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Abstract:
The general problem under investigation is to understand how complex-

ity of a system which has been adapted to its random environment a↵ects
the level of randomness of its output (which is a function of its random in-
put). In this paper we consider a specific instance of this problem in which a
deterministic finite-state decision system operates in a random environment
that is modeled by a binary Markov chain. The system interacts with it
by trying to match states of inactivity (represented by 0). Matching means
that the system selects the (t + 1)th bit from the Markov chain whenever
it predicts at time t that the environment will take a 0 value. The actual
value at time t+ 1 may be 0 or 1 thus the selected sequence of bits (which
forms the system’s output) may have both binary values. To try to predict
well, the system’s decision function is inferred based on a sample of the
random environment.

We are interested in assessing how non-random the output sequence may
be. To do that, we apply the adapted system on a second random sample
of the environment and derive an upper bound on the deviation between
the average number of 1 bits in the output sequence and the probability of
a 1. The bound shows that the complexity of the system has a direct e↵ect
on this deviation and hence on how non-random the output sequence may

be. The bound takes the form of O
⇣q�

2k/n
�⌘

where 2k is the complexity

of the system and n is the length of the second sample.

Keywords and phrases: Prediction of random binary sequence, Markov
chain, subsequence selection, frequency instability.

1. Introduction

This paper stems from our aim to understand the interaction between deter-
ministic systems and their random environment. This is of interest in many
fields, for instance, in reliability theory and failure analysis [15, 21], queuing
theory [8], biology [5, 19], aerospace [20], learning automata [13]. Another field
is theoretical computer science which deals with the interaction of deterministic

∗This is the latest version. The published paper in Probability in the Engineering and

Informational Sciences, Vol. 33(4), pp. 528-563, 2019, has the following error: throughout the
paper, � should be replaced by �d which is defined in the current version in (5.3)
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systems with highly complex input. Here, systems called selection rules, which
are modeled as Turing machines, are used to test if a highly complex binary
input sequence is random [4]. One consequence of this theory [1, 9] is that the
complexity of a selection rule (system) a↵ects the rate of convergence of the law
of large numbers (LLN) for subsequences that are selected by it (this is referred
to as frequency instability). In other words, such finite state machines select
subsequences for which the average number of 1 bits deviates by a large amount
from the probability of a 1. The deviation is proportional to the complexity of
the input sequence and the complexity of the system.

We wish to investigate this fact, however, from a di↵erent angle. Instead of
using selection rules for testing randomness of a highly complex input sequences,
we use them to select subsequences from an input sequence (environment) which
is, as a given fact, random. We are interested in the rate of the LLN of such
subsequences. The systems that we consider are not chosen arbitrarily but are
first adapted to their random environment and then are used to predict its future
behavior. As byproduct of this prediction, the systems select subsequences from
the environment. We aim to understand how the complexity of such systems
a↵ects the frequency stability of these subsequences.

It is less interesting to consider an environment which is represented as a
sequence of i.i.d. random variables because the best prediction strategy in this
case is the trivial one, namely, at any time instant predict the symbol with
the largest a priori probability (which would need to be estimated). Instead,
predicting an environment which is modeled by a probability model known as
a Markov chain is more interesting and applicable because it assumes inter-
dependences between consecutive segments of symbols. (Nonetheless, one can
predict sequences without assuming an underlying probability model as done in
universal prediction [11].)

We consider a basic random environment which is modeled by a binary
Markov chain and consists of a sequence of dependent binary random variables
that indicate if the environment is active (denoted by 1) or inactive (denoted
by 0).

As a system, we consider an automaton, or a deterministic finite state ma-
chine (FSM).We define the complexity of the system to be its number of pa-
rameters which are estimated from a sample of the environment.

The FSM predicts the next bit of the environment based on its current state.
By repeating this process of prediction multiple times, we let the FSM select
a subsequence from the input environment as follows: the system decides at
every time instant whether the next input bit is likely to be a 0 (that is, if
the environment is likely to be inactive). If the system predicts 0 it selects the
next input bit to be the next output bit. Otherwise, it does not select this bit
and does not output any value. We refer to this selection behavior as trying
to match inactivity in the environment, or matching the environment for short.
(We could also define matching to be based on predicting a 1 instead of a 0, but
a nice consequence of the current definition is that the selected subsequence can
be interpreted as the subsequence of prediction-error indicators, as described
further below.)
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This matching behavior is interesting to analyze because it allows us to repre-
sent the prediction of an input sequence as selection of a subsequence from this
input (the selected random subsequence is just a sequence of error indicators
when predicting zeros).

In order to measure how nonrandom the output sequence may be, we com-
pare the deviation between the average number of 1 bits in the output versus
the probability of a symbol 1. Empirical investigations of such matching systems
[17, 18] show that subsequences that are selected by them have empirical fre-
quencies that deviate from the probabilities in proportion to the complexity of
the system’s FSM. The current paper confirms this. We obtain a mathematical
relationship that shows the dependence of this deviation in terms of the length
of the input sequence, the length of the sample from which the FSM is inferred,
the order of the environment’s Markov chain and the complexity of the FSM.
Our analysis can be applied to other deterministic functions of the input (not
just selection functions) as long as the functions are Lipschitz continuous.

The aim of the paper is not to study the accuracy of learning to predict but
rather to analyze a predictor as a selection system and investigate its output
frequency instability. The motivation comes from the general aim to understand
how a complex system interacts in a random environment (see the references
mentioned at the start of this section and [16]). For the FSM system consid-
ered here, its interaction with the environment is represented by the selected
subsequence which is defined as its output. While we are not aware of practical
applications of the results, the analysis may be useful in problems of learning
to predict Markov stochastic environments.

Let us summarize the remaining parts of the paper: section 2 has the math-
ematical setup and notation, section 3 describes how the system adapts to the
environment, section 4 states the aim of the paper, section 5 defines the system’s
decision function, section 6 states an assumption about the Markov environment
that is needed for using a concentration bound, section 7 states the results and
the proof is presented in section 8.

2. Preliminaries

We use capital letters X, S, Y , ⌅ to represent random variables and lower case
letters x, s, y, ⇠ to represent their values. Let I(E) denote the indicator function
for a logical (Boolean) expression E.

Let
{Xt : t 2 Z} (2.1)

be a sequence of binary random variables possessing the following Markov prop-
erty,

P (Xt = xt | Xt�1 = xt�1, Xt�2 = xt�2, . . .)

= P (Xt = x | Xt�1 = xt�1, . . . , Xt�k⇤ = xt�k⇤) (2.2)

where xt�k⇤ , . . . , xt�1, xt take a binary value of 0 or 1. This sequence is known
as a discrete-time Markov stochastic process, or Markov chain, of order k⇤.
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The Markov chain has a Markov probability model

Mk⇤ := (Sk⇤ , Q)

which consists of a state space Sk⇤ = {0, 1}k
⇤
and a 2k

⇤ ⇥ 2k
⇤
state-transition

probability matrix Q. We denote the ith state of Mk⇤ by s⇤(i), i = 0, 1, . . . , 2k
⇤�

1, with s⇤(0) := [s⇤(0)
k⇤�1, . . . , s

⇤(0)
0 ] = [0, . . . , 0, 0] (the all-zero state), s⇤(1) :=

[s⇤(1)
k⇤�1, . . . , s

⇤(1)
0 ] = [0, . . . , 0, 1], . . .,s⇤(2

k⇤
�1) := [1, . . . , 1]. The (ij)th entry of Q

is denoted by

Q[i, j] := q
⇣
s⇤(j)

���s⇤(i)
⌘
. (2.3)

Henceforth, by environment we mean the Markov chain (2.1) and we assume
that it is stationary (that there exists a stationary probability distribution is
discussed further below).

We can express the Markov chain {Xt : t 2 Z} as a random sequence of states
{S⇤

t
: t 2 Z} where

S⇤
t

:= (Xt�k⇤+1, Xt�k⇤+2, . . . , Xt) 2 Sk⇤ (2.4)

is the random state at time t. The transition matrix Q is fixed with respect to
time hence the chain is homogeneous.

There are two possible outgoing transitions from a state S⇤
t
to the next state

S⇤
t+1 since S⇤

t+1 can take only one of the two values (Xt�k⇤+2, . . . , Xt, 0) or
(Xt�k⇤+2, . . . , Xt, 1). We call them type-0 and type-1 transitions. Thus the ma-
trix Q is sparse and with each state s⇤(i) 2 Sk⇤ we associate two non-zero valued
parameters which are the probability of transition to those two states s⇤(j) that
are obtained by a type-0 or type-1 transition from state s⇤(i). We denote these
parameters by

q(1|i) := q(1|s⇤(i)), q(0|i) := q(0|s⇤(i)) = 1� q(1|i). (2.5)

The set
�
q(1|i) : 0  i  2k

⇤ � 1
 
serves as parameters of Mk⇤ . We assume that

for all 0  i  2k
⇤ � 1,

0 < q(1|i) < 1. (2.6)

The structure of Mk⇤ is isomorphic to a directed De Bruijn graph with
vertices mapped to states of Mk⇤ and edges mapped to state transitions. The
graph is connected because (2.6) for all i hence it follows that all the states
of Mk⇤ communicate and thus the chain is irreducible. With the finiteness of
the state space this implies that the Markov chain has a stationary distribution
(Corollary 8.2, [14]).

