
INTELLECT-2: A Reasoning Model Trained Through
Globally Decentralized Reinforcement Learning

Prime Intellect Team

Sami Jaghouar Justus Mattern Jack Min Ong Jannik Straube

Manveer Basra Aaron Pazdera Matthew Di Ferrante Kushal Thaman

Felix Gabriel Fares Obeid Kemal Erdem Michael Keiblinger

Johannes Hagemann

Abstract

We introduce INTELLECT-2, the first globally distributed reinforcement learning
(RL) training run of a 32 billion parameter model. Unlike traditional centralized
training efforts, INTELLECT-2 trains a reasoning language model using fully asyn-
chronous RL across a dynamic, heterogeneous swarm of permissionless compute
contributors.
To enable a training run with this unique infrastructure, we built various components
from scratch: we introduce PRIME-RL, our training framework purpose-built for
distributed asynchronous reinforcement learning, based on top of novel components
such as TOPLOC, which verifies rollouts from untrusted inference workers, and
SHARDCAST, which efficiently broadcasts policy weights from training nodes to
inference workers.
Beyond infrastructure components, we propose modifications to the standard GRPO
training recipe and data filtering techniques that were crucial to achieve training
stability and ensure that our model successfully learned its training objective,
thus improving upon QwQ-32B, the state of the art reasoning model in the 32B
parameter range.
We open-source INTELLECT-2 along with all of our code and data, hoping to
encourage and enable more open research in the field of decentralized training.

Contents

1 Introduction 3

2 Training Infrastructure 3

2.1 PRIME-RL: A Framework for Distributed Asynchronous Reinforcement Learning . 4

2.1.1 Training . 4

2.1.2 Inference . 5

2.1.3 Verifiers . 5

2.2 SHARDCAST: Efficient Policy Weight Broadcasts 5

2.2.1 Rate Limiting & Firewall . 6

2.2.2 Maximizing Client Throughput & Load Balancing 6

2.2.3 Assembled Model Weights Integrity Checks 6

2.3 TOPLOC: Enabling Trustless Inference . 6

2.3.1 Computation checks . 7

2.3.2 Sampling checks . 7

2.3.3 Sanity checks . 8

2.4 The Prime Intellect Protocol . 8

2.4.1 System Architecture . 8

2.4.2 Operational Flows . 9

2.4.3 Design Trade-offs & Limitations . 10

3 Training Recipe 11

3.1 Training Data & Rewards . 11

3.1.1 Task Rewards . 11

3.1.2 Length Rewards . 11

3.2 Asynchronous Reinforcement Learning . 11

3.3 Offline & Online Data Filtering . 12

3.3.1 Offline Data Filtering . 12

3.3.2 Online Data Filtering . 13

3.4 Two-Sided GRPO Clipping for Increased Training Stability 13

3.5 Mitigating Training Instability at Scale . 14

4 Experiments 15

4.1 Experimental Setup . 16

4.2 Results . 16

5 Discussion: Decentralized Training in the Test-Time-Compute Paradigm 18

6 Conclusion & Future Work 19

2

1 Introduction

Test-time compute scaling with reinforcement learning has emerged as a new scaling axis for large
language models (LLMs), enabling improvements by allowing models to spend more time reasoning.
The success of RL approaches used in models like DeepSeek-R1 [9], QwQ [40], and OpenAI’s o1
[30] in learning reasoning capabilities highlight the power of test-time compute scaling.

However, reinforcement learning training is typically centralized, requiring large clusters of co-
located GPUs and fast interconnect speeds. With INTELLECT-2, we showcase a paradigm shift:
reinforcement learning is inherently more asynchronous and well suited for decentralized, globally
distributed compute.

In this paper, we present the first large-scale experiment to collaboratively train a 32-billion-parameter
language model using reinforcement learning across a permissionless, globally distributed network
of contributors.

We open-source the INTELLECT-2 model, tasks and verifier environments at
huggingface.co/PrimeIntellect/INTELLECT-2 and the PRIME-RL framework for glob-
ally distributed RL training at github.com/PrimeIntellect-ai/prime-rl.

The remainder of this report is organized as follows: Section 2 provides a detailed overview of the
decentralized training infrastructure including PRIME-RL, TOPLOC, SHARDCAST and the compute
orchestration protocol. Section 3 describes the RL training recipe used to train INTELLECT-2.
Section 4 presents the experiments we ran along with training performance metrics and model
evaluation results. Section 5 discusses possible implications of decentralized training in the test-time
compute paradigm. Finally, Section 6 concludes the report and outlines directions for future work.

2 Training Infrastructure

We introduce the following key open-source infrastructure components for training INTELLECT-2:

• PRIME-RL: A fully asynchronous reinforcement learning framework designed for decentral-
ized training. The decoupling of rollout generation, model training, and weight broadcasting,
enables training across heterogeneous, unreliable networks.

• SHARDCAST: A library for distributing large files via a HTTP-based tree-topology network
that efficiently propagates updated model weights to the decentralized inference workers.

• TOPLOC [29]: A locality-sensitive hashing scheme for efficient verifiable inference. It
detects tampering or precision changes in model inference and works reliably across non-
deterministic GPU hardware.

• Protocol Testnet: Provides the infrastructure to aggregate and coordinate global compute
resources.

As shown in Figure 1, the INTELLECT-2 infrastructure, built using these components, is structured
around three primary roles: Inference rollout workers that generate reasoning traces using the current
policy; TOPLOC validators that verify the integrity of these rollouts; and GRPO training workers that
aggregate verified data, update the policy using the GRPO algorithm, and distribute new weights via
SHARDCAST.

This decentralized RL training setup offers several key advantages:

• No communication overhead: By leveraging asynchronous reinforcement learning, the
broadcast of new policy weights is fully overlapped with ongoing inference and train-
ing—eliminating the communication bottleneck.

• Support for heterogeneous nodes: Contributors can generate rollouts at their own pace
using various hardware; there is no requirement for uniform speed across nodes.

• Low resource requirements: Inference workers, which constitute the majority of compute
in this setup, can run on consumer-grade GPUs.

• Efficient validation: TOPLOC performs validation significantly faster than generation.

3

https://huggingface.co/PrimeIntellect/INTELLECT-2
https://github.com/PrimeIntellect-ai/prime-rl

3090s

8a100

8h100

8a6000

8h100

8a100

2a100

2h100

4h100

8xmi300x

grpo training

workers

grpo training

workers

grpo training

workers

toploc

validator

toploc

validator

toploc

validator

broadcast weights async send reasoning traces + rewards

send validated

reasoning traces

Inference
Workers

TOPLOC

VALIDATORS

GRPO

TRAINING

WORKERS

Figure 1: System Overview of INTELLECT-2 Distributed RL Training Infrastructure.

2.1 PRIME-RL: A Framework for Distributed Asynchronous Reinforcement Learning

We developed a new framework, PRIME-RL1, to support training and inference workloads for
reinforcement learning. Unlike existing frameworks such as verl [36] and TRL [41], which execute
training and inference sequentially within the same process, PRIME-RL natively enables asynchronous
execution of training and inference. This decoupling allows model updates to be computed on trusted
centralized nodes, while rollouts are independently generated on trustless decentralized nodes.

PRIME-RL’s architecture completely separates training and inference components into distinct exe-
cutable files that communicate only when exchanging data and checkpoints. This clean separation
eliminates the need for centralized orchestrators like Ray [27], and our two-step asynchronous design
effectively hides latency that would typically be associated with data transfers, creating an efficient
distributed reinforcement learning pipeline.

2.1.1 Training

To reduce GPU memory requirements during training, we shard the model weights, gradients, and
optimizer states across GPUs using PyTorch FSDP2 [45], following a strategy similar to ZeRO-3
[31]. We load training data from remote storage, and rollout data is exchanged between inference
workers and the trainer using Parquet files.

The asynchronous nature of rollout generation is transparent to the trainer, as we compute log-
probabilities using the policy at the start of the optimization step rather than the policy that produced
the original trajectories. This design choice aligns with the implementations in verl [36] which we
used as a reference.

In its current form, PRIME-RL implements GRPO training, along with auxiliary KL and entropy
losses.

