
Building pipelines
Common patterns
& best practice

Updated 26 February 2024

support@quantemplate.com
help.quantemplate.com

mailto:Support@quantemplate.com
https://help.quantemplate.com/index

Stage and operation naming.. 3

Stage naming.. 3

Operation naming..3

Group similar operations, minimise number of stages..4

Importing files.. 5

Map to an interim schema.. 7

What is an interim schema?.. 7

Use it as early as possible in the pipeline... 7

Deploying an interim schema in a pipeline..7

Using existing mappings... 7

Bringing in a new file... 7

Updating a master schema... 8

Copying a master schema...8

Adding original row number... 9

Populating fields with default values... 10

Basic text and number cleansing...12

Trim and Change Case.. 12

Strip out non-alphanumeric characters...12

Combine Initials...13

Remove accented characters..13

Add leading zeros before a number.. 14

Cleanse and split names of people... 14

Dates...18

Extract a date from a filename.. 18

Joins..20

Preparing join points..20

Validating joins...20

Validation and amendment... 21

Validating against a Reference Dataset...21

Correct invalid values by fuzzy matching to a reference table..22

Aggregating (pivoting)...23

Transposing columns into rows... 24

Preparing Outputs... 27

Output column headers...27

Output rounding.. 27

Simplify the number of outputs... 27

Performance optimisation.. 28

Automap Values...28

Aggregate.. 28

One-to-many joins...28

Partition... 28

Generating outputs..28

Productivity tips... 29

Bulk Copy-paste Calculations or Validations.. 29

Test operation output without running the whole pipeline...29
Quickly previewing values without running the pipeline..29

Updating Reference datasets..29

Filters keyboard shortcut...29

2

Stage and operation naming

Stage naming

Stages are easier to understand when similar operations are grouped into logical sections.
Stage names should reflect the operations being performed within them. This makes it
easier for other members of your team to quickly identify critical functions of the pipeline.
Compare the two examples below:

Bad Example Good Example

It is also helpful to clearly identify outputs that will be downloaded (Stage 11 below),
published to the data repository (Stage 12), or reviewed without publishing or downloading
(Stage 13).

Operation naming
Like stages, operations should have names and descriptions that make it easy to tell what
they are doing, and if possible, any columns being created as the result. This makes it easier
to review the pipeline.

3

Both column names and operations do not need to have technical names, which can create
confusion (e.g. CL_ID vs. Claim ID). Clear, easy to understand column and operation names
eliminate confusion about the function being performed or what value the column represents.

Bad Example Good Example

Group similar operations, minimise number of stages

Group similar operations together within a stage, to make it easier to review how values are
being manipulated or determine where they are being created.

Try to keep the number of stages to a minimum – in a complex pipeline, it's better to have
fear stages to click into to reveal operations inside.

4

Importing files
This is the standard pattern for importing, then processing files.

Stage 1: Import, Map and Cleanse
1. Transform to a single-header table
2. Map headers to an interim schema
3. Append filename, basic cleansing and validations

Stage 2: Union, to automate flow-through of new files

Stage 3: Calculations, etc.

Stage 1: Import, Map and Cleanse
Inputs: Uploaded bordereaux, ‘REF: Master Headers’ from data repo

1.Transform to a single-header table

Usually this requires two steps:
1. Remove rows with less than [3] columns: if there is data above or below the

main table, this operation will strip it out. The column filter function in Remove
Rows can also be included to strip out subtotals (e.g. remove rows where
column ‘unnamed’ contains ‘total’).

2. Detect headers: define the number of rows which will be used as headers,
combining double or multiple headers into a single header row.

Occasionally, there may be files which require additional steps:
● Multiple data grids placed next to each other on the same sheet:

Use Stack Grids in combination with Fill Down. Watch the tutorial.
● Tables need to be flattened or transposed:

Use Swing Down. See the Transposing data section below.

2. Map Headers to interim schema

Use Map Column Headers to map the incoming data to an interim schema. More
details in the Interim schema section below.

3. Append filename, basic cleansing and validations

● Date cleanse: converts dates to QT format.

5

https://help.quantemplate.com/remove-rows
https://help.quantemplate.com/detect-headers
https://help.quantemplate.com/stack-grids
https://help.quantemplate.com/fill-down
https://vimeo.com/654579307?embedded=true&source=video_title&owner=98008033
https://help.quantemplate.com/swing-down
https://help.quantemplate.com/working-with-dates

● Optional: Use Append metadata to add columns such as the input filename,
pipeline name, ID, run time, run number. These can be used to trace the source of
a row after the data has been unioned.

