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1 Definition of B-spline basis functions

Consider a given dataset of m points y0(x0) , y1(x1) , . . . , ym(xm) on an in-
terval [L1 : L2] (black crosses in fig.1). In order to perform the interpolation,
first that interval is split into segments represented by n equidistant knots ti
(i = 0, 1, . . . , n− 1) marked as black circles. As implemented in the GNU Sci-
entific Library for B-spline-interpolation, the n+2 basis functions si(x) of order
k are segmentwise recursively defined following equations 1 and 2. For cubic
B-splines, k goes from 1 to 4.

si,1(x) =

{
1 : ti ≤ x < ti+1

0 : else
(1)

si,k(x) =
x− ti

ti+k−1 − ti
si,k−1(x) +

ti+k − x

ti+k − ti+1
si+1,k−1(x) (2)

2 Interpolation and least squares fitting (LSF)
as implemeted in rapidSTORM

The interpolation to the dataset is computed as in eq.3 and represents a set of
linear equations with ~y = (y0(x0) , y1(x1) , . . . , ym(xm)) and ~c = (c0 , c1 , . . . , cn , cn+1 , cn+2).
Matrix notation (eq.4) indicates, that S is of diagonal form.

ym(xm) =
∑
i

si,k(xm)ci

~y = S · ~c (3)
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Figure 1: This diagram (arbitrary units) aims to visualise exemplarily how
to handle data with cubic B-spline interpolation. The black crosses represent
seventeen given data points while the rainbow-colored pseudo-Gaussians at the
bottom of the diagram are plots of the B-spline basis functions si,4(x) (i =
0, 1, . . . , 11) with the n = 9 knots indicated by black circles. Evaluation of eq.5
leads to amplitude factors for each basis function. The superposition with given
amplitudes results in the interpolation represented by the red parabola.
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In equation 3 the vector ~c is unknown and is object to least squares fitting,
which is performed following eq.5.

~c = (ST · S)−1 · ST · ~y (5)

2.1 Derivation of the formula for LSF (eq.5)

The fit residuals are defined as: ~r(~c) = ~y − S · ~c with the i-th component of r
being: ri(cj) = yi−

∑
j

Sij · cj . The least squares fitting criteria is fulfilled when

∣∣~r(~c)2
∣∣ = min⇔ ∂~r(~c)2

∂~c
= 0 . (6)
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Evaluation of the right side of eq.6 for ri gives

0 =
∑
i

∂
(
ri(cj)

2
)

∂cj
=
∑
i

∂ri(cj)

∂cj
· 2ri(cj)

=
∑
i

−Sij · 2ri(cj) =
∑
i

Sij ·

[
yi −

∑
k

Sik · ck

]
=
∑
i

Sij · yi −
∑
i

Sij ·
∑
k

Sik · ck

∑
i

Sij · yj =
∑
k

[∑
i

Sij · Sik

]
· ck

∑
i

ST
ji · yi =

∑
k

[∑
i

ST
ji · Sik

]
· ck

=
∑
k

(
ST · S

)
jk
· ck(

ST · ~y
)
j

=
[(
ST · S

)
~c
]
j

(7)

which, rewritten in vector notation leads to the form of eq.5:

ST~y =
(
ST · S

)
~c

⇔
(
ST · S

)−1
ST~y = 1~c . (8)

3


