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Abstract

Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect
data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them
into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging)
provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and
ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/
mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models
of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-
motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small
number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine
imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an
intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a
hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales,
Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods)
assemblages at multiple spatial and temporal scales.
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Introduction

Plant and animal assemblages that live in intertidal regions such

as rocky shores are part of a complex, dynamic ecosystem, the

structure and functioning of which can vary across a cascade of

spatial and temporal scales [1]. Intertidal ecosystems have

primarily been studied using field-based sampling e.g. [2–5] at

appropriate resolutions to capture the spatial variability at which

assemblages occur. When studies cover a broad area of shoreline

or occur at multiple sites, extensive field-based sampling requires a

large amount of logistical effort and data is often not recorded in a

contiguous manner (i.e. different parts of the shoreline are sampled

at different times). Remote sensing is the ideal tool to collect

contiguous data over large areas in a snapshot of time, however

conventional remote sensing platforms (i.e. satellites and manned-

aircraft) provide data at relatively coarse spatial and temporal

resolution. Current state-of-the-art commercially available high-

resolution satellite imagery can provide resolutions of 2.4 m per

pixel for multi-spectral imagery and 0.6 m per pixel for

panchromatic imagery, at a cost of $3000-5000US per imagery

scene [6]. Manned aerial photography and airborne lidar provide

higher resolutions (up to 0.3 m per sample point [7]), depending

on flying height, and are typically more expensive, with targeted

data collection costing in the order of tens of thousands of dollars

per flight [8,9]. The low-resolution and high costs of targeted data

collection (i.e. at a specific time and place) limits the effectiveness

of conventional remote sensing in small-scale environmental

science and ecologically-focussed studies. Furthermore this data

does not provide information on topographic variability at small

scales (centimeters and meters), which is known to influence the

distribution of assemblages of plant and animal species [10].

In this paper we develop data collection techniques and data

processing algorithms for constructing ultra-high resolution (sub-

centimeter) three-dimensional (3D) multi-spectral maps of inter-

tidal rock platforms using a low-cost kite-based mapping system.

The objective of our work is to develop a system that provides both

topographic data and multi-spectral imagery over a broad area of

the intertidal environment (hundreds of meters of shoreline) at

appropriate spatial scales for ecologically-focussed studies. We

describe a methodology for collecting images from two consumer-

grade digital cameras, one that is a standard three-channel colour

camera and the other a camera that has been converted to image

in near-infrared (wavelengths greater than 720 nm). The cameras

are carried on the flying line of single-line kite that is flown over

the target site and used to collect multiple overlapping images of

the terrain. The images are then processed in a procedure that
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automatically extracts and matches spatial features across multiple

images and uses this information to incrementally reconstruct both

a 3D map of the terrain and the position of the camera as each

image was captured. Results are presented from a 200 m stretch of

temperate intertidal rocky shoreline at Jervis Bay, New South

Wales, Australia with an average topographic ground sampling

distance of 2.5 cm and an imagery resolution of 5 mm per pixel.

The resulting maps contain both topographic data and multi-

spectral imagery. Topographic data allows for high-resolution

measurements such as the vertical position on the shore with

respect to tides and the slope and aspect with respect to the sun.

The multi-spectral imagery (red, green, blue and near-infrared) is

used to derive a Normalised Difference Vegetation Index (NDVI)

that allows for the identification of intertidal species present during

imaging and the potential to provide data on variables such as

chlorophyll and algal biomass. The use of readily available and

cheap consumer-grade equipment and the non-technically de-

manding process of collecting images in the field will hopefully

allow for high-temporal resolution repeat sampling (i.e. in the

order of days to weeks).

Related Work
Intertidal Ecology and Remote Sensing. The distribution

of assemblages of plant and animal species in rocky intertidal and

soft sedimentary intertidal systems is known to be highly variable

across a cascade of spatial scales ranging from cm to km [4,11–16].

A complex interplay of bottom-up and top-down ecological

processes are thought to regulate spatial distributions [17]. Remote

sensing is able to provide the synoptic context in which spatial

variations in assemblages can be quantified, yet the use of remote

sensing has been limited by poor resolution.

Manned aircraft-based remote sensing has been used to study

intertidal environments over large scales and low-spatial resolu-

tion. In [18], airborne hyperspectral imagery at a spatial resolution

of 5 m was used to map the fractional coverage of macroalgae over

a one kilometer-long rocky shore. In [19], airborne hyperspectral

sensing was acquired at a 4 m resolution to measure sediment

grain size and microphytobenthic biomass over several kilometres

of an intertidal flat.

The advent of low-cost field spectroradiometers has resulted in a

large body of work in field-based spectroscopy in recent years [3].

Spectroscopy in the visible and near-infrared bands has allowed

for the measurement of indices relating to macrophyte cover [20]

and microphytobenthic biomass [21] through the correlation of

chlorophyll concentration and reflectance at different red and

near-infrared bands. In [22] similar indices were derived for use

with 3-band digital camera using red, green and near-infrared

bands.

3D photogrammetry obtained from in-field, ground-based

photography has been used to measure habitat structure and

topographical complexity on rock intertidal shores. In [2] ground-

based stereo-photos and photogrammetry techniques were used to

measure different forms of structural complexity along repeated

30 cm transects to study the correlation to gastropod abundance in

both rocky intertidal and mangrove habitats. In [5] similar field-

based photogrammetry were used to measure topographic

complexity along with surface temperature measurements to study

the influence of habitat structure on body size and abundance of

different invertebrates on an intertidal rocky shore.

