch FSDP2 [45], following a strategy similar to ZeRO-3
[31]. We load training data from remote storage, and rollout data is exchanged between inference
workers and the trainer using Parquet files.

The asynchronous nature of rollout generation is transparent to the trainer, as we compute log-
probabilities using the policy at the start of the optimization step rather than the policy that produced
the original trajectories. This design choice aligns with the implementations in verl [36] which we
used as a reference.

In its current form, PRIME-RL implements GRPO training, along with auxiliary KL and entropy
losses.

1https://github.com/PrimeIntellect-ai/prime-rl
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2.1.2 Inference

To generate the rollouts, we use vLLM [16], loading the model in bfloat16 precision. For each batch,
input questions are sampled randomly using a deterministic seed to prevent inference workers from
selecting easy samples, as detailed in Section 2.3.3.

To support TOPLOC proof construction, we capture the final hidden states using a hook in the logits
processor. Instead of storing the activations for the full sequence, we incrementally store and hash
them at every 32-token interval which reduces the memory overhead of the proof construction. To
reduce blocking overhead, the proof construction is performed asynchronously on the CPU in parallel
with the GPU forward pass. Together, these optimizations limit the overhead of proof generation to
only a ∼ 1% reduction in tokens-per-second throughput.

To keep the inference workers in sync with the rest of the training, we host a step counter endpoint
which returns the smallest step with insufficient rollouts. Inference workers poll this endpoint and
generate rollouts for the step specified. This design allows workers to dynamically join or leave the
compute pool without interrupting the training process.

2.1.3 Verifiers

PRIME-RL uses the GENESYS schema introduced in SYNTHETIC-1 [23], making it easy to implement
new reward environments. In our initial experiments, we support symbolic verifiers for mathematics
and unit test execution for python-based coding competition problems. For this, we adopt existing
implementations from [21] and [8].

Note that at this point, LLM-generated code is executed on the inference nodes, where we already
apply sandboxing and code sanitization. This approach provides sufficient isolation for the simple
algorithmic challenges currently used. For more complex coding tasks (e.g., those requiring filesystem
access), further strengthening of isolation mechanisms will be necessary.

2.2 SHARDCAST: Efficient Policy Weight Broadcasts

One of the key challenges in asynchronous distributed reinforcement learning (RL) in a decentralized
setting is ensuring that the most recent policy weights are quickly delivered to the inference workers.

For this purpose, we utilize a network of relay servers that distribute the checkpoints from the main
training servers to the client inference workers, similar to a content delivery network (CDN). To
minimize latency, checkpoint files are sharded and streamed in a pipelined fashion, allowing inference
workers to begin downloading shards before the full checkpoint is available on the relay servers. The
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relay servers only keep the last five checkpoint versions to avoid running out of disk. This limit is
also functionally desirable, as rollouts generated with outdated checkpoints are typically rejected or
discarded.

2.2.1 Rate Limiting & Firewall

We use nginx 2 as our HTTP server due to its robustness and widespread industry adoption. To protect
the relay servers from malicious inference workers who may make an excessive number of requests,
we configure our nginx server with per IP rate limiting. Additionally, we dynamically configure UFW
firewall rules on the relay servers to accept traffic only from known, currently active inference nodes
in the compute pool. This reduces the surface area for attacks and enables us to quickly blacklist
misbehaving nodes when detected.

2.2.2 Maximizing Client Throughput & Load Balancing

If each client were to always select the fastest relay server, it would lead to contention and bandwidth
thrashing. To mitigate this, clients instead sample from the set of relay servers based on the expected
throughput of requesting from each relay server.

Our implementation begins by having each client request a dummy file from all relay servers to
initialize bandwidth and success rate estimates. Clients then select servers in proportion to:

expected throughput ∝ success rate × bandwidth

These estimates are continuously updated using an exponential moving average (EMA), which
smooths transient fluctuations while remaining responsive to actual changes. A healing factor is
incorporated into the EMA to encourage periodic exploration of underutilized servers, ensuring the
system adapts effectively to changing conditions.

Even in scenarios without contention, this probabilistic sampling strategy outperforms greedily
choosing the currently fastest relay because it is able to utilize multiple connections to different relay
servers, which will have a higher total bandwidth than any single connection to a relay.

2.2.3 Assembled Model Weights Integrity Checks

Inference nodes face the risk of being penalized if they submit rollouts generated using incorrect
model weights. To avoid this, it is essential that only verified, correct weights are used for inference.

To ensure model weight integrity, each inference worker computes the SHA-256 checksum of the
assembled checkpoint after downloading and reconstructing it from the shards. This checksum is
then compared against the reference checksum produced by the training nodes, which is broadcasted
to all relay servers along with the checkpoint metadata.

If the computed checksum does not match the expected value, the inference node discards the
corrupted checkpoint and proceeds to attempt download of the next available checkpoint. We avoid
retrying the same checkpoint, as it is unlikely the re-download would complete before the checkpoint
becomes stale or irrelevant.