Let the vector
⇡⇤ :=

⇥
⇡⇤
0 , . . . ,⇡

⇤
2k⇤�1

⇤
(2.7)

denote the state stationary probability distribution, where ⇡⇤
i
is the probability

that S⇤
t
= s⇤(i). We also write ⇡⇤

s⇤(i)
:= ⇡⇤

i
, 0  i  2k

⇤ � 1. We denote by P the



J. Ratsaby/On finite state machines in random environments 5

stationary joint probability distribution of a state sequence (S⇤
1 , . . . , S

⇤
l
) defined

as follows: for any sequence (s⇤1, . . . , s
⇤
l
) 2 Sl

k⇤ ,

P ((S⇤
1 , . . . , S

⇤
l
) = (s⇤1, . . . , s

⇤
l
)) := ⇡⇤

s
⇤
1

l�1Y

r=1

q
�
s⇤
r+1 |s⇤r

�
.

Henceforth, by a system we mean an FSM based on the states and transitions
of a Markov probability model Mk of order k (which may be di↵erent from k⇤)
with a state space Sk. According to this model, denote by St 2 Sk a random
state at time t. (To distinguish between the automaton system’s states from the
states of the random environment, we place a star for variables that represent the
environment, as for instance S⇤

t
in (2.4), and no star for variables that represent

the system’s state.) For every state of a system there are two possible outgoing
transitions to the next state. We denote the two probability parameters that
correspond to state s(i) 2 Sk by p(1|i) and p(0|i).

3. Adapting the system to the environment

In the previous section we defined a system to be a finite state machine whose
states and transition probabilities are according to the probability model Mk.
In this section we start by showing that these transition probabilities are deter-
mined by the unknown transition probabilities of the environment’s model Mk⇤

and then we can therefore define statistical estimates for these probabilities.
In case k⇤ > k we denote by P(ji) the stationary probability of the environ-

ment’s state S⇤
t
= s⇤(ji), where s⇤(ji) 2 Sk⇤ is a binary number whose k⇤ � k

leftmost bits amount to a binary number whose value 0  j  2k
⇤�k � 1 and

whose k rightmost bits amount to a binary number whose value is 0  i  2k�1.
For 1  k  k⇤ we denote by

P(j|i) := P(ji)
P2k⇤�k�1

j=0 P(ji)
(3.1)

the probability that the k⇤�k leftmost bits amount to the decimal value j given
that the k rightmost bits amount to i.

For 1  q  r, define the projection operator < · >q: Sr ! Sq as a mapping
that takes a state s(i) 2 Sr to a state

s =< s(i) >q= [s(i)
q�1, . . . , s

(i)
0 ] 2 Sq (3.2)

whose q digits correspond to the q least significant (rightmost) bits of s(i).
From the environment, we sample m + max {k, k⇤} consecutive values and

obtain a stationary Markov chain

X(m) := {XT+t}mt=�max{k,k⇤}+1 (3.3)

where T 2 Z is any fixed time index. (It is stationary because the environment
is assumed to be a stationary Markov chain, see start of section 2).
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According to the system’s model Mk, the true (not estimated) probability
that the chain X(m) makes a type-1 transition from state s(i) 2 Sk is p(1|i). If
k � k⇤ then

p(1|i) = q

 
1

�����< s(i) >k⇤

!
(3.4)

which is a parameter of the environment model Mk⇤ . If k < k⇤ then

p(1|i) =
2k

⇤�k�1X

j=0

q

 
1

�����S
⇤ = s⇤(ji)

!
P(j|i) (3.5)

where the state s⇤(ji) is defined above. In either case, p(1|i) is determined di-
rectly from Mk⇤ since it is determined by the stationary probability distribution
and the true transition probabilities q

�
1 | S⇤ =< s(i) >k⇤

�
or q

�
1 | S⇤ = s⇤(ji)

�

of the environment’s model Mk⇤ . Thus the true values of the system’s model
parameters p(1|i) are unknown and are completely determined by the environ-
ment’s modelMk⇤ . Because they are unknown, next we define estimates of these
parameters based on the sample X(m). Let

S⇤(m) = {S⇤
t
}m
t=1 , S⇤

t
= [XT+t�k⇤+1, . . . , XT+t] , 1  t  m (3.6)

and
S(m) = {St}mt=1 , St = [XT+t�k+1, . . . , XT+t] , 1  t  m. (3.7)

There is a one-to-one correspondence between these two sequences since each
one can be obtained from the other by going through X(m). (We will choose to
use them as needed depending on the context.)

For 1  i  2k � 1 let

↵i :=
1

m

mX

t=1

I
n
St = s(i)

o

denote the empirical frequency that state s(i) 2 Sk appears in the state sequence
S(m). We denote by

↵ := ↵(S(m)) = [↵0(S
(m)), . . . ,↵2k�1(S

(m))]

where ↵ satisfies
2k�1X

i=0

↵i = 1 (3.8)

and for brevity we also write

↵i := ↵i(X
(m)) = ↵i(S

(m)).

Note that the initial state S0 = [X�k+1, . . . , X0] at time t = 0 is not ac-
counted for in ↵ but only states St at times 1  t  m. For instance, if T = 0,
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m = 6, k = 3, max {k, k⇤} = 3 and i = 1 then s(i) = [001] and for the sequence
X(m) := {XT+t}mt=�max{k,k⇤}+1 = 010010001 we have ↵i =

2
6 since the states

at time instants t = 1,2, . . ., are s(4),s(1), . . ., respectively.
We denote by

⇡i = E[↵i] (3.9)

the stationary probability that St = s(i), for s(i) 2 Sk, 1  t  m.
If ↵i > 0 we can define the estimate of p(1|i) as the frequency of type-1

transitions from state s(i) in the sequence S(m), which is denoted by

p̂(1|i) :=
1

↵im

X

l:Stl
=s(i)

I {Xtl+1 = 1} . (3.10)

The index in the sum runs over those time instants tl 2 {0, . . . ,m� 1}, 1  l 
↵im, where Stl = s(i).

Henceforth we consider the adapted system to be an FSM with these param-
eter estimates (based on X(m)) that are substituted for the unknown transi-
tion probabilities of the model Mk. (For brevity, sometimes we omit the word
’adapted’ and just refer to it as system.)

4. Statement of the problem

We are interested in how the complexity of the adapted system influences the
frequency stability of subsequences of the environment which are selected by
the system. To study this, we obtain another sample from the environment, an
(n+max {k, k⇤})-bit stationary Markov chain, denoted by

X(n) := {XT 0+t}nt=�max{k,k⇤}+1 , (4.1)

where T 0 2 Z is any fixed time index that satisfies

T 0 �max{k, k⇤}+ 1 > T +m. (4.2)

This sequence is used as input to the adapted system. The condition (4.2) en-
sures that X(n) is a sample that comes later in time after the sample X(m)

ends. This ensures that it is possible to use X(n) to test the random subse-
quence which is selected by the system after the system has already adapted
based on X(m). Obviously the two sequences are dependent since they are from
the same Markov chain (2.1).

The FSM starts at the initial state

S0 : = (XT 0�k+1, . . . , XT 0) (4.3)

where XT 0+t is the tth bit of X(n) and produces a sequence of decisions

Y (n) = {Yt}nt=1 (4.4)
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where Yt 2 {0, 1, REJECT} is the value taken by a decision function d̂ (de-
scribed in the next section) at time t. By definition of matching, it behaves as
follows: if Yt = 0, the system decides to select bit XT 0+t. Otherwise, if Yt = 1 or
Yt = REJECT , it decides not to select XT 0+t, 1  t  n. We define the output
of the system to be this selected subsequence of X(n) and denote it by

⌅(⌫) = {⌅tl}
⌫

l=1 (4.5)

where the time instants tl correspond to 0-decisions, Ytl = 0, for 1  l  ⌫  n.
Our aim is to assess the frequency instability of ⌅(⌫). The main result, The-

orem 7.1, states a bound on the deviation between the frequency of 1 in ⌅(⌫)

and the probability of 1 given that Yt = 0, with dependence on the complexity
of the adapted system.

5. Decision function

In this section we define the adapted system’s decision which is a function of
the probability estimates p̂(1|i), 0  i  2k � 1, defined in (3.10). Let the set

⌥ := {0, 1, REJECT} .

Let us denote a decision function

d 2 ⌥2k

which is a vector that consists of the individual decisions at each of the states
of the FSM,

d := [d(0), . . . , d(2k � 1)].

We denote by d̂ a decision function which is obtained from X(m),

d̂ := d̂(X(m)) = [d̂(0), . . . , d̂(2k � 1)], (5.1)

where

d̂(i) := d̂(i, ⌘) =

8
<

:

1 if p̂(1|i) > 1
2 + T (↵i, ⌘)

0 if p̂(1|i) < 1
2 � T (↵i, ⌘)

REJECT otherwise
(5.2)

for 0  i  2k � 1, and T defines a threshold that determines if a non-REJECT
decision is made. The option of choosing a ‘REJECT’ action is a standard way
to minimize decision errors by refraining from making a decision that has a small
confidence (it had been in use at least as early as [7]). The value of T depends
on a confidence parameter ⌘ 2 (0, 1] and on the state frequency ↵i(X(m)). We
henceforth write d̂ without explicitly showing the dependence on ⌘. Note that
if ↵i = 0, then X(m) did not visit state s(i) and d̂(i) = REJECT because the
threshold T equals infinity (this is described below) which means that the third
line holds in (5.2).