1https://github.com/PrimeIntellect-ai/prime-rl

4

train train

relay relay relay relay

relay relay relay relay relay

inference inference inference inference inference inference inference

inference inference inference inference inference inference inference

origin servers

middle nodes

client nodes

~~ Shardcast ~~

Figure 2: Overview of the Shardcast policy weight distribution network.

2.1.2 Inference

To generate the rollouts, we use vLLM [16], loading the model in bfloat16 precision. For each batch,
input questions are sampled randomly using a deterministic seed to prevent inference workers from
selecting easy samples, as detailed in Section 2.3.3.

To support TOPLOC proof construction, we capture the final hidden states using a hook in the logits
processor. Instead of storing the activations for the full sequence, we incrementally store and hash
them at every 32-token interval which reduces the memory overhead of the proof construction. To
reduce blocking overhead, the proof construction is performed asynchronously on the CPU in parallel
with the GPU forward pass. Together, these optimizations limit the overhead of proof generation to
only a ∼ 1% reduction in tokens-per-second throughput.

To keep the inference workers in sync with the rest of the training, we host a step counter endpoint
which returns the smallest step with insufficient rollouts. Inference workers poll this endpoint and
generate rollouts for the step specified. This design allows workers to dynamically join or leave the
compute pool without interrupting the training process.

2.1.3 Verifiers

PRIME-RL uses the GENESYS schema introduced in SYNTHETIC-1 [23], making it easy to implement
new reward environments. In our initial experiments, we support symbolic verifiers for mathematics
and unit test execution for python-based coding competition problems. For this, we adopt existing
implementations from [21] and [8].

Note that at this point, LLM-generated code is executed on the inference nodes, where we already
apply sandboxing and code sanitization. This approach provides sufficient isolation for the simple
algorithmic challenges currently used. For more complex coding tasks (e.g., those requiring filesystem
access), further strengthening of isolation mechanisms will be necessary.

2.2 SHARDCAST: Efficient Policy Weight Broadcasts

One of the key challenges in asynchronous distributed reinforcement learning (RL) in a decentralized
setting is ensuring that the most recent policy weights are quickly delivered to the inference workers.

For this purpose, we utilize a network of relay servers that distribute the checkpoints from the main
training servers to the client inference workers, similar to a content delivery network (CDN). To
minimize latency, checkpoint files are sharded and streamed in a pipelined fashion, allowing inference
workers to begin downloading shards before the full checkpoint is available on the relay servers. The

5

relay servers only keep the last five checkpoint versions to avoid running out of disk. This limit is
also functionally desirable, as rollouts generated with outdated checkpoints are typically rejected or
discarded.

2.2.1 Rate Limiting & Firewall

We use nginx 2 as our HTTP server due to its robustness and widespread industry adoption. To protect
the relay servers from malicious inference workers who may make an excessive number of requests,
we configure our nginx server with per IP rate limiting. Additionally, we dynamically configure UFW
firewall rules on the relay servers to accept traffic only from known, currently active inference nodes
in the compute pool. This reduces the surface area for attacks and enables us to quickly blacklist
misbehaving nodes when detected.

2.2.2 Maximizing Client Throughput & Load Balancing

If each client were to always select the fastest relay server, it would lead to contention and bandwidth
thrashing. To mitigate this, clients instead sample from the set of relay servers based on the expected
throughput of requesting from each relay server.

Our implementation begins by having each client request a dummy file from all relay servers to
initialize bandwidth and success rate estimates. Clients then select servers in proportion to:

expected throughput ∝ success rate × bandwidth

These estimates are continuously updated using an exponential moving average (EMA), which
smooths transient fluctuations while remaining responsive to actual changes. A healing factor is
incorporated into the EMA to encourage periodic exploration of underutilized servers, ensuring the
system adapts effectively to changing conditions.

Even in scenarios without contention, this probabilistic sampling strategy outperforms greedily
choosing the currently fastest relay because it is able to utilize multiple connections to different relay
servers, which will have a higher total bandwidth than any single connection to a relay.

2.2.3 Assembled Model Weights Integrity Checks

Inference nodes face the risk of being penalized if they submit rollouts generated using incorrect
model weights. To avoid this, it is essential that only verified, correct weights are used for inference.

To ensure model weight integrity, each inference worker computes the SHA-256 checksum of the
assembled checkpoint after downloading and reconstructing it from the shards. This checksum is
then compared against the reference checksum produced by the training nodes, which is broadcasted
to all relay servers along with the checkpoint metadata.

If the computed checksum does not match the expected value, the inference node discards the
corrupted checkpoint and proceeds to attempt download of the next available checkpoint. We avoid
retrying the same checkpoint, as it is unlikely the re-download would complete before the checkpoint
becomes stale or irrelevant.

While a mechanism for verifying the integrity of downloaded shards would enable trustless peer-to-
peer (P2P) weight transfers, we chose not to deploy such a system for INTELLECT-2. The primary
reason is the added complexity and security risks associated with exposing inference workers to each
another. In a P2P setup, inference worker IP addresses would become visible to peers, requiring
additional hardening to prevent malicious behavior or denial-of-service attacks within the pool. Given
these concerns, we opted to centralize weight distribution through trusted relay servers instead.

2.3 TOPLOC: Enabling Trustless Inference

Because we rely on trustless compute nodes for inference, there is no inherent guarantee that inference
nodes perform the inference faithfully. To ensure verifiable compliance, our validators use several
checks: computation, sampling and data sanity check which we will describe in depth in the following
sections.

2https://nginx.org/

6

Decoder block 0

Decoder block 1

Decoder block n-1

LM HEad

Inference Provider performs
batched inferences and generates
commits for the computations
performed,

Finding the Top-k Indices and
Values in the last batched
Hidden State

Polynomial Encoding of Indices
and Values

i1 p1

Inference provider

Error exceeds threshold?

Decoder block n-1

Decoder block 0

Decoder block 1

Verifier processes these commits

up to 100x faster than the time
it takes the Inference Provider
to generate the

responses.

Based on the verification
outcome, for
valid batches and are
applied for .

rewards are granted
penalties

invalid ones

jk pk

j2 p2

j1 p1

ep1 ep1

ep2 mp2

epk mpk

exponents match?

Compute mantissa
differences

Yes

COUNT Exponent
Mismatches

No

Slash Inference
Provider

Yes

reward inference
provider

No

ev1 mv1

ev1 mv1

ev1 mv1

v1

v2

vk

Use Polynomial and Indices of
Verifier to decode Top-k Values
from Inference Provider

Extract and
bits from values

exponent mantissa

verifier

i1 p1

i1 p1

Figure 3: An illustration of TOPLOC. The Inference Provider performs batched inferences and
generates commits for the computations performed, while the Verifier audits these commits up to
100× faster than the time it takes the inference provider to generate the responses. Based on the
verification outcome, rewards are granted for valid batches and penalties are applied for invalid ones.
Further speedup can be obtained for the Verifier by not checking every batch but instead sampling
randomly. Since the Inference Provider does not know which generations will be checked by the
Verifier, they are incentivized to be honest on all generations to collect the reward and avoid receiving
the penalty.

2.3.1 Computation checks

Proof of correct model computation As shown in Figure 3, to confirm that inference was per-
formed using the correct model weights, each inference worker generates a TOPLOC proof [29] for
every generated sequence. These proofs serve as cryptographic commitments to the final hidden
states produced during decoding. A trusted validator node subsequently reconstructs these activa-
tions using prefill and compares them to the submitted commitments to confirm consistency. The
proofs generated with TOPLOC are robust against GPU non-determinism, different tensor parallel
configurations and are able to reliably detect when quantized or malicious versions of the model are
used.

2.3.2 Sampling checks

Termination check There are two valid termination criteria for generated sequences: reaching
the model’s maximum context length or producing an end-of-sequence (EOS) token. Since longer
sequences incur greater computational cost, inference providers may be incentivized to terminate
sequences prematurely. To guard against this, we check that either the sequence reaches the maximum
model length or ends with an EOS token. In the case that the sequence terminated on the generation
of an EOS token, we make sure that the EOS token’s probability exceeds 0.1 to prevent manipulation
through unlikely EOS generations.