While a mechanism for verifying the integrity of downloaded shards would enable trustless peer-to-
peer (P2P) weight transfers, we chose not to deploy such a system for INTELLECT-2. The primary
reason is the added complexity and security risks associated with exposing inference workers to each
another. In a P2P setup, inference worker IP addresses would become visible to peers, requiring
additional hardening to prevent malicious behavior or denial-of-service attacks within the pool. Given
these concerns, we opted to centralize weight distribution through trusted relay servers instead.

2.3 TOPLOC: Enabling Trustless Inference

Because we rely on trustless compute nodes for inference, there is no inherent guarantee that inference
nodes perform the inference faithfully. To ensure verifiable compliance, our validators use several
checks: computation, sampling and data sanity check which we will describe in depth in the following
sections.

2https://nginx.org/

6



Decoder block 0

Decoder block 1

Decoder block n-1

LM HEad

Inference Provider performs 
batched inferences and generates 
commits for the computations 
performed,

Finding the Top-k Indices and 
Values in the last batched 
Hidden State

Polynomial Encoding of Indices 
and Values

i1 p1

Inference provider

Error exceeds threshold?

Decoder block n-1

Decoder block 0

Decoder block 1

Verifier processes these commits

up to 100x faster than the time 
it takes the Inference Provider 
to generate the

responses.

Based on the verification 
outcome,  for 
valid batches and  are 
applied for .

rewards are granted
penalties

invalid ones

jk pk

j2 p2

j1 p1

ep1 ep1

ep2 mp2

epk mpk

exponents match?

Compute mantissa 
differences

Yes

COUNT Exponent 
Mismatches

No

Slash Inference 
Provider

Yes

reward inference 
provider

No

ev1 mv1

ev1 mv1

ev1 mv1

v1

v2

vk

Use Polynomial and Indices of 
Verifier to decode Top-k Values 
from Inference Provider



Extract  and  
bits from values

exponent mantissa

verifier

i1 p1

i1 p1

Figure 3: An illustration of TOPLOC. The Inference Provider performs batched inferences and
generates commits for the computations performed, while the Verifier audits these commits up to
100× faster than the time it takes the inference provider to generate the responses. Based on the
verification outcome, rewards are granted for valid batches and penalties are applied for invalid ones.
Further speedup can be obtained for the Verifier by not checking every batch but instead sampling
randomly. Since the Inference Provider does not know which generations will be checked by the
Verifier, they are incentivized to be honest on all generations to collect the reward and avoid receiving
the penalty.

2.3.1 Computation checks

Proof of correct model computation As shown in Figure 3, to confirm that inference was per-
formed using the correct model weights, each inference worker generates a TOPLOC proof [29] for
every generated sequence. These proofs serve as cryptographic commitments to the final hidden
states produced during decoding. A trusted validator node subsequently reconstructs these activa-
tions using prefill and compares them to the submitted commitments to confirm consistency. The
proofs generated with TOPLOC are robust against GPU non-determinism, different tensor parallel
configurations and are able to reliably detect when quantized or malicious versions of the model are
used.

2.3.2 Sampling checks

Termination check There are two valid termination criteria for generated sequences: reaching
the model’s maximum context length or producing an end-of-sequence (EOS) token. Since longer
sequences incur greater computational cost, inference providers may be incentivized to terminate
sequences prematurely. To guard against this, we check that either the sequence reaches the maximum
model length or ends with an EOS token. In the case that the sequence terminated on the generation
of an EOS token, we make sure that the EOS token’s probability exceeds 0.1 to prevent manipulation
through unlikely EOS generations.
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Token sampling check Proper sampling from logits should yield a distribution resembling an
exponential with a mode at 1. If a smaller model is used to generate tokens and only the larger model
is used for prefill (to pass TOPLOC checks), the resulting distribution becomes bimodal, with modes
near 1 and 0. We inspect the logit distribution to detect such inconsistencies.

2.3.3 Sanity checks

Fixed data sampling Allowing inference workers to choose their own samples could lead to
cherry-picking easy or previously completed examples. To prevent this, each node deterministically
selects samples based on a seed computed as:

seed = node address · step + number of submissions for this step

We then verify that the correct samples were used by reproducing the sampling process from the seed.

Value bounds check All reported scalar values—such as rewards and advantages—must fall within
predefined bounds to ensure they are reasonable and consistent with expected outcomes.

Parquet formatting check We also make sure that the parquet has the correct schema and is in a
format that is loadable by our training dataloader. This makes sure that we do not accept any files
that would throw exceptions in the trainer.

2.4 The Prime Intellect Protocol

The Prime Intellect protocol coordinates permissionless nodes through a modular, decentralized
orchestration layer. It gives model trainers the ability to check the health of all nodes, view logs, and
distribute new tasks analogous to a decentralized SLURM3. The entire codebase is open source and
available on GitHub4.

2.4.1 System Architecture

As shown in Figure 4, the system is composed of multiple components that are all implemented
in Rust. All components, except for the worker nodes and decentralized ledger, are hosted in a
Kubernetes cluster. All API endpoints are protected by Cloudflare.

