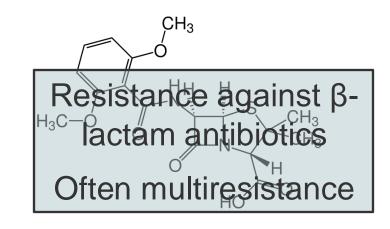
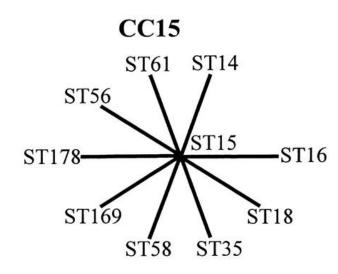


MRSA at the Human-Animal Interface Epidemiology and Antimicrobial Susceptibility of MRSA in Animals

Henrike Krüger-Haker and Stefan Schwarz ISSSI 2024, 18 – 21 August 2024 Perth, Western Australia

Outline


- (1) Short Introduction to MRSA
 - Genetic basis of methicillin resistance
 - Differentiation of MRSA lineages
 - Who is at risk at the Human-Animal Interface?
- (2) Global Epidemiology of MRSA
- (3) Relevant Clonal Complexes


Outline

- (1) Short Introduction to MRSA
 - Genetic basis of methicillin resistance
 - Differentiation of MRSA lineages
 - Who is at risk at the Human-Animal Interface?
- (2) Global Epidemiology of MRSA
- (3) Relevant Clonal Complexes

Methicillin-resistant S. aureus (MRSA)

- Methicillin = first β-lactamase-stable penicillin (1959)
- Methicillin-resistance usually mediated by mecA and mecC
- located on mobile genetic element:
 Staphylococcal Cassette Chromosome mec (SCCmec)
- encode alternative penicillin-binding proteins with reduced affinity to β-lactams
- Sequence Type (ST): comparison of DNA sequences of internal fragments of seven house-keeping genes (multilocus sequence typing – MLST)
- Clonal Complex (CC): group of closely related STs
- \rightarrow members have \geq 5 of 7 loci in common with \geq one other ST in the group

Feil et al., 2003, J Bacteriol, 185: 3307-16

MRSA

 $HA-MRSA = \underline{h}ealthcare-\underline{a}ssociated MRSA$

CA-MRSA = community-associated MRSA

LA-MRSA = <u>livestock-associated MRSA</u>

MRSA

	HA-MRSA	CA-MRSA	LA-MRSA			
virulence	low	high	very low			
antimicrobia resistance	al high	low	variable			
То	nton-Valentine Leukoc xic Shock Syndrome To rious enterotoxins					

almost no virulence genes very rarely enterotoxin genes, except: CC9/CC5 – egc

MRSA at the Human-Animal Interface Who is at risk?

Animal owners in close contact to their animal(s)

- → change of the status of pet animals over the years
- → "family members" that enjoy particular privileges and veterinary care

Pictures from pixabay.com

MRSA at the Human-Animal Interface

Who is at risk?

Birgit Walther

108 dog owners in Germany

- sharing of house (88.9%), sofa (68.5%), and bed (39.8%)
- dogs are allowed to lick hands (93.5%) and face (52.8%),
 are washed in the same bathtub (32.4%)

Sharing More than Friendship — Nasal Colonization with Coagulase-Positive Staphylococci (CPS) and Co-Habitation Aspects of Dogs and Their Owners

Birgit Walther^{1*}, Julia Hermes², Christiane Cuny³, Lothar H. Wieler¹, Szilvia Vincze¹, Yassmin Abou Elnaga¹, Ivonne Stamm⁴, Peter A. Kopp⁴, Barbara Kohn⁵, Wolfgang Witte³, Andreas Jansen², Franz J. Conraths⁶, Torsten Semmler¹, Tim Eckmanns², Antina Lübke-Becker¹

1 Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Germany, 2 Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany, 3 National Reference Centre for Staphylococci, Robert Koch Institute, Wernigerode Branch, Germany, 4 Vet Med Labor GmbH, Division of IDEXX Laboratories, Ludwigsburg, Germany, 5 Clinic of Small Animals, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany, 6 Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Wusterhausen, Germany

Pictures from pixabay.com

MRSA at the Human-Animal Interface Who is at risk?

People with occupational contact to animals

- → animal caretakers, veterinarians, vet med students, farmers, abattoir workers, ...
- → in part, work environment in which commonly diseased animals are present and antimicrobial agents are used

Pictures from pixabay.com and Malisa Wille

MRSA at the Human-Animal Interface Who is at risk?

Christiane Cuny

Nasal Colonization of Humans with Methicillin-Resistant Staphylococcus aureus (MRSA) CC398 with and without Exposure to Pigs

Christiane Cuny¹, Rolf Nathaus³, Franziska Layer¹, Birgit Strommenger¹, Doris Altmann², Wolfgang Witte¹*

1 Robert Koch Institute, Wernigerode Branc, Wernigerode, Germany, 2 Robert Koch Institute, Division of Epidemiology, Berlin, Germany, 3 Rolf Nathaus, Veterinary Practice, Reken, Germany

Outline

- (1) Short Introduction to MRSA
 - Genetic basis of methicillin resistance
 - Differentiation of MRSA lineages
 - Who is at risk at the Human-Animal Interface?
- (2) Global Epidemiology of MRSA
- (3) Relevant Clonal Complexes

A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

Stefan Monecke^{1,13}*, Geoffrey Coombs², Anna C. Shore³, David C. Coleman³, Patrick Akpaka⁴, Michael Borg⁵, Henry Chow⁶, Margaret Ip⁶, Lutz Jatzwauk⁷, Daniel Jonas⁸, Kristina Kadlec⁹, Angela Kearns¹⁰, Frederic Laurent¹¹, Frances G. O'Brien¹², Julie Pearson², Antje Ruppelt¹, Stefan Schwarz⁹, Elizabeth Scicluna⁵, Peter Slickers¹³, Hui-Leen Tan², Stefan Weber¹⁴, Ralf Ehricht¹³