7

Token sampling check Proper sampling from logits should yield a distribution resembling an
exponential with a mode at 1. If a smaller model is used to generate tokens and only the larger model
is used for prefill (to pass TOPLOC checks), the resulting distribution becomes bimodal, with modes
near 1 and 0. We inspect the logit distribution to detect such inconsistencies.

2.3.3 Sanity checks

Fixed data sampling Allowing inference workers to choose their own samples could lead to
cherry-picking easy or previously completed examples. To prevent this, each node deterministically
selects samples based on a seed computed as:

seed = node address · step + number of submissions for this step

We then verify that the correct samples were used by reproducing the sampling process from the seed.

Value bounds check All reported scalar values—such as rewards and advantages—must fall within
predefined bounds to ensure they are reasonable and consistent with expected outcomes.

Parquet formatting check We also make sure that the parquet has the correct schema and is in a
format that is loadable by our training dataloader. This makes sure that we do not accept any files
that would throw exceptions in the trainer.

2.4 The Prime Intellect Protocol

The Prime Intellect protocol coordinates permissionless nodes through a modular, decentralized
orchestration layer. It gives model trainers the ability to check the health of all nodes, view logs, and
distribute new tasks analogous to a decentralized SLURM3. The entire codebase is open source and
available on GitHub4.

2.4.1 System Architecture

As shown in Figure 4, the system is composed of multiple components that are all implemented
in Rust. All components, except for the worker nodes and decentralized ledger, are hosted in a
Kubernetes cluster. All API endpoints are protected by Cloudflare.

Decentralized Ledger A decentralized ledger is used to store information about the current training
run, ownership of the training run, as well as worker contributions. These workloads are organized into
"compute pools" that all belong to a broader "compute domain." Each compute domain represents a
specific category of AI task—such as pre-training, synthetic data generation, distributed reinforcement
learning, and more.

The ledger maintains detailed information about each pool, including ownership details and worker
contributions. Each contributor, as well as the compute pool owner, has a cryptographic address used
for signing transactions and proving ownership, which secures API interactions and ensures proper
attribution of compute resources.

Worker Software The worker software’s core task is to communicate heartbeats and metrics to the
central orchestrator and to configure and manage the local Docker environment for task execution.
Additional features include exports of logs and restart capabilities for running containers, a Unix
socket-based connection between the Docker container itself and the worker. The latter can be used
to trigger actions on the worker software, such as file uploads from the Docker volumes.

Discovery Service The discovery service is a simple API that allows nodes to upload worker
metadata information. It stores this data in a Redis database and allows other authorized components,
such as the orchestrator to retrieve information about nodes that have signed up. This ensures worker
IPs are only visible to the orchestrator, reducing the risk of denial-of-service attacks.

3Simple Linux for Resource Management: https://slurm.schedmd.com/
4Prime Intellect Protocol: https://github.com/primeIntellect-ai/protocol

8

https://slurm.schedmd.com/
https://github.com/primeIntellect-ai/protocol

Orchestrator

decentralized ledger Poolcreate pool

new worker

fail

checks passed

validator

registered verified invited to the pool join pool submit work

0

new gets
created ON decentralized
ledger

compute pool

1

new worker contacts the
ledger to register
itself

3

the orchestrator
sends

a signed invite

 reads registrations and
verifications from the ledger, and directly

 to the worker ready to join.

4

the invited worker
joins the pool, and
starts executing its
assigned workload

7

The worker submits proofs

using the
toploc algorithm

 of
the computations it performed
that are generated

6

If a node stops sending
heartbeats it gets

 from the pool
de-registred

and removed 5

each worker sends heartbeats to
the Orchestrator. The Orchestrator
then uses these signals to decide
whether the worker is still alive

2

the validator

verifies it

 checks the
registered worker and

. Upon
verification it updates
the ledger.

Figure 4: Overview of Protocol Testnet Infrastructure.

Orchestrator The orchestrator’s core tasks include the distribution of tasks and observing the
lifecycle of the decentralized worker nodes based on their heartbeat. It gives the model trainer the
ability to interact with the infrastructure via web API. It thereby exposes information about all nodes
that are currently alive, an API to create and schedule new tasks, and insights into the current metrics
and logs of each node. Additionally, since containers on each node might fail, each node’s workload
can be restarted.

2.4.2 Operational Flows

Node Registration & Discovery The worker software is installed and started by compute contribu-
tors on their machines. It automatically detects the system components (GPU, available RAM and
storage) and checks these for compatibility. Additional software and connection uplink checks are
performed and inform the user in the logs about any misconfigurations or system issues that make the
node incompatible with the training run.

Once the system hardware and software are confirmed, the node automatically uploads its metadata,
including hardware information and IP, to a discovery service. In parallel, the node also sends
a registration call to the decentralized ledger. After successful registration, the worker starts a
webserver and waits for an invitation - this security measure ensures the worker doesn’t need to know
the orchestrator’s endpoint in advance, protecting the orchestrator from potential denial-of-service
attacks.

The orchestrator periodically checks the discovery service for newly created nodes and sends an invite
to the worker’s HTTP server to start contributing. This invite contains a cryptographic signature
combining the node’s address as well as the current compute pool’s ID and domain. The invite is
validated on the decentralized ledger and makes the worker an active compute contributor. After
sending the invite, the orchestrator stores the node information in the local Redis storage and waits
for incoming heartbeats.

Node Health & Heartbeats Each node maintains a continuous heartbeat loop to maintain commu-
nication with the orchestrator. These heartbeats act as simple signals sent from the node back to the
orchestrator, allowing it to track whether nodes are still active. The orchestrator stores these heartbeats

9

step_0_277b82-01.parquet
step_0_277b82-02.parquet

add accepted flags

toploc validators

prime-rl inference

worker

signed url

updates chain

listen to changes

1

The generates
 and upload these

files to the appropriate step
folders via a Signed URL from
the Orchestrator.

inference worker
rollouts

2

Once the inference
work is done, it
updates the chain to

 that
it has completed the
work and the data is
ready for validation.

notify the system

3

The TOPLOC Validator

. When the
validator detects a
submit event, it
checks the step
folders for the newly
uploaded files.

watches for submit
events

4

The validator then

 that meet the
criteria, flagging them as
accepted for the next stage of
the process.

validates
the files and accepts the
submissions

inference worker

remote step folder /step_1

step_0_277b82-01.parquet
step_0_277b82-02.parquet

Figure 5: Overview of TOPLOC Validator Setup.

in Redis with an expiration time, so it can automatically detect when a node stops responding. A
separate status update loop regularly checks the health of each node by counting missed heartbeats.
If too many are missed, the node is marked as dead, and its worker is removed from the decentralized
ledger. If the node comes back online, it tries to re-register and update the discovery service so it can
be invited back into the pool.

Task Scheduling & Execution Tasks are created by the orchestrator through a POST API and
scheduled asynchronously across all healthy nodes. Rather than pushing tasks, the orchestrator
distributes them in response to heartbeat requests from the nodes, allowing for a reactive and fault-
tolerant pull-based model. Once a task is received, the worker communicates with the Docker
daemon to translate the task specification into a running container — this includes setting up volumes,
managing the container lifecycle, and applying task-specific settings such as environment variables
and custom start commands. One key insight during development was the introduction of a shared
volume, used to store persistent data like model weights. Without this, restarting a task would trigger
redundant downloads, slowing execution and increasing resource usage.

Inference Validation As shown in Figure 5, the inference workers will generate the rollouts and
upload them to the remote folder using a signed URL. An on-chain event is then generated, which
triggers the validators to begin validation for the new file. Based on the result of the checks described
in Section 2.3, the file is either accepted or rejected. The accepted files are then read by the training
node data loaders. Rejected files cause the node which created to them to be slashed and evicted from
the compute pool.

2.4.3 Design Trade-offs & Limitations

The orchestrator and discovery service are currently centralized, which simplifies coordination but
creates potential single points of failure and limits horizontal scalability. This design also introduces
trust assumptions that may not be suitable for more distributed or permissionless environments.
To address this, we plan to move toward a fully peer-to-peer architecture using a distributed hash
table (DHT), which would eliminate the need for central coordination and enable more resilient,
decentralized node discovery.

Another key limitation lies in how the worker is deployed. At present, it only runs on bare-metal
machines or virtual machines with direct access to the Docker daemon. This excludes environments
like Kubernetes, where Docker access is abstracted or unavailable. To address this, we are developing
a version of the worker that can run as a container itself, making it compatible with container
orchestration platforms.