Kite and Balloon Photography. Kites and balloons have

been used for low-altitude aerial photography for decades, most

prolifically in archaeology (see [23] for a good review) as a low-cost

means of recording cultural heritage or providing a visual record

of excavation activities. Balloons have typically been used when

windspeeds in an area are low and kites when windspeeds are

higher, providing complimentary use in a range of environmental

conditions. These platforms are typically constructed from low-

cost materials, are safe due to their low-weight and stability and

easy to deploy in a range of conditions promoting their use in a

wide range of applications such as boat-launched coral aerial

photography [24], counting Antarctic penguin numbers [25] and

monitoring in a humanitarian emergency [26]. In [27] the authors

describe the use kite aerial photography in environmental site

investigation and [28] discusses the complexities of kite aerial

photography using near-infrared film in the study of vegetation

and soil properties. In [29], the authors develop a kite aerial

photography platform that includes real-time pan/tilt control and

image stabilisation. Previous work in these applications has often

focussed on taking either a single or a small number of

photographs.

More recently kite aerial colour photography has been used to

map and classify different vegetation types in the alpine zone using

both supervised classification and unsupervised clustering of the

three-band colour imagery [30]. The work in [31] and [32] used

kite aerial photography to produce digital elevation models from a

small collection of photographs producing topographic maps with

pixel sizes of 4 cm and 5–7.5 cm over an area of 100-by-100 m

and 50-by-50 m respectively. In [32] topographic maps were used

to track the progress of gully erosion over a period of 2–4 years.

In relation to studies in the intertidal zone, the work in [33] used

a helium blimp to take photographic stereo pairs of a section of

rocky intertidal shore using both colour and near-infrared film.

The photographs were geo-referenced to an 18-by-18 m plot at a

resolution of 2 cm per pixel.

Unmanned Aerial Vehicles (UAVs). Unmanned Aerial

Vehicles (UAVs) [34] are a relatively recent technology that have

been used to produce high resolution maps owing to their ability

for low-altitude flight. In [35], the authors demonstrated the use of

UAVs for collecting images over rangelands with a spatial

resolution of 5 cm per pixel. In the work of [36], a fixed-wing

UAV was used to produce geo-referenced imagery maps with a

resolution of 3.5 cm per pixel over an area of 4000-by-600 m in a

weed monitoring application. Hovering UAVs (such as the

Mikrokopter (http://mikrokopter.org)) have been demonstrated

as a promising platform for low-altitude sensing for even higher

resolution imaging. A hovering UAV was used to produce maps of

Antarctic moss beds with a resolution of 1 cm per pixel over an

area 100-by-40 m in [37]. In [38] the authors used hovering UAV

imagery to produce 3D maps of a coastal cliff, producing

pointclouds with a spatial resolution of 1–3 cm and an accuracy

of 25–40 mm. UAVs are promising platforms for gathering high-

resolution remotely sensed data; although the costs and technical

skills required to operate these platforms are becoming lower over

time, they are still relatively high, particularly when considering

their use in small-scale ecological studies. Additionally, the current

generation of rotary-wing UAVs are typically limited by low

endurance (approx. 15–20 minutes) and are susceptible to failure

in high-wind conditions, typically encountered in coastal regions.

Recent Developments in Photogrammetry and Structure-

from-Motion. The process of measuring spatial properties from

photographs or images is referred to as ‘photogrammetry’ and

when large numbers of images are used, typically to reconstruct

the three-dimensional spatial structure of an imaged scene, this

process is referred to as ‘structure-from-motion’ [39]. Recent

developments in structure-from-motion [40,41] have focussed on

building 3D models of buildings from large collections of un-

ordered, un-calibrated images. These methods utilise multi-core

and parallel processing algorithms for efficiently combining images
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with relatively little additional information such as from Global

Positioning Systems (GPS) or ground control points.

Overview of the contributions of our work in contrast to
related work

In this paper we combine aspects of photogrammetry, multi-

spectral remote sensing and low-cost image collection using a kite-

based platform for building high-resolution imagery and terrain

models in the intertidal zone. In contrast to previous work in kite

aerial photography, our method fuses information from hundreds,

and potentially thousands of overlapping monocular images using

modern photogrammetry and bundle adjustment techniques

[40,41]. This enables coverage over much larger areas and with

higher spatial resolution. The photogrammetry techniques used

employ algorithms for automatic calibration of the intrinsic and

extrinsic parameters of the camera (i.e. focal length, lens distortion

etc.) using the images themselves, allowing for the use of un-

calibrated, low-cost consumer-grade cameras. The techniques also

construct full, scale-less 3D models prior to the use of ground

control points, providing flexibility in the way in which models are

geo-referenced into a global coordinate system. Furthermore, we

demonstrate a low-cost method for producing spatially-registered

multi-spectral imagery from multiple consumer-grade cameras and

validate the utility of this information for distinguishing macro-

algae in the intertidal environment through the use of the NDVI.

Compared to past work on intertidal mapping using traditional

remote sensing platforms or field-based sampling, our approach

provides data with an unprecedented level of resolution over a

broad-scale environment. The data collection procedure is fast and

easy to perform without technical experts in remote sensing or

UAV operations.