1 Institute for Medical Microbiology and Hygiene, Technical University of Dresden, Dresden, Germany, 2 Department of Microbiology and Infectious Diseases, PathWest Laboratory Medicine - WA, Royal Perth Hospital, Perth, Western Australia, Australia, 3 Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College, Dublin, Ireland, 4 Department of Para-Clinical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, 5 Infection Control Unit, Mater Dei Hospital, Msida, Malta, 6 Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China, 7 Infection Control Unit, Dresden University Hospital, Dresden, Germany, 8 Department of Environmental Health Sciences, Freiburg University Medical Centre, Freiburg, Germany, 9 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany, 10 Staphylococcus Reference Unit, Centre for Infections, Health Protection Agency, London, United Kingdom, 11 Université Lyon, Centre National de Référence des Staphylocoques, Lyon, France, 12 School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia, 13 Alere Technologies GmbH, Jena, Germany, 14 Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates

Stefan Monecke



Ralf Ehricht

Geoffrey Coombs

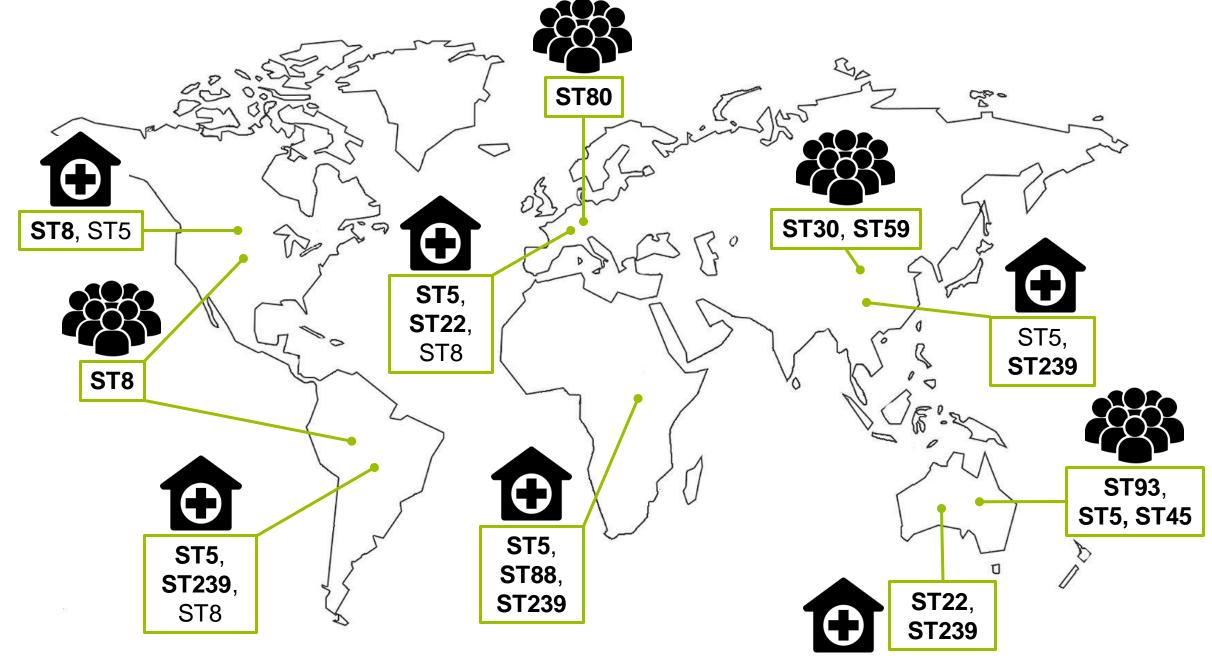
Contents lists available at ScienceDirect