10

3 Training Recipe

The goal of INTELLECT-2 is to train a model with reasoning capabilities, specifically in the domains
of mathematics and coding. Additionally, we aim to enable control over the model’s thinking budget
by allowing users to specify the desired number of thinking tokens as part of the task prompt. As our
base model, we use QwQ-32B [40] and largely follow Deepseek-R1’s [9] approach of GRPO-based
training with verifiable rewards.

In this section, we describe our RL recipe and the ablation experiments that led to it in detail, ranging
from our training data and reward function implementations to modifications to the original GRPO
objective to improve training stability.

3.1 Training Data & Rewards

We train INTELLECT-2 using a dual objective: we incorporate both task rewards encouraging the
model to improve its reasoning on mathematics and coding tasks, as well as length rewards in order
to teach the model to adhere to a thinking budget provided in the prompt.

3.1.1 Task Rewards

Following existing state-of-the-art open reasoning models [9, 40] , we curate a training dataset
consisting of mathematics and coding tasks that can be verified through symbolic verification / string
matching and unit test execution. To do so, we choose high quality problems from NuminaMath-1.5
[18] and Deepscaler [24] for math problems and coding tasks previously curated for SYNTHETIC-
1 [22], which were also used in prior work such as DeepCoder [20]. Our full dataset consists of 285k
tasks, including 26k python-based algorithmic coding challenges and 259k mathematics problems.
The dataset can be found on Huggingface 5.

Both our mathematics and code reward functions implement binary rewards, with a reward of 1 being
assigned for correct responses and 0 for incorrect responses. While this is an obvious choice for
mathematics tasks, we explicitly don’t assign partial rewards for passing some, but not all unit tests
of coding problems to discourage reward hacking (e.g. through memorizing public test cases).

3.1.2 Length Rewards

Beyond rewards for solving tasks correctly, we incorporate length rewards to enable users to specify
the thinking budget of INTELLECT-2 as part of the task prompt; hereby, we largely follow the
methodology of L1 [1].

Concretely, for every problem in a training batch, we sample a target length ltarget and include it in
our prompt via the template "Think for ltarget tokens before giving a response." - subsequently, a
length penalty representing the difference between the actual response length and the target length,
multiplied by a weighting factor α, is combined with the task reward. Letting y denote our model
output for a given prompt, ly its length in tokens, and rtask the task reward function, the total reward
can be computed as:

rtotal(y, ltarget) = rtask(y)− α ∗ | ltarget − ly |

Different from the setting of L1, where ltarget is sampled uniformly from a continuous range, we
sample from a small discrete set of target lengths (e.g., 2000, 4000, 6000 tokens) to simplify the
objective and make it easier for our model to learn. To validate this approach, we reproduced L1
using target lengths of 500, 1000, 2000 and 3000 with a maximum sequence length of 4000.

3.2 Asynchronous Reinforcement Learning

As discussed in Section 2, we use asynchronous reinforcement learning to use both dedicated
inference and training nodes to minimize GPU idle time. This approach has proven to be effective in
prior work [13, 28] and has also been adopted for large LLM training runs such as Tülu 3 [17] and
Llama 4 [38].

5https://huggingface.co/datasets/PrimeIntellect/Intellect-2-RL-Dataset

11

Training Cluster

Training ClusterTraining Cluster

ClusTER A

CENTRALIZED SYNCHRONOUS TRAINING

CENTRALIZED One-step ASYNCHRONOUS TRAINING

DECENTRALIZED TWO-step ASYNCHRONOUS TRAINING

Inference Workers

Inference Cluster

CLuster B

Inference

STEP T

STEP T

STEP T

STEP T

STEP T

STEP T+1

STEP T+1

STEP T+1

STEP T+1

STEP T+1

STEP T+2

STEP T+2

STEP T+2

STEP T+2

STEP T+2

Relay Nodes Broadcast Broadcast Broadcast

CollecT ROllouts from

CollecT ROllouts fromCollecT ROllouts from

CollecT ROllouts from

CollecT ROllouts fromCollecT ROllouts from

CollecT ROllouts from

CollecT ROllouts fromCollecT ROllouts from

Training

Training

Training Training Trainingcollect rollouts

from

collect rollouts

from

collect rollouts

from

Training

Training

TrainingTraining

Training

TrainingTraining

Figure 6: A comparison of synchronous, centralized one-step asynchronous and decentralized two-
step asynchronous reinforcement learning: Synchronous RL leverages the same compute resources
for training and inference and sequentially switches between performing only inference and training.
Therefore, training is fully on-policy. Centralized One-Step Asynchronous RL has dedicated
compute resources for training and inference and performs training and inference at the same time.
Therefore, rollouts are collected from the policy of the last RL step, making training off-policy by
one step. Decentralized Two-Step Asynchronous RL works similarly to centralized asynchronous
RL, but inference workers don’t have access to the up-to-date policy weights immediately after a
training step due to the time-consuming weight broadcast. Therefore, rollouts are collected from
policy weights from two or more RL steps prior.

In a centralized asynchronous RL training setup with fast connection speeds, the same policy weights
that are updated on the dedicated training nodes are simultaneously used to obtain rollouts for training
during the next RL step. In a decentralized setup, the updated policy weights are not available
immediately to the inference workers, as the weight broadcast costs time, which is why we perform
rollouts using weights not from the previous step, but from two or more steps prior, depending on the
duration of the weight broadcast. A graphical overview of these differences along with a comparison
to synchronous RL can be found in Figure 6.

Prior to starting our INTELLECT-2 training run, we ran ablation experiments to validate that asyn-
chronous RL training does not hurt the performance of our model. To do so, we replicated the results
of Deepscaler’s synchronous RL training run of DeepSeek-R1-Distill-Qwen-1.5B using a context
length of 2048 tokens and compared it with asynchronous RL based on PRIME-RLwith varying levels
of asynchrony. The results of these runs can be found in Figure 7.

As seen in the graph, even with asynchrony levels of up to four, our model’s reward trajectory matches
the trajectory of the synchronous baseline, indicating that training on slightly off-policy data does not
hurt the performance of RL training.

3.3 Offline & Online Data Filtering

During our ablation experiments, we found that filtering our dataset for difficulty had a significant
impact on training performance. We employ both offline filtering before starting our training run and
online filtering to selectively choose training samples from our rollouts.

3.3.1 Offline Data Filtering

When trying to train DeepSeek-R1-Distill-Qwen-7B using the Deepscaler mathematics dataset [21],
we found that it was highly important to filter out problems that were too easy or too difficult from our
training set. As shown in Figure 8, when training on the original dataset, our rewards barely improved.
After filtering out problems in which the base model’s pass@8 rate was above 50%, and below 12.5%,

12

0 200 400 600 800 1000 1200
Steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
Re

wa
rd

prime-rl (one-step async)
prime-rl (two-step async)
prime-rl (four-step async)
DeepScaleR (synchronous RL)

Figure 7: Comparison of synchronous DeepScaler [24] training vs asynchronous PRIME-RL under
varying asynchrony levels. Even with increased delay (up to four steps), PRIME-RL matches the
performance of synchronous baselines.

0 100 200 300 400 500 600 700
Step

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

M
ea

n
Re

wa
rd

(a) 7B GRPO Training without Offline Filtering

0 100 200 300 400 500 600 700
Step

0.34

0.36

0.38

0.40

0.42
M

ea
n

Re
wa

rd

(b) 7B GRPO Training with Offline Filtering

Figure 8: Reward trajectories when training DeepSeek-R1-Distill-Qwen-7B using GRPO on the
Deepscaler Math dataset with and without online filtering. 8a shows the reward trajectory when
training without filtering, leading to stagnant rewards. 8b shows the results of training on a filtered
dataset only containing samples on which the base model had a pass@8 value between 1 and 4.

rewards improved significantly. As a result, we also used DeepSeek-R1-Distill-Qwen-7B to prefilter
our training dataset for INTELLECT-2.