Decentralized Ledger A decentralized ledger is used to store information about the current training
run, ownership of the training run, as well as worker contributions. These workloads are organized into
"compute pools" that all belong to a broader "compute domain." Each compute domain represents a
specific category of AI task—such as pre-training, synthetic data generation, distributed reinforcement
learning, and more.

The ledger maintains detailed information about each pool, including ownership details and worker
contributions. Each contributor, as well as the compute pool owner, has a cryptographic address used
for signing transactions and proving ownership, which secures API interactions and ensures proper
attribution of compute resources.

Worker Software The worker software’s core task is to communicate heartbeats and metrics to the
central orchestrator and to configure and manage the local Docker environment for task execution.
Additional features include exports of logs and restart capabilities for running containers, a Unix
socket-based connection between the Docker container itself and the worker. The latter can be used
to trigger actions on the worker software, such as file uploads from the Docker volumes.

Discovery Service The discovery service is a simple API that allows nodes to upload worker
metadata information. It stores this data in a Redis database and allows other authorized components,
such as the orchestrator to retrieve information about nodes that have signed up. This ensures worker
IPs are only visible to the orchestrator, reducing the risk of denial-of-service attacks.

3Simple Linux for Resource Management: https://slurm.schedmd.com/
4Prime Intellect Protocol: https://github.com/primeIntellect-ai/protocol
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Figure 4: Overview of Protocol Testnet Infrastructure.

Orchestrator The orchestrator’s core tasks include the distribution of tasks and observing the
lifecycle of the decentralized worker nodes based on their heartbeat. It gives the model trainer the
ability to interact with the infrastructure via web API. It thereby exposes information about all nodes
that are currently alive, an API to create and schedule new tasks, and insights into the current metrics
and logs of each node. Additionally, since containers on each node might fail, each node’s workload
can be restarted.

2.4.2 Operational Flows

Node Registration & Discovery The worker software is installed and started by compute contribu-
tors on their machines. It automatically detects the system components (GPU, available RAM and
storage) and checks these for compatibility. Additional software and connection uplink checks are
performed and inform the user in the logs about any misconfigurations or system issues that make the
node incompatible with the training run.

Once the system hardware and software are confirmed, the node automatically uploads its metadata,
including hardware information and IP, to a discovery service. In parallel, the node also sends
a registration call to the decentralized ledger. After successful registration, the worker starts a
webserver and waits for an invitation - this security measure ensures the worker doesn’t need to know
the orchestrator’s endpoint in advance, protecting the orchestrator from potential denial-of-service
attacks.

The orchestrator periodically checks the discovery service for newly created nodes and sends an invite
to the worker’s HTTP server to start contributing. This invite contains a cryptographic signature
combining the node’s address as well as the current compute pool’s ID and domain. The invite is
validated on the decentralized ledger and makes the worker an active compute contributor. After
sending the invite, the orchestrator stores the node information in the local Redis storage and waits
for incoming heartbeats.

Node Health & Heartbeats Each node maintains a continuous heartbeat loop to maintain commu-
nication with the orchestrator. These heartbeats act as simple signals sent from the node back to the
orchestrator, allowing it to track whether nodes are still active. The orchestrator stores these heartbeats
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in Redis with an expiration time, so it can automatically detect when a node stops responding. A
separate status update loop regularly checks the health of each node by counting missed heartbeats.
If too many are missed, the node is marked as dead, and its worker is removed from the decentralized
ledger. If the node comes back online, it tries to re-register and update the discovery service so it can
be invited back into the pool.

Task Scheduling & Execution Tasks are created by the orchestrator through a POST API and
scheduled asynchronously across all healthy nodes. Rather than pushing tasks, the orchestrator
distributes them in response to heartbeat requests from the nodes, allowing for a reactive and fault-
tolerant pull-based model. Once a task is received, the worker communicates with the Docker
daemon to translate the task specification into a running container — this includes setting up volumes,
managing the container lifecycle, and applying task-specific settings such as environment variables
and custom start commands. One key insight during development was the introduction of a shared
volume, used to store persistent data like model weights. Without this, restarting a task would trigger
redundant downloads, slowing execution and increasing resource usage.

Inference Validation As shown in Figure 5, the inference workers will generate the rollouts and
upload them to the remote folder using a signed URL. An on-chain event is then generated, which
triggers the validators to begin validation for the new file. Based on the result of the checks described
in Section 2.3, the file is either accepted or rejected. The accepted files are then read by the training
node data loaders. Rejected files cause the node which created to them to be slashed and evicted from
the compute pool.

2.4.3 Design Trade-offs & Limitations

The orchestrator and discovery service are currently centralized, which simplifies coordination but
creates potential single points of failure and limits horizontal scalability. This design also introduces
trust assumptions that may not be suitable for more distributed or permissionless environments.
To address this, we plan to move toward a fully peer-to-peer architecture using a distributed hash
table (DHT), which would eliminate the need for central coordination and enable more resilient,
decentralized node discovery.

