
An Open Standard Algorithm for Rarity Rankings

Rarity Punks
raritypunks.io

Abstract. An open standard for rarity rankings would allow collectors to evaluate the rarity
rank of a collectible within a collection without the need for a centralized rarity rankings
authority. Since rarity rankings can explain a large degree of the variation in market prices for
assets within a collection, relying upon a centralized authority to produce rarity rankings is
open to corruption by insider manipulation. We propose a reproducible and robust standard
algorithm to produce rarity ranks, with the option for creators to define weightings and tiers to
align rarity rankings with the creative vision of the project. This prevents insiders from
nefariously manipulating rarity rankings to suit their own purposes, and also allows collectors
to know what they are trading, no later than insiders could.

1. Introduction
One of the most important drivers of value in the trading of collectibles is rarity. For instance, the highest
sale of one of the earliest non-fungible token (NFT) collectibles, CryptoPunks, was more than 40 times
higher than a recent sale [1]. This variation can be largely explained by rarity, as evidenced by the more
expensive CryptoPunk being one in only nine Alien punks out of a collection of 10,000.

Trusted central rarity ranking authorities have emerged in order to generate rarity rankings for
NFT collections. While this system works well enough for most collections, it suffers from the potential
for rarity ranking manipulation. As demonstrated with the earlier example involving CryptoPunks, there is
a very large financial incentive to exploit rarity rankings in one’s favor. One example of this was
publicized in the MekaVerse launch, which was one of the most anticipated NFT collections in 2021.
Heavy public scrutiny exposed a number of issues [2][3] that enabled insiders to trade on the rarity of
tokens before the public could. Furthermore, when the rarity rankings were published by a leading central
rarity ranking authority, trait counting had been disabled [4] despite the fact that this is a commonly used
feature in the rarity rankings for most collections (in this particular case, this had a negligible effect on
rankings). However, a number of collections still choose to adopt a different mathematical approach to
rarity rankings than the vast majority of collections. This is only known days, or sometimes over a week,
after trading on revealed metadata has begun. Due to the centralized nature of central rarity ranking
authorities, who are often being paid by the collection, it is often unclear and opaque why certain rarity
ranking decisions were made. Although it is hard to definitively prove that wilful manipulation of rankings
has occurred, it should not be ruled out since there is a very compelling financial motive and bad actors
have already been observed to exploit insider trading on rarity to their advantage.

What is needed is an open and decentralized standard to calculate rarity rankings, so that anyone
can know the rarity of what they are trading at the exact same time as insiders can. This removes the power
of central rarity ranking authorities to set up different rules for different collections, which currently allows
insiders to manipulate the rules to produce ranks to benefit themselves at the expense of the public. It is
also worth noting that there are other important vulnerabilities that allow the rarity to be exploited by
insiders that are not in the scope of this document (such as metadata changes and leaks, and the use of
IPFS and verifiable random functions). Ultimately, we believe that an open standard for rarity rankings
will prevent insiders from nefariously manipulating rarity rankings to suit their own purposes, and lets
collectors know the rarity of what they are trading, no later than insiders could.



2. Attributes Metadata
Within the metadata for each token in a collection, there is a list of attributes that defines a series of traits
with a corresponding value. For example, a particular token may have a Hat trait with the value Baseball
Cap. This is typically defined in a token’s metadata in JSON format as follows:

"attributes": [
{

"trait_type": "Hat",
"value": "Baseball Cap"

},
...

]

For a given trait, there may be many possible values across the entire collection. For example, for
the Hat trait, the corresponding values seen across the entire collection may include Baseball Cap, Fedora,
and Straw Hat. To calculate the rarity ranking for every token in a given collection, the attributes metadata
is assumed to be known for every token in the collection.

In cases where a collection is only partially revealed, rarity rankings can still be calculated on the
revealed set of tokens, but will only be valid for that set of tokens. Once metadata becomes available for
additional tokens, the rarity rankings will need to be recalculated from scratch. This can change the
rankings of previously revealed tokens, as the newly revealed tokens can be ranked better than an already
revealed token, thereby displacing its original ranking.

3. Frequency Counting
The starting point of rarity calculations begins with counting the frequency with which a value (of a given
trait) appears in the collection. All else being equal, the lower the frequency of occurrence, the more rare it
is. Therefore, a base score could be proposed, as follows:

sB = base score of a value of a given trait
n = the number of times a value in a given trait appears in the collection (frequency)
sB = 1/n

So if there are 20 Baseball Caps and 10 Fedoras of the Hat trait, a token with a Fedora would score
double the score of a token with a Baseball Cap. Using this process, a score can be determined for every
value in the token’s attributes metadata.