Materials and Methods

Study Site
Experiments were performed over an intertidal rocky shore

north of Greenfields beach (34.000uS, 151.249uE) along the

western edge of Jervis Bay, New South Wales, Australia (see

Figure 1). The site lies within a national park aquatic reserve and is

host to various intertidal species and is largely populated by red,

green and brown macro-algae such as Homosira, Corallina, Ulva and

Ralfsia along the low shore. Various gastropods and tunicates

(cunjevoi) were also present. Data collection was performed over a

single, cloudless day during October 2012 at approximately 1:50

pm to coincide with a low tide of 0.16 m above the datum. All field

studies involved only non-contact, non-invasive means of sampling

(i.e. collection of images and field spectroscopy) and therefore did

not require any specific permissions or ethics approvals.

Kite Aerial Photography Equipment
A kite aerial photography system (see Figure 2) was built that

used a 2.7 m wingspan conynes-delta kite to lift a fixed,

downwards-looking rig holding a consumer-grade digital camera.

The conynes-delta kite was chosen for its stability and lifting

capacity in a wide range of wind conditions. The camera was

suspended from a Picavet rig that attached to the line of the kite

approximately 10 m lower than the kite to minimise the impact of

wind gust-induced motion of the camera. The Picavet provided

mechanical levelling of the camera during changes in the flying

angle of the kite. Two different versions of a consumer-grade

digital camera (the Sony NEX-5 with a 16 mm pancake lens and a

16 MPix resolution) were used - a standard three-colour camera

and one that had been converted for imaging in near-infrared

wavelengths. A commercial service (LifePixel) was used to remove

the internal near-infrared cut filter (installed in the majority of

consumer digital camera to remove near-infrared light from

images) and replace it with a high-pass colour cut filter that

allowed transmission of wavelengths above 720 nm. The camera

was chosen as a trade-off between the image quality achieved from

a full-frame sensor digital single-lens reflex camera and the light-

weight of a small-sensored compact digital camera.

The spectral response functions of both cameras were deter-

mined using the procedure described in [42,43] to provide precise

information on the spectral sensitivities of the raw imagery from

the red, green and blue channels of the colour camera and the

near-infrared sensitivity of the converted camera (data was taken

only from the red bayer channel of the images for this camera).

Images of a Macbeth colour chart were captured using the raw

mode of each camera under cloudless sunlight and measurements

of the spectral response of each Macbeth colour panel were taken

using a handheld spectroradiometer (Ocean Optics STS-VIS with

an effective range from 400–800 nm), from which the response

curves were estimated. Although the panels of the Macbeth colour

chart are designed for use in colour calibration in the visible

spectrum, it was found that the panels exhibited variations in

reflectance at wavelengths around 720 nm and above, and were

therefore also effective for calibrating images captured from the

near-infrared converted camera. Figure 3 (a) illustrates the

estimated spectral response curves for the cameras.

The red, green and blue channels of the colour camera

displayed peaks at 470 nm, 530 nm and 606 nm respectively and

the red channel of the near-infrared camera (which was found to

have the best response of the three colour channels of this camera)

had a peak response at 740 nm (shown in Table 1).

Process Overview
Figure 4 presents a flowchart illustrating the entire kite-based

mapping process performed in the study. The process began by

placing ground control points (visible markers) across the terrain

and using the kite-based platform for collecting a series of

overlapping images of the terrain taken from the air. After the

images were acquired, they were processed using an automated

procedure to produce 3D terrain models and geo-referenced

photo-mosaics of the area covered by the images. The automated

procedure extracted and matched feature points that were used by

a structure-from-motion algorithm to reconstruct the poses from

which the images were taken and a 3D point cloud of the imaged

terrain. After geo-referencing this pointcloud using the measured

ground control points, a photo-texturing algorithm was used to

create the final map products. Table 2 provides an overview of the

different software packages used at various stages in the data

processing procedure. The following subsections describe these

steps in detail.

Spatial and Spectral Ground Control Points
In order to geo-reference the 3D landscape models and maps

reconstructed from the collected image data, flat 20-by-20 cm

checkerboard-patterned panels were placed on dry rock surfaces in

the environment before flight to act as ground control points. The

position of each panel was measured using a GPS receiver.

Because of the focus on low-cost equipment used in this study,

ground control point panels were measured using a consumer-

grade handheld GPS receiver that provided global position

coordinates to an accuracy of 62 m (rather than using a more

expensive survey grade, differentially corrected GPS device that

could potentially provide cm-level global accuracy). In order to

supplement the low-accuracy GPS measurements, additional

spatial constraints were measured between the ground control
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points; the points were placed in triads, where each triad was

arranged into an equilateral triangle pattern with an hand-

measured edge length of 2 m (using a tape measure). A total of

nine ground control points were placed into the environment.

More details on how the control points were used are discussed in

the subsection on ground control point geo-registration below.

In addition to the ground control points, ground control

reference spectra were measured for various surfaces in the

intertidal zone using the handheld spectroradiometer. The

positions of the spectrally-measured points relative to the ground

control point targets were measured so that they could be later

identified in the reconstructed maps and used to validate the

accuracy of the colour and near-infrared data in the maps. For

each measured spectra an estimate of the expected red, green, blue

and near-infrared responses as seen by the cameras was produced

by multiplying the measured spectra with the estimated spectral

response curves of the camera (see Figure 3 (a)) and summating

over wavelength for each channel. The red and near-infrared

channels were then used to produce a macrobenthos index that

was compared to the index computed using the actual red and

near-infrared responses measured from the camera. Figure 3 (b)

illustrates examples of the reflectance spectral curves for dominant

coverage types found at the Jervis Bay field site.