Another key limitation lies in how the worker is deployed. At present, it only runs on bare-metal
machines or virtual machines with direct access to the Docker daemon. This excludes environments
like Kubernetes, where Docker access is abstracted or unavailable. To address this, we are developing
a version of the worker that can run as a container itself, making it compatible with container
orchestration platforms.
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3 Training Recipe

The goal of INTELLECT-2 is to train a model with reasoning capabilities, specifically in the domains
of mathematics and coding. Additionally, we aim to enable control over the model’s thinking budget
by allowing users to specify the desired number of thinking tokens as part of the task prompt. As our
base model, we use QwQ-32B [40] and largely follow Deepseek-R1’s [9] approach of GRPO-based
training with verifiable rewards.

In this section, we describe our RL recipe and the ablation experiments that led to it in detail, ranging
from our training data and reward function implementations to modifications to the original GRPO
objective to improve training stability.

3.1 Training Data & Rewards

We train INTELLECT-2 using a dual objective: we incorporate both task rewards encouraging the
model to improve its reasoning on mathematics and coding tasks, as well as length rewards in order
to teach the model to adhere to a thinking budget provided in the prompt.

3.1.1 Task Rewards

Following existing state-of-the-art open reasoning models [9, 40] , we curate a training dataset
consisting of mathematics and coding tasks that can be verified through symbolic verification / string
matching and unit test execution. To do so, we choose high quality problems from NuminaMath-1.5
[18] and Deepscaler [24] for math problems and coding tasks previously curated for SYNTHETIC-
1 [22], which were also used in prior work such as DeepCoder [20]. Our full dataset consists of 285k
tasks, including 26k python-based algorithmic coding challenges and 259k mathematics problems.
The dataset can be found on Huggingface 5.

Both our mathematics and code reward functions implement binary rewards, with a reward of 1 being
assigned for correct responses and 0 for incorrect responses. While this is an obvious choice for
mathematics tasks, we explicitly don’t assign partial rewards for passing some, but not all unit tests
of coding problems to discourage reward hacking (e.g. through memorizing public test cases).

3.1.2 Length Rewards

Beyond rewards for solving tasks correctly, we incorporate length rewards to enable users to specify
the thinking budget of INTELLECT-2 as part of the task prompt; hereby, we largely follow the
methodology of L1 [1].

Concretely, for every problem in a training batch, we sample a target length ltarget and include it in
our prompt via the template "Think for ltarget tokens before giving a response." - subsequently, a
length penalty representing the difference between the actual response length and the target length,
multiplied by a weighting factor α, is combined with the task reward. Letting y denote our model
output for a given prompt, ly its length in tokens, and rtask the task reward function, the total reward
can be computed as:

rtotal(y, ltarget) = rtask(y)− α ∗ | ltarget − ly |

Different from the setting of L1, where ltarget is sampled uniformly from a continuous range, we
sample from a small discrete set of target lengths (e.g., 2000, 4000, 6000 tokens) to simplify the
objective and make it easier for our model to learn. To validate this approach, we reproduced L1
using target lengths of 500, 1000, 2000 and 3000 with a maximum sequence length of 4000.

3.2 Asynchronous Reinforcement Learning

As discussed in Section 2, we use asynchronous reinforcement learning to use both dedicated
inference and training nodes to minimize GPU idle time. This approach has proven to be effective in
prior work [13, 28] and has also been adopted for large LLM training runs such as Tülu 3 [17] and
Llama 4 [38].

5https://huggingface.co/datasets/PrimeIntellect/Intellect-2-RL-Dataset
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Figure 6: A comparison of synchronous, centralized one-step asynchronous and decentralized two-
step asynchronous reinforcement learning: Synchronous RL leverages the same compute resources
for training and inference and sequentially switches between performing only inference and training.
Therefore, training is fully on-policy. Centralized One-Step Asynchronous RL has dedicated
compute resources for training and inference and performs training and inference at the same time.
Therefore, rollouts are collected from the policy of the last RL step, making training off-policy by
one step. Decentralized Two-Step Asynchronous RL works similarly to centralized asynchronous
RL, but inference workers don’t have access to the up-to-date policy weights immediately after a
training step due to the time-consuming weight broadcast. Therefore, rollouts are collected from
policy weights from two or more RL steps prior.

In a centralized asynchronous RL training setup with fast connection speeds, the same policy weights
that are updated on the dedicated training nodes are simultaneously used to obtain rollouts for training
during the next RL step. In a decentralized setup, the updated policy weights are not available
immediately to the inference workers, as the weight broadcast costs time, which is why we perform
rollouts using weights not from the previous step, but from two or more steps prior, depending on the
duration of the weight broadcast. A graphical overview of these differences along with a comparison
to synchronous RL can be found in Figure 6.

Prior to starting our INTELLECT-2 training run, we ran ablation experiments to validate that asyn-
chronous RL training does not hurt the performance of our model. To do so, we replicated the results
of Deepscaler’s synchronous RL training run of DeepSeek-R1-Distill-Qwen-1.5B using a context
length of 2048 tokens and compared it with asynchronous RL based on PRIME-RLwith varying levels
of asynchrony. The results of these runs can be found in Figure 7.