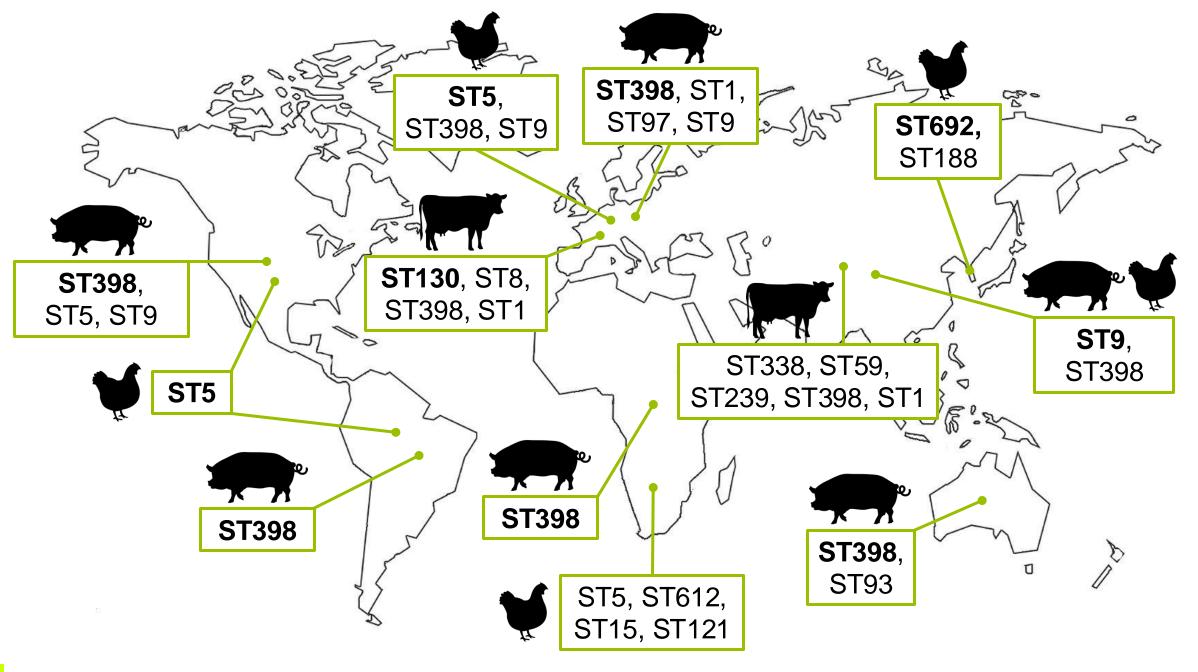
Clinical Microbiology and Infection

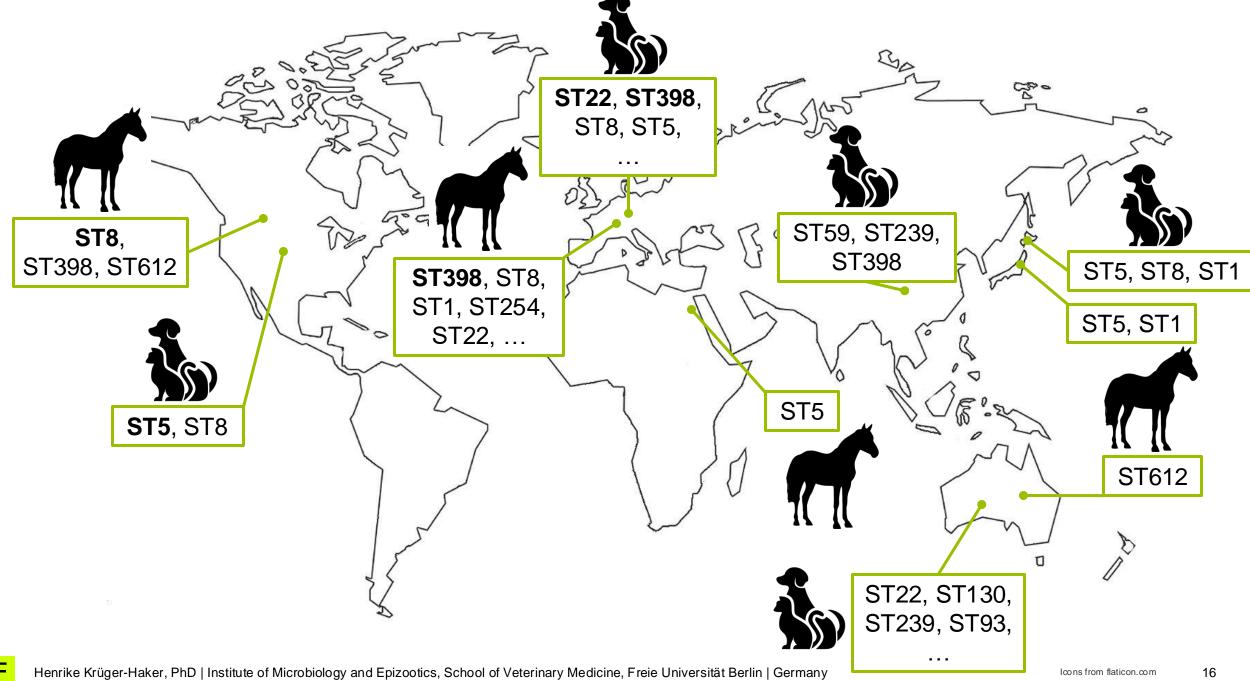
journal homepage: www.clinicalmicrobiologyandinfection.com

Narrative Review

Methicillin-resistant *Staphylococcus aureus* among animals: current overview

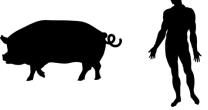

M. Aires-de-Sousa*


Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisboa, Portugal


Table 1Major methicillin-resistant *Staphylococcus aureus* lineages among animals and humans

	Humans		Companion animals		Food-chain animals			
	HA-MRSA	CA-MRSA	Pets	Horses	Pigs	Cattle	Poultry	
Europe	ST5, ST8, ST22	ST80	ST22 , ST398	ST1, ST254, ST22, ST398	ST1, ST97, ST398	ST8, ST130 , ST398	ST5 , ST398	
North America	ST5, ST8	ST8	ST5	ST8 , ST398	ST398		ST5	
South America	ST5, ST239	ST8					ST5	
Asia	ST5, ST239	ST30, ST59			ST9			
Oceania	ST22, ST239	ST30, ST93	ST130, ST239					
Africa	ST5, ST88, ST239	•						

Abbreviations: CA-MRSA, community-acquired methicillin-resistant *Staphylococcus aureus*; HA-MRSA, hospital acquired methicillin-resistant *Staphylococcus aureus*. Sequence types (ST) in bold represent major clones in each continent



Outline

- (1) Short Introduction to MRSA
 - Genetic basis of methicillin resistance
 - Differentiation of MRSA lineages
 - Who is at risk at the Human-Animal Interface?
- (2) Global Epidemiology of MRSA
- (3) Relevant Clonal Complexes

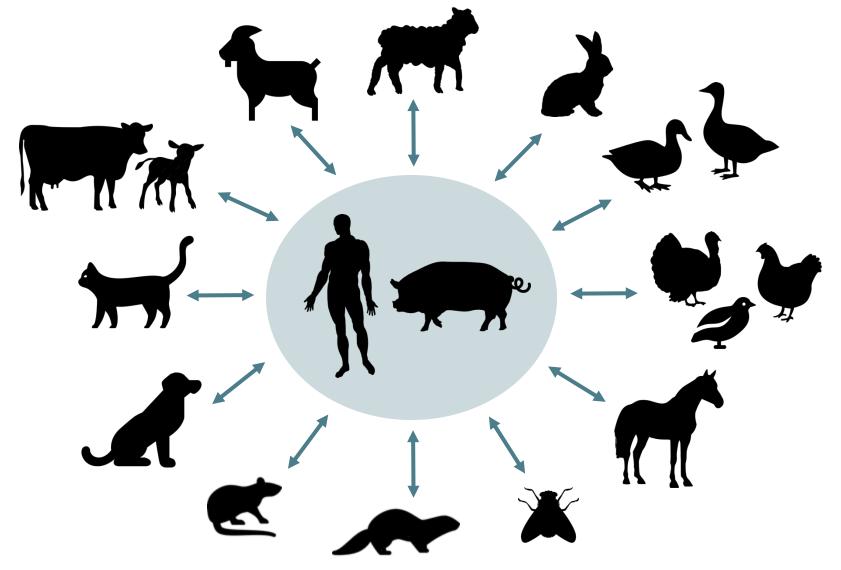
Netherlands 2004

young mother suffering from mastitis and high fever

- mother, baby, husband (pig farmer) MRSA-positive
- screening of contact persons and pigs: 3 farm workers and 8/10 pigs MRSA-positive

Further screening studies

- pig farms (pigs, farm workers)
- other people with occupational exposure to pigs (veterinarians, veterinary students, abattoir workers)
- other animals