Given a fixed ⌘ and a realization x(m) of the sampleX(m), we measure ↵(x(m))
and evaluate the threshold T (↵i, ⌘) for each state s(i), 0  i  2k � 1. With
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these threshold values, we have a decision function d̂ which is defined according
to (5.2) and is used at every state of the FSM.

The function T equals infinity at ↵i = 0 and decreases with ↵i and ⌘. It is
defined such that if d̂(i) = 1 then with probability at most ⌘ the Bayes’ optimal
decision is d⇤(i) = 0, or if d̂(i) = 0 then with probability at most ⌘ the Bayes’
decision is d⇤(i) = 1 , 0  i  2k�1. That is, with confidence at least 1�2⌘ the
system’s decision d̂ agrees with the Bayes’ optimal decision function d⇤. We note
that in Theorem 7.1 the choice for ⌘ is dictated by the choice of a confidence
parameter �.

The selected subsequence ⌅(⌫) is defined as follows: for any decision rule d, for
time instants tl that correspond to 0-decisions (Ytl = 0) by d, we have ⌅tl = Xtl ,
1  l  ⌫. Define

�d := P
�
Xt = 1

��Yt = 0
�

(5.3)

which is fixed for every t due to the stationarity of the Markov chain (2.1). (Yt

obviously depends on the decision rule and this dependence is implicit in the
notation).

We are interested in the event that the frequency of 1 in ⌅(⌫) deviates (in
absolute value) from �

d̂
by at least ✏ and that the subsequence is not too short

(since we are interested in the rate of the LLN).
To bound the probability of this event we use a concentration bound for

Markov chains. Such bounds involve mixing characteristics of the chain and are
discussed in the next section.

6. Mixing

Concentration bounds for Markov chains depend on the rate in which chains
mix [3]. Our analysis uses such a bound and we therefore need to state explicitly
any assumption about the mixing properties of the environment’s Markov chain.
In the Appendix, we show that there exists a minimum integer l0, such that for
l � l0, the environment’s transition matrix Q in (2.3) satisfies Ql > 0, that is,
every entry of Ql, denoted by q(l)(s(j)|s(i)), is positive. We henceforth choose

l0 := min{l : Ql > 0} (6.1)

and in theory, if Q was known then l0 can be evaluated by computing Ql for a
sequence of l � 1 until the first l is found such that Ql > 0. Denote by µ0 the
minimum entry of Ql0 ,

µ0 := min
i,j

q(l0)(j|i) (6.2)

then the fact thatQl0 > 0 implies that µ0 > 0. We henceforth make the following
assumption.

Assumption 1. The environment’s transition matrix Q satisfies one of the

following conditions: (i) the minimum entry µ0 of Ql0 satisfies µ0 6= 2�k
⇤
or

(ii) µ0 = 2�k
⇤
and for all 0  i  2k

⇤ � 1, the transitions probabilities (2.5) are
1
2 .
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Remark 1. In both parts (i) and (ii) of the assumption, Q may have a uni-
form stationary distribution ⇡⇤ =

⇥
2�k

⇤
, . . . , 2�k

⇤⇤
, which means Q is doubly

stochastic and liml!1 Ql is a matrix U , of the same size as Q, with all its entries
identical to 2�k

⇤
. Part (ii) treats the special case where this limit U is reached

exactly at time l0, that is, Ql0 = U .

We use l0 and µ0 in the following definition. According to the cases of As-
sumption 1, define

⇢(k⇤, l0) :=

8
>>><

>>>:

1�2k
⇤
µ0

2µ0
if case (i) holds and l0 = 1

2k
⇤�1

(1�2k⇤
µ0)(l0�1)/l0

⇣
1�(1�2k⇤

µ0)1/l0
⌘ if case (i) holds and l0 � 2

2k
⇤�1 if case (ii) holds.

(6.3)
In the first condition of (6.3), (2.6) implies that Q > 0 and thus µ0 is the
minimum entry of Q. Define

r(k, k⇤) :=

(
1 if k⇤ � k + 1

k � k⇤ + 2 if k⇤  k.
(6.4)

7. Result

The next theorem states that if the adapted system’s decision function d̂ uses
a threshold T (which is specified below) then the system’s output, namely the
selected subsequence ⌅(⌫) of X(n), can have an average value that deviates from
the probability � of symbol 1 by as much as ✏, where the expression of ✏ is
stated. This establishes the rate of the LLN for the sequence ⌅(⌫) as aimed for
in section 4.

The parameters k⇤, l0, µ0 of the environment’s Markov chain are assumed to
be unknown. We assume that an upper bound on ⇢(k⇤, l0) is available for the
system.

Theorem 7.1. Let m,n, k, k⇤, l0 � 1 be positive integers and % a positive con-

stant. The environment is a stationary binary Markov chain {Xt}t2Z of un-

known order k⇤ and ⇢(k⇤, l0)  %. Let Mk be a Markov model of order k
used by a finite state machine (system). Let X(m) = {XT+t}mt=�max{k,k⇤}+1,

X(n) = {XT 0+t}nt=�max{k,k⇤}+1 be samples of the environment with T + m <

T 0 � max{k, k⇤} + 1. Denote by ↵i := ↵i(X(m)), 0  i  2k � 1, the random

variables representing the empirical frequency that state s(i) of Mk appears in

the state sequence S(m)
that corresponds to X(m)

. For any,

• 0 < �  1,
• ` 2 {1, . . . , n},
• ! 2 ( `

n
, 1],
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if the system uses a decision function d̂(X(m)) defined according to (5.2) with

T (↵i, �) := %

s
32

m↵2
i

ln

✓
2k+4

�↵i

◆
, (7.1)

then with probability no more than � the subsequence ⌅(⌫)
of X(n)

that corre-

sponds to time instants when the system’s decision is Ytl = 0, tl 2 {1 , . . ., n},
satisfies both of the following conditions:

• the absolute value of the deviation between �
d̂
and the frequency of 1 in

⌅(⌫)
is more than

4r(k, k⇤)⇢(k⇤, l0)

!

vuut 2

n

 
(2k + 4) ln 2 + ln

 
1� `

n�
! � `

n

�
�

!!
, (7.2)

where �
d̂
:= P

�
Xt = 1

��Yt = 0
�
is the stationary probability of symbol 1

given that the system predicts a 0.
• it has a length ⌫ � !n.

The theorem implies that with probability at least 1� �, either the absolute
deviation between �

d̂
and the frequency of 1 in ⌅(⌫) is no more than (7.2)

or the length of the subsequence ⌅(⌫) satisfies ⌫ < !n, where in the latter
case there is no guarantee about the size of the deviation. In the former case,
if we take the upper bound (7.2) on the deviation to be a measure of non-
randomness of the system’s output sequence and view the number of states 2k

as the complexity of the finite state machine (which is based on model Mk),
then it follows that the larger the complexity the less random the output. This
is evident in numerical simulations [17] (section 6.3). Also, the output becomes
less random if the mismatch k � k⇤ between the system’s model order and the
environment’s Markov order grows or if the environment’s Markov order k⇤

increases.
Note that the threshold T depends on the random variables ↵i, 0  i  2k�1,

and hence the theorem allows for evaluating T after the random sample X(m)

is drawn. Thus the result of the theorem applies to the output of a system
which has adapted to its random environment, namely, it depends on the ran-
dom sample X(m). As we describe in the next section, we use data-dependent
concentration bounds to achieve this.

If k⇤ is known but yet the system is constrained to use some k which may di↵er
from k⇤, then we have the following corollary which has an improved (lower)
threshold T in case k � k⇤ (Q and hence ⇢ are still unknown as above). The
advantage in this case is that the length m of the sample X(m) can be smaller
while still maintaining the result of the theorem for the same given values of �,
n, `.

Corollary 7.1. With the same definitions and under the same conditions as

in Theorem 7.1, except that k⇤ is known by the system, if the system uses a
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decision function d̂(X(m)) defined according to (5.2) with the following choice

for T ,

T (↵i, �) :=

8
>><

>>:

r
3

2↵im
ln
⇣

2k+3

�↵i

⌘
if k � k⇤

%

r
32

m↵
2
i
ln
⇣

2k+4

�↵i

⌘
if k < k⇤,

(7.3)

then the statement of Theorem 7.1 holds.

The proofs of Theorem 7.1 and Corollary 7.1 di↵er by a small amount which
is described in the last paragraph of section 8.

8. Proof of Theorem 7.1

Considering all possible decision functions based on Markov models Mk of order
k, the Bayes decision function d⇤ yields the minimal expected number of decision
mistakes. Its decision at state s(i) is d⇤(i) = 1 if the true unknown probability
p(1|i) � 1

2 and d⇤(i) = 0 otherwise, 0  i  2k � 1. The decision function d̂

in (5.1) is obtained based on the sample X(m) and is hence a random variable
itself that may di↵er from the optimal Bayes decision function.