4. Total Score
Each metadata value in the token can be given a component score from the base score, as follows:

si = score assigned to value i of a given trait j
sBi = 1/ni,j = base score of value i of a given trait j
kj = constant for a given trait j
si = kj × sBi

Either a geometric combination or an arithmetic combination could be used to derive a token’s overall
rarity score from the component scores of each of its metadata values, as follows:



Sg = (s1 × s2 × s3 × ⋯)
Sa = (s1 + s2 + s3 + ⋯)

To illustrate the suitability of each approach, suppose there are two tokens as follows:

Token A: s1 = 1, s2 = 1/1000 ⇒ Sg = 1/1000 = 0.0010, Sa = 1.001
Token B: s1 = 1/30, s2 = 1/30 ⇒ Sg = 1/900 ≈ 0.0011, Sa = 1/15 ≈ 0.067

In this example, Token A represents a token with a very rare component and a common component, while
Token B represents a token with two uncommon components. Token B performs better than Token A under
the geometric approach, while Token A performs significantly better than Token B under an arithmetic
approach. According to the geometric approach, the coincidence of two uncommon components is less
probable than a very rare component coinciding with a common component. Under this approach, the rare
value in Token 1 is being devalued by the presence of the common component. On the other hand, the
arithmetic approach fully incorporates the value of the rare component, and is barely impacted by the
relatively insignificant common component.

In practice, rarity is better described by the arithmetic combination, since a common component
does not tend to detract from the worth of a collectible that already has a very rare component.
Furthermore, two uncommon components are not equivalent to one very rare component, as the worth of a
collectible tends to resemble a hyperbolic-like relationship with respect to a component's rarity. Lastly, the
arithmetic approach is already the widely used and dominant methodology currently adopted by rarity
ranking sites [5]. For these reasons, it is proposed that a token’s overall rarity score should be constructed
using an arithmetic combination of the component scores of a token’s metadata values, as follows:

S = s1 + s2 + s3 + ⋯

5. Trait Equalization
Computing an overall rarity score as the sum of each component’s score can result in a bias that favors
tokens that have more components than other tokens, since a component score is always greater than zero.
In order to correct against this bias, a component score should be added in to evaluate the frequency of a
missing value for a trait. This component score can be calculated in the same way as any other value is
calculated. For example, if there are 10 tokens with 8 tokens with the value Sword as the Weapon trait and
2 remaining tokens with no Weapon trait, the tokens with no Weapon trait should have a component score
that is four times greater than a token with the value Sword as the Weapon trait. The higher score for an
empty Weapon trait reflects the rarity of not having a Weapon trait.

Sometimes multiple values are assigned to the same trait. For example, there could be a token with
multiple values under the Accessory trait, such as a Ribbon value and a Ring value, as follows:

"attributes": [
{

"trait_type": "Accessory",
"value": "Ribbon"

},
{

"trait_type": "Accessory",
"value": "Ring"

},
...

]



In order to maintain component equality, tokens with fewer values of a given trait than any other
token in the collection should add in component scores to compensate for every missing value. In order to
score this component, the frequency of empty occurrences can be calculated by:

n0 = the frequency of empty occurrences for a given trait in the collection
ni = the number of times that value i of a given trait appears in the collection
m = maximum number of times that a given trait appears in any token in the collection
N = the total number of tokens in the collection
n0 = Nm − Σni

This formula also works with the simpler m = 1 case initially described, as n0 = (10)(1) − (8) = 2. Using a
more complex example, if there are 10,000 tokens with up to m = 4 Accessory traits defined for a single
token, and a total of 31,200 values of the Accessory trait defined across the collection, then the frequency
of empty occurrences is:

n0 = (10,000)(4) − (31,200) = 8,800

In this example, the average number of values under the Accessory trait is 31,200/10,000 = 3.12.
At the time of writing, we are not aware of any examples of rarity ranking authorities that score

empty traits beyond the m = 1 case correctly. Thus, these rarity rankings overvalue tokens that have
multiple assignments of a trait, as these tokens have extra score components than other tokens. An example
of this error, taken from a widely used central rarity ranking authority, Rarity.Tools, is shown for two
different Obits tokens with a different count of Accessory scores below [6][7].



Obit #5725 has 4 component scores for the Accessory trait, while Obit #6329 only has 2
component scores for the Accessory trait. This biases the score in favor of Obit #5725 as Obit #6329 is not
being credited for 2 missing components where the Accessory trait is empty.