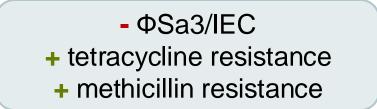

Annals of Clinical Microbiology and Antimicrobials

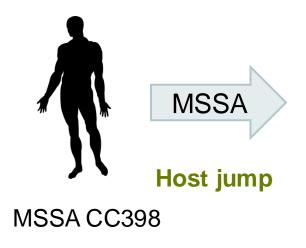
Research

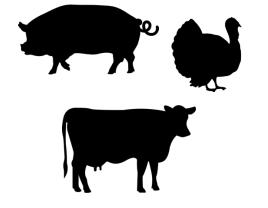
Community-acquired MRSA and pig-farming

Xander W Huijsdens*1, Beatrix J van Dijke2, Emile Spalburg1, Marga G van Santen-Verheuvel¹, Max EOC Heck¹, Gerlinde N Pluister¹, Andreas Voss^{3,4}, Wim JB Wannet¹ and Albert J de Neeling¹

Whole genome analysis of 89 CC398 isolates (MRSA and MSSA) obtained from humans and animals in 19 countries and 4 continents






Staphylococcus aureus CC398: Host Adaptation and **Emergence of Methicillin Resistance in Livestock**

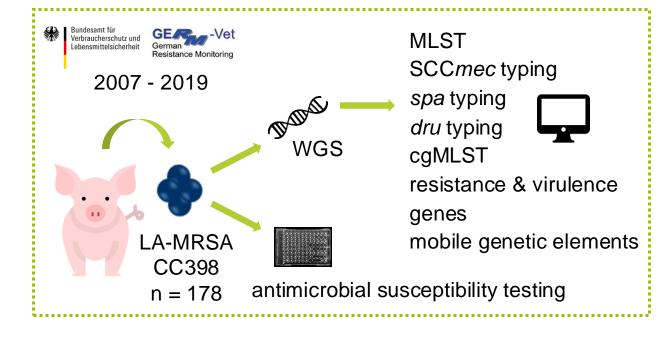
Lance B. Price^a, Marc Stegger^b, Henrik Hasman^C, Maliha Aziz^a, Jesper Larsen^b, Paal Skytt Andersen b. Talima Pearson d. Andrew E. Waters a. Jeffrey T. Foster d. James Schupp a. John Gillece a. Elizabeth Driebe^a, Cindy M. Liu^{a,d}, Burkhard Springer^e, Irena Zdovc^f, Antonio Battisti^g, Alessia Franco^g, Jacek Żmudzki^h, Stefan Schwarzⁱ, Patrick Butaye^{j,k}, Eric Jouy^l, Constanca Pomba^m, M Concepción Porreron, Raymond Ruimy o, Tara C. Smith D, D. Ashley Robinson Q, J. Scott Weese T, Carmen Sofia Arriola^S, Fangyou Yu^t, Frederic Laurent^U, Paul Keim^{a,d}, Robert Skov^b, Frank M.

+ ΦSa3/IEC ?

MRSA

Zoonotic

transmission


RESEARCH ARTICLE

Genomic Diversity of Methicillin-Resistant *Staphylococcus* aureus CC398 Isolates Collected from Diseased Swine in the German National Resistance Monitoring Program GERM-Vet from 2007 to 2019

Henrike Krüger-Haker, ^{a,b} Xing Ji, ^c Dennis Hanke, ^{a,b} Stefan Fiedler, ^d Andrea T. Feßler, ^{a,b} Nansong Jiang, ^e Heike Kaspar, ^d Yang Wang, ^e Congming Wu, ^e ^(D) Stefan Schwarz ^{a,b,e}

alnstitute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany

Porcine MRSA CC398 from Germany harbored numerous antimicrobial resistance properties, including resistance to oxazolidinones in one case

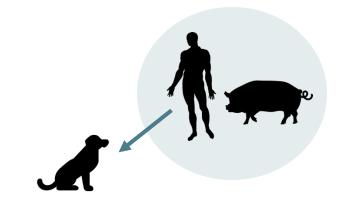
- ~ 89% (158/178) of the isolates were multiresistant
- many of the resistance genes were part of mobile genetic elements such as transposons and plasmids → horizontal gene transfer

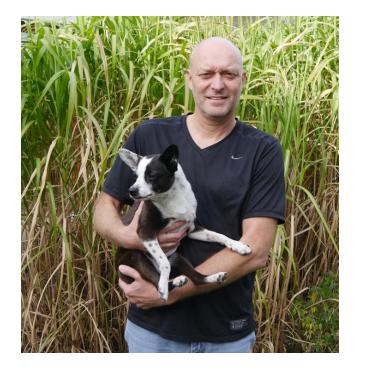
bVeterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany

s Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory, Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China

dFederal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany

eKey Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing, China


Journal of Antimicrobial Chemotherapy doi:10.1093/jac/dkp243 Advance Access publication 16 July 2009



Ulrike Nienhoff

Transmission of methicillin-resistant *Staphylococcus* aureus strains between humans and dogs: two case reports

Ulrike Nienhoff¹, Kristina Kadlec², Iris F. Chaberny³, Jutta Verspohl⁴, Gerald-F. Gerlach⁴, Stefan Schwarz^{2*}, Daniela Simon¹ and Ingo Nolte¹

Case 1:

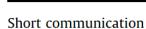
LA-MRSA (ST398-t034) was transferred from a colonized specialist veterinarian for swine diseases to his dog

 $Man \rightarrow dog transfer of MRSA$

First description of MRSA ST398 from a dog

Veterinary Microbiology 167 (2013) 680-685

Sonja Weiß



Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

Identification and characterization of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus pettenkoferi from a small animal clinic

Sonja Weiß, Kristina Kadlec, Andrea T. Feßler, Stefan Schwarz *

Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany

First description of MRSA ST398 from a cat

One stray cat that lived in/around livestock stables

→ Cat – cattle interactions at farm level?