We need to bound the absolute deviation between the frequency of 1 in the
system’s output ⌅(⌫) which is selected by this random decision function d̂. We
define the relation ⇣ on the set ⌥2k ⇥⌥2k as follows: for d, d0 2 ⌥2k , d ⇣ d0 if
for all 0  i  2k � 1 either d(i) = d0(i) or one of the values d(i), d0(i), is equal
to REJECT. That is,

d ⇣ d0 () 8 0  i  2k � 1,

(d(i) = d0(i)) _ (d0(i) = REJECT ) _ (d(i) = REJECT )

and

d 6⇣ d0 () 9 0  i  2k � 1,

(d(i) 6= d0(i)) ^ (d0(i) 6= REJECT ) ^ (d⇤(i) 6= REJECT )

When d ⇣ d0 we say that d and d0 are equal up to rejects. When d 6⇣ d0 we
say that d and d0 are ’strictly’ di↵erent. The Bayes’ decision function d⇤ has no
rejects, that is d⇤(i) 2 {0, 1} thus the event d̂ 6⇣ d⇤ means that there exists a
state s(i) such that d̂(i) 66= d⇤(i) and d̂(i) 6= REJECT and ↵i > 0 (recall, from
section 5, if ↵i = 0 then d̂(i) = REJECT ).

To obtain a bound on the probability that the absolute deviation is larger
than ✏ we consider two cases, d̂ 6⇣ d⇤ and d̂ ⇣ d⇤ . In the former, we bound
the probability that d̂ strictly di↵ers from d⇤. In the latter case, we bound the
probability that the deviation is larger than ✏ for an output sequence ⌅(⌫) of a
system which is based on a decision function that is equal to the Bayes’ optimal
function d⇤ up to rejects.
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The theorem and corollary state finite sample sizes m and n, thus the proof
does not rely on any asymptotic approximations. As mentioned above, we de-
rive concentration bounds that are data-dependent. These two aspects of the
proof come at the expense of more work and a longer exposition. Therefore we
summarize next the main steps of the proof.

8.1. Summary of main steps

Denote by E(`)

d̂,✏
the event that the absolute deviation between the frequency of 1

in the system’s output sequence ⌅(⌫) which is selected by the system’s decision
function d̂, and the expected value of 1 given that d̂ decides 0, is larger than ✏
and its length ⌫ satisfies ⌫ � `. Then

P
⇣
E(`)

d̂,✏

⌘
= P

✓
E(`)

d̂,✏

����d̂ 6⇣ d⇤
◆
P
⇣
d̂ 6⇣ d⇤

⌘
+ P

✓
E(`)

d̂,✏

����d̂ ⇣ d⇤
◆
P
⇣
d̂ ⇣ d⇤

⌘

 P
⇣
d̂ 6⇣ d⇤

⌘
+ P

✓
E(`)

d̂,✏

����d̂ ⇣ d⇤
◆
. (8.1)

In order to bound (8.1) from above, in section 8.2 we bound from above the
first term of (8.1) and in section 8.3 we bound the second term. In section 8.4
we combine these two bounds to yield the result.

Section 8.2 is divided into two subsections. The event d̂ 6⇣ d⇤ implies that
there is at least one state s(i) such that the average p̂(1|i) of the number of
type-1 transitions from it deviates from its expectation by a large amount. In
case of the Corollary, we take advantage of the known value of k⇤ by splitting
into two cases. If k � k⇤, then although the underlying sequence is Markov, this
can be represented as a deviation of the average of a sequence of i.i.d. Bernoulli
random variables from its mean. This is treated in section 8.2.1 where we exploit
this independence and use a Cherno↵ bound. The second case where k < k⇤ is
more involved and is treated in section 8.2.2; it is split in two subsections 8.2.3
and 8.2.4. Here p̂(1|i) is represented in terms of a sum of a selector function
fi(s) which takes the value of a bit Xt+1 if the state at time t is s(i). We show
that fi is Lipschitz with a constant 1 and use it in a concentration bound for
Markov chains. In section 8.3, there is no independence to be exploited. We
use a di↵erent selection function fd that takes the value Xt+1 if the system’s
decision Yt = 0. We show that its Lipschitz constant is r(k, k⇤) and use the same
concentration inequality.

As mentioned in section 7, we derive data-dependent bounds. In section 8.2
this is done to handle the fact that the random variables ↵i which appear in
the statement of the theorem are dependent on X(m) and in section 8.3 this is
done to handle the fact that the length ⌫ of the system’s output sequence ⌅(⌫)

is dependent on X(n).
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8.2. Bounding the probability of the event d̂ 6⇣ d⇤

Consider a state s(i) 2 Mk and define the indicator random variable

v(i)
tl

=

(
1 if a type 1 transition occurs at state Stl = s(i)

0 otherwise.

We consider two cases,
(a) k � k⇤

(b) k < k⇤.

In case (a), the probability that v(i)
tl

= 1 only depends on the state s(i) at

time tl, that is on Stl = s(i). Therefore from (3.4) we have

P
⇣
v(i)
tl

= 1
⌘
= q

 
1

�����< s(i) >k⇤

!
. (8.2)

Since the probability q
�
1 |< s(i) >k⇤

�
is a parameter value of the model Mk⇤

then it is constant with respect to time tl.
In case (b), from (3.5) we have

P
⇣
v(i)
tl

= 1
⌘
=

2k
⇤�k�1X

j=0

q

 
1

�����S
⇤
tl
= s⇤(ji)

!
P(j|i) (8.3)

where both of the probabilities in the sum of (8.3) are completely determined
by the environment’s model Mk⇤ .

We henceforth denote by

p(1|i) := P
⇣
v(i)
tl

= 1
⌘

(8.4)

remembering that it is either (8.2) or (8.3) depending on whether case (a) or
(b) holds, respectively. We also have

p(1|i) = Ep̂(1|i) (8.5)

in both cases, where expectation is taken with respect to the stationary proba-
bility distribution P. This follows from the following: let 1  t1, ..., t↵im  m be
random variables that represent the time instances at which the state Stl = s(i).
Denote by E↵i the expected value with respect to the probability distribution
of ↵i, then we have

Ep̂(1|i) = E↵iE
"
↵imX

l=1

1

↵im
v(i)
tl

�����↵i

#

= E↵iE
"

1

↵im
v(i)
t1

+ · · ·+ 1

↵im
v(i)
t↵im

�����↵i

#
. (8.6)
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The inner expectation above is the expected value of a sum of ↵im i.i.d. ran-

dom variables (1/↵im)v(i)
tl
, 1  l  ↵im, each with expected value p(1|i)/↵im.

Continuing from (8.6) we have

Ep̂(1|i) = E↵i [↵im(1/↵im)p(1|i)]
= p(1|i).

Consider the event d̂ 6⇣ d⇤. By definition of the relation ⇣, this event implies
that there exists an i 2

�
0, . . . , 2k � 1

 
such that d̂(i) 6= d⇤(i) and d̂(i) 6=

REJECT and ↵i > 0. If p(1|i)  1
2 then d⇤(i) = 0 and therefore the event

d̂(i) 6= d⇤(i) implies that d̂(i) = 1. According to the decision function (5.2) this
implies that p̂(1|i) > 1

2 + T (↵i, ⌘). If p(1|i) > 1
2 then d⇤(i) = 1 and in this case

the event d̂(i) 6= d⇤(i) implies that p̂(1|i) < 1
2 � T (↵i, ⌘).

Thus the event that there exists an i 2
�
0, . . . , 2k � 1

 
with ↵i > 0 such

that d̂(i) 6= d⇤(i) and d̂(i) 6= REJECT implies the existence of some i 2�
0, . . . , 2k � 1

 
such that.. |p̂(1|i)� p(1|i)| > T (↵i, ⌘), ↵i > 0. (Here p̂(1|i)

depends on ↵i since it is the number of type-1 transitions from state s(i) in the
sequence s(m) divided by m↵i, see (3.10)).

Let

I : =

⇢
1

m
, . . . , 1

�
(8.7)

and let

Ad :=
n
x(m) 2 {0, 1}m : 90  i  2k � 1, d̂ (i) 66= d(i), d̂ (i) 6= REJECT

o
.

(8.8)
The event d̂ 6⇣ d⇤ is equivalent to the event that X(m) belongs to the set Ad⇤ .

We wish to bound from above the probability of Ad⇤ hence we use the following
fact,

Ad⇤ ✓
n
x(m) 2 {0, 1}m : 90  i  2k � 1, |p̂(1|i)� p(1|i)| > T (↵i, ⌘), ↵i

⇣
x(m)

⌘
> 0
o

=
n
x(m) 2 {0, 1}m : 90  i  2k � 1, 9�i 2 I, |p̂(1|i)� p(1|i)| > T (�i, ⌘), ↵i

⇣
x(m)

⌘
= �i

o

✓
n
x(m) 2 {0, 1}m : 90  i  2k � 1, 9�i 2 I, |p̂(1|i)� p(1|i)| > T (�i, ⌘), ↵i

⇣
x(m)

⌘
� �i

o
.