● Optional: Initial validation: apply data quality checks (columns are not blank, claim
values are not negative, inception date is after expiry date, etc).

Stage 2: Union, to automate flow-through of new files
Inputs: All Stage 1 outputs.

Set Linked Stages ON on the Stage 1 outputs. When new files are brought in to Stage 1
they will flow through to Stage 2 automatically.

The output ID from a Union Stage is immutable, so stages referencing it are not affected
by changes to the Union's input files. Using a Union early makes the pipeline faster to
Trace and more resilient to configuration changes.

6

https://help.quantemplate.com/append-metadata
https://help.quantemplate.com/validation-operation
https://help.quantemplate.com/stages#link-stages

Map to an interim schema

What is an interim schema?

An interim schema is a common schema (set of headers) which uses easy to understand
terminology and is independent of any specific input or output header names.

Use it as early as possible in the pipeline

Incoming bordereaux should be mapped to the interim schema as early as possible,
before any calculations, validations or cleansing steps are carried out. This means
changes to the incoming header names need only be dealt with once, in the mapping
stage, rather than in all downstream operations relying on that column name.

Likewise, at the end of the pipeline, the data can be mapped from the interim schema to
the output format(s). This means changes to the output header names need only be dealt
with once, in the mapping stage, rather than in all upstream operations relying on that
column name

Deploying an interim schema in a pipeline

To deploy an interim schema in a pipeline, store the headers as a dataset in the Data
Repo. The dataset should have zero rows, to avoid additional rows being injected into the
bordereaux data.

Add the reference headers dataset as a stage input and it will appear as a schema in the
Map Column Headers operation, where you can define a master from it.

Using existing mappings

If your organisation has a set of existing approved mappings, these can be used to seed
the Map Column Headers Automap function, so that approved mappings always have a
100% rating.

Bringing in a new file

When a new bordereau file is brought in, if the schema is identical to a previous input, the
mappings will be remembered. Note that it may take a few seconds for the new input to
trace through the pipeline and for the mappings to be applied.

7

https://help.quantemplate.com/map-columns#define-master

If there are variations in the schema, the mappings will need to be reapplied. Automap will
quickly reapply previously made mappings.

Updating a master schema

Updating the interim schema dataset will update it as an input in all pipelines it is used in.
However, it won’t automatically update the Master Schema in Map Column Headers.

To best way to update the Master Schema, depends on how big the update is:
● If it’s just one column name changing, that can be updated manually in the master

schema.
● If multiple columns are being added, then add them to master from the Master

Headers input, one-by-one.
● If many column names are changing, it may be best to use ‘Define a master from

this dataset’. This will copy over all items but may undo mappings that had
previously been made.

Copying a master schema

To copy a master schema from Map Column Headers:
1. View the output data from that stage.
2. Copy the data by clicking in the top left of data grid to select all items, then using

ctrl/cmd c.
3. Paste the items into a spreadsheet.
4. Remove all rows other than the headers.
5. Save the spreadsheet then upload to the data repo.

8

Adding original row number

Appending the uploaded files’ original row numbers can help when manually reviewing or
resolving validation errors. It’s often easier to say ‘there’s a missing expiry date in row 17’,
rather than ‘there’s a missing expiry date in policy number x, certificate number y,
transaction number z’. To append the original row number, add the following operations as
the first items in the first stage.

1. Row Number
This writes a column of row numbers

2. Remove Rows
Remove subtotals or metadata above the main data

3. Detect Headers
Disable the ‘Ignore inputs with named headers option’, since the Row Number
operation will introduce a named header.

4. Map Column Headers
Detect Headers has discarded the header for the Row Number column and replaced
it with the first row number remaining after Remove Rows. So, if there were no rows
removed above the data, the header would be called ‘1’. Map this to the name
‘Original Row Number’ in Map Column Headers.

9

Populating fields with default values

It’s often necessary to fill unpopulated columns with default values. There are a few ways
to do this:

1. Add fields in Calculate
Enter the column names as new fields and the desired value within the field.

a. If desired, an IF statement can be used to determine if the column is already
populated and return a default value if not.

b. The whole array can be copy-pasted to another Calculate operation in
another pipeline if desired.

c. Note that there are a maximum of 51 calculations in a single Calculate
operation.