Figure 1. Study Site. (a) Intertidal rocky shore at Greenfields Beach (study site shown in red box) at Jervis Bay, New South Wales, Australia, (b)
ground-based photography at the study site taken at low-tide. Google maps imagery of the site is available at: http://maps.google.com.au/?ll = -35.
085668,150.693294&spn = 0.005759,0.0109&t = h&z = 17.
doi:10.1371/journal.pone.0073550.g001

Figure 2. Kite-based image acquisition. (a) 2.7 m wingspan conynes-delta kite using to lift (b) a Picavet suspension rig that was used to attach
each of the two downwards-facing Sony NEX-5 digital cameras (one colour and one near-infrared). The operator walks the kite across the intertidal
zone collecting multiple, overlapping photographs. Examples of aerial images collected from an altitude of approximately 15 m are shown in colour
(c) and near-infrared (d).
doi:10.1371/journal.pone.0073550.g002
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Image Acquisition
During data collection, the kite was used to hoist the camera rig

holding one camera at a time over the area of interest and the

camera programmed to capture images at a frequency of

approximately one shot per second using the continuous shoot

mode of the camera. The aperture, exposure time and ISO were

tuned by hand for each camera to the average light conditions on

the day and kept constant for every image captured by a given

camera. The actual values used were different for each camera

(owing to the differences in the transmission properties of the

internal filters of each camera). A white-balance procedure using a

Spectralon target was used to balance the intensity of image data

between cameras; this procedure is discussed more detail in the

section below on NDVI mosaics. The kite could be flown at a

variety of altitudes between approximately 10–100 m (limited by

the length of the kite line) based on desired area coverage and

ground spatial resolution. The desired height was achieved using

distance markers on the line and by approximating the flight angle

of the kite. The kite was then slowly walked across a 200-by-30 m

section of rocky shoreline and images were captured continuously

using the raw mode of the camera at an altitude of approximately

15–20 m. The kite was walked in a zig-zag fashion along the

shoreline rather than in a straight line in order to gather images

from various perspectives with respect to the terrain. Capturing

images from various perspectives was important for the function-

ing of the structure-from-motion algorithms discussed below,

allowing for camera poses and 3D feature information to be

estimated. The time taken to acquire images across the platform

was approximately six minutes, after which the cameras were

swapped and the process repeated to collect images in both colour

and near-infrared. It was originally planned that both cameras

would be flown simultaneously, however light wind conditions on

the day only allowed for one camera to be flown at a time.

Figures 2 (c) and (d) illustrate example images captured by the

system at an altitude of approximately 15 m from the ground, with

a coverage footprint of approximately 22-by-15 m and a pixel size

of approximately 4.5 mm.

Image Processing, Feature Extraction and Matching
After data collection, images were copied from each of the

cameras to a desktop computer for processing. Prior to processing,

images that were affected by motion blur during wind gusts or

large occlusions of the terrain (for example images of people

moving in the scene) were removed manually. Images were white

balanced, to aid in feature extraction contrast and to provide

imagery mosaics that could be easily interpreted by end-users. A

total of 295 colour images and 251 near-infrared images were

used. Scale-Invariant Feature Transform (SIFT) features were

Figure 3. Spectral calibration data. (a) Spectral response functions for the colour and near-infrared converted cameras: the red, green and blue
channels correspond to the three channels of the colour camera whereas the near-infrared curve corresponds to the red channel of the near-infrared
converted camera, which was found to have the highest response of each of the channels for this camera. (b) Reflectance spectra for key surface
coverage types in the intertidal zone measured using a handheld spectroradiometer. The reflectance spectra were used in conjunction with the
camera spectral response functions to validate the measured colour of objects in the kite-based imagery.
doi:10.1371/journal.pone.0073550.g003

Table 1. Peak response values of the colour and near-infrared
converted cameras.

Red Green Blue Near-infrared

Peak Response 470 nm 530 nm 606 nm 740 nm

The red, green and blue values correspond to the three channels of the colour
camera whereas the near-infrared value corresponds to the red channel of the
near-infrared converted camera.
doi:10.1371/journal.pone.0073550.t001
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extracted in each image (using the implementation in [44]) and

matched across all image pairs (including colour to colour, colour

to near-infrared and near-infrared to near-infrared images) using a

kd-tree [45] of the features present in each image. SIFT features

correspond to distinctive points in the texture of surfaces captured

in images and were well suited for use in the rocky intertidal

environment.

Although there existed types of terrain that had a different

appearance in the colour and near-infrared images, enough

similarity in the properties used in the SIFT feature descriptor was

present to match and register SIFT features across these two

different image formats. Table 3 shows the number of matching

image pairs and average feature matches per image for colour-to-

colour, colour-to-near-infrared and near-infrared-to-near-infrared

image pairs. The average number of features per image matched

between the colour and near-infrared images was lower than

colour-to-colour or near-infrared-to-near-infrared pairs. Enough

matches were found to provides a means to registering different

types of image data into a common reference frame during the

remainder of the processing procedure.

Robust detection of incorrect feature matches was performed

using epipolar constraints between images [46]. Multi-core

software implementations of these methods were developed in

order to process images in parallel, speeding up the total time

taken for processing. Figure 5 illustrates an example of the

extracted and matched feature points between two images.