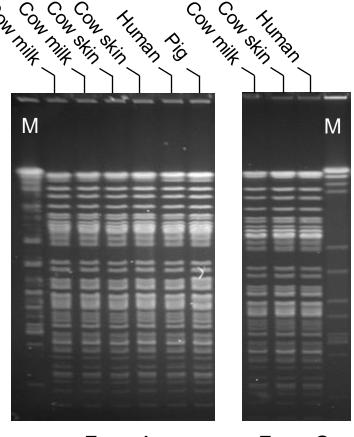
Veterinary Microbiology 160 (2012) 77-84

Andrea T. Feßler

Contents lists available at SciVerse ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic


Characterization of methicillin-resistant Staphylococcus aureus CC398 obtained from humans and animals on dairy farms

Andrea T. Feßler^a, Richard G.M. Olde Riekerink^{b,1}, Anja Rothkamp^{b,2}, Kristina Kadlec^a, Otlis C. Sampimon b,3, Theo J.G.M. Lam b,c, Stefan Schwarz a,*

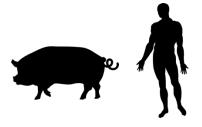
26 dairy farms

LA-MRSA ST398 was detected among dairy cattle, milkers, and occasionally also among other animals of the same farm (pigs, sheep, goats, dogs)

Occasionally more than one subtype per farm

Farm A

Farm O



Animal \leftrightarrow human exchange of LA-MRSA ST398 on dairy farms

^a Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany

^b GD Animal Health Service Deventer, Deventer, The Netherlands

^c Utrecht University, Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht, The Netherlands

MRSA ST9 have among other countries mainly been recovered from pigs or pig farm workers in mainland China, Hong Kong, and Malaysia.

The lineage is also described as an emerging clone in some areas with intensive industrial livestock production in the United States.

Jun Li

Veterinary Microbiology 201 (2017) 183-187

Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

Short communication

Characterization of pig-associated methicillin-resistant *Staphylococcus* aureus

^a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China

^b Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany

^c Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China

d Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany

Jun Li

Table 1Antimicrobial resistance profiles of pig-associated methicillin-resistant *Staphylococcus aureus* isolates from different regions.

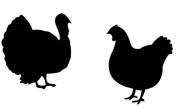
Antimicrobial category	Antimicrobial agent	Shanghai (n = 113)		Henan (n = 45)		Ningxia $(n = 17)$		Shandong $(n = 95)$	
		NS	S	NS	S	NS	S	NS	S
β-lactams	Oxacillin	113	0	45	0	17	0	95	0
	Cefoxitin	113	0	45	0	17	0	95	0
Macrolides	Erythromycin	112	1	45	0	17	0	88	7
Lincosamides	Clindamycin	113	0	45	0	17	0	95	0
Phenicols	Chloramphenicol	113	0	45	0	17	0	95	0
	Florfenicol	113	0	45	0	17	0	95	0
Tetracyclines	Tetracycline	112	1	45	0	17	0	95	0
Fluoroquinolones	Ciprofloxacin	113	0	45	0	17	0	95	0
Streptogramins	Quinupristin-dalfopristin	112	1	45	0	17	0	88	7
Aminoglycosides	Gentamicin	77	36	30	15	15	2	95	0
Ansamycins	Rifampicin	2	111	0	45	0	17	7	88
Glycopeptides	Vancomycin	0	113	0	45	0	17	0	95
Oxazolidinones	Linezolid	2	111	0	45	0	17	1	94

NS = non-susceptible (intermediate + resistant); S = susceptible.

Li et al., 2017, Vet Microbiol, 201: 183-7

- Overall very high resistance rates, which also include fluoroquinolones and streptogramins
- Resistance to oxazolidinones and rifampicin in rare cases

ELSEVIER


Contents lists available at SciVerse ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

MRSA ST9 have also been identified in turkeys, chicken and poultry meat

Genotyping of Staphylococcus aureus isolates from diseased poultry

Stefan Monecke ^{a,b,*}, Antje Ruppelt ^a, Sarah Wendlandt ^c, Stefan Schwarz ^c, Peter Slickers ^b, Ralf Ehricht ^b, Sonia Cortez de Jäckel ^d

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 2011, p. 7151–7157 0099-2240/11/\$12.00 doi:10.1128/AEM.00561-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Vol. 77, No. 20

Characterization of Methicillin-Resistant *Staphylococcus aureus* Isolates from Food and Food Products of Poultry Origin in Germany[∇]

Andrea T. Feßler, Kristina Kadlec, Melanie Hassel, Tomasz Hauschild, Christopher Eidam, Ralf Ehricht, Stefan Monecke, and Stefan Schwarz¹*

Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany¹; Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany²; Alere Technologies GmbH, Jena, Germany³; and Institute for Medical Microbiology and Hygiene, Faculty of Medicine Carl Gustav Carus, Technical University of Dresden, Dresden, Germany⁴

Received 11 March 2011/Accepted 14 June 2011

^a Institute for Medical Microbiology and Hygiene, Technical University of Dresden, Dresden, Germany

^b Alere Technologies GmbH, Jena, Germany

^c Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany

^d Poultry Clinics and Laboratory Dr. Pöppel, Delbrück, Germany

Vol. 55, No. 8

Anna C. Shore

Antimicrobial Agents and Chemotherapy, Aug. 2011, p. 3765–3773 0066-4804/11/\$12.00 doi:10.1128/AAC.00187-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Detection of Staphylococcal Cassette Chromosome *mec* Type XI Carrying Highly Divergent *mecA*, *mecI*, *mecR1*, *blaZ*, and *ccr* Genes in Human Clinical Isolates of Clonal Complex 130 Methicillin-Resistant *Staphylococcus aureus* [∨]†

Anna C. Shore, Emily C. Deasy, Peter Slickers, Grainne Brennan, Brian O'Connell, Anna C. Stefan Monecke, Ralf Ehricht, and David C. Coleman

Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland¹;
Alere Technologies GmbH, Jena, Germany²; National MRSA Reference Laboratory, St. James's Hospital, James's St.,
Dublin 8, Ireland³; Department of Clinical Microbiology, University of Dublin, Trinity College Dublin,
St. James's Hospital, James's St., Dublin 8, Ireland⁴; and Institute for Medical Microbiology and
Hygiene, Faculty of Medicine Carl Gustav Carus, Technical University of
Dresden, Dresden, Germany⁵

Laura García-Álvarez

Meticillin-resistant *Staphylococcus* aureus with a novel *mecA* homologue in human and bovine populations in the UK and Denmark: a descriptive study

Laura García-Álvarez, Matthew T G Holden, Heather Lindsay, Cerian R Webb, Derek F J Brown, Martin D Curran, Enid Walpole, Karen Brooks, Derek J Pickard, Christopher Teale, Julian Parkhill, Stephen D Bentley, Giles F Edwards, E Kirsty Girvan, Angela M Kearns, Bruno Pichon, Robert L R Hill, Anders Rhod Larsen, Robert L Skov, Sharon J Peacock, Duncan J Maskell, Mark A Holmes