2. Map Column Headers ‘populate’ function
a. If the column does not exist in the source data, this will add it and populate it

with a value. It can either populate all new blank columns at once with the
same value, or add different values to specific columns within a source input.

b. If a new source file is brought in, then populated values for that file will be
lost, so it needs to be done at a point in the pipeline with consistent inputs,
e.g. when mapping to an output schema.

3. Append If Missing operation
This operation adds and populates a single column. It’s useful where one column is
sometimes missing in a group of otherwise identical input files. Using Append If
Missing prior to map column headers means only one schema needs to be mapped
in.

4. Bring in the values from a reference dataset
One way to manage default values at scale is to have a central reference table with
all the default values for all the data producing parties, so ‘ABC-MGA’ would have
one row, ‘Acme-MGA’ another. The dataset can be centrally maintained, or
connected via API. It requires a couple of additional steps prior to the bordereaux
import stage, as follows:

Acme-MGA pipeline

Stage 1: Prep Defaults
Input: ‘REF: Defaults table’ (this should have same headers as interim
schema)

10

https://help.quantemplate.com/map-columns#populate-source

Remove Rows where ‘MGA name’ column does not equal "Acme-MGA"

Stage 2: Import and map BDX
Inputs: Monthly BDX spreadsheets, ‘REF: Master Headers’
Remove rows and detect headers and map to interim schema as normal

Stage 3: Union
Inputs: Stage 1 and Stage 2 Outputs
You will now have a single file, consistent with interim schema. Columns with
default values have the default value in the first row only.
If only one input file will be processed at once, then this Union stage can be
move to Stage 2. See Import pattern 2: single files above.

Stage 4: Fill Down and clean up
Inputs: Stage 3 Outputs
Fill Down the columns which have default values, to fill out the rest of the
column.
Use a Remove Rows to strip out the single row taken from the Default Values
file (e.g. Remove rows where ‘“Policy number” is empty’).

This approach works best when the default value columns are not present in the uploaded
bordereaux. If some of the columns are present, their values will be retained, though any
blanks in these columns will be filled down from the values above. Therefore, in this
situation the reference dataset for default values should be brought in using a join and the
values populated from the joined-in values using an IF statement in Calculate.

11

https://help.quantemplate.com/fill-down
https://help.quantemplate.com/join

Basic text and number cleansing

Trim and Change Case

Standardize text strings by using the functions UPPER, LOWER, or PROPER to set the
case, along with TRIM to eliminate any extra whitespace.

Strip out non-alphanumeric characters

Use the following regex:
[^\w\s\d]

12

https://help.quantemplate.com/functions-ref#upper
https://help.quantemplate.com/functions-ref#lower
https://help.quantemplate.com/functions-ref#proper
https://help.quantemplate.com/functions-ref#trim
https://help.quantemplate.com/extract-regex

Combine Initials

Useful in company name matching. Use the following regex:
\b(\S)\s+(?=\S\b)

Remove accented characters

Run a series of SUBSTITUTE operations in Calculate to replace accented characters with
a non-accented alternative. Contact support@quantemplate.com to have this set-up
pre-built and dropped into one of your pipelines.

13

https://help.quantemplate.com/extract-regex
https://help.quantemplate.com/functions-ref#substitute
mailto:support@quantemplate.com

Add leading zeros before a number

For example, format a ‘Row Number’ column from 1, 2, 3, 4 to 00001, 00002, 00003,
00004. Use the following formula in Calculate:

RIGHT(CONCATENATE("00000", 'Row Number'), 5)

Cleanse and split names of people

Scenario: you have names of people in a single column. The names need to be cleansed
to remove Mr, Mrs, etc and split into a two columns of Last Name and First Name.

Contact support@quantemplate.com to have a copy of these
steps placed into a pipeline in your organisation.

Input data:

● All in one column
● Various prefixes and suffixes
● Multi-word last names

Output data:

● Suffixes and prefixes removed
● Split into columns for first names and last name. The first names column also

includes any middle names submitted. The process could be adapted to split these
into a separate column if needed.