Figure 4. Overview of the kite-based mapping process. During data acquisition, ground control points are placed in the environment and
images collected over the the terrain using the kite and camera. After data acquisition, images are processed to extract and match features across
multiple overlapping images. These features are used to reconstruct the poses from which images were captured and a 3D pointcloud of the terrain
using a structure-from-motion algorithm. The pointcloud is geo-referenced using the ground control points and a photo-texturing process is used to
create 3D topographic maps and high-resolution geo-mosaics.
doi:10.1371/journal.pone.0073550.g004

Table 2. Overview of software implementations used within the processing procedure.

Task Software Used

Raw image conversion DCRAW (http://www.cybercom.net/,dcoffin/dcraw/)

SIFT Feature Extraction vlfeat (http://www.vlfeat.org/)

Feature Matching Customised multi-core implementation using [46] and ANN (http://www.cs.umd.edu/,mount/
ANN/)

Structure-from-motion, Bundle Adjustment Bundler (http://www.cs.cornell.edu/,snavely/bundler/)

Multi-view Stereo Triangulation PMVS2 (http://www.di.ens.fr/pmvs/)

GCP Geo-registration Customised implementation using [49]

Photo-textured Terrain Modelling and Mosaicing Custom implementation, software and code available: (Structured: https://github.com/mattjr/
structured)

doi:10.1371/journal.pone.0073550.t002
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Structure-from-motion and Pointcloud Reconstruction
A structure-from-motion/bundle adjustment software package

[47] was then used to incrementally construct a 3D point feature

map corresponding to the matched image feature points while

simultaneously estimating camera poses and the intrinsic and

extrinsic parameters for the camera. The method used was able to

build a complete, scale-less 3D reconstruction (but with unknown

global orientation and position) by using only the image data. The

method employed a simplified model of the camera extrinsics

(including focal length and lens distortion), the parameters of

which were estimated from the image data and matched features

themselves (as opposed to use of a pre-calibrated or metric

camera). A multi-view stereo reconstruction algorithm [48] based

on the correlation score of dense patches in the overlapping images

was then used to produce a dense 3D point-cloud corresponding to

a higher spatial resolution than by using SIFT features alone. This

algorithm used the relative camera poses estimated during bundle

adjustment to triangulate dense image features and robustly

remove outliers from the terrain point cloud. The resulting 3D

pointcloud had a spatial density that depended on the level of

texture in the environment and was usually within a small factor of

the image pixel size (i.e. approximately one 3D feature for every 5-

by-5 pixel patch on average).

Ground Control Point Geo-registration
The ground control points that had been placed into the

environment were identified in the pointcloud reconstruction and

used in two ways to recover the scale, position and orientation of

the final reconstruction. Firstly, the hand-measured triangle edge

lengths were used to compute the absolute scale of the 3D

reconstruction (i.e. the size of the model in the world) by

comparing to the edge lengths of the triads of control points

identified in the pointcloud reconstruction. Secondly, the GPS

measured coordinates were used via Horn’s method [49] to

compute a transformation consisting of a translation and

orientation that moved the scaled 3D model from arbitrary

Table 3. Comparison of the number of matching image pairs and average feature matches per image for colour-to-colour, colour-
to-near-infrared and near-infrared-to-near-infrared image pairs.

colour to colour colour to near-infrared near-infrared to near-infrared

Number of matching image pairs 4454 3063 2630

Average number of matching features per pair 854.6 188.2 1106.2

doi:10.1371/journal.pone.0073550.t003

Figure 5. Example of extracted and matched SIFT image feature data. Shown are two overlapping images (image 1 and image 2) with
annotated positions of SIFT features that have been matched between the two images (blue) and lines displaying the computed correspondence
between points (green) (only every hundredth correspondence shown for clarity). Also shown are detailed sections of each image illustrating the
feature points.
doi:10.1371/journal.pone.0073550.g005
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reconstruction coordinates into a geo-referenced coordinate

system (i.e. latitude, longitude and altitude). Because of the low

global accuracy of the GPS measured coordinates, the ground

control points were not directly integrated into the structure-from-

motion process.

The two different steps allowed for different information (with

different levels of accuracy) to be used to compute the scale of the

model and the position/orientation of the model. The scale of the

landscape model was recovered accurately (owing the precision of

the hand measured edge lengths) whereas the global position of the

model (i.e. the absolution latitude, longitude and altitude of the

model) was recovered with less accuracy (owing to the precision of

the GPS measurements themselves). This distinction in the types of

accuracy is important; often the local accuracy of the map (i.e. the

error in the relative position of two objects in different parts of the

map) is important, whereas the global accuracy of the map (i.e. the

error in the absolution latitude, longitude and altitude of a given

point) is of less importance. The same methods applied in our

work could be used with higher-accuracy GPS ground control

point measurements to achieve both high local and global

accuracy in the map, but at the cost of requiring more expensive

equipment.

In order to improve on the vertical accuracy of the model

(owing to the poor vertical resolution of the GPS), the vertical

elevation of the reconstruction was adjusted by manually

extracting an outline of the water line visible in the point cloud

and setting this to the known tidal datum height around the time

the images were captured.

Photo-textured Terrain Model and Mosaicing
A triangulated terrain surface model was constructed from the

3D geo-referenced pointcloud using Delaunay triangulation [50].

For each face of the surface, the estimated camera poses were used

to compute which images had seen the face both from the colour

and near-infrared images. The images were grouped into two lists,

one composed of colour images and one of near-infrared images.