3.3.2 Online Data Filtering

Training algorithms such as GRPO [35] and RLOO [15] rely on group-based relative rewards to
compute advantages. If all completions for a single problem receive the same rewards (for binary
rewards either 0 or 1), this means that the advantages for all of these samples are zero and no training
signal is given beyond auxiliary losses such as a KL or entropy loss. To mitigate this, we employ
online filtering and continue sampling responses from our inference workers until we have a full
batch of samples with non-zero advantages before performing a training step. Conveniently, this
increases the amount of inference that has to be performed per training step, allowing us to onboard
and leverage a higher amount of decentralized inference nodes.

3.4 Two-Sided GRPO Clipping for Increased Training Stability

During training, we faced loss and resulting gradient norm spikes that caused instabilities leading to
model collapse, particularly as our models got larger. Upon inspection, we found that a major cause
of instabilities was one-sided token probability ratio clipping employed in GRPO and PPO-like [34]
training objectives.

13

Recall the original GRPO objective: for each prompt or question q, GRPO samples a group of outputs
{o1, o2, ..., oG} from the old policy πθold and computes advantages based on their relative rewards
based in this group. The optimization objective without the KL penalty is given by:

JGRPO(θ) = Eq∼P (Q), {oi}Gi=1∼πθold
(O|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ε, 1 + ε

)
Âi,t

)]

where Âi,t denotes the advantage within each sampled group and ε is a parameter used to clip the
token probability ratio to avoid excessively large loss values and gradient updates. Note that in the
case of negative advantage values, this clipping will not be applied due to the min operation, as large
updates that move the policy away from bad rollouts are encouraged [34]. However, this can cause
huge loss values and gradient updates as a result in case πθ(oi,t|q,oi,<t)

πθold (oi,t|q,oi,<t)
takes on large values.

To mitigate this, we introduce an additional hyperparameter δ that adds an upper bound to the token
probability ratio in the case of negative advantages:

JGRPO(θ) = Eq∼P (Q), {oi}Gi=1∼πθold
(O|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
min

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, δ

)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ε, 1 + ε

)
Âi,t

)]

The value δ should be higher than 1+ε to still enable large updates that move away from bad rollouts,
but avoid huge token probability ratios of a hundred or much higher. With this change, training
stabilized significantly, as it has also been reported in concurrent work [25].

3.5 Mitigating Training Instability at Scale

While the two-sided GRPO clipping mechanism described above significantly reduced large loss
and gradient spikes, we observed additional types of training instabilities when using larger models.
These instabilities share similarities with those encountered in large-scale pretraining [43, 5, 26, 6].

Escalating Gradient Norms As training progressed, we observed a gradual but persistent increase
in gradient norms, even in the absence of immediate spikes. This phenomenon appears to be correlated
with model size as shown in 9a, becoming more pronounced in our larger architectures. Similar to
findings in [43], we found that gradient norm growth often precedes more severe instability events,
serving as an early warning signal for potential training collapse.

We found that employing aggressive gradient clipping (with thresholds as low as 0.05-0.1) effectively
mitigates stability issues without significantly impeding convergence, providing a favorable trade-
off between stability and training efficiency. While this approach does not completely eliminate
instability issues, it substantially delays the growing gradient phase and postpones potential stability
crashes, extending the viable training period for our models. Aggressive gradient clipping has also
been applied successfully in concurrent work training QwQ-32B [2].

Token Probability Clip Ratio Escalation. In addition to gradient norm and entropy instabilities,
we observed a steady increase in the token probability clip ratio during training, as shown in Figure 9b.
This increase directly correlates with the rising gradient norm, as the clip ratio effectively tracks the
difference in logits between consecutive optimizer steps.

Entropy Loss pattern. During training, we identified a distinctive pattern for the entropy loss, as
shown in Figure 10. After decreasing initially, the entropy loss begins to trend upward again. This
entropy resurgence typically precedes catastrophic training failures causing a full collapse of the
model. Increasing the weighting factor of the KL penalty was able to delay this collapse but also
caused slower learning, and hence wasn’t an effective mitigation strategy.

14

(a) Gradient norms during training across training steps (b) Token probability clipping ratio across training steps

Figure 9: Escalating gradient norms (Figure 9a) and clipping ratios (Figure 9b) across model scales,
trained on the MATH dataset [12]. Smaller models remain stable, while both 32B models show rising
instability, with QwQ-32B diverging earlier than R1-Distill-32b.

0 50 100 150 200 250
Step

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

En
tro

py
 L

os
s

Figure 10: As training progresses, our policy’s entropy loss initially decreases but later starts
increasing past ≈ 150 steps. Soon after seeing entropy increases, we observed our model collapsing
across all of our ablation runs.

QwQ is less stable to train than DeepSeek-R1-Distill-Qwen-32B. We noticed that our training
on top of QwQ exhibited worse stability compared to DeepSeek-R1-Distill-Qwen-32B, despite both
being based on the same pre-trained model (Qwen 2.5). We hypothesize that this difference stems
from QwQ having already undergone a phase of reinforcement learning with verifiable rewards. This
prior RL training appears to make the model more susceptible to subsequent optimization instabilities,
suggesting that models may become progressively more difficult to fine-tune stably after multiple
rounds of reward optimization.

Instabilities caused by torch.compile. We observed that using torch.compile led to a catas-
trophic collapse during the later stages of our training, regardless of our model size (see Figure 11).
Although the issue likely stemmed from a single faulty kernel generated by torch.compile, we
ultimately decided to disable it across the entire codebase for the run to ensure training stability. This
decision came with a trade-off of slightly increased memory usage.

4 Experiments

Over the duration of two weeks, we ran multiple training runs using our setup consisting of a trusted
training cluster and validator nodes and trustless, community-contributed heterogenous inference
workers. In this section, we report the experiments we ran along with corresponding results.

15

(a) Gradient Norm (b) Reward

Figure 11: Training dynamics with and without torch.compile when training DeepSeek-R1-Distill-
Qwen-1.5B on the Deepscaler mathematics dataset. The torch-compile setup leads to early instability
and reward collapse, whereas the no-compile baseline remains stable across 1200 steps.

4.1 Experimental Setup

Using QwQ-32B as our base model, we trained using GRPO with modifications described in section 3
and used clipping thresholds ε = 0.2, δ = 4 and an entropy loss coefficient of 1e-4. We set the KL
divergence loss coefficient to 0.001, set α to 0.0003 to balance task and length rewards, and apply
gradient norm clipping at 0.1. Additionally, we implement a token-level policy loss calculation rather
than a sample-level loss calculation as proposed in DAPO [44] and Dr. GRPO [19]. The training
used a learning rate of 3e-7 with 25 warmup steps; during every rollout step, we generated 4096
samples consisting of 16 responses to 256 prompts, and performed 8 optimizer steps using a batch
size of 512. We used two-step asynchrony during training to enhance throughput while ensuring that
we did not go too far off-policy.

We used the Huggingface implementation of Qwen with Flash Attention 2. Instead of obtaining
token log probabilities from our inference workers, we computed them seperately using our policy
weights on the training cluster, as vLLM log probabilities turned out to not be numerically stable. The
model was sharded using FSDP2 with activation recomputation enabled. We configured a maximum
sequence length of 32K to accommodate longer inputs required by our application.

Sequence Packing To maximize computational efficiency with our 32K sequence length, we
implemented sequence packing to address the significant variance in sample lengths. This approach
prevents wasting compute on padding tokens, which would be particularly inefficient given our
distribution of sequence lengths during inference rollout. Unlike pretraining scenarios, where
arbitrarily cutting samples is acceptable due to the local nature of the next token prediction loss
function, reinforcement learning requires preserving complete samples since RL fundamentally learns
at the sample level rather than locally. While RL fundamentally requires preserving complete samples,
GRPO’s token-level loss formulation allowed us to implement cross-sample packing by adapting
the attention mask and collating samples into the sequence dimension. This optimization proved
essential for scaling beyond 20K+ sequence lengths and significantly reduced our training time while
maintaining the integrity of the cross entropy calculations across packed sequences.

4.2 Results

We report results from two main experiments: TARGET-SHORT, an experimental run with target
lengths {1000, 2000, 3000, 4000} to train an efficient reasoning model, and, TARGET-LONG, our
main run with longer target lengths of {2000, 4000, 6000, 8000, 10000}.

Compute Utilization During the two main experiments, we successfully overlapped communica-
tion with computation through asynchronous reinforcement learning.