● Multi-word last names are split correctly

14

mailto:support@quantemplate.com

Let’s walk through the steps:

15

● Remove prefixes and suffixes Calculate operation performing a cleanse and prep:
○ Uppercase the names. This reduces the number of permutations required to

remove suffixes etc. You could keep it mixed case if required and add the
additional permutations:

UPPER('Name')

○ Remove dots from Mr. Jr. etc:

SUBSTITUTE('Name',".","")

○ Remove common prefixes and suffixes (Mr, Dr, Sr, III, etc):

IF(LEFT('Name',3)="MR " or LEFT('Name',3)="DR "or

LEFT('Name',3)="MS ", RIGHT('Name', LENGTH('Name')-3), 'Name')

16

https://help.quantemplate.com/calculate
https://help.quantemplate.com/calculate#upper

IF(LEFT('Name',4)="MRS ", RIGHT('Name',

LENGTH('Name')-4), 'Name')

○ Last names comprising multiple words separated by a space are typically
‘van’, ‘von der’, ‘de’, etc. To deal with them, we identify the types individually
and substitute the space with a ‘#’ character. This allows us to treat the last
name as a single word. The # is removed later:

SUBSTITUTE('Name',"VON DER ", "VON#DER#")

● Extract first names Using a Regex, taking first group

(.*) ([^]+)$

● Extract last name Using the same Regex, taking second group
● Clean up last name Calculate operation to remove the # character

SUBSTITUTE('Last name',"#"," ")

● Clean up columns Remove the unwanted ’name’ column using Map Column
Headers. This could be done as part of a more general column clean-up or mapping
to output schema later in the pipeline if you wished.

17

https://help.quantemplate.com/calculate#substitute
https://help.quantemplate.com/extract-regex
https://help.quantemplate.com/map-columns
https://help.quantemplate.com/map-columns

Dates

Quantemplate uses the Basic ISO date format yyyymmdd for all date calculations and
transformations.

Columns formatted as dates in Excel files (.xlsx, .xlsm, .xls) are automatically converted to
Basic ISO format on uploading to Quantemplate (these can then be checked in the Date
Cleanse operation). All other date formats, including dates from CSV file imports, need to
be converted using the Date Cleanse operation.

See Working with Dates for guidance on how to use and process dates in Quantemplate.

Extract a date from a filename

A common scenario is that an important date is contained within a filename or tab name of
an upload. This needs to be extracted and written to a column. Sometimes, the dates in
the filename are in multiple formats.

In the import stage (usually the first stage) configure these operations:

1. Append Metadata
Use the Append Metadata operation to add the Stage Input Name. This will write the
filename to a column

2. Date Cleanse (to extract dates from filenames)
Use the Date Cleanse operation to identify and extract dates within the filename
column. Because the operation is searching for a date within a string, a specific date
format should be specified – ‘Auto’ and ‘Auto US’ options won’t work in this use
case.

18

https://help.quantemplate.com/working-with-dates
https://help.quantemplate.com/append-metadata
https://help.quantemplate.com/date-cleanse
https://help.quantemplate.com/date-cleanse#input-format

If there are two or more date formats, perform the above operations, then:

3. In the Date Cleanse operation, add a new group for each date format. Write each
format to a different new column. Disable the validation report for this operation,
since we’d always expect some rows to not match the format and trigger a warning.

4. Calculate
Combine the two new date columns into a single using a conditional statement in
Calculate:
IF('Date full US'="",'Date short US','Date full US’)

5. Map Column Headers
Now perform your import stage Map Column Headers to map all the incoming files
to the interim schema. The additional columns created in the Date Cleanse above
can be dropped, along with the filename column if no longer needed.

6. Date Cleanse (general)
Perform a general Date Cleanse to check other incoming date columns, with
validation enabled. The new column of extracted dates should be added here. This
will report if a new date format is encountered in the filenames which results blanks
in this column.

19

https://help.quantemplate.com/date-cleanse#input-columns

Joins

Join points must be identical between datasets, including case and whitespace. When a
join “fails”, a blank value for that row is returned. If all join points fail, the column name will
appear but contain no values.

Preparing join points

To increase the likelihood of a match between datasets, it may be necessary to clean up
the join points using the basic text cleansing techniques.

Free form text values may also benefit from being standardized using Auto Map Values,
matching incoming data to a known good value that exists in the corresponding reference
table.

Joins cannot be performed on blank cells. Blank entries on the joined column should be set
to a value such as “N/A” in both the reference file and the pipeline.

In the join, configuring a new output to show “unmatched from left” or “unmatched from
right” will help troubleshoot each row that fails the join.