Let 0 < �i  1 and choose ⌘ to be a function ⌘(�i, �i) such that

P (9�i 2 I, |p̂(1|i)� p(1|i)| > T (�i, ⌘(�i, �i)) , ↵i � �i)  �i. (8.9)

Then for any 0 < �  1 if we let

�i =
�

2k+1
(8.10)



J. Ratsaby/On finite state machines in random environments 16

we obtain

P (Ad⇤) 
2k�1X

i=0

P (9�i 2 I, |p̂(1|i)� p(1|i)| > T (�i, ⌘(�i, �i)) , ↵i � �i)

 �

2

2k�1X

i=0

1

2k

=
�

2
. (8.11)

We henceforth hide the dependence on ⌘ and write simply Ad⇤ for Ad⇤,⌘.
In the next sections we derive the functions T (�i, ⌘) and ⌘(�i, �i) such that

(8.11) holds.

8.2.1. T in case (a)

In case (a), although the sequence is a Markov chain, the indicator random vari-

ables v(i)
tl

are i.i.d. Bernoulli with success probability p(1|i) := q(1| < s(i) >k⇤).

To see that, consider two instants tl and tr where the state is s(i) then we have

P
 
v(i)
tl

= 1

�����v
(i)
tr

!
= P

 
v(i)
tl

= 1

�����Stl = s(i), v(i)
tr

!

= P
 
v(i)
tl

= 1

�����Stl = s(i)
!

(i)
= P

⇣
v(i)
tl

= 1
⌘

(ii)
= p(1|i)

where the equality (i) shows the independence of v(i)
tl

and v(i)
tr

and the equality
(ii) which follows from (8.4) implies that they are identically distributed. Thus
in case (a), p̂(1|i) is the average of a subsequence of ↵im i.i.d. Bernoulli random
variables where ↵i > 0 is a random variable taking values in I. (Clearly, the
random variables ↵i, 0  i  2k�1, are mutually dependent but this is irrelevant
here.)

The term in (8.9) that we need to bound from above by �i is

P (9�i 2 I : |p̂(1|i)� p(1|i)| > T (�i, ⌘(�i, �i)), ↵i � �i)

= P

0

@
[

�i2I

{|p̂(1|i)� p(1|i)| > T (�i, ⌘(�i, �i)), ↵i � �i}

1

A . (8.12)
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We have

P (p̂(1|i) > p(1|i) + T , ↵i � �i) =
X

r��i

P (p̂(1|i) > p(1|i) + T , ↵i = r)

=
X

r��i

P
✓
p̂(1|i) > p(1|i) + T

����↵i = r

◆
P (↵i = r) .

(8.13)

Using Cherno↵’s bound [6] for the average of a sequence of i.i.d. Bernoulli
random variables we obtain

P
✓
p̂(1|i) > p(1|i) + T

����↵i = r

◆
 exp

�
�2rmT 2

 
(8.14)

thus (8.13) is bounded from above by

X

r��i

exp
�
�2rmT 2

 
P (↵i = r)  exp

�
�2�imT 2

 X

r��i

P (↵i = r)

 exp
�
�2�imT 2

 
.

In a similar way one obtains

P (p̂(1|i)  p(1|i)� T , ↵i � �i)  exp
�
�2�imT 2

 
(8.15)

therefore we have

P (|p̂(1|i)� p(1|i)| > T , ↵i � �i)  2 exp
�
�2�imT 2

 
. (8.16)

Let

T (a) (�i, ⌘) =

s
1

2�im
ln

✓
2

⌘

◆
(8.17)

then we have for any 0 < ⌘ := ⌘(�i, �i)  1,

P
⇣
|p̂(1|i)� p(1|i)| > T (a) (�i, ⌘(�i, �i)) ,↵i � �i

⌘
 ⌘(�i, �i). (8.18)

Following a method of proof of Proposition 8 in [2] let us now define

J(�(1), �(2), ⌘) :=
n
x(m) : |p̂(1|i)� p(1|i)| > T (a)

⇣
�(1), ⌘

⌘
, ↵i(x

(m)) � �(2)
o
.

Note that because T decreases with respect to increasing �i and ⌘ then for
�(1)  �  �(2) we have J(�(1), �(2), ⌘) ✓ J(�, �, ⌘) and for ⌘a  ⌘b we have
J(�, �, ⌘a) ✓ J(�, �, ⌘b).
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From (8.18) we have,

P (J (�i, �i, ⌘(�i, �i))) = P
⇣
|p̂(1|i)� p(1|i)| > T (a) (�i, ⌘(�i, �i)) ,↵i � �i

⌘

 ⌘(�i, �i). (8.19)

Define the set �j ⇢ [0, 1] as follows,

�j =

"✓
1

2

◆j+1

,

✓
1

2

◆j
#
. (8.20)

The set I defined in (8.7) clearly satisfies I ✓
S1

j=0 �j .
In (8.12) let us choose

T (�i, ⌘(�i, �i)) = T (a)
⇣�i
3
, ⌘(�i, �i)

⌘
(8.21)

with

⌘(�i, �i) :=
�i�i
2

. (8.22)

Then (8.12) is now bounded from above as follows,

P

0

@
[

�i2I

{|p̂(1|i)� p(1|i)| > T (�i, ⌘(�i, �i)), ↵i � �i}

1

A

= P

0

@
[

�i2I

n
|p̂(1|i)� p(1|i)| > T (a)

⇣�i
3
, ⌘(�i, �i)

⌘
, ↵i � �i

o
1

A

= P

0

@
[

�i2I

J

✓
�i
3
, �i,

�i�i
2

◆1

A (8.23)

 P

0

@
1[

j=0

[

�i2�j

J

✓
�i
3
, �i,

�i�i
2

◆1

A (8.24)


1X

j=0

P

0

@
[

�i2�j

J

✓
�i
3
, �i,

�i�i
2

◆1

A


1X

j=0

P
 
J

 ✓
1

2

◆j+1

,

✓
1

2

◆j+1

,
�i
2

✓
1

2

◆j
!!

(8.25)

where the last inequality follows from the fact that for all � 2 �j we have
�/3  ( 12 )

j+1  � and �  ( 12 )
j . Using (8.19) it follows that (8.25) is bounded

from above by
�i
2

1X

j=0

✓
1

2

◆j

 �i
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as required for (8.9) to hold. Thus in case (a) our choice for T in (8.11) is as
defined in (8.21) and the choice for ⌘(�i, �i) is as defined in (8.22). This gives

T (�i, ⌘(�i, �i)) = T (a)
⇣

�i

3 ,
�i�i

2

⌘
.

8.2.2. T in case (b)

In case (b) the indicator random variables v(i)
tl

are dependent. So we use a
di↵erent bound for the convergence of p̂(1|i) to p(1|i).

Let us fix i 2
�
0, . . . , 2k � 1

 
. For a state s⇤ 2 Sk⇤ and 0  r < q  k⇤ � 1

we denote by < s⇤ >q

r
the binary vector [s⇤

q
, . . . , s⇤

r
] 2 {0, 1}q�r+1. Define fi :

Sk⇤ ! {0, 1} as follows: for a state s⇤ 2 Sk⇤ and s(i) 2 Sk let

fi(s
⇤) =

(
0, if < s⇤ >k

1 6= s(i)

< s⇤ >0, if < s⇤ >k

1= s(i).

In words, given a state s⇤ = [s⇤
k⇤�1, . . . , s

⇤
k
, . . . , s⇤1, s

⇤
0] 2 Sk⇤ if [s⇤

k
, . . . , s⇤1] 6= s(i)

then fi(s⇤) = 0. Else, [s⇤
k
, . . . , s⇤1] = s(i) and fi(s⇤) equals < s⇤ >0= s⇤0. For a

sequence s⇤(m) = {s⇤
t
}m
t=1, s

⇤
t
2 Sk⇤ , 1  t  m, define

Fi(s
⇤(m)) :=

mX

t=1

fi(s
⇤
t
).

Therefore p̂(1|i) can be represented as

p̂(1|i) =
Fi(S⇤(m))

m↵i(X(m))
(8.26)

where S⇤(m) is defined in (3.6). To see this, consider a sequence S(m) in which
state s(i) appears at least once, that is ↵im � 1. Then for its corresponding
sequence S⇤(m) we have

1

↵im

mX

t=1

fi(S
⇤
t
) =

1

↵im

X

l:<S
⇤
tl
>

k
1=s(i)

fi(S
⇤
tl
) (8.27)

=
1

↵im

X

l:<S
⇤
tl
>

k
1=s(i)

v(i)
tl�1

=
1

↵im

m↵iX

r=1

v(i)
tr

(8.28)

= p̂(1|i)

where (8.28) holds by definition of the indicator variables v(i)
tr

whose index tr
runs over those time instants where the state Str = s(i), s(i) 2 Mk, tr 2
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{0, . . . ,m� 1}. We have

E
h
Fi(S

⇤(m))
i

= E↵i

"
E
"
Fi(S

⇤(m))

�����↵i

##

= E↵i

"
E
"
m↵iX

l=1

v(i)
tl

�����↵i

##

= E↵i [m↵ip(1|i)]
= mp(1|i)E[↵i]

= mp(1|i)⇡i. (8.29)

For two sequences s⇤(m) and q⇤(m) 2 Sm
k⇤ let us use the Hamming metric dH :

Sm
k⇤ ⇥ Sm

k⇤ ! {0, 1, . . .m} which is defined by

dH(s⇤(m), q⇤(m)) :=
mX

t=1

I {s⇤
t
6= q⇤

t
} .