As seen in the graph, even with asynchrony levels of up to four, our model’s reward trajectory matches
the trajectory of the synchronous baseline, indicating that training on slightly off-policy data does not
hurt the performance of RL training.

3.3 Offline & Online Data Filtering

During our ablation experiments, we found that filtering our dataset for difficulty had a significant
impact on training performance. We employ both offline filtering before starting our training run and
online filtering to selectively choose training samples from our rollouts.

3.3.1 Offline Data Filtering

When trying to train DeepSeek-R1-Distill-Qwen-7B using the Deepscaler mathematics dataset [21],
we found that it was highly important to filter out problems that were too easy or too difficult from our
training set. As shown in Figure 8, when training on the original dataset, our rewards barely improved.
After filtering out problems in which the base model’s pass@8 rate was above 50%, and below 12.5%,
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Figure 7: Comparison of synchronous DeepScaler [24] training vs asynchronous PRIME-RL under
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performance of synchronous baselines.
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(b) 7B GRPO Training with Offline Filtering

Figure 8: Reward trajectories when training DeepSeek-R1-Distill-Qwen-7B using GRPO on the
Deepscaler Math dataset with and without online filtering. 8a shows the reward trajectory when
training without filtering, leading to stagnant rewards. 8b shows the results of training on a filtered
dataset only containing samples on which the base model had a pass@8 value between 1 and 4.

rewards improved significantly. As a result, we also used DeepSeek-R1-Distill-Qwen-7B to prefilter
our training dataset for INTELLECT-2.

3.3.2 Online Data Filtering

Training algorithms such as GRPO [35] and RLOO [15] rely on group-based relative rewards to
compute advantages. If all completions for a single problem receive the same rewards (for binary
rewards either 0 or 1), this means that the advantages for all of these samples are zero and no training
signal is given beyond auxiliary losses such as a KL or entropy loss. To mitigate this, we employ
online filtering and continue sampling responses from our inference workers until we have a full
batch of samples with non-zero advantages before performing a training step. Conveniently, this
increases the amount of inference that has to be performed per training step, allowing us to onboard
and leverage a higher amount of decentralized inference nodes.

3.4 Two-Sided GRPO Clipping for Increased Training Stability

During training, we faced loss and resulting gradient norm spikes that caused instabilities leading to
model collapse, particularly as our models got larger. Upon inspection, we found that a major cause
of instabilities was one-sided token probability ratio clipping employed in GRPO and PPO-like [34]
training objectives.
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Recall the original GRPO objective: for each prompt or question q, GRPO samples a group of outputs
{o1, o2, ..., oG} from the old policy πθold and computes advantages based on their relative rewards
based in this group. The optimization objective without the KL penalty is given by:

JGRPO(θ) = Eq∼P (Q), {oi}Gi=1∼πθold
(O|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ε, 1 + ε

)
Âi,t

)]

where Âi,t denotes the advantage within each sampled group and ε is a parameter used to clip the
token probability ratio to avoid excessively large loss values and gradient updates. Note that in the
case of negative advantage values, this clipping will not be applied due to the min operation, as large
updates that move the policy away from bad rollouts are encouraged [34]. However, this can cause
huge loss values and gradient updates as a result in case πθ(oi,t|q,oi,<t)

πθold (oi,t|q,oi,<t)
takes on large values.

To mitigate this, we introduce an additional hyperparameter δ that adds an upper bound to the token
probability ratio in the case of negative advantages:

JGRPO(θ) = Eq∼P (Q), {oi}Gi=1∼πθold
(O|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
min

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, δ

)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ε, 1 + ε

)
Âi,t

)]

The value δ should be higher than 1+ε to still enable large updates that move away from bad rollouts,
but avoid huge token probability ratios of a hundred or much higher. With this change, training
stabilized significantly, as it has also been reported in concurrent work [25].

3.5 Mitigating Training Instability at Scale

While the two-sided GRPO clipping mechanism described above significantly reduced large loss
and gradient spikes, we observed additional types of training instabilities when using larger models.
These instabilities share similarities with those encountered in large-scale pretraining [43, 5, 26, 6].

Escalating Gradient Norms As training progressed, we observed a gradual but persistent increase
in gradient norms, even in the absence of immediate spikes. This phenomenon appears to be correlated
with model size as shown in 9a, becoming more pronounced in our larger architectures. Similar to
findings in [43], we found that gradient norm growth often precedes more severe instability events,
serving as an early warning signal for potential training collapse.

We found that employing aggressive gradient clipping (with thresholds as low as 0.05-0.1) effectively
mitigates stability issues without significantly impeding convergence, providing a favorable trade-
off between stability and training efficiency. While this approach does not completely eliminate
instability issues, it substantially delays the growing gradient phase and postpones potential stability
crashes, extending the viable training period for our models. Aggressive gradient clipping has also
been applied successfully in concurrent work training QwQ-32B [2].