For each list, images were ranked based on the distance between

the centerpoint of the face in the environment and the camera

position from which the image was taken (and thus image

resolution at this point). The best four images (those with

minimum distance) from each list were then assigned to the face

and the 3D coordinates of the face were projected into the 2D

coordinates of each image. Using the projected coordinates, a

colour value was assigned to each pixel in the final texture using a

weighted averaging of these four source images according to the

algorithm in [51]. The process was repeated for every face in the

model to produce two sets of photographic textures, one

corresponding to colour imagery and one corresponding to near-

infrared imagery on the surface. The view selection and band-

limited-blending of [51] allowed for only the best images of a given

surface to be used in the final model, providing redundancy

against images taken from poor angles.

The resulting 3D photo-textured model was visualized using a

level-of-detail rendering system [51] to capture sub-centimeter

details over the entire span of the map. Additionally orthographic

projections of the model (imaged from directly above) were re-

rendered in separate colour and near-infrared bands to produce

2D photomosaics of the entire area that were exported to a geotiff

format.

Spatial and Normalised Difference Vegetation Index
(NDVI) Mosaics

In addition to imagery mosaics, maps of various spatial

properties including terrain elevation, slope and aspect were

generated from the 3D terrain model. Slope and aspect were

computed for each triangular face in the terrain model based on

the normal vector of the face n~½x,y,z�T (where x, y and z are the

north, east and down components of the normal) using Equations

1 and 2:

slope~ cos{1 ½0,0,1�T :n
� �

ð1Þ

aspect~ tan{1 y

x

� �
ð2Þ

The colour and near-infrared imagery layers were also used to

compute the Normalised Difference Vegetation Index (NDVI) at

each spatial point using a combination of the red and near-

infrared (NIR) channels of the imagery:

NDVI~
NIR{red

NIRzred
ð3Þ

Data was taken from the raw imagery collected from each camera

after a custom white balance procedure was applied to each

channel. The procedure used images captured from each camera

of a white Spectralon target under the same lighting conditions in

which the imagery was collected using the kite. Using the

measurements of the Spectralon target, for each camera a white

balance gain was applied to each of the red and near-infrared

channels that normalised the outputs to the ratio between the

exposure times of each camera. The resulting white-balanced

channels were then used to calculate the NDVI using Equation 3.

This version of NDVI is closely related to the microphytobenthos

index described in [21] that used precise ratios of red and near-

infrared reflectance from a spectroradiometer at wavelengths of

635 and 750 nm and was found to have a linear relationship to

surface algae chlorophyll concentration. In our work, the red and

near-infrared channels provided by the imagery had slightly

different peak response values (606 and 740 nm respectively, see

Table 1) and also collected light over a wider band of wavelengths

(i.e. Figure 3 (a)).

Results and Discussion

Spatial Mapping Results
Figure 6 illustrates the final photo-mosaic of the intertidal rocky

shore for the colour and near-infrared photomosaic layers. The

coverage achieved in each map corresponds to the locations where

points on the ground were observed in at least two different

camera images (and thus could be reconstructed using the

structure-from-motion techniques discussed above). Coverage in

the colour and near-infrared mosaics was slightly different owing

to the fact that some parts of the terrain were observed only by a

single type of camera. The final spatial resolution of the mosaic

was 5 mm per pixel on average, with slight variations owing to

variations in the flying height of the kite and the perspective from

which images were captured. The detailed sections (shown in

Figure 6 (c) and (d)) illustrate a division along the shoreline

between the upper tidal zone, populated largely by bare rock with

various grazing gastropods such as limpets and other sessile

organisms such as barnacles and the mid-tidal zone populated

largely by a patchwork of macroalgae and cunjevoi.

Figures 7 and 8 show the elevation, slope and aspect maps

derived from the 3D terrain surface map. The final 3D terrain

Kite Aerial Mapping of Intertidal Landscapes
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map displayed an average 3D topographic ground sampling

distance of 2.5 cm. The fine-scale structure of rock pools and

crevasses is visible from the maps. Figure 9 illustrates a

visualisation of the final photo-textured 3D model with various

views from large-scale to fine-scale. The level-of-detail visualisation

system allowed for different model scales to be visualised in a

single, continuous terrain model. The highest level of detail

information provided detailed structural information on individual

rock crevasses with imagery information indicating the presence of

different macroalgae coverage and assemblages of barnacles and

limpets.

Validation of Spatial Accuracy
The residual error between the measured ground control point

locations and the computed ground control point locations

produced in the final maps was used as a proxy for the estimated

spatial accuracy of the 3D reconstruction and photomosaics. Two

different types of spatial accuracy were assessed in the maps: global

accuracy (i.e. absolute position of the entire map in geo-referenced

coordinates) and local/relative accuracy (i.e. the accuracy in the

reconstructed relative position of two different points on the map).

The expected global accuracy was assessed using the residual

errors between the GPS-measured ground control point locations

and the identified ground control point locations produced in the

final maps. The local/relative accuracy was assessed using the

residual error between the hand-measured ground control point

triangle edge lengths and the edge lengths extracted from the 3D

reconstructed maps. The resulting averages of the residual errors

are shown in Table 4. In both cases, the residual error was in the

order of the errors associated with the external measurements

themselves (i.e. GPS-based residual errors of 1.016 m compared to

the accuracy of the handheld GPS, which was reported by the

GPS receiver as being 62 m and the triangle edge length residual

of 0.039 m compared to the expected precision of the hand made

tape measurements, which was on the order of a few centimeters).