6. Trait Normalization
Until now, we have not defined the constant kj used to compute the component score of a given trait j:

si = kj × sBi

Although some rarity ranking sites set kj = 1 for all j, the majority of rarity rankings on Rarity.Tools
incorporate trait normalization. Trait normalization corrects a bias that occurs due to varying average
frequencies for the values of different traits in the collection. For example, a collection with 10,000 tokens
and 5 different values for the Background trait and 20 different values for the Weapon trait will have a
lower average frequency for Weapon values (10,000/20 = 500) than Background values (10,000/5 = 2,000).
Without trait normalization, the base score of Background values is simply added to the base score of
Weapon values, and on average the base score of the Weapon value will be 4 times greater than the base
score of the Background value. Trait normalization corrects this bias by comparing values against the
average value for that trait. Thus, the constant kj could be defined as follows:

uj = unique number of values of a given trait j (including a missing value as a unique value)
N = the total number of tokens in the collection
kj = N/uj

This multiplies the base score by the average frequency of a trait. This compensates for traits where its
values have a higher average frequency, which would otherwise appear less rare due to the higher
frequency of occurrence.

7. Trait Counting
Another common feature of rarity ranking algorithms is trait counting, which dates back to one of the
earliest NFT collections, CryptoPunks [8]. In the CryptoPunks collection, there is only one CryptoPunk
with 7 traits and eight CryptoPunks with 0 traits. The most common number of traits is 3. Rarity ranking
sites rank the CryptoPunk with 7 traits in first place of the entire collection, and the eight CryptoPunks
with 0 traits in the top 1% of the collection.

This can be taken into account by including an extra component score for the trait count of a token
into the overall rarity score, added alongside any other component and normalized, as follows:

nc = the number of times a trait count of c appears in the collection (frequency)
sBc = 1/nc = base score of a trait count of c
uc = unique number of possible trait counts (e.g. 0, 1, 2, 3, 4, 5, 6, or 7 means uc = 8)
N = the total number of tokens in the collection
kc = N/uc
sc = kc × sBc
S = (s1 + s2 + s3 + ⋯) + sc

Improper implementation of trait counting is a common mistake amongst some rarity ranking sites. In the
following example, NiftyRiver mistakenly places a 1 of 1 Clayling in rank #4040 [9], which is the lowest
possible rank in Claylings collection of 4040.



In the above example, the values No accessory, No eyes, No mouth, and No hat are mistakenly
counted in the trait count. If these values were treated as empty traits, Clayling #3033 would have a trait
count of 1 instead of 5, which would make it a 1 of 1 in the entire collection.

To avoid this issue, we propose that developers avoid defining empty traits as a string, and instead
simply leave the trait out of a token’s attributes metadata. Alternatively, developers could list traits by
adding rarity metadata, duplicated across each token, to instruct rarity ranking sites to ignore certain values
for given traits for the purposes of trait counting, as shown below:

"attributes": [
...

],
"rarity": {

"count_as_empty": [
{

"trait_type": "Accessory",
"value": "No accessory"

},
{

"trait_type": "Eyes",
"value": "No eyes"

},
{

"trait_type": "Mouth",
"value": "No mouth"

},
{

"trait_type": "Hat",
"value": "No hat"

}
]

}



8. Trait Weighting and Tiers
A potential disadvantage of using a predefined standard algorithm for rarity rankings is that it may be
difficult for creators to align rarity rankings with the creative vision of their project. A simple solution to
this problem is to define a standard schema of weights and tiers that can be included within the token
metadata. With an open standard algorithm, creators can simulate the rarity rankings of their creations in
advance of any metadata reveal, instead of waiting until after the collection is revealed to work with a
central rarity rankings authority. More importantly, this allows collectors to know the rarity of what they
are trading no later than insiders would.

Weights allow creators to apply a greater emphasis on specific traits. For instance, if the Species
trait is particularly important to the collection, and the less common values are not being appropriately
valued by the standard algorithm, a weighting can be applied to inflate the value of any component score
relating to the Species trait. This can be implemented via the constant kj used to compute the component
score of a given trait j:

si = kj × sBi

Earlier, kj was defined based on trait normalization. However, an additional parameter can be added in to
also factor in a weighting factor wj, as follows:

wj = weighting multiplier of a given trait j (default setting is 1)
uj = unique number of values of a given trait j (including a missing value as a unique value)
N = the total number of tokens in the collection
kj = wj × N/uj

This weighting can be used to amplify or diminish the effect of any given trait. Values of wj greater than 1
have an amplification effect, while values of wj less than 1 have a diminutive effect. Weights can be
combined across a range of traits in order for creators to develop rarity rankings to align with their creative
intent.

To declare weights, we propose that developers specify weightings in rarity metadata, duplicated
across each token, to instruct rarity ranking sites to apply the desired weightings, as shown below:

"attributes": [
...

],
"rarity": {

"weights": {
"Species": 3,
"__trait_count": 1

}
}

For illustrative purposes, __trait_count (with two leading underscores) is included to
demonstrate how to set the weighting for the trait count score. Since the default weight assumed is 1, it
would not normally need to be specified as above.

Tiers allow creators to segment their collection into two or more separate subcollections. For
instance, the CyberKongz collection began with 1,000 Genesis tokens alongside a growing number of
Baby tokens [10]. These are defined in the metadata under the Type trait, but Genesis tokens are much
more valuable than Baby tokens due to certain privileges afforded to Genesis tokens. Rather than set a
large weighting on Type, which would only be a feasible option if there were fewer Genesis tokens than
Baby tokens, it is simpler to treat the collections separately for the purposes of rarity rankings. Under a



tiering system, the rarity ranking algorithm is simply applied on each tier as if it were its own collection.
Thus, in the CyberKongz example, there would be a top-ranked Genesis token, as well as a top-ranked
Baby token.

To instruct rarity ranking sites to treat different values of a given trait as a different tier, we
propose that developers specify a tier field in the rarity metadata, as shown below:

"attributes": [
...

],
"rarity": {

"weights": {
"Species": 3

},
"tier": "Type"

}

Only one trait can be set as a tier, as this would create a high degree of permutational complexity.

9. Rarity Rankings
In summary, the overall rarity score can be assembled for each token as follows:

S = (s1 + s2 + s3 + ⋯) + sc
si = wj × N/uj × 1/ni,j = score of the ith metadata value, of trait j, of a given token
sc = wc × N/uc × 1/nc = score of the trait count of a given token
wj = weighting multiplier of a given trait j (default setting is 1)
wc = weighting multiplier of trait count (default setting is 1)
N = the total number of tokens in the collection
uj = unique number of values of a given trait j (including a missing value as a unique value)
uc = unique number of possible trait counts
ni,j = the number of times value i in a given trait j appears in the collection (frequency)
nc = the number of times a trait count of c appears in the collection (frequency)

For each tier, the overall rarity scores for each token are ranked in descending order to determine the rank
of that token, with tied scores treated as equal ranks.

10. Conclusion
Relying upon centralized actors to choose a rarity algorithm allows corruption and rigging to take place.
Given the importance of rarity in determining the value of an NFT, insiders can manipulate rarity rankings
to best suit themselves and their associates, at the expense of others. To prevent this, we proposed an open
standard for rarity ranking that would disallow a central rarity ranking authority from being able to change
the rules at the request of their paying customers. An open standard algorithm allows anyone to reproduce
rarity rankings, no later than insiders could. Incorporated into the open standard algorithm is trait counting
and trait normalization, which most collections have already adopted. Creators can still align rarity
rankings with their creative intent by using weightings and tiers, which can be published with the token
metadata. While we understand that historical collections already have entrenched trade patterns around
legacy rarity ranking algorithms, we suggest that all future collections adopt an open and decentralized
standard rarity ranking algorithm, alongside the open and decentralized networking principles that
underpin the existence of cryptocurrencies and NFTs.



References
[1] Larva Labs, “CryptoPunks: Top Sales”, https://larvalabs.com/cryptopunks/topsales, October 2021
[2] OKHotshot.eth, “Finished on-chain analysis of the MekaVerse NFT drop…”,

https://twitter.com/NFTherder/status/1448750746967683075, October 2021
[3] Beanie.eth, An account using insider information to bid on rares before public knowledge was

known, https://twitter.com/beaniemaxi/status/1448526431198318593, October 2021
[4] Rarity.Tools, “MekaVerse Ranked by Rarity”, https://rarity.tools/mekaverse, October 2021
[5] Rarity.Tools, “Ranking Rarity”,

https://raritytools.medium.com/ranking-rarity-understanding-rarity-calculation-methods-86ceaeb9
b98c, May 2021

[6] Rarity.Tools, “Obit #5725”, https://rarity.tools/obitsofficial/view/5725, October 2021
[7] Rarity.Tools, “Obit #6329”, https://rarity.tools/obitsofficial/view/6329, October 2021
[8] Larva Labs, “CryptoPunks: All Attributes”, https://www.larvalabs.com/cryptopunks/attributes,

October 2021
[9] NiftyRiver, “Clayling #3033”, https://www.niftyriver.io/rarity/

0x8630cdeaa26d042f0f9242ca30229b425e7f243f?q=&token_id=3033, October 2021
[10] CyberKongz, “About CyberKongz”, https://www.cyberkongz.com/about, October 2021


