Calculating transition amplitudes by variational quantum eigensolvers

C71.00241 : Implementation of excited state energy and its analytical derivatives for photochemical reaction simulations on NISQ devices

Yohei Ibe¹, Yuya O. Nakagawa¹, Takahiro Yamamoto¹, Kosuke Mitarai^{2, 1}, Tennin Yan¹, Qi Gao³, Takao Kobayashi³ ¹QunaSys Inc., ²Osaka University, ³Mitsubishi Chemical Corp.

(QunaSys Inc. and Mitsubishi Chemical Corp. are collaborators.)

 Simulating excited states of molecules is of great concern in photophysics & photochemistry, and there are several methods based on a quantum algorithm, Variational Quantum Eigensolver (VQE)

- ✓ Among them, VQD method is remarkably accurate; however, there are no methods to calculate transition amplitudes (i.e., off-diagonal matrix elements) between eigenstates obtained by the VQD
- We propose such a method feasible on NISQ devices and demonstrate on a sampling simulator \checkmark

1. Methods for excited states based on VQE

MCVQE

3. Calculating transition amplitudes

SSVQE

MCVQE

VQD

 $A = \sum a_i P_i$: physical quantity (Hermitian op.), where $P_i \in \{I, X, Y, Z\}^{\otimes n}, a_i \in \mathbb{R}$.

Yes

No Yes (This work)

Subspace-Search VQE

SSVQE

Summary

K. Nakanishi et al, Phys. Rev. Research 1, 033062 (2019)

Multistate-Contracted VQE R. Parrish et al, Phys. Rev. Lett. **122**, 230401 (2019)

- O. Higgott *et al*, Quantum **3**, 159 (2019)
 - Obtain ground state $|E_0\rangle$ with VQE

Variational Quantum Deflation

- Execute VQE routine to minimize $\mathcal{L}_{1}(\theta) = \langle \psi(\theta) | H | \psi(\theta) \rangle + w_{1} | \langle \mathcal{E}_{0} | \psi(\theta) \rangle |^{2}$ \rightarrow Obtain first excited state $|E_1\rangle = |\psi(\theta_1^*)\rangle$
- Repeat for higher excited states

finally diagonalize on classical computer

Using RSP ansatz (D=10, see Appendix)

Following equality holds for transition amplitude $|\langle \psi_1 | A | \psi_2 \rangle|^2$: Assuming $\langle \psi_1 | \psi_2
angle = 0$ $\left|\left\langle\psi_{1}|A|\psi_{2}\right\rangle\right|^{2} = \sum a_{i}^{2} \left|\left\langle\psi_{1}|P_{i}|\psi_{2}\right\rangle\right|^{2}$ Unitary operators $U_{ij,\pm} = \frac{1}{\sqrt{2}} (I \pm iP_i) \frac{1}{\sqrt{2}} (I \pm iP_j)$ Unable to measure as it is (A is not unitary) $+\sum_{i}a_{i}a_{j}\left[2\left|\langle\psi_{1}|U_{ij,+}|\psi_{2}\rangle\right|^{2}+2\left|\langle\psi_{1}|U_{ij,-}|\psi_{2}\rangle\right|^{2}\right]$

$$- |\langle \psi_1 | P_i | \psi_2 \rangle|^2 - |\langle \psi_1 | P_j | \psi_2 \rangle|^2 - |\langle \psi_1 | P_i P_j | \psi_2 \rangle|^2 \Big]$$

Intermediate

Excellent

Each term can be measured on real devices

Enables calculation of transition amplitudes with VQD

2. Comparison of methods by noiseless simulation

neasure

4. Sampling simulation with shot noise

<u>Diazene</u> (N_2H_2)

Calculation setups

- Molecular structures: several points along minimum energy
- Definition of oscillator strength f_{ij} $f_{ij} = \frac{2}{3} (E(\psi_j) - E(\psi_i)) \sum_{i=1}^{n} |\langle \psi_j | R_\alpha | \psi_i \rangle|^2$ $\alpha = x, y, z$ where

Calculation setups

- Calculation level: 6-31G*/CASCI(2e, 2o), 2 qubits (parity mapping is used to reduce the number of qubits) J. T. Seeley *et al.*, J. Chem. Phys. **137**, 224109 (2012)
- Ansatz: RY ansatz (D=2)
- Two options for optimization routine for this experiment

Blue dots : use sampling simulator in the whole process (including optimization routine) Orange dots: use sampling simulator only for calculating oscillator strengths (parameters are optimized with noiseless simulator), still using our proposed method

5. Conclusion

- VQD is an accurate way to simulate excited states on a quantum computer
- We proposed a method to calculate transition amplitudes between two orthogonal states in a hardware-friendly manner, which is applicable (not only) for the VQD
- This work enlarges the possibility of the VQD and advances the \checkmark field of excited states calculations on a quantum device

- path between S2 Franck-Condon (cis/trans) & S2 minimum
- Calculation level: 6-31G*/CASCI(6e, 4o), 8 qubits
- Ansatz: RSP ansatz (D=20, see Appendix)
- High-speed simulator Qulacs [http://qulacs.org/] is used
- $R_{\alpha} = \sum_{l=1}^{N} r_{l,\alpha}$: electric dipole moment operator in atomic units
 - : α -coordinate of the *l*-th electron

For results on azobenzene, see our paper on arXiv!

 $r_{l,\alpha}$

- VQD can generate excited states the most accurately
- SSVQE and MCVQE can readily calculate transition amplitudes
- However, VQD has no known methods to calculate transition amplitudes on real NISQ devices $\langle \psi_i | A | \psi_j \rangle |^2$
- **Transition amplitudes** are required for calculating \checkmark (A: Hermitian op.) various physical quantities (e.g., oscillator strengths)

Appendix: Comparison of ansatz

A. Kandala *et al.*, Nature **549**, 242 (2017)

R [Å]

Basis set: STO-30

of qubits: 12

depth D = 8

---- T1_fci

S0_fci

qc energy

qc energy

qc energy

qc_energy_1

qc_energy_0

-7.0-

Energy [Ha] -2.2-Energy -2.4--2.4--2.6-

-7.8 -

-7.0

Energy [Ha] -2.2 -Energy [Ha]

-7.8

A. Peruzzo et al., Nat. Comm., 5,4213 (2014)

T1_fci

S0_fci

qc_energy_4

qc_energy_

qc energy

qc_energy_1

qc_energy_0

For symmetry-preserving ansatz, see P. Barkoutsos *et al.*, Phys. Rev. A **98**, 022322 (2018)