In both experimental settings, the SHARDCAST broadcast to all nodes averaged 14 minutes, corre-
sponding to a bandwidth throughput of approximately 590 Mb/s (62 GB of weights transmitted over

16

0 50 100 150 200
Step

0.52

0.54

0.56

0.58

0.60

0.62

0.64

Ta
sk

 R
ew

ar
d

(S
m

oo
th

ed
)

(a) Task Rewards for TARGET-SHORT

0 50 100 150 200
Step

0.62

0.64

0.66

0.68

0.70

0.72

Ba
tc

h
Le

ng
th

 P
en

al
tie

s (
Sm

oo
th

ed
)

(b) Length penalties for TARGET-SHORT

0 50 100 150 200 250 300 350
Step

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Ta
sk

 R
ew

ar
d

(S
m

oo
th

ed
)

(c) Task Rewards for TARGET-LONG

0 50 100 150 200 250 300 350
Step

0.56

0.58

0.60

0.62

0.64

0.66

Le
ng

th
 P

en
al

tie
s (

Sm
oo

th
ed

)

(d) Length penalties for TARGET-LONG

Figure 12: Trajectories (smoothed by 10-step moving average) of task rewards and length penalties for
TARGET-SHORT, our training run with target lengths {1000, 2000, 3000, 4000} and TARGET-LONG,
our training run with target lengths {2000, 4000, 6000, 8000, 10000}. During both runs, our task
rewards, indicating the ability to solve mathematics and coding problems, rose significantly. In
contrast to our ablation experiments with smaller models, length penalties decreased significantly
slower; while a clear downward trend is recognizable, the training runs were too short for the length
penalties to converge and equip the model with the ability to precisely adhere to a thinking budget.

14 minutes). Nodes with superior connectivity to the SHARDCAST relay servers received checkpoints
earlier, allowing them to begin data generation ahead of others. Furthermore, nodes with more
computational resources, such as full H100 nodes, generated batches more quickly, resulting in earlier
validation by the TOPLOC validators.

In the TARGET-SHORT setup, the first data file was submitted approximately 10 minutes after the
broadcast completed. Thanks to the prefill verification mechanism in TOPLOC and the random
sampling strategy that verifies only subsets of submitted data, the inference verification was highly
efficient—typically completing within 1 minute. Consequently, sufficient verified samples to form
a batch were available roughly 22 minutes after the broadcast in the TARGET-SHORT scenario. In
contrast, the TARGET-LONG scenario required approximately 29 minutes to accumulate enough
verified samples to form a batch.

The ratio of training to inference FLOPs in both experiments averaged 4.5×, with significantly more
compute spent on the decentralized inference workers than on the training side.

In TARGET-SHORT, training nodes took approximately 22 minutes to execute a full rollout step. This
duration resulted in minimal idling of training GPUs, as the data generated by inference nodes for the
next step was already available. Conversely, in TARGET-LONG, training nodes completed their rollout
steps in about 21 minutes. The asynchronous setup effectively synchronized with the broadcast,
inference generation, and verification phases, ensuring nearly perfect computational overlap and
minimizing GPU idling time.

These results highlight the inherent advantage of decentralized reinforcement learning, especially
when scaling inference computations—such as generating longer reasoning chains—to achieve an
optimal inference-to-training compute ratio. Additional analysis on this scaling benefit is discussed
in section 5.

Reward Trajectories Throughout training, we saw significant improvements of our task rewards,
indicating that the model improved its performance on our mathematics and coding problems. We
also saw a reduction of length penalties, but a much slower one than during our ablation experiments

17

Model AIME24 AIME25 LiveCodeBench (v5) GPQA-Diamond IFEval
INTELLECT-2 78.8 64.9 67.8 66.8 81.5
QwQ-32B 76.6 64.8 66.1 66.3 83.4
Qwen-R1-Distill-32B 69.9 58.4 55.1 65.2 72.0
Deepseek-R1 78.6 65.1 64.1 71.6 82.7

Table 1: Performance comparison of models across benchmarks.

with 1.5B and 7B parameter models. As a result, our models did not learn to strictly adhere to the
specified thinking budget within the given timeframe of our experiments. Further exploration will be
needed to determine what exactly the cause of this is and whether a stronger weighting of the length
rewards could have helped learn the length following objective. The full reward trajectories can be
found in Figure 12

Benchmark Performance We use evalchemy6 [11] along with its default settings to test the
performance of our model on common reasoning benchmarks. We use the provided default prompts
for Deepseek-R1, QwQ-32B and DeepSeek-R1-Distill-Qwen-32B and attach the length control
prompt "Think for ltarget tokens before giving a response" to INTELLECT-2. Since the length penalty
was not affected significantly during training, we only evaluate our model with the longest target
length of 10,000.

As can be seen in Table 1, we were able to increase the performance of QwQ-32B on mathematics
and coding benchmarks, while seeing a slight drop on IFEval, which is likely caused by us solely
training on mathematics and coding tasks rather than using more general instruction-following tasks.
Overall, as QwQ-32B was already extensively trained with reinforcement learning, it was difficult to
obtain huge amounts of generalized improvement on benchmarks beyond our improvements on the
training dataset. To see stronger improvements, it is likely that better base models such as the now
available Qwen3 [39], or higher quality datasets and RL environments are needed.

5 Discussion: Decentralized Training in the Test-Time-Compute Paradigm

As the compute demands of large language models have increased by several orders of magnitude
in recent years, distributed training across data centers has become increasingly relevant. Beyond
offering an economically sustainable path for collaborative open-source development, the sheer
compute power and energy required to train these models will soon outpace even the largest data
centers in the world.

So far, most progress has come from scaling parameters and dataset size—commonly referred to as
pretraining scaling. More recently, a complementary axis of progress has emerged: test-time compute
scaling, as seen in reasoning-focused models.

While both forms of scaling are compatible with decentralization, we argue that test-time compute
scaling is particularly well-suited for decentralized training. It reduces coordination requirements
and shifts compute demands toward inference, enabling broader participation from heterogeneous
devices.

Asynchronous RL Hides Most Communication Overhead Communication is the primary bottle-
neck in decentralized training. Techniques such as DiLoCo [10] can reduce pre-training communi-
cation overhead by up to two orders of magnitude. However, as model sizes increase, communica-
tion—especially blocking communication—once again becomes the limiting factor.

A promising strategy is to overlap communication with computation. Unlike approaches such as
ZeRO-offload [33], which delay gradient application and impact convergence, we argue that delaying
rollouts in RL yields a better tradeoff. This is because the delay applies at the model level, not the
optimization step. Even if the model is slightly off-policy, it can still generate useful reasoning traces
that lead to positive rewards, which are valid training signals.

6https://github.com/mlfoundations/Evalchemy

18

Further investigation is needed to evaluate asynchronous RL with delays beyond two steps. Nonethe-
less, with delays of 4–5 steps, we could effectively hide various blocking stages in the RL
pipeline—including weight broadcasting, environment verification, permissionless validation, and
relative KL log-probability computation. This strategy improves compute utilization across both
training and inference and enables greater hardware heterogeneity. Slower devices can still contribute
valuable samples. Additionally, decentralized pipeline-parallel inference can facilitate the use of
large models on consumer-grade hardware.

Inference Will Consume the Majority of Compute In INTELLECT-2, the training-to-inference
compute ratio was approximately 1:4. We anticipate this ratio will shift even more heavily toward
inference as test-time reasoning scales. This trend opens the door to training models with hundreds
of billions of parameters on globally distributed heterogeneous compute resources.

A key driver of this shift is dataset filtering. As illustrated in Figure 8, model capabilities improve
when training focuses on more challenging samples. However, not all data generated during inference
is useful. As models tackle harder tasks with increasingly sparse positive rewards, inference will
demand substantially more compute than training. In this setting, generating high-quality rollouts
becomes the dominant compute cost. Since only a small subset of these rollouts contains strong
learning signals, the majority of compute is allocated to exploration rather than model updates.

This asymmetry in compute demand reshapes the scaling dynamics of decentralized RL and indirectly
addresses one of its historical limitations: memory constraints. By shifting most of the workload to
inference—where memory requirements are significantly lower than during training—decentralized
training becomes feasible at scale across a broader range of hardware.