In comparison to other studies using kite aerial photography,

position errors of 0.02–0.14 cm were reported in [32], capturing

images at a height of approximately 15 m and errors of 0.02–

0.06 m in [33] capturing images at a height of approximately

50 m. In both of these studies, ground control points were

positioned using a total-station survey and survey-grade GPS with

an accuracy of 1 cm. Errors of 0.025–0.04 m were reported in

[38] in aero-triangulated points computed using images from a

UAV flying at approximately 50 m altitude. In this study, ground

control points were measured using a Real Time Kinematic

(RTK) Differential GPS system with a reported accuracy of

approximately 1–4 cm. All of these studies report accuracies with

respect to a geo-referenced coordinate system (i.e. global

accuracies). The local/relative accuracy results reported in our

work are comparable to the global accuracies of other studies,

however the global accuracy of our approach is much lower (i.e.

approximately 1 m compared to cm-level accuracy). This is a

fundamental limitation of using low-grade (and thus inexpensive)

GPS for surveying ground control points. The methods used in

this paper are still applicable when survey-grade GPS measure-

ments of ground control points are available; further analysis of

Figure 6. Colour and near-infrared photomosaic layers of the intertidal rocky shore reconstruction at Greenfields Beach. (a) Colour
mosaic and (b) near-infrared mosaic for the whole shoreline. (c) and (d) show a detailed section of the colour and near-infrared mosaics illustrating
the different scales achieved across the entire map.
doi:10.1371/journal.pone.0073550.g006
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local vs. global accuracy when using these type of measurements is

left to future work.

Normalised Difference Vegetation Index (NDVI) Mapping
Results

Figure 10 shows the NDVI photomosaic layer computed from

the custom white-balanced colour and near-infrared imagery using

Equation 3. A comparison between the NDVI layer and the colour

imagery layer (seen in Figures 10 (b) and (c)) of the shoreline

illustrates the division between largely dry rock and an exposed

mat of macroalgae and tunicates (cunjevoi). The presence of live

micro- and macroalgae have been shown to correspond to NDVI

values of 0.3 and 0.7 [21], bare ground and rock corresponding to

values of approximately zero and water corresponding to values

approaching 21.0. The NDVI mosaic allows for the inference of

fine-scale spatial patterns of macro-algae to be identified from the

imagery, for example within rock pools and crevasses along the

upper intertidal zone.

Validation of Spectral Accuracy
The ability of the reconstruction algorithms and consumer-

grade camera images to reproduce accurate colour and NDVI in

the mosaic maps was assessed by comparing the reconstructed

textures in the maps to the ground control reference spectra that

were collected by handheld spectroradiometer. The measured

spectra were multiplied through the computed spectral response

function of each of the red, green, blue and near-infrared camera

channels and integrated to produce and expected red, green, blue

and near-infrared responses, from which a predicted NDVI value

was computed for each of the dominant intertidal coverage types.

These values were then compared to the measured NDVI mosaics

by examining 167 manually extracted 15-by-15 pixel patches

corresponding to the dominant coverage types measured in

Figure 3 (b).

Figure 11 illustrates detailed views of the colour mosaic imagery

showing examples of some of the dominant surface coverage types

that were used in the comparison. Figure 12 illustrates the

comparison for six different coverage types with error bars

illustrating the variation in the manually extracted measurements.

Overall there was a good correspondence between the measured

and predicted NDVI values, with a large and obvious division

between the macroalgae coverage types (with high NDVI) and the

non-algal dominated surfaces (with NDVI close to zero). The ‘wet

rock’ coverage type, displayed a difference between the predicted

and measured NDVI outside of the error bars of the different

measured samples. This was thought to be due to variations in the

Figure 7. Elevation, slope and aspect data derived from the 3D topographic reconstruction. (a) Elevation above maximum low tide (b)
slope of the terrain and (c) aspect of the terrain.
doi:10.1371/journal.pone.0073550.g007
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microalgal coverage on different wet rock surfaces in the intertidal

zone that were not observable by eye during field sample collection

and resulted in inaccuracies in the collected data.

Online Data Availability
Results from the paper including mosaic geotiff files are

available for download from: http://www-personal.acfr.usyd.

edu.au/m.bryson/bryson_etal_2013.html.

Discussion

Potential Uses in Intertidal Ecology
The results presented here demonstrate the ability of our

technique for collecting relevant spatial variables (i.e. elevation,

slope, aspect) and spectral variables (such as NDVI) at fine spatial

scales and over a broad area in the intertidal environment. The

spatial variables are potentially useful for computing water

emersion times, habitat structural complexity and seasonal sun

exposure at different positions along the shoreline, while spectral

indices such as NDVI are potentially useful for evaluating algal

biomass. Similar variables have been used as part of studies into

body size and abundance of invertebrates on rocky shores [2,5],

variations in microalgal biomass versus surface light availability on

soft intertidal sediments [52], spatial distributions of intertidal

macrobenthos versus food availability and sediment size [19] and

for quantitating fractional macroalgae coverage [18]. Our low-cost

method allows for collections of relevant spatial and spectral data

across a cascade of fine-spatial scales, in a non-destructive manner,

while preserving a permanent electronic record that can be used

for comparison against repeated surveys, and thus could be an

extremely useful tool within these type of studies.