Published Online June 3, 2011 DOI:10.1016/S1473-3099(11)70126-8

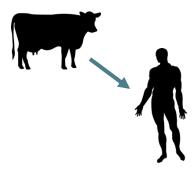
mecC-mediated methicillin resistance

Laura García-Álvarez

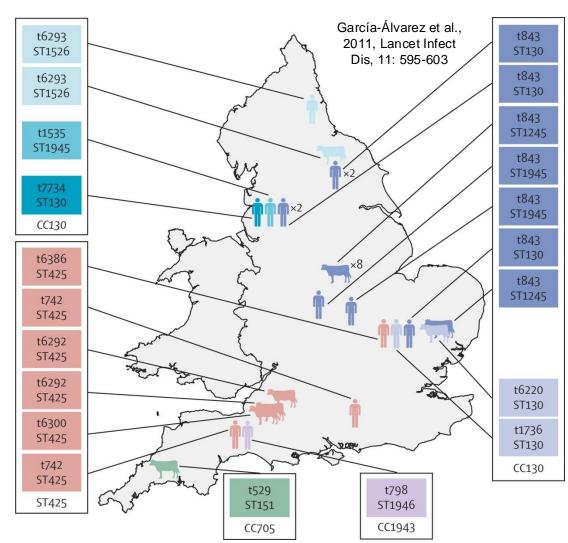
found in MRSA of various sequence types

ST130 / t843

ST425


ST1526 / t6293

ST1945


ST1946

ST151

ST1245

- found in strains from humans and cattle that had the same MLST and spa types
- → exchange

Birgit Walther

MRSA Variant in Companion Animals

Birgit Walther, Lothar H. Wieler, Szilvia Vincze, Esther-Maria Antão, Anja Brandenburg, Ivonne Stamm, Peter A. Kopp, Barbara Kohn, Torsten Semmler, and Antina Lübke-Becker

Emerging Infectious Diseases • Vol. 18, No. 12, December 2012

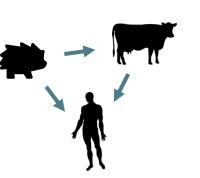
- mecC found in strains of MLST types ST130, ST599 and ST1945 from dogs, cats and a guinea pig
- ST130/t843 strains were detected in a cat and the guinea pig
- → even wider dissemination and *mecC* not exclusively associated with CC130
- → no phenotypic resistance toward non-β-lactams

- 75% of 222 mecC-MRSA from European hedgehogs belonged to CC130
- European hedgehogs are a natural reservoir of zoonotic mecC-MRSA lineages, which predate the antibiotic era
- hedgehogs are the most likely primary host in some countries, but dairy cows and other domesticated animals probably act as intermediate hosts and vectors in zoonotic transmission from hedgehogs to humans

Article nature

Emergence of methicillin resistance predates the clinical use of antibiotics

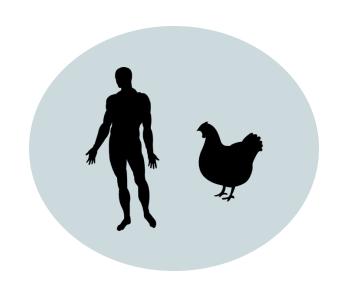
https://doi.org/10.1038/s41586-021-04265-w


Received: 12 May 2021

Accepted: 18 November 2021

Published online: 5 January 2022

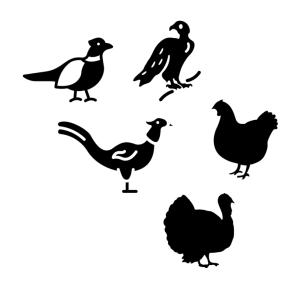
Open access


Check for updates

Jesper Larsen^{1,55™}, Claire L. Raisen^{2,55}, Xiaoliang Ba², Nicholas J. Sadgrove³, Guillermo F. Padilla-González³, Monique S. J. Simmonds³, Igor Loncaric⁴. Heidrun Kerschner⁵, Petra Apfalter⁵, Rainer Hartl⁵, Ariane Deplano⁶, Stien Vandendriessche^{6,46}, Barbora Černá Bolfíková⁷, Pavel Hulva^{8,9}, Maiken C. Arendrup¹, Rasmus K. Hare¹, Céline Barnadas^{1,10}, Marc Stegger¹, Raphael N. Sieber¹, Robert L. Skov¹¹, Andreas Petersen¹, Øystein Angen¹, Sophie L. Rasmussen^{12,13}, Carmen Espinosa-Gongora¹⁴, Frank M. Aarestrup¹⁵, Laura J. Lindholm¹⁶, Suvi M. Nykäsenoja¹⁷, Frederic Laurent¹⁸, Karsten Becker¹⁹, Birgit Walther^{20,47}, Corinna Kehrenberg²¹, Christiane Cuny²², Franziska Layer²², Guido Werner²², Wolfgang Witte²², Ivonne Stamm²³, Paolo Moroni^{24,48}, Hannah J. Jørgensen²⁵, Hermínia de Lencastre^{26,27}, Emilia Cercenado²⁸. Fernando García-Garrote^{28,49}, Stefan Börjesson^{29,50}, Sara Hæggman³⁰, Vincent Perreten³¹, Christopher J. Teale³², Andrew S. Waller^{33,51,52}, Bruno Pichon³⁴, Martin D. Curran³⁵, Matthew J. Ellington^{35,53}, John J. Welch³⁶, Sharon J. Peacock³⁷, David J. Seilly², Fiona J. E. Morgan^{2,54}, Julian Parkhill², Nazreen F. Hadjirin², Jodi A. Lindsay³⁸, Matthew T. G. Holden³⁹. Giles F. Edwards⁴⁰. Geoffrey Foster⁴¹. Gavin K. Paterson⁴². Xavier Didelot⁴³, Mark A. Holmes^{2,56}, Ewan M. Harrison^{37,44,45,56} & Anders R. Larsen^{1,56}