Token Probability Clip Ratio Escalation. In addition to gradient norm and entropy instabilities,
we observed a steady increase in the token probability clip ratio during training, as shown in Figure 9b.
This increase directly correlates with the rising gradient norm, as the clip ratio effectively tracks the
difference in logits between consecutive optimizer steps.

Entropy Loss pattern. During training, we identified a distinctive pattern for the entropy loss, as
shown in Figure 10. After decreasing initially, the entropy loss begins to trend upward again. This
entropy resurgence typically precedes catastrophic training failures causing a full collapse of the
model. Increasing the weighting factor of the KL penalty was able to delay this collapse but also
caused slower learning, and hence wasn’t an effective mitigation strategy.
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(a) Gradient norms during training across training steps (b) Token probability clipping ratio across training steps

Figure 9: Escalating gradient norms (Figure 9a) and clipping ratios (Figure 9b) across model scales,
trained on the MATH dataset [12]. Smaller models remain stable, while both 32B models show rising
instability, with QwQ-32B diverging earlier than R1-Distill-32b.
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Figure 10: As training progresses, our policy’s entropy loss initially decreases but later starts
increasing past ≈ 150 steps. Soon after seeing entropy increases, we observed our model collapsing
across all of our ablation runs.

QwQ is less stable to train than DeepSeek-R1-Distill-Qwen-32B. We noticed that our training
on top of QwQ exhibited worse stability compared to DeepSeek-R1-Distill-Qwen-32B, despite both
being based on the same pre-trained model (Qwen 2.5). We hypothesize that this difference stems
from QwQ having already undergone a phase of reinforcement learning with verifiable rewards. This
prior RL training appears to make the model more susceptible to subsequent optimization instabilities,
suggesting that models may become progressively more difficult to fine-tune stably after multiple
rounds of reward optimization.

Instabilities caused by torch.compile. We observed that using torch.compile led to a catas-
trophic collapse during the later stages of our training, regardless of our model size (see Figure 11).
Although the issue likely stemmed from a single faulty kernel generated by torch.compile, we
ultimately decided to disable it across the entire codebase for the run to ensure training stability. This
decision came with a trade-off of slightly increased memory usage.

4 Experiments

Over the duration of two weeks, we ran multiple training runs using our setup consisting of a trusted
training cluster and validator nodes and trustless, community-contributed heterogenous inference
workers. In this section, we report the experiments we ran along with corresponding results.
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(a) Gradient Norm (b) Reward

Figure 11: Training dynamics with and without torch.compile when training DeepSeek-R1-Distill-
Qwen-1.5B on the Deepscaler mathematics dataset. The torch-compile setup leads to early instability
and reward collapse, whereas the no-compile baseline remains stable across 1200 steps.

4.1 Experimental Setup

Using QwQ-32B as our base model, we trained using GRPO with modifications described in section 3
and used clipping thresholds ε = 0.2, δ = 4 and an entropy loss coefficient of 1e-4. We set the KL
divergence loss coefficient to 0.001, set α to 0.0003 to balance task and length rewards, and apply
gradient norm clipping at 0.1. Additionally, we implement a token-level policy loss calculation rather
than a sample-level loss calculation as proposed in DAPO [44] and Dr. GRPO [19]. The training
used a learning rate of 3e-7 with 25 warmup steps; during every rollout step, we generated 4096
samples consisting of 16 responses to 256 prompts, and performed 8 optimizer steps using a batch
size of 512. We used two-step asynchrony during training to enhance throughput while ensuring that
we did not go too far off-policy.

We used the Huggingface implementation of Qwen with Flash Attention 2. Instead of obtaining
token log probabilities from our inference workers, we computed them seperately using our policy
weights on the training cluster, as vLLM log probabilities turned out to not be numerically stable. The
model was sharded using FSDP2 with activation recomputation enabled. We configured a maximum
sequence length of 32K to accommodate longer inputs required by our application.

Sequence Packing To maximize computational efficiency with our 32K sequence length, we
implemented sequence packing to address the significant variance in sample lengths. This approach
prevents wasting compute on padding tokens, which would be particularly inefficient given our
distribution of sequence lengths during inference rollout. Unlike pretraining scenarios, where
arbitrarily cutting samples is acceptable due to the local nature of the next token prediction loss
function, reinforcement learning requires preserving complete samples since RL fundamentally learns
at the sample level rather than locally. While RL fundamentally requires preserving complete samples,
GRPO’s token-level loss formulation allowed us to implement cross-sample packing by adapting
the attention mask and collating samples into the sequence dimension. This optimization proved
essential for scaling beyond 20K+ sequence lengths and significantly reduced our training time while
maintaining the integrity of the cross entropy calculations across packed sequences.

4.2 Results

We report results from two main experiments: TARGET-SHORT, an experimental run with target
lengths {1000, 2000, 3000, 4000} to train an efficient reasoning model, and, TARGET-LONG, our
main run with longer target lengths of {2000, 4000, 6000, 8000, 10000}.

Compute Utilization During the two main experiments, we successfully overlapped communica-
tion with computation through asynchronous reinforcement learning.