Consider some r � 1 and consider s⇤(m) = (s⇤1, . . . , s
⇤
m
) and q⇤(m) = (q⇤1 , . . . , q

⇤
m
) 2

Sm
k⇤ such that dH(s⇤(m), q⇤(m))  r. Define the following subsets of {1, . . . ,m},

I1 :=
n
l :< s⇤

tl
>k

1 6= s(i), < q⇤
tl
>k

1 6= s(i)
o

I2 :=
n
l :< s⇤

tl
>k

1 6= s(i), < q⇤
tl
>k

1= s(i)
o

I3 :=
n
l :< s⇤

tl
>k

1= s(i), < q⇤
tl
>k

1 6= s(i)
o

I4 :=
n
l :< s⇤

tl
>k

1= s(i), < q⇤
tl
>k

1= s(i)
o

(8.30)
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then we have

���Fi(s
⇤(m))� Fi(q

⇤(m))
��� =

�����

mX

t=1

fi(s
⇤
t
)�

mX

t=1

fi(q
⇤
t
)

�����


mX

t=1

|fi(s⇤t )� fi(q
⇤
t
)|

(i)
=

X

l2I1

��fi(s⇤tl)� fi(q
⇤
tl
)
��+

X

l2I2

��fi(s⇤tl)� fi(q
⇤
tl
)
��+

X

l2I3

��fi(s⇤tl)� fi(q
⇤
tl
)
��

+
X

l2I4

��fi(s⇤tl)� fi(q
⇤
tl
)
��

=
X

l2I2

��0� < q⇤
tl
>0

��+
X

l2I3

��< s⇤
tl
>0 �0

��+
X

l2I4

��< s⇤
tl
>0 � < q⇤

tl
>0

��


X

l2I2

I
�
s⇤
tl
6= q⇤

tl

 
+
X

l2I3

I
�
s⇤
tl
6= q⇤

tl

 
+
X

l2I4

I
�
s⇤
tl
6= q⇤

tl

 


mX

t=1

I {s⇤
t
6= q⇤

t
}

= dH(s⇤(m), q⇤(m))

 r. (8.31)

Hence it follows that the function Fi is Lipschitz with constant 1.
In the Appendix, we show that the chains S⇤(m) and S⇤(n) satisfy the condi-

tion of a concentration bound (Lemma A.1) which holds for a Lipschitz function
with constant 1. Hence it follows that we can apply the lemma for Fi. Before
we do that we have for any non-negative numbers a,b, c, d,

|ab� cd| = |ab� ad+ ad� cd|
 a |b� d|+ d |a� c| . (8.32)

For any fixed i 2
�
0, . . . , 2k � 1

 
and positive ↵i we have,

|p̂(1|i)� p(1|i)| =

����
1

↵i

↵ip̂(1|i)�
1

⇡i
⇡ip(1|i)

����

 1

↵i

|↵ip̂(1|i)� ⇡ip(1|i)|+ ⇡ip(1|i)
����
1

↵i

� 1

⇡i

����

=
1

↵i

|↵ip̂(1|i)� ⇡ip(1|i)|+
p(1|i)
↵i

|⇡i � ↵i| .

Hence,
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P (9�i 2 I, |p̂(1|i)� p(1|i)| > T (�i, ⌘) , ↵i � �i)

 P
✓
9�i 2 I :

1

↵i

|↵ip̂(1|i)� ⇡ip(1|i)| >
T (�i, ⌘)

2
, ↵i � �i

◆

+ P
✓
9�i 2 I :

p(1|i)
↵i

|⇡i � ↵i| >
T (�i, ⌘)

2
, ↵i � �i

◆

= P
✓
9�i 2 I : |↵ip̂(1|i)� ⇡ip(1|i)| >

↵iT (�i, ⌘)

2
, ↵i � �i

◆

+ P
✓
9�i 2 I : |⇡i � ↵i| >

↵iT (�i, ⌘)

2p(1|i) , ↵i � �i

◆
. (8.33)

8.2.3. Bounding the first term of (8.33)

We have

P
✓
9�i 2 I : |↵ip̂(1|i)� ⇡ip(1|i)| >

↵iT (�i, ⌘)

2
, ↵i � �i

◆

= P
✓
9�i 2 I :

����p̂(1|i)�
⇡ip(1|i)
↵i

���� >
T (�i, ⌘)

2
, ↵i � �i

◆

 P

0

@
[

0<�i1

⇢����p̂(1|i)�
⇡ip(1|i)
↵i

���� >
T (�i, ⌘)

2
, ↵i � �i

�1

A . (8.34)

In the following, we avoid conditioning on the value of ↵i in order not to
violate the Markov property of the probability distribution (this property is
assumed in Lemma A.1). Let us bound the probability of one term in the above
union. We have,

P
✓����p̂(1|i)�

⇡ip(1|i)
↵i

���� >
T
2
, ↵i � �i

◆

= P
✓���Fi(S

⇤(m))� E
h
Fi(S

⇤(m))
i��� >

m↵iT
2

, ↵i � �i

◆

=
X

s⇤(m):↵i(s⇤(m))��i

P
⇣
s⇤(m)

⌘
I
⇢���Fi(s

⇤(m))� EFi(S
⇤(m))

��� >
m↵i(s⇤(m))T

2

�

(8.35)
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and (8.35) is bounded from above by

X

s⇤(m):↵i(s⇤(m))��i

P
⇣
s⇤(m)

⌘
I
⇢���Fi(s

⇤(m))� EFi(S
⇤(m))

��� >
m�iT

2

�


X

s⇤(m)2Sm
k⇤

P
⇣
s⇤(m)

⌘
I
⇢���Fi(s

⇤(m))� EFi(S
⇤(m))

��� >
m�iT

2

�

= P
✓���Fi(S

⇤(m))� EFi(S
⇤(m))

��� >
m�iT

2

◆
. (8.36)

Now, use Lemma A.1 for the Markov chain S⇤(m) and Fi. Applying (A.98) we
obtain

P
⇣���Fi(S

⇤(m))� EFi(S
⇤(m))

��� > m
⌘
 2 exp

(
�m

2

✓


⇢

◆2
)

(8.37)

where ⇢ is defined in (6.3). It follows that

P
✓���Fi(S

⇤(m))� EFi(S
⇤(m))

��� >
m�iT

2

◆
 2 exp

�
�m�2

i
T 2/8⇢2

 
. (8.38)

Let

T (b) (�i, ⌘) :=
2⇢

�i

s
2

m
ln

✓
2

⌘

◆
(8.39)

then for any 0 < ⌘(�i, �i)  1 and from (8.36), (8.38), (8.39) we have

P
✓����p̂(1|i)�

⇡ip(1|i)
↵i

���� >
T (b) (�i, ⌘(�i, �i))

2
, ↵i � �i

◆
 ⌘(�i, �i). (8.40)

Now define

J(�(1), �(2), ⌘) :=

⇢
x(m) :

����p̂(1|i)�
⇡ip(1|i)
↵i(x(m))

���� >
T (b)(�(1), ⌘)

2
, ↵i(x

(m)) � �(2)
�
.

As in section 8.2.1, for �(1)  �  �(2) we have J(�(1), �(2), ⌘) ✓ J(�, �, ⌘)
and for ⌘a  ⌘b we have J(�(1), �(2), ⌘a) ✓ J(�(1), �(2), ⌘b).

From (8.40) we have,

P (J (�i, �i, ⌘(�i, �i))) = P
✓����p̂(1|i)�

⇡ip(1|i)
↵i

���� >
T (b)(�i, ⌘(�i, �i))

2
, ↵i � �i

◆

 ⌘(�i, �i). (8.41)

Now choose
T (�i, ⌘(�i, �i)) := T (b)

⇣�i
2
, ⌘(�i, �i)

⌘
(8.42)

with

⌘(�i, �i) :=
�i�i
4

. (8.43)
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Using the definition of the sets in (8.20) then (8.34) is now bounded as follows,

P

0

@
[

0<�i1

⇢����p̂(1|i)�
⇡ip(1|i)
↵i

���� >
T (�i, ⌘(�i, �i))

2
, ↵i � �i

�1

A

= P

0

@
[

0<�i1

8
<

:

����p̂(1|i)�
⇡ip(1|i)
↵i

���� >
T (b)

⇣
�i

2 ,
�i�i

4

⌘

2
, ↵i � �i

9
=

;

1

A

= P

0

@
1[

j=0

[

�i2�j

J

✓
�i
2
, �i,

�i�i
4

◆1

A (8.44)


1X

j=0

P
 
J

 ✓
1

2

◆j+1

,

✓
1

2

◆j+1

,
�i
4

✓
1

2

◆j
!!

 �i
4

1X

j=0

✓
1

2

◆j

 �i
2

(8.45)

where the first inequality follows from the fact that for all � 2 �j we have
�/2  ( 12 )

j+1  � and �  ( 12 )
j and the second inequality follows from (8.41).

It follows therefore that (8.34) is bounded from above by �i/2 .