Traditional remote sensing methods or field-based spectroscopy

typically utilise high-spectral resolution measurements to identify

and classify different plant (i.e. micro- and macroalgae) and animal

(i.e. gastropods and other sessile fauna) species. Unlike these

methods, the imagery provided by our technique is able to capture

fine-scale details in the structure, texture and pattern in the

imagery (see for example Figure 11), owing to the high-spatial

Figure 8. Detailed views of elevation and slope data derived from the 3D topographic reconstruction. (a) Elevation above maximum
low tide and (b) slope of the terrain.
doi:10.1371/journal.pone.0073550.g008
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resolution, which could be used instead to automatically classify

objects in the intertidal zone through the use of methods in semi-

supervised machine learning and object-based image analysis [53].

For example, the colour and spectra information of cunjevoi or

algae such as Homosira produce a uniquely identifiable texture and

pattern in high-resolution imagery, owing to their physical

structures, that could be used as classification features that would

not be detected via traditional, lower-resolution remote sensing

methods.

Potential Uses in Monitoring and Environmental Impact
Assessment

To reliably detect human and environmental impacts on plant

and animal populations it is necessary to sample populations at

several times and at appropriate spatial resolutions before and

after an impact (see [10]). Often, it is not possible to do this either

for logistical or cost constraints, thus reducing the reliability of the

detection of change. Our method provides the potential for

distinguishing natural changes such as seasonality from human

impacts such as construction, pollution or climate change in

intertidal environments in a statistically robust way; the low-cost

and logistical simplicity of our data collection procedure lends itself

to frequent data collection, and by collecting data at fine-scales

over broad areas and with full coverage of the landscape,

potentially allows for precise spatial registration of data collected

over multiple surveys.

Application to Studying Intertidal Mudflats
The method presented here is not limited to rocky intertidal

substrata but could also be used for various applications on

Figure 9. 3D photo-textured rocky shore reconstruction. (a) 3D oblique view of the shoreline, (b) and (c) Detailed oblique views of rock
platform section from different viewing angles. The level-of-detail visualisation system allows for different model scales to be visualised in a single,
continuous terrain model.
doi:10.1371/journal.pone.0073550.g009

Table 4. Measures of both global and local-scale (fine-scale) spatial map errors from Ground Control Point (GCP) residual errors.

Average GCP Residual (Global-scale Error) Average GCP Triangle Edge-length Residual (Local-scale Error)

1.016 m 0.039 m

doi:10.1371/journal.pone.0073550.t004
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intertidal mud flats. Conditions on intertidal mud flats can change

over an interval of a few minutes - large changes in sediment

properties can occur including dewatering of the sediment and the

migration of microphytobenthos to the surface [54]. These

changes can have significant impacts upon sediment stability over

the course of a single tidal cycle. Due the dynamic nature of

intertidal mudflats combined with the relatively slow pace of

conventional field sampling make it impossible to make measure-

ments of sediment properties across space that are truly

independent of changes in time. Our method, by enabling large

Figure 10. Normalised Difference Vegetation Index (NDVI) maps derived from raw colour and near-infrared imagery. (a) NDVI map
for entire shoreline, (b) detailed view of NDVI and (c) corresponding colour imagery of detailed section.
doi:10.1371/journal.pone.0073550.g010

Figure 11. Example mosaic imagery highlighting some of the dominant surface types compared in this study.
doi:10.1371/journal.pone.0073550.g011
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amounts of data to be acquired in a snapshot of time, at specific

times in the tidal cycle, enables independent measurements to be

made. Applications include the determination of impacts of

structures on sediment properties or the effects of spillage of

contaminants e.g. algicides, pesticides or fertiliser [55] on

phytobenthos.

Conclusions and Future Work

In this paper, we have described a photogrammetric/mapping

procedure that was developed for constructing high-resolution,

3D, photo-textured terrain models of intertidal areas using

multiple low-altitude images collected from a consumer-grade

digital camera suspended by a kite platform. Dynamic intertidal

ecosystems by their nature can change rapidly at the scale of

minutes to years making it almost impossible to acquire data that

describe changes that occur spatially independently of temporal

changes using field-based sampling. The methods presented

acquire colour and topographic information across a hierarchy

of spatial scales in a very small time interval, enabling changes in

spatial distributions of assemblages to be determined indepen-

dently of temporal changes, and at resolutions not achievable by

traditional remote sensing platforms (such as satellites and

manned-aircraft).

Ongoing and future work is focusing on three main areas. The

first area is to develop methods for registering map data collected

across multiple surveys. In some cases, the visual features (i.e.

SIFT) used to register images within a survey will be suitable for

this process, however the stability of these features is known to

diminish when the time between images increases owing to small-

scale changes in the imaged surface. Instead, current work is

focussing on using robust means for multi-survey registration

commonly used in remote sensing and medical imaging, such as

mutual information [56,57], to align multi-temporal datasets. The

second area of future work involves the investigation of object

based image analysis and machine learning algorithms for semi-

supervised classification of dominant coverage types, such as

different macroalgae, in the intertidal zone. This type of

automated analysis could complement the mapping and recon-

struction algorithms presented in this paper, providing useful

information for ecologists and marine park managers without the

need for laborious manual interpretation of the large quantity of

image data. The third area of future work is focussing on using

tethered kites and balloons as a potential platform for carrying

low-cost, hyperspectral imagers or spectroradiometers to provide

higher spectral resolution information than provided by the

consumer-grade cameras presented in this study. Accurate

spectroradiometers are becoming more accessible as technology

improves, and the combination of high resolution photography

and single-point spectroradiometer measurements, via cross-sensor

calibration and the use of the photogrammetry techniques

discussed in this paper, could provide a means to producing

spatially-registered, airborne hyperspectral maps, at a lower-cost

than via manned aircraft imaging systems.
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