Validating joins

This method will add rows which have been missed from joins to the validation report.
1. Input: unmatched values from any joins
2. Append Metadata: Stage input name. This will help identify the join that has failed.
3. Map values: map the file name to an error code (e.g. to flag if the join to ‘REF: US

States’ fails, map the filename to "Unmatched State" and write the values to a new
column "Failed Reason"

4. Validation rules: Failed Reason != "Unmatched State" or Failed Reason !=
“Unmatched Line of Business”

20

https://help.quantemplate.com/about-automap-values

Validation and amendment

Validating against a Reference Dataset

Scenario: Confirm that every value in a column is using a value from a table of valid values,
e.g. validate a ‘policy_transaction_type’ column

● Use a Join stage to join to your reference table.
○ Set the source data as your left dataset, your ref data as your right dataset.
○ Use the 'policy_transaction_type' column in both the input data and the

reference data as the join point
○ Configure two outputs:

■ Output 1: Matched rows + Unmatched from left (this will return all the
values in the source data)

■ Output 2: Unmatched from left (this will return only the invalid rows
from the input data)

21

https://help.quantemplate.com/join

● You can additionally create an entry in the Validation Report to visualise the
proportion of failed rows:

○ In a subsequent Transform stage, take Output 1 from the Join as input.
○ Add a Validate operation and enter a validation condition to return a warning

or failure when 'policy_transaction_type’ column from the source data does
not match the ‘policy_transaction_type’ from the joined-in reference data.

○ The failed rows will be reported on in the Validation Report. You can view and
download them directly from there – this means you can dispense with Output
2 if desired.

Correct invalid values by fuzzy matching to a reference table

Invalid values identified by the process above can be corrected using fuzzy matching. This is
accomplished using Automap Values.

In this case you would:

● Create a Transform stage taking Output 2 from the Join (unmatched rows) as its
input.

● Insert a Map Values operation:
○ Select ’policy_transaction_type’ column as the ‘map from' value
○ In the ’Settings' column on the right:

■ select whether to write the values to a new column (recommended) or
to overwrite the existing column

■ Select a value to return when the value is unmapped, or leave it
unchanged.

○ Select ‘Automap’
■ Select the reference dataset by clicking on the ’Select reference

dataset’ text. Choose the reference dataset with the approved values,
then on the line below select the column from the reference data.

■ We recommend leaving the match strength at zero for your first run
and leaving waypointing deactivated. At this point you can try running
the pipeline and seeing what kind of results you are getting. A fuzzy
match will be performed against the ref dataset with the results
reported on in the Mapping Report. You can review these results,
adjust match strength accordingly to filter out weak matches, and
perform remappings.

● If desired, you can now join the cleansed values back into the main data. Note that
the Automap Values could equally be performed on Output 1 from the join (returning
a 100% match for the correct values). The advantage of this is that it simplifies the
pipeline by not requiring an additional step to join cleansed values back in. The
disadvantage is that Automap values may take longer to run if it is analysing every
row, rather than just the rows we know to be invalid.

22

https://help.quantemplate.com/validation-report
https://help.quantemplate.com/validation-operation
https://help.quantemplate.com/about-automap-values
https://help.quantemplate.com/about-automap-values
https://help.quantemplate.com/mapping-report

Aggregating (pivoting)

The Aggregate operation compresses rows with identical dimensions together. Similar to
Joins, Aggregate Dimensions are case and whitespace sensitive. Dimensions should be
standardised with Basic text cleansing techniques to ensure proper roll-up.

The Aggregate operation has a built-in validation tool to check that dimensions have
correctly aggregated. The ‘key’ value automatically generates a validation failure and
highlights rows that are not rolling up as expected. More information.

23

https://help.quantemplate.com/aggregate
https://help.quantemplate.com/aggregate#aggregate-validation

Transposing columns into rows

Example
The input file presents coverage types as columns, so there is one row per policy number
and two columns for every coverage type coverage columns, since premium and
commission is stated for each coverage type.

Input

Policy ID Corporate
Property
Premium

Retail Property
Premium

Corporate
Property
Commission

Retail Property
Commission

P-123 5000 1000 500 50

The desired output table presents coverage codes as rows with a premium and
commission value for each.