In both experimental settings, the SHARDCAST broadcast to all nodes averaged 14 minutes, corre-
sponding to a bandwidth throughput of approximately 590 Mb/s (62 GB of weights transmitted over
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(a) Task Rewards for TARGET-SHORT
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(b) Length penalties for TARGET-SHORT
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(c) Task Rewards for TARGET-LONG
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(d) Length penalties for TARGET-LONG

Figure 12: Trajectories (smoothed by 10-step moving average) of task rewards and length penalties for
TARGET-SHORT, our training run with target lengths {1000, 2000, 3000, 4000} and TARGET-LONG,
our training run with target lengths {2000, 4000, 6000, 8000, 10000}. During both runs, our task
rewards, indicating the ability to solve mathematics and coding problems, rose significantly. In
contrast to our ablation experiments with smaller models, length penalties decreased significantly
slower; while a clear downward trend is recognizable, the training runs were too short for the length
penalties to converge and equip the model with the ability to precisely adhere to a thinking budget.

14 minutes). Nodes with superior connectivity to the SHARDCAST relay servers received checkpoints
earlier, allowing them to begin data generation ahead of others. Furthermore, nodes with more
computational resources, such as full H100 nodes, generated batches more quickly, resulting in earlier
validation by the TOPLOC validators.

In the TARGET-SHORT setup, the first data file was submitted approximately 10 minutes after the
broadcast completed. Thanks to the prefill verification mechanism in TOPLOC and the random
sampling strategy that verifies only subsets of submitted data, the inference verification was highly
efficient—typically completing within 1 minute. Consequently, sufficient verified samples to form
a batch were available roughly 22 minutes after the broadcast in the TARGET-SHORT scenario. In
contrast, the TARGET-LONG scenario required approximately 29 minutes to accumulate enough
verified samples to form a batch.

The ratio of training to inference FLOPs in both experiments averaged 4.5×, with significantly more
compute spent on the decentralized inference workers than on the training side.

In TARGET-SHORT, training nodes took approximately 22 minutes to execute a full rollout step. This
duration resulted in minimal idling of training GPUs, as the data generated by inference nodes for the
next step was already available. Conversely, in TARGET-LONG, training nodes completed their rollout
steps in about 21 minutes. The asynchronous setup effectively synchronized with the broadcast,
inference generation, and verification phases, ensuring nearly perfect computational overlap and
minimizing GPU idling time.

These results highlight the inherent advantage of decentralized reinforcement learning, especially
when scaling inference computations—such as generating longer reasoning chains—to achieve an
optimal inference-to-training compute ratio. Additional analysis on this scaling benefit is discussed
in section 5.

Reward Trajectories Throughout training, we saw significant improvements of our task rewards,
indicating that the model improved its performance on our mathematics and coding problems. We
also saw a reduction of length penalties, but a much slower one than during our ablation experiments
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Model AIME24 AIME25 LiveCodeBench (v5) GPQA-Diamond IFEval
INTELLECT-2 78.8 64.9 67.8 66.8 81.5
QwQ-32B 76.6 64.8 66.1 66.3 83.4
Qwen-R1-Distill-32B 69.9 58.4 55.1 65.2 72.0
Deepseek-R1 78.6 65.1 64.1 71.6 82.7

Table 1: Performance comparison of models across benchmarks.

with 1.5B and 7B parameter models. As a result, our models did not learn to strictly adhere to the
specified thinking budget within the given timeframe of our experiments. Further exploration will be
needed to determine what exactly the cause of this is and whether a stronger weighting of the length
rewards could have helped learn the length following objective. The full reward trajectories can be
found in Figure 12

Benchmark Performance We use evalchemy6 [11] along with its default settings to test the
performance of our model on common reasoning benchmarks. We use the provided default prompts
for Deepseek-R1, QwQ-32B and DeepSeek-R1-Distill-Qwen-32B and attach the length control
prompt "Think for ltarget tokens before giving a response" to INTELLECT-2. Since the length penalty
was not affected significantly during training, we only evaluate our model with the longest target
length of 10,000.

As can be seen in Table 1, we were able to increase the performance of QwQ-32B on mathematics
and coding benchmarks, while seeing a slight drop on IFEval, which is likely caused by us solely
training on mathematics and coding tasks rather than using more general instruction-following tasks.
Overall, as QwQ-32B was already extensively trained with reinforcement learning, it was difficult to
obtain huge amounts of generalized improvement on benchmarks beyond our improvements on the
training dataset. To see stronger improvements, it is likely that better base models such as the now
available Qwen3 [39], or higher quality datasets and RL environments are needed.

5 Discussion: Decentralized Training in the Test-Time-Compute Paradigm

As the compute demands of large language models have increased by several orders of magnitude
in recent years, distributed training across data centers has become increasingly relevant. Beyond
offering an economically sustainable path for collaborative open-source development, the sheer
compute power and energy required to train these models will soon outpace even the largest data
centers in the world.