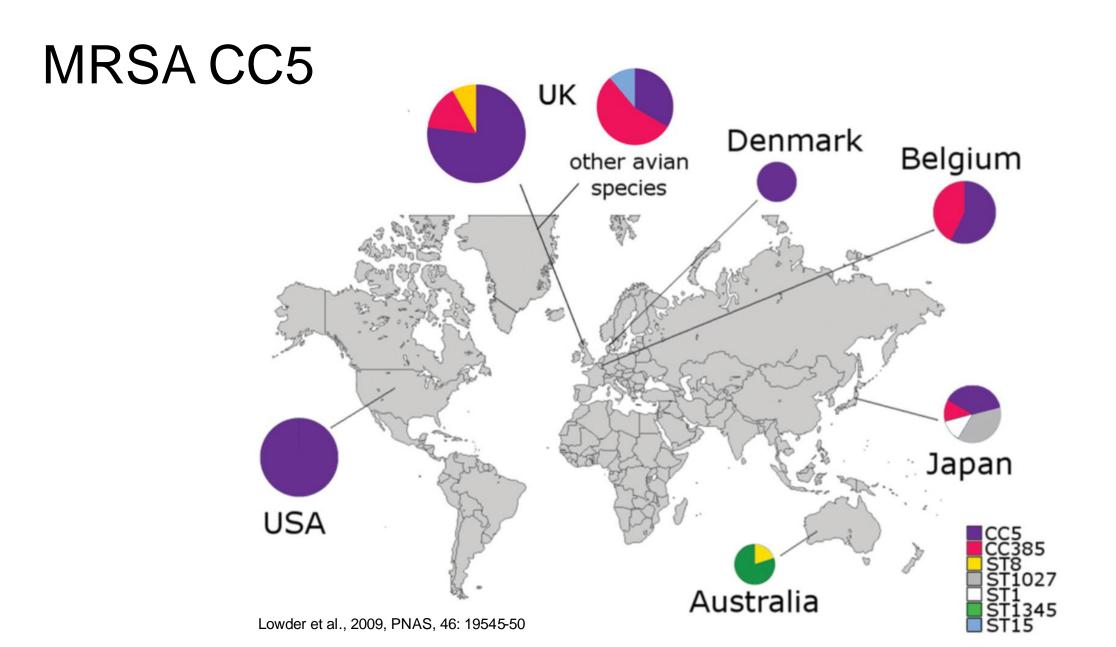
Nature. 2022, 602:135-141. doi: 10.1038/s41586-021-04265-w.

- common and widespread CC
- comprises a large number of different MRSA strains
 - HA- and CA-MRSA
 - some have spread pandemically
 - also detected in poultry
- carries the enterotoxin gene cluster
- several human strains harbor important virulence genes, e.g. the genes for the Panton-Valentine leukocidin (PVL) or the toxic shock syndrome toxin 1 (TSST-1)
- many additional resistance-associated genes, isolates from poultry in Germany showed also resistance to tetracyclines, macrolides-lincosamides-streptogramin B antibiotics, spectinomycin, and enrofloxacin

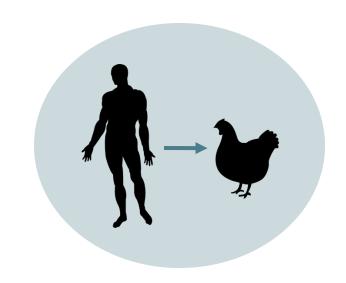


Recent human-to-poultry host jump, adaptation, and pandemic spread of *Staphylococcus aureus*

Bethan V. Lowder^a, Caitriona M. Guinane^a, Nouri L. Ben Zakour^a, Lucy A. Weinert^b, Andrew Conway-Morris^c, Robyn A. Cartwright^a, A. John Simpson^c, Andrew Rambaut^b, Ulrich Nübel^d, and J. Ross Fitzgerald^{a,1}



Edited by Richard P. Novick, New York University School of Medicine, New York, NY, and approved September 18, 2009 (received for review August 14, 2009)



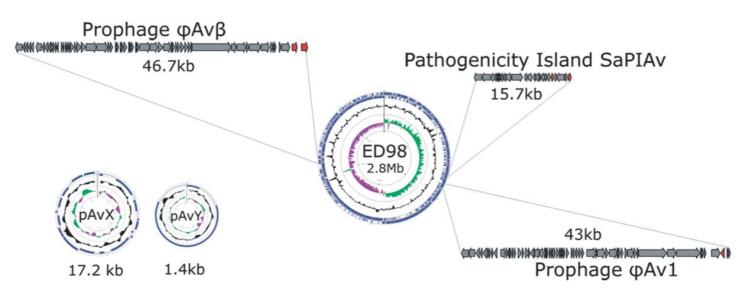
- 57 avian S. aureus isolates, including 48 from healthy or diseased broiler chicken, collected in 8 countries on 4 continents during 54 years
- 32 / 48 (67%) isolates from broiler chickens belonged to ST5 or its single locus variants ST1342, ST1346 and ST1350

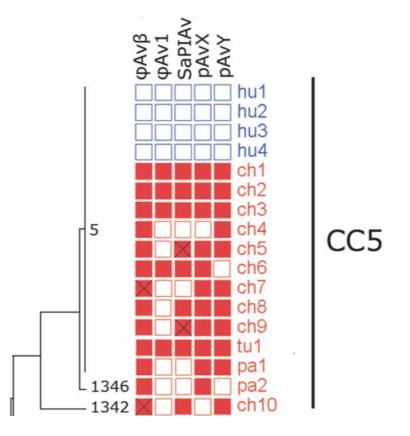
According to the phylogenetic analysis

- all poultry isolates closely related to each other
- no separate clades for diseased and asymptomatic birds

The poultry ST5 clade belongs to a ST5 sub-lineage

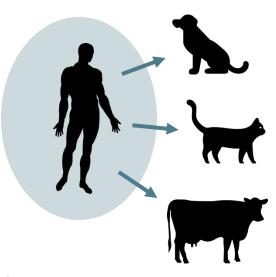
- includes human strains that were circulating in Poland in the 1990s
- → distribution of SNPs indicates that these isolates are basal to all isolates in the clade
- → host switch from humans to poultry occurred approximately in the early 1970s (95% CI 30 to 63 years)