Output

Policy ID COVERAGE_ID Premium Commission

P-123 CORP_PROP 5000 500

P-123 RET_PROP 500 50

24

Method

1. Map the Coverage header names to coverage codes, appended with ‘PREM’ or
‘COMM’.

2. Swing down all the Coverage columns in one operation:
a. Swing Down columns ‘CORP_PROP PREM’ ‘CORP_PROP COMM’, etc.

Output column name ‘COVERAGE_ID.
b. Value column: ‘Value’

3. Premium and Commission values are now all in one column, so split out into
separate columns using a pair of IF statements in Calculate. Optionally, an additional
pair of IF statements can replace blanks with zero in the Premium and commission
columns

25

https://help.quantemplate.com/swing-down

4. Clean up the coverage names to remove the ‘PREM’ or ‘COMM’ suffix (and
whitespace!)

5. Aggregate back up to remove the duplicated rows.

26

Preparing Outputs

Output column headers

If full granularity is required, map to output column headers using Map Column Headers.
If summary or aggregated values are required, use Aggregate

Output rounding

Calculated values are sometimes returned to many decimal places, eg:
‘12345.3300000001’
The Round function in Calculate can tidy these to the desired decimal places, if required
by the downstream system, This should be done at the end of the process to preserve
accuracy.

Trying to round values in columns with mixed text and numbers may result in a ‘NaN’ for
the text strings. This can be solved by using an IF and ISNUMBER

Example

Values in the column ‘Value’ need to be rounded, but the column contains text strings.
Create a column in Calculate called ‘Value’
IF(ISNUMBER('Value'),ROUND('Value',2),'Value')

Simplify the number of outputs

Once the output is formatted run it into a Union stage to rename the output, e.g.
‘Modelling Output’

Disable outputs from all other stages so they do not appear in the outputs view. This will
also speed up the pipeline run, since these outputs do not have to be created.

Once the outputs have been created by the pipeline they can be exported to the data
repo.

27

https://help.quantemplate.com/calculate#round
https://help.quantemplate.com/stages#stage-outputs

Performance optimisation
The most performance-intensive operations are Automap Values and Aggregate.

Automap Values

● Use only once per stage. If you need to use multiple Automap Values operations, put
them in individual stages.

● Reduce the number of potential matches by using context columns or segmenting
the volume of data going in (e.g. GWP >$Xm)

Aggregate

Only use for Aggregation, don’t use to simply rename or subset columns.

The following operations can explode data sizes:

One-to-many joins

A one-to-many join occurs when the items in one dataset are matched multiple times in the
other dataset, creating a row for every permutation.

Consider if the full set of exploded values is required. Could the same result be achieved by
joining to a simple lookup table? See Company Nmae Matching solution deep dive video,
23:50 onwards.

Partition

Creates a table for each value in the partition column, so use with care. Limited to 5000
tables.

Generating outputs

Disable outputs from all other stages so they do not appear in the outputs view. This will
speed up the pipeline run, since these outputs do not have to be created.

28

https://help.quantemplate.com/about-automap-values
https://help.quantemplate.com/aggregate
https://help.quantemplate.com/about-automap-values#context-columns
https://vimeo.com/560513878#t=1430s
https://help.quantemplate.com/stages#stage-outputs

Productivity tips

Bulk Copy-paste Calculations or Validations

Calculated columns can be copied and pasted all at once to another Calculate operation.
Validation rules can be copied and pasted all at once to another Validate operation.

To copy: open a Calculate or Validate operation and with no fields selected click ctrl+c (Win)
or cmd+c (Mac).

To paste: open a Calculate or Validate operation and click ctrl+v (Win) or cmd+v (Mac). This
will add the copied columns below any existing columns.

Test operation output without running the whole pipeline

If you’ve built a long pipeline, or have a lot of data, it can take a few minutes to run. If you’re
adding stages to the end of this pipeline, you probably just want to test the effect of
changes to this stage without running the whole pipeline.

To do this, export the output from the previous stage to the Data Repo. Bring this output
into a new pipeline and construct the new stage in there, allowing you to rapidly test
changes to your configuration. When you’re done, copy the configuration back into the
main pipeline.

Quickly previewing values without running the pipeline

A helpful trick to identifying how a value progresses without executing a pipeline is to add a
Map Values operation in various stages of the pipeline. On larger datasets, Map Values may
take a few moments to parse all possible values.

Updating Reference datasets

To refresh a reference dataset with new data, drag and drop the new data into the preview of
the dataset.

If a reference dataset name is updated, the file name will update automatically across the
system, wherever it is used.

Filters keyboard shortcut

Whenever a filterable data grid is shown, press ‘F’ to toggle between hiding and showing the
filter bar.

29

30