So far, most progress has come from scaling parameters and dataset size—commonly referred to as
pretraining scaling. More recently, a complementary axis of progress has emerged: test-time compute
scaling, as seen in reasoning-focused models.

While both forms of scaling are compatible with decentralization, we argue that test-time compute
scaling is particularly well-suited for decentralized training. It reduces coordination requirements
and shifts compute demands toward inference, enabling broader participation from heterogeneous
devices.

Asynchronous RL Hides Most Communication Overhead Communication is the primary bottle-
neck in decentralized training. Techniques such as DiLoCo [10] can reduce pre-training communi-
cation overhead by up to two orders of magnitude. However, as model sizes increase, communica-
tion—especially blocking communication—once again becomes the limiting factor.

A promising strategy is to overlap communication with computation. Unlike approaches such as
ZeRO-offload [33], which delay gradient application and impact convergence, we argue that delaying
rollouts in RL yields a better tradeoff. This is because the delay applies at the model level, not the
optimization step. Even if the model is slightly off-policy, it can still generate useful reasoning traces
that lead to positive rewards, which are valid training signals.

6https://github.com/mlfoundations/Evalchemy
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Further investigation is needed to evaluate asynchronous RL with delays beyond two steps. Nonethe-
less, with delays of 4–5 steps, we could effectively hide various blocking stages in the RL
pipeline—including weight broadcasting, environment verification, permissionless validation, and
relative KL log-probability computation. This strategy improves compute utilization across both
training and inference and enables greater hardware heterogeneity. Slower devices can still contribute
valuable samples. Additionally, decentralized pipeline-parallel inference can facilitate the use of
large models on consumer-grade hardware.

Inference Will Consume the Majority of Compute In INTELLECT-2, the training-to-inference
compute ratio was approximately 1:4. We anticipate this ratio will shift even more heavily toward
inference as test-time reasoning scales. This trend opens the door to training models with hundreds
of billions of parameters on globally distributed heterogeneous compute resources.

A key driver of this shift is dataset filtering. As illustrated in Figure 8, model capabilities improve
when training focuses on more challenging samples. However, not all data generated during inference
is useful. As models tackle harder tasks with increasingly sparse positive rewards, inference will
demand substantially more compute than training. In this setting, generating high-quality rollouts
becomes the dominant compute cost. Since only a small subset of these rollouts contains strong
learning signals, the majority of compute is allocated to exploration rather than model updates.

This asymmetry in compute demand reshapes the scaling dynamics of decentralized RL and indirectly
addresses one of its historical limitations: memory constraints. By shifting most of the workload to
inference—where memory requirements are significantly lower than during training—decentralized
training becomes feasible at scale across a broader range of hardware.

6 Conclusion & Future Work

In this report, we introduce INTELLECT-2, the first globally distributed reinforcement learning
run of a 32-billion-parameter language model. We are open-sourcing the trained model, tasks &
verifier environments along with all infrastructure components including our training framework
PRIME-RL. We hope that this report and the accompanying open-source components will support the
broader research community in exploring decentralized training, and help advance globally distributed
reinforcement learning as a foundation for building frontier open-source models.

While INTELLECT-2 is a first step towards open frontier reasoning models trained in a decentralized
fashion, several avenues for future work remain open:

Increasing the Ratio of Inference to Training Compute in Reinforcement Learning As inference
is infinitely parallelizable and does not require any communication between workers, RL training
recipes that spend higher amounts of compute on inference relative to training are ideally suited
for decentralized training. Methods such as VinePPO [14] spend additional time on inference to
compute Monte Carlo-based value estimates rather than leveraging a value network such as PPO,
and are thus an interesting field of study to explore. Additionally, various forms of online data
filtering for curriculum learning approaches are purely based on inference, and are thus favorable for
decentralized setups, if proven effective.

Tool Calls for Reasoning Models The latest generation of proprietary reasoning models have
access to tool calls such as web search or python interpreters as part of their reasoning chain. Initial
promising research results in this direction have come from open source research efforts [3, 4, 42],
opening the door to scaling these methods further and training larger open-source reasoning models
capable of leveraging such tools.

Crowdsourcing RL tasks and environments To teach models new skills, diverse RL environments
have to be built. This boils down to a traditional software engineering problem which is highly
parallelizable and requires various contributors with specialized areas of domain expertise, making
it ideally suited for open-source, community-driven efforts. We invite everyone to contribute RL
environments to PRIME-RL and are aiming to make it as easy as possible to crowdsource reinforcement
learning environments.
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Model Merging and DiLoCo Model merging has emerged as an effective post-training technique
in recent work [7, 37, 32]. Whether such methods extend to reasoning tasks remains an open question.
However, the ability to merge models trained on distinct reasoning domains would mark a significant
step toward scaling asynchronous reinforcement learning across parallel compute resources. In
this setup, multiple models could be trained independently and later merged into a single unified
model. This could be done at the end of training or continuously during training using techniques like
DiLoCo [10], originally developed to reduce communication in data-parallel pretraining. Applying
merging in RL would enable scaling decentralized training to one more order of magnitude more
compute.
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