6 Conclusion & Future Work

In this report, we introduce INTELLECT-2, the first globally distributed reinforcement learning
run of a 32-billion-parameter language model. We are open-sourcing the trained model, tasks &
verifier environments along with all infrastructure components including our training framework
PRIME-RL. We hope that this report and the accompanying open-source components will support the
broader research community in exploring decentralized training, and help advance globally distributed
reinforcement learning as a foundation for building frontier open-source models.

While INTELLECT-2 is a first step towards open frontier reasoning models trained in a decentralized
fashion, several avenues for future work remain open:

Increasing the Ratio of Inference to Training Compute in Reinforcement Learning As inference
is infinitely parallelizable and does not require any communication between workers, RL training
recipes that spend higher amounts of compute on inference relative to training are ideally suited
for decentralized training. Methods such as VinePPO [14] spend additional time on inference to
compute Monte Carlo-based value estimates rather than leveraging a value network such as PPO,
and are thus an interesting field of study to explore. Additionally, various forms of online data
filtering for curriculum learning approaches are purely based on inference, and are thus favorable for
decentralized setups, if proven effective.

Tool Calls for Reasoning Models The latest generation of proprietary reasoning models have
access to tool calls such as web search or python interpreters as part of their reasoning chain. Initial
promising research results in this direction have come from open source research efforts [3, 4, 42],
opening the door to scaling these methods further and training larger open-source reasoning models
capable of leveraging such tools.

Crowdsourcing RL tasks and environments To teach models new skills, diverse RL environments
have to be built. This boils down to a traditional software engineering problem which is highly
parallelizable and requires various contributors with specialized areas of domain expertise, making
it ideally suited for open-source, community-driven efforts. We invite everyone to contribute RL
environments to PRIME-RL and are aiming to make it as easy as possible to crowdsource reinforcement
learning environments.

19

Model Merging and DiLoCo Model merging has emerged as an effective post-training technique
in recent work [7, 37, 32]. Whether such methods extend to reasoning tasks remains an open question.
However, the ability to merge models trained on distinct reasoning domains would mark a significant
step toward scaling asynchronous reinforcement learning across parallel compute resources. In
this setup, multiple models could be trained independently and later merged into a single unified
model. This could be done at the end of training or continuously during training using techniques like
DiLoCo [10], originally developed to reduce communication in data-parallel pretraining. Applying
merging in RL would enable scaling decentralized training to one more order of magnitude more
compute.

Acknowledgements

We would like to thank all the compute contributors for this training run. This includes Demeter
Compute, string, @BioProtocol, @mev_pete, @plaintext_cap, @skre_0, @oldmankotaro, plabs,
@ibuyrugs, @0xfr_, @marloXBT, @herb0x_, mo, @toptickcrypto, cannopo, @samsja19, @jackmi-
nong and primeprimeint1234.

We would also like to thank Michael Luo for his advice on replicating the DeepScaler results.

References
[1] Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with

reinforcement learning, 2025.

[2] Carlo Baronio, Pietro Marsella, Ben Pan, and Silas Alberti. Multi-turn training for cuda kernel
generation. https://cognition.ai/blog/kevin-32b.

[3] William Brown. Verifiers: Reinforcement learning with llms in verifiable environments. 2025.

[4] Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao
Wang, Akshay Malik, Graham Neubig, Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz,
Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Skyrl-v0: Train real-world long-horizon
agents via reinforcement learning, 2025.

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways, 2022.

[6] Jeremy M. Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati,
Michal Badura, Daniel Suo, David Cardoze, Zachary Nado, George E. Dahl, and Justin Gilmer.
Adaptive gradient methods at the edge of stability, 2024.

[7] Team Cohere, :, Aakanksha, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Milad Alizadeh,
Yazeed Alnumay, Sophia Althammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Au-
miller, Raphaël Avalos, Zahara Aviv, Sammie Bae, Saurabh Baji, Alexandre Barbet, Max
Bartolo, Björn Bebensee, Neeral Beladia, Walter Beller-Morales, Alexandre Bérard, Andrew
Berneshawi, Anna Bialas, Phil Blunsom, Matt Bobkin, Adi Bongale, Sam Braun, Maxime
Brunet, Samuel Cahyawijaya, David Cairuz, Jon Ander Campos, Cassie Cao, Kris Cao, Ro-
man Castagné, Julián Cendrero, Leila Chan Currie, Yash Chandak, Diane Chang, Giannis
Chatziveroglou, Hongyu Chen, Claire Cheng, Alexis Chevalier, Justin T. Chiu, Eugene Cho,
Eugene Choi, Eujeong Choi, Tim Chung, Volkan Cirik, Ana Cismaru, Pierre Clavier, Henry

20

Conklin, Lucas Crawhall-Stein, Devon Crouse, Andres Felipe Cruz-Salinas, Ben Cyrus, Daniel
D’souza, Hugo Dalla-Torre, John Dang, William Darling, Omar Darwiche Domingues, Saurabh
Dash, Antoine Debugne, Théo Dehaze, Shaan Desai, Joan Devassy, Rishit Dholakia, Kyle Duffy,
Ali Edalati, Ace Eldeib, Abdullah Elkady, Sarah Elsharkawy, Irem Ergün, Beyza Ermis, Marzieh
Fadaee, Boyu Fan, Lucas Fayoux, Yannis Flet-Berliac, Nick Frosst, Matthias Gallé, Wojciech
Galuba, Utsav Garg, Matthieu Geist, Mohammad Gheshlaghi Azar, Ellen Gilsenan-McMahon,
Seraphina Goldfarb-Tarrant, Tomas Goldsack, Aidan Gomez, Victor Machado Gonzaga, Nithya
Govindarajan, Manoj Govindassamy, Nathan Grinsztajn, Nikolas Gritsch, Patrick Gu, Shang-
min Guo, Kilian Haefeli, Rod Hajjar, Tim Hawes, Jingyi He, Sebastian Hofstätter, Sungjin
Hong, Sara Hooker, Tom Hosking, Stephanie Howe, Eric Hu, Renjie Huang, Hemant Jain,
Ritika Jain, Nick Jakobi, Madeline Jenkins, JJ Jordan, Dhruti Joshi, Jason Jung, Trushant
Kalyanpur, Siddhartha Rao Kamalakara, Julia Kedrzycki, Gokce Keskin, Edward Kim, Joon
Kim, Wei-Yin Ko, Tom Kocmi, Michael Kozakov, Wojciech Kryściński, Arnav Kumar Jain,
Komal Kumar Teru, Sander Land, Michael Lasby, Olivia Lasche, Justin Lee, Patrick Lewis,
Jeffrey Li, Jonathan Li, Hangyu Lin, Acyr Locatelli, Kevin Luong, Raymond Ma, Lukáš Mach,
Marina Machado, Joanne Magbitang, Brenda Malacara Lopez, Aryan Mann, Kelly Marchisio,
Olivia Markham, Alexandre Matton, Alex McKinney, Dominic McLoughlin, Jozef Mokry,
Adrien Morisot, Autumn Moulder, Harry Moynehan, Maximilian Mozes, Vivek Muppalla,
Lidiya Murakhovska, Hemangani Nagarajan, Alekhya Nandula, Hisham Nasir, Shauna Nehra,
Josh Netto-Rosen, Daniel Ohashi, James Owers-Bardsley, Jason Ozuzu, Dennis Padilla, Gloria
Park, Sam Passaglia, Jeremy Pekmez, Laura Penstone, Aleksandra Piktus, Case Ploeg, Andrew
Poulton, Youran Qi, Shubha Raghvendra, Miguel Ramos, Ekagra Ranjan, Pierre Richemond,
Cécile Robert-Michon, Aurélien Rodriguez, Sudip Roy, Sebastian Ruder, Laura Ruis, Louise
Rust, Anubhav Sachan, Alejandro Salamanca, Kailash Karthik Saravanakumar, Isha Satyakam,
Alice Schoenauer Sebag, Priyanka Sen, Sholeh Sepehri, Preethi Seshadri, Ye Shen, Tom Sher-
borne, Sylvie Shang Shi, Sanal Shivaprasad, Vladyslav Shmyhlo, Anirudh Shrinivason, Inna
Shteinbuk, Amir Shukayev, Mathieu Simard, Ella Snyder, Ava Spataru, Victoria Spooner, Trisha
Starostina, Florian Strub, Yixuan Su, Jimin Sun, Dwarak Talupuru, Eugene Tarassov, Elena
Tommasone, Jennifer Tracey, Billy Trend, Evren Tumer, Ahmet Üstün, Bharat Venkitesh, David
Venuto, Pat Verga, Maxime Voisin, Alex Wang, Donglu Wang, Shijian Wang, Edmond Wen,
Naomi White, Jesse Willman, Marysia Winkels, Chen Xia, Jessica Xie, Minjie Xu, Bowen Yang,
Tan Yi-Chern, Ivan Zhang, Zhenyu Zhao, and Zhoujie Zhao. Command a: An enterprise-ready
large language model, 2025.