The poultry ST5 clade has undergone rapid intercontinental dissemination

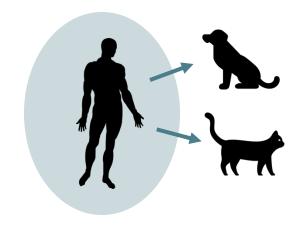


Lowder et al., 2009, PNAS, 46: 19545-50

With the host jump, the poultry ST5 isolates gained


- two prophages
- one pathogenicity island
- two plasmids

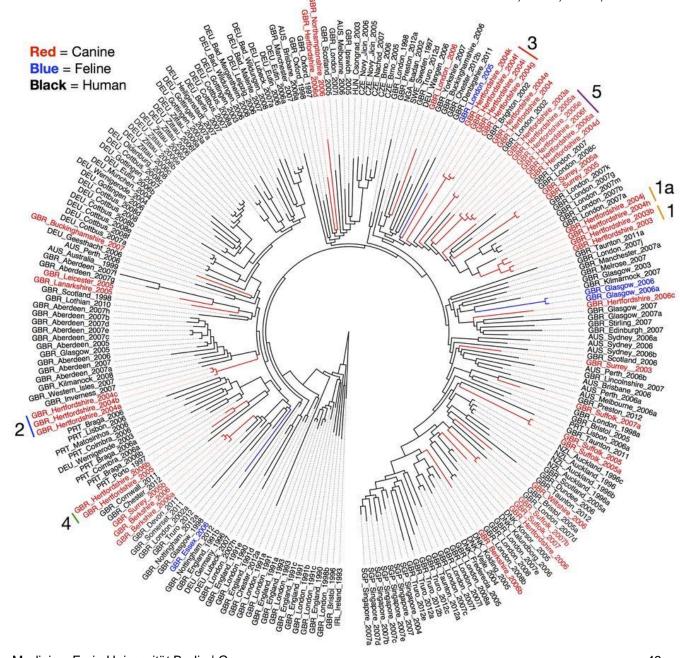
Lowder et al., 2009, PNAS, 46: 19545-50


- common and widespread CC
- emergence of different MRSA strains
- commonly occurs in humans as pandemic strains, e.g. UK-EMRSA-15
 - → UK-EMRSA-15 detected also in dogs, cats and dairy cows
 - → suggests human source for isolates infecting companion and livestock animals

A Shared Population of Epidemic Methicillin-Resistant *Staphylococcus* aureus 15 Circulates in Humans and Companion Animals

Ewan M. Harrison,^a Lucy A. Weinert,^a Matthew T. G. Holden,^b John J. Welch,^c Katherine Wilson,^a Fiona J. E. Morgan,^a Simon R. Harris,^b Anette Loeffler,^d Amanda K. Boag,^d Sharon J. Peacock,^{b,e} Gavin K. Paterson,^f Andrew S. Waller,^g Julian Parkhill,^b Mark A. Holmes^a

Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom^a; Wellcome Trust Sanger Institute, Hinxton, United Kingdom^b; Department of Genetics, University of Cambridge, Cambridge, United Kingdom^c; Royal Veterinary College, University of London, North Mymms, Hertfordshire, England^d; Department of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom^c; School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, United Kingdom^c; Centre for Preventive Medicine, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom^g


May/June 2014 Volume 5 Issue 3 e00985-13

MRSA ST22 phylogeny

Isolates from companion animals

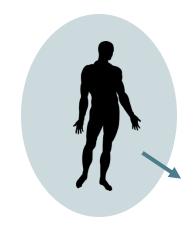
- fluoroquinolone resistance mutations in grlA (Ser80Phe) and gyrA (Ser84Leu)
- erm(C)-carrying plasmid less likely, but when present, erm(C) more likely to be constitutively expressed, thus mediating also clindamycin resistance

- UK-MRSA-15 was identified in four cows and one milker
- resistance to β-lactams, kanamycin and quinolones
- milker had been volunteering in a nursing home since months
- milker isolate differed mainly for absence of the untruncated β-haemolysin and presence of the immune evasion cluster

Veterinary Microbiology

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vetmic


Short communication

Methicillin-resistant Staphylococcus aureus CC22-MRSA-IV as an agent of dairy cow intramammary infections

Giada Magro^a, Marta Rebolini^b, Daniele Beretta^c, Renata Piccinini^{a,*}

- ^a Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133, Milan, Italy
- b Department of Agricultural and Environmental Sciences Production, Land, Agroenergy, University of Milan, Via Celoria 2, 20133, Milan, Italy
- ^c Allegrini S.p.A, Zootechnics division, Vicolo Salvo D'Acquisto 2, 24050, Grassobbio, Italy

Colonized milker played role of MRSA vector into the herd

Adaptive capacity of MRSA to the bovine host

- dominant clonal group among CA-MRSA of humans in Europe
- occasionally, CC80 strains occur also in pet animals

Methicillin-Resistant *Staphylococcus aureus* in a Family and Its Pet Cat

Andreas Sing, M.D.
Christian Tuschak, Ph.D.
Stefan Hörmansdorfer, Vet.D.

Bavarian Food and Health Safety Authority 85764 Oberschleißheim, Germany

N ENGLJ MED 358;11 WWW.NEJM.ORG MARCH 13, 2008

Transfer of MRSA between humans and a cat

MRSA-ST80 was PVL-positive and showed resistance to β-lactam and fusidic acid antibiotics

MRSA (ST80-t131) was isolated from a woman who suffered from recurrent deep skin abscesses, her husband, her two kids, and a cat who lived in the same household.

Treatment success only after decolonization of all humans and the cat.

 There are dominant clonal complexes in the different animal species in different countries/continents.

- There are dominant clonal complexes in the different animal species in different countries/continents.
- MRSA from animals often harbor further resistance properties besides methicillin resistance, in part involving mobile genetic elements.

- There are dominant clonal complexes in the different animal species in different countries/continents.
- MRSA from animals often harbor further resistance properties besides methicillin resistance, in part involving mobile genetic elements.
- MRSA can be exchanged between animals and humans in both directions.

- There are dominant clonal complexes in the different animal species in different countries/continents.
- MRSA from animals often harbor further resistance properties besides methicillin resistance, in part involving mobile genetic elements.
- MRSA can be exchanged between animals and humans in both directions.
- The close contact between humans and their pets favors the occurrence of "human" clonal complexes in animals (CC22, CC80).

Icon from flaticon.com and Picture by Kevin Stark on Unsplash

- There are dominant clonal complexes in the different animal species in different countries/continents.
- MRSA from animals often harbor further resistance properties besides methicillin resistance, in part involving mobile genetic elements.
- MRSA can be exchanged between animals and humans in both directions.
- The close contact between humans and their pets favors the occurrence of "human" clonal complexes in animals (CC22, CC80).
- Host jumps have resulted in new clades within certain clonal complexes, the members of which are better adapted to the new host.

Thanks a lot for your attention!

Picture by Andrea Schmidt, IMT