8.2.4. Bounding the second term of (8.33)

We have

P
✓
9�i 2 I : |⇡i � ↵i| >

↵iT
2p(1|i) , ↵i � �i

◆

 P

0

@
[

0<�i1

⇢
|⇡i � ↵i| >

↵iT
2p(1|i) , ↵i � �i

�1

A . (8.46)

Let us bound the probability of one term in the above union. Define gi : Sk⇤ !
{0, 1} as follows: for any state s⇤ 2 Sk⇤ let

gi(s
⇤) =

(
0, if < s⇤ >k

1 6= s(i)

1, if < s⇤ >k

1= s(i).

For a sequence s⇤(m) = {s⇤
t
}m
t=1, s

⇤
t
2 Sk⇤ , 1  t  m, define

Gi(s
⇤(m)) :=

mX

t=1

gi(s
⇤
t
).
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Using the regions in (8.30) one can show using the same argument as in (8.31)
that for any two sequences s⇤(m) and q⇤(m) such that dH(s⇤(m), q⇤(m))  r then
|Gi(s⇤(m))�Gi(q⇤(m))|  r and hence Gi is Lipschitz with constant 1.

We have
Gi(S⇤(m))

m
= ↵i

and
E
h
Gi(S

⇤(m))
i
= m⇡i.

So,

P
✓
|↵i � ⇡i| >

↵iT
2p(1|i) , ↵i � �i

◆

= P
✓���Gi(S

⇤(m))� E
h
Gi(S

⇤(m))
i��� >

m↵iT
2p(1|i) , ↵i � �i

◆

=
X

s⇤(m):↵i(s⇤(m))��i

P
⇣
s⇤(m)

⌘
I
⇢���Gi(s

⇤(m))� EGi(S
⇤(m))

��� >
m↵i(s⇤(m))T

2p(1|i)

�


X

s⇤(m):↵i(s⇤(m))��i

P
⇣
s⇤(m)

⌘
I
⇢���Gi(s

⇤(m))� EGi(S
⇤(m))

��� >
m�iT
2p(1|i)

�


X

s⇤(m)2Sm
k⇤

P
⇣
s⇤(m)

⌘
I
⇢���Gi(s

⇤(m))� EGi(S
⇤(m))

��� >
m�iT
2p(1|i)

�

= P
✓���Gi(S

⇤(m))� EGi(S
⇤(m))

��� >
m�iT
2p(1|i)

◆
.

(8.47)

As above, we use the concentration bound (A.98) for the Markov chain S⇤(m)

and function Gi. For any positive  this yields

P
⇣���Gi(S

⇤(m))� EGi(S
⇤(m))

��� > m
⌘
 2 exp

(
�m

2

✓


⇢

◆2
)
. (8.48)

It follows that

P
✓���Gi(S

⇤(m))� EGi(S
⇤(m))

��� >
m�iT
2p(1|i)

◆
 2 exp

�
�m�2

i
T 2/8p2(1|i)⇢2

 

 2 exp
�
�m�2

i
T 2/8⇢2

 
(8.49)

because 0 < p(1|i)  1. Using T (b) defined in (8.39) and with ⌘(�i, �i) defined
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in (8.43), we obtain

P
✓
|↵i � ⇡i| >

↵iT (b) (�i, ⌘(�i, �i))

2p(1|i) , ↵i � �i

◆

 P
✓���Gi(S

⇤(m))� EGi(S
⇤(m))

��� >
m�iT (b) (�i, ⌘(�i, �i))

2p(1|i)

◆

 ⌘(�i, �i). (8.50)

Let

J(�(1), �(2), ⌘) :=

⇢
x(m) : |↵i � ⇡i| >

↵iT (b)(�(1), ⌘)

2p(1|i) , ↵i(x
(m)) > �(2)

�
.

From (8.50) we have,

P (J (�i, �i, ⌘(�i, �i))) = P
✓
|↵i � ⇡i| >

↵iT (b) (�i, ⌘(�i, �i))

2p(1|i) , ↵i � �i

◆

 ⌘(�i, �i). (8.51)

Substituting the value of (8.42) for T in (8.46) and substituting for ⌘ the ex-
pression in (8.43) then we obtain the following upper bound on (8.46),

P

0

@
[

0<�i1

⇢
|⇡i � ↵i| >

↵iT
2p(1|i) , ↵i � �i

�1

A

= P

0

@
1[

j=0

[

�i2�j

J

✓
�i
2
, �i,

�i�i
4

◆1

A

 �i
2

(8.52)

where the last inequality follows from (8.51) and the same reasoning as in (8.45).
From (8.45) and (8.52) it follows that (8.33) is bounded from above by �i as

required for (8.9) to hold. Thus for case (b) we choose the value of T as (8.42)

and the choice of ⌘ as (8.43). This gives T (�i, ⌘(�i, �i)) = T (b)
⇣

�i

2 ,
�i�i

4

⌘
.

8.3. Bounding the probability of large deviation

Recall that the adapted system decides Yt, 1  t  n, using the decision function
d̂. The first decision Y1 is based on an initial given state (4.3). Let ⌫ be the
number of times that Yt = 0. Since ⌅(⌫) is a subsequence of X(n) then we can
associate a selection rule

R
d̂
: {0, 1}n ! {0, 1}⌫
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based on d̂ as defined in (5.2) which selects ⌅(⌫) from X(n). Note that ⌫ =
⌫(S⇤(n), d̂) is a random variable that is dependent on the random decision func-
tion d̂ and on the random sequence of states S⇤(n) that corresponds to X(n),
that is, on

S⇤(n) = {S⇤
t
}n
t=1 , S⇤

t
= [XT 0+t�k⇤+1, . . . , Xt]

where XT 0+t is the tth bit of X(n), 1  t  n.

For every ✏ > 0, 1  `  n and d 2 ⌥2k we denote by E(`)
d,✏

✓ {0, 1}n the set

of all sequences x(n) for which there exists ! 2
�
`

n
, 1
⇤
such that the subsequence

⇠(⌫) of x(n) selected by Rd is of length ⌫ � !n and its frequency of 1 deviates
from the expected value �d (defined in (5.3)) by at least ✏. Formally, this is
defined as,

E(`)
d,✏

=

(
x(n) : 9! 2 (`/n, 1] , ⇠(⌫) = Rd

⇣
x(n)

⌘
, ⌫ � !n,

�����
1

⌫

⌫X

l=1

⇠(⌫)
l

� �d

����� > ✏

)
.

(8.53)
To show the dependence on the decision function we sometimes explicitly

write ⌅(⌫) = Rd

�
X(n)

�
where X(n) is the second sample (4.1). We wish to

bound the second term of (8.1), which is the probability of the event E(`)

d̂,✏
given

that d̂ ⇣ d⇤ . Below, we take an approach to bounding this which holds for any
decision function d 2 ⌥2k .

The technique here is similar to that of the previous section. There, the con-
centration bound was for a subsequence that consists of time instants at which
the random state is s(i). We avoided conditioning on the random empirical fre-
quency ↵i since that could make the probability distribution violate the Markov
property. In the present section, we apply the concentration result to a subse-
quence that consists of time instants where the states happen to be members of
a set of states at which the selection rule selects a bit from X(n). While these
states are determined solely by the selection rule R

d̂
, the length ⌫ of the subse-

quence depends also on the sequence of states S⇤(n), namely, it is the number
of times that S⇤(n) visits one of the states in this set. Here too, if we condition
on the value of ⌫ this may culminate in a conditional probability distribution of
S⇤(n) which violates the Markov condition. Hence in the following analysis we
avoid the conditional distribution as done in the previous section.

The current section di↵ers from the previous one in that we do not need
to consider two cases (a) and (b) since the sequence of interest here is the
subsequence ⌅(⌫) which consists of dependent random variables, unlike the i.i.d.
subsequence of section 8.2.1. To see that, consider first the case where k � k⇤

and define by L ✓ Sk the set of states s(i) 2 Sk where p̂(1|i) < 1
2 �T (from (5.2)

these are the states Sttl
at which the system decides Ytl+1 = 0). Let vtl be the

indicator random variable whose value is the type of transition from state Stl

at time tl where Stl 2 L. Clearly, since Ytl+1 = 0 then the error at time tl + 1
is ⌅tl+1 = vtl . For any two elements ⌅tl , ⌅tr of the subsequence ⌅(⌫) where tl,
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tr 2 L, the following holds

P (⌅tl = 1 |⌅tr ) = P (vtl�1 = 1 |vtr�1 )

=
X

i2L

P
⇣
vtl�1 = 1

���Stl�1 = s(i), vtr�1

⌘
P
✓
Stl�1 = s(i)

����vtr�1

◆

=
X

i2L

P
⇣
vtl�1 = 1

���Stl�1 = s(i)
⌘
P
✓
Stl�1 = s(i)

����vtr�1

◆
(8.54)

where (8.54) follows since the type of transition vtl�1 depends only on the state
Stl�1 because k � k⇤.

