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1 Definition of B-spline basis functions

Consider a given dataset of m points y0(x0) , y1(x1) , . . . , ym(xm) on an in-
terval [L1 : L2] (black crosses in fig.1). In order to perform the interpolation,
first that interval is split into segments represented by n equidistant knots ti
(i = 0, 1, . . . , n− 1) marked as black circles. As implemented in the GNU Sci-
entific Library for B-spline-interpolation, the n+2 basis functions si(x) of order
k are segmentwise recursively defined following equations 1 and 2. For cubic
B-splines, k goes from 1 to 4.

si,1(x) =

{
1 : ti ≤ x < ti+1

0 : else
(1)

si,k(x) =
x− ti

ti+k−1 − ti
si,k−1(x) +

ti+k − x

ti+k − ti+1
si+1,k−1(x) (2)

2 Interpolation and least squares fitting (LSF)
as implemeted in rapidSTORM

The interpolation to the dataset is computed as in eq.3 and represents a set of
linear equations with ~y = (y0(x0) , y1(x1) , . . . , ym(xm)) and ~c = (c0 , c1 , . . . , cn , cn+1 , cn+2).
Matrix notation (eq.4) indicates, that S is of diagonal form.

ym(xm) =
∑
i

si,k(xm)ci

~y = S · ~c (3)
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Figure 1: This diagram (arbitrary units) aims to visualise exemplarily how
to handle data with cubic B-spline interpolation. The black crosses represent
seventeen given data points while the rainbow-colored pseudo-Gaussians at the
bottom of the diagram are plots of the B-spline basis functions si,4(x) (i =
0, 1, . . . , 11) with the n = 9 knots indicated by black circles. Evaluation of eq.5
leads to amplitude factors for each basis function. The superposition with given
amplitudes results in the interpolation represented by the red parabola.


y0

y1

.

.

.
ym−3

ym−2

ym−1

ym

 =


s0(x0) s1(x0) s2(x0) 0 0 · · · 0
s0(x1) s1(x1) s2(x1) s3(x1) 0 · · · 0

0 s1(x2) s2(x2) s3(x2) 0 · · · 0
0 s1(x3) s2(x3) s3(x3) s4(x3) · · · 0

.

.

.
.
.
.

. . .
. . .

. . .
. . .

.

.

.
0 0 0 sn−1(xm−1) sn(xm−1) sn+1(xm−1) sn+2(xm−1)
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·


c0
c1
.
.
.

cn−1

cn
cn+1
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(4)

In equation 3 the vector ~c is unknown and is object to least squares fitting,
which is performed following eq.5.

~c = (ST · S)−1 · ST · ~y (5)

2.1 Derivation of the formula for LSF (eq.5)

The fit residuals are defined as: ~r(~c) = ~y − S · ~c with the i-th component of r
being: ri(cj) = yi−

∑
j

Sij · cj . The least squares fitting criteria is fulfilled when

∣∣~r(~c)2
∣∣ = min⇔ ∂~r(~c)2

∂~c
= 0 . (6)
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Evaluation of the right side of eq.6 for ri gives

0 =
∑
i

∂
(
ri(cj)

2
)

∂cj
=
∑
i

∂ri(cj)

∂cj
· 2ri(cj)

=
∑
i

−Sij · 2ri(cj) =
∑
i

Sij ·

[
yi −

∑
k

Sik · ck

]
=
∑
i

Sij · yi −
∑
i

Sij ·
∑
k

Sik · ck

∑
i

Sij · yj =
∑
k

[∑
i

Sij · Sik

]
· ck

∑
i

ST
ji · yi =

∑
k

[∑
i

ST
ji · Sik

]
· ck

=
∑
k

(
ST · S

)
jk
· ck(

ST · ~y
)
j

=
[(
ST · S

)
~c
]
j

(7)

which, rewritten in vector notation leads to the form of eq.5:

ST~y =
(
ST · S

)
~c

⇔
(
ST · S

)−1
ST~y = 1~c . (8)
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