[8] Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo
Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and
Ning Ding. Process reinforcement through implicit rewards, 2025.

[9] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang
Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao

21

Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,
and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

[10] Arthur Douillard, Qixuan Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models, 2024.

[11] Etash Guha, Negin Raoof, Jean Mercat, Ryan Marten, Eric Frankel, Sedrick Keh, Sachin Grover,
George Smyrnis, Trung Vu, Jon Saad-Falcon, Caroline Choi, Kushal Arora, Mike Merrill,
Yichuan Deng, Ashima Suvarna, Hritik Bansal, Marianna Nezhurina, Yejin Choi, Reinhard
Heckel, Seewong Oh, Tatsunori Hashimoto, Jenia Jitsev, Vaishaal Shankar, Alex Dimakis,
Mahesh Sathiamoorthy, and Ludwig Schmidt. Evalchemy, November 2024.

[12] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurIPS, 2021.

[13] Shengyi Huang, Jiayi Weng, Rujikorn Charakorn, Min Lin, Zhongwen Xu, and Santiago
Ontañón. Cleanba: A reproducible and efficient distributed reinforcement learning platform,
2023.

[14] Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning
through refined credit assignment, 2024.

[15] Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline
for free!, 2019.

[16] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[17] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh
Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025.

[18] Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin
Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numina-
math. https://github.com/project-numina/aimo-progress-prize/blob/main/
report/numina_dataset.pdf, 2024.

[19] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025.

[20] Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level. https://pretty-radio-b75.
notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level_
-1cf81902c14680b3bee5eb349a512a51, 2025. Notion Blog.

22

https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level_-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level_-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level_-1cf81902c14680b3bee5eb349a512a51

[21] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.
site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL_
-19681902c1468005bed8ca303013a4e2, 2025. Notion Blog.

[22] Justus Mattern, Manveer Basra, Sami Jaghouar, Matthew Di Ferrante, Felix Gabriel,
and Johannes Hagemann. SYNTHETIC-1 Release: Two Million Collaboratively Gener-
ated Reasoning Traces from Deepseek-R1. https://www.primeintellect.ai/blog/
synthetic-1-release, February 2025. Accessed: 2025-05-06.

[23] Justus Mattern, Sami Jaghouar, Manveer Basra, Jannik Straube, Matthew Di Ferrante, Felix
Gabriel, Jack Min Ong, Vincent Weisser, and Johannes Hagemann. Synthetic-1: Two million
collaboratively generated reasoning traces from deepseek-r1, 2025.

[24] Chunyang Meng, Shijie Song, Haogang Tong, Maolin Pan, and Yang Yu. Deepscaler: Holistic
autoscaling for microservices based on spatiotemporal gnn with adaptive graph learning. 2023
38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
53–65, 2023.

[25] MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao
Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai
Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li,
Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang
Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan
Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi
Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li,
Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai
Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou,
Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan,
Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin
Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan,
Zhihang Yu, Zhuo Jiang, and Zijia Wu. Minimax-01: Scaling foundation models with lightning
attention, 2025.

[26] Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal,
Punit Singh Koura, Sharan Narang, Andrew Poulton, Ruan Silva, Binh Tang, Diana Liskovich,
Puxin Xu, Yuchen Zhang, Melanie Kambadur, Stephen Roller, and Susan Zhang. A theory on
adam instability in large-scale machine learning, 2023.

[27] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A
distributed framework for emerging ai applications, 2018.

[28] Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal,
and Aaron Courville. Asynchronous rlhf: Faster and more efficient off-policy rl for language
models, 2025.

[29] Jack Min Ong, Matthew Di Ferrante, Aaron Pazdera, Ryan Garner, Sami Jaghouar, Manveer
Basra, and Johannes Hagemann. Toploc: A locality sensitive hashing scheme for trustless
verifiable inference, 2025.

[30] OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam,
Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew
Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph,
Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys
Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman,
Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea
Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia
Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan,

23

https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL_-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL_-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL_-19681902c1468005bed8ca303013a4e2
https://www.primeintellect.ai/blog/synthetic-1-release
https://www.primeintellect.ai/blog/synthetic-1-release

David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben
Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric
Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia
Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon,
Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc,
Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera
Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James
Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang,
Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John
Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie
Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood,
Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu, Lama
Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng, Linden
Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz Kaiser, Luke
Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tintor, Mason
Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y.
Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael
Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan
Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowdhury, Neil
Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk,
Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias,
Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi
Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago
Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin,
Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor
Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024.

[31] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models, 2020.

[32] Alexandre Ramé, Johan Ferret, Nino Vieillard, Robert Dadashi, Léonard Hussenot, Pierre-Louis
Cedoz, Pier Giuseppe Sessa, Sertan Girgin, Arthur Douillard, and Olivier Bachem. Warp: On
the benefits of weight averaged rewarded policies, 2024.

[33] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model
training. CoRR, abs/2101.06840, 2021.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[35] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024.

[36] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv
preprint arXiv: 2409.19256, 2024.

[37] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard,
Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec,
Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy,

24

Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva,
Benjamin Coleman, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan
Eyal, Colin Cherry, Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh
Agarwal, Mehran Kazemi, Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming
Luo, Andreas Steiner, Abe Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady,
Adrian Goedeckemeyer, Alaa Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury,
Alvin Abdagic, Amit Vadi, András György, André Susano Pinto, Anil Das, Ankur Bapna,
Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal
Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le Lan, Christopher A.
Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisenbud, Dee Cattle,
Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin
Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick Liu, Gagik
Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucińska, Harman Singh,
Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan
Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan Lai, Jordi
Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy Yu,
Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min
Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan,
Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil
Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti,
Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan
Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth,
Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu,
Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad
Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero,
Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins,
Joelle Barral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah
Fiedel, Noam Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement
Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian
Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi,
and Léonard Hussenot. Gemma 3 technical report, 2025.

[38] Llama 4 Team. The llama 4 herd: The beginning of a new era of natively multimodal ai
innovation, April 2025.

[39] Qwen Team. Qwen3, April 2025.

[40] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025.

[41] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforce-
ment learning. https://github.com/huggingface/trl, 2020.

[42] Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan
Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Monica Lam, Yiping Lu, Kyunghyun Cho,
Jiajun Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding
self-evolution in llm agents via multi-turn reinforcement learning, 2025.

[43] Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D.
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-
dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies
for large-scale transformer training instabilities, 2023.

[44] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan
Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
Chen, Chengyi Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou,
Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan
Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025.

25

https://github.com/huggingface/trl

[45] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp:
Experiences on scaling fully sharded data parallel, 2023.

26

	Introduction
	Training Infrastructure
	prime-rl: A Framework for Distributed Asynchronous Reinforcement Learning
	Training
	Inference
	Verifiers

	shardcast: Efficient Policy Weight Broadcasts
	Rate Limiting & Firewall
	Maximizing Client Throughput & Load Balancing
	Assembled Model Weights Integrity Checks

	toploc: Enabling Trustless Inference
	Computation checks
	Sampling checks
	Sanity checks

	The Prime Intellect Protocol
	System Architecture
	Operational Flows
	Design Trade-offs & Limitations

	Training Recipe
	Training Data & Rewards
	Task Rewards
	Length Rewards

	Asynchronous Reinforcement Learning
	Offline & Online Data Filtering
	Offline Data Filtering
	Online Data Filtering

	Two-Sided GRPO Clipping for Increased Training Stability
	Mitigating Training Instability at Scale

	Experiments
	Experimental Setup
	Results

	Discussion: Decentralized Training in the Test-Time-Compute Paradigm
	Conclusion & Future Work