In (8.54), the conditional probability P
�
Stl�1 = s(i) |vtr�1

�
can in general

be di↵erent from P
�
Stl�1 = s(i)

�
because the time tr � 1 may be in the set

{tl � k, . . . , tl � 1}, that is, the bit vtr�1 can be one of the bits of the state
Stl�1 = (Xtl�k, . . . , Xtl�1). Therefore knowledge of the value of vtr�1 can limit
the possible values of the state Stl�1. Thus one cannot remove the dependency
of vtl�1 on vtr�1, that is ⌅tl depends on ⌅tr . This conclusion also holds in case
k < k⇤. Hence, in general, we don’t have P(⌅tl = 1|⌅tr ) = P(⌅tl = 1) and unlike
the previous section where we split into two cases, here we just assume that ⌅(⌫)

is a subsequence of dependent random variables.
We now continue the analysis and derive a bound on the probability of (8.53)

that holds for any d. We assume that X(m) has been drawn and d is a fixed

decision function which is the realization of the random variable d̂(X(m)) defined
in (5.1). This means in particular that ⌫ = ⌫

�
S⇤(n), d

�
is random only due to

S⇤(n).
Consider any state-sequence ✓ 2 Sr(k,k

⇤)
k⇤ consisting of r(k, k⇤) states in Sk⇤

where r is defined in (6.4) and if r(k, k⇤) = 1 then ✓ is a single state of k⇤ bits.
We extend the definition (3.2) and denote by < ✓ >q the q least significant
bits of the binary sequence that corresponds to the state sequence ✓, and let
< ✓ >j

i
denote the binary subsequence starting at the ith bit and ending at the

jth bit from the right where the rightmost bit has index 0. For example, suppose
T 0 = 0, k⇤ = 2, k = 5 and for n = 4 we have

x(4) = (x�4, x�3, x�2, x�1, x0, x1, x2, x3, x4)

= 111001010

then at t = 2 we have ✓t 2 S52 (since k � k⇤ + 2 = 5) which equals

✓t = (s⇤
t�4, s

⇤
t�3, s

⇤
t�2, s

⇤
t�1, s

⇤
t
)

= (11, 10, 00, 01, 10)

= (s⇤(3), s⇤(2), s⇤(0), s⇤(1), s⇤(2))

so < ✓ >5
1= 11001 and < ✓ >0= 0. Note that the binary sequence that corre-

sponds to a state subsequence ✓ 2 Sr(k,k
⇤)

k⇤ has a length of r(k, k⇤)�1+k⇤ = k+1
bits if k⇤  k or k⇤ bits if k⇤ � k + 1.
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We denote by ⇥⇤
t
= (S⇤

t�r(k,k⇤)+1, . . . , S
⇤
t�2, S

⇤
t�1, S

⇤
t
) a sequence of r(k, k⇤)

random state variables where ⇥⇤
t
takes values in Sr(k,k

⇤)
k⇤ according to the joint

probability measure P. Define fd : Sr(k,k
⇤)

k⇤ ! {0, 1} as follows,

fd(✓) =

(
< ✓ >0, if p̂(1| < ✓ >k

1) <
1
2 � T

0 otherwise

where to avoid complicating the notation we just write T , although it can in
general depend on the value of ✓ (as is the case for d̂ where the threshold (5.2)
depends on the state i through ↵i).

Note that if at time t the random state⇥⇤
t
= ✓ where ✓ satisfies p̂

�
1| < ✓ >k

1

�
<

1
2 � T then from (5.2) the decision function d decides Yt = 0 in which case the
value of the function fd (which is the ’output’ of the selection rule Rd) is the
least significant bit of ✓, that is, fd(✓) equals the bit selected by the rule Rd.
Otherwise, p̂(1| < ✓ >k

1) � 1
2 � T and the decision function decides Yt = 1 or

REJECT, and Rd does not select it; this is represented by fd = 0. Hence we
represent the selection rule Rd by the function fd.

For a sequence s⇤(n) = {s⇤
t
}n
t=1 where s⇤

t
2 Sk⇤ , 1  t  n, define

Fd(s
⇤(n)) :=

nX

t=1

fd(✓t)

where ✓t = (s⇤
t�r(k,k⇤)+1, . . . , s

⇤
t�1, s

⇤
t
). For convenience of notation, we some-

times write Fd(x(n)) where x(n) corresponds to the state sequence s⇤(n).
Consider the random state sequence S⇤(n) = S⇤

1 , . . . , S
⇤
n
associated with X(n).

We can express the average of the subsequence ⌅(⌫) as follows,

1

⌫

⌫X

l=1

⌅l =
1

⌫
Fd(S

⇤(n))

which follows from

1

⌫
Fd(S

⇤(n)) =
1

⌫

nX

t=1

fd(⇥t) (8.55)

=
1

⌫

X

l:p̂(1|<⇥tl
>

k
1 )<

1
2�T

fd(⇥tl) (8.56)

=
1

⌫

X

l:p̂(1|<⇥tl
>

k
1 )<

1
2�T

⌅l

=
1

⌫

⌫X

l=1

⌅l (8.57)

where (8.57) holds since there are ⌫ time instants tl where the decision Ytl = 0
and hence 1  l  ⌫. Define the random variable

� := �(⌫) =
⌫

n
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as the empirical frequency that a bit is selected. We henceforth denote

F̂d(S
⇤(n)) :=

1

⌫
Fd

⇣
S⇤(n)

⌘

=
1

⌫

⌫X

l=1

⌅l

=
1

�n

�nX

l=1

⌅l, (8.58)

where (8.58) follows from (8.57). We have

E
h
Fd(S

⇤(n))
i

= E⌫

"
E
"
Fd(S

⇤(n))

�����⌫
##

= E⌫

"
E
"

⌫X

l=1

Xtl

�����⌫
##

(8.59)

= E⌫

2

4E

2

4
X

l:Ytl
=0

Xtl

�����⌫

3

5

3

5 (8.60)

= E⌫ [⌫�d] (8.61)

= �dE⌫ [⌫]

= �dnE[�], (8.62)

where (8.59) follows because ⌅(⌫) is a subsequence of X(n) and (8.61) follows
since for each l such that Ytl = 0, E [Xtl ] = P

�
Xtl = 1

��Ytl = 0
�
= �d by (5.3).

The expected value of � depends on d therefore we denote by

⇡d := E[�] (8.63)

and have

E
h
Fd(S

⇤(n))
i

= �dn⇡d. (8.64)

For two state sequences s⇤(n) and q⇤(n) 2 Sn
k⇤ we use the Hamming metric

dH : Sn
k⇤ ⇥ Sn

k⇤ ! [0,1) defined by

dH(s⇤(n), q⇤(n)) :=
nX

t=1

I {s⇤
t
6= q⇤

t
} .

Consider s⇤(n) = (s⇤1, . . . , s
⇤
n
) and q⇤(n) = (q⇤1 , . . . , q

⇤
n
) 2 Sn

k⇤ such that

dH(s⇤(n), q⇤(n))  �

and define

✓t = (s⇤
t�r(k,k⇤)+1, . . . , s

⇤
t�1, s

⇤
t
)
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and

 t = (q⇤
t�r(k,k⇤)+1, . . . , q

⇤
t�1, q

⇤
t
).

Define the following subsets of {1, . . . , n},

I1 :=

⇢
l : p̂(1| < ✓tl >

k

1) �
1

2
� T , p̂(1| <  tl >

k

1) �
1

2
� T

�

I2 :=

⇢
l : p̂(1| < ✓tl >

k

1) �
1

2
� T , p̂(1| <  tl >

k

1) <
1

2
� T

�

I3 :=

⇢
l : p̂(1| < ✓tl >

k

1) <
1

2
� T , p̂(1| <  tl >

k

1) �
1

2
� T

�

I4 :=

⇢
l : p̂(1| < ✓tl >

k

1) <
1

2
� T , p̂(1| <  tl >

k

1) <
1

2
� T

�
. (8.65)

We have

���Fd(s
⇤(n))� Fd(q

⇤(n))
��� 

nX

t=1

|fd(✓t)� fd( t)|

=
X

l2I1

|fd(✓tl)� fd( tl)|+
X

l2I2

|fd(✓tl)� fd( t)|+
X

l2I3

|fd(✓tl)� fd( tl)|

+
X

l2I4

|fd(✓tl)� fd( tl)|

=
X

l2I2

|0� <  tl >0|+
X

l2I3

|< ✓tl >0 �0|+
X

l2I4

|< ✓tl >0 � <  tl >0|


X

l2I2

I {✓tl 6=  tl}+
X

l2I3

I {✓tl 6=  tl}+
X

l2I4

I {✓tl 6=  tl}


nX

t=1

I {✓t 6=  t}

 r(k, k⇤)
nX

t=1

I {s⇤
t
6= q⇤

t
} (8.66)

= r(k, k⇤)dH(s⇤(n), q⇤(n))

 r(k, k⇤)� (8.67)

where (8.66) holds since for every t such that s⇤
t
6= q⇤

t
there are at most r(k, k⇤)

time instants ⌧ such that ✓⌧ contains state s⇤
t
,  ⌧ contains state q⇤

t
and ✓⌧ 6=  ⌧ .

For instance, let T 0 = 0, n = 9, k = 3, k⇤ = 2 and let the binary sequences that
correspond to s⇤(n) and q⇤(n) be

x(n) = (x�2, x�1, x0, x1, . . . , x9) = 011010011000

x̃(n) = (x̃�2, x̃�1, x̃0, x̃1, . . . , x̃9) = 011100001000
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then r(k, k⇤) = 3 and ✓,  2 S32. We have
P

n

t=1 I{s⇤t 6= q⇤
t
} = 5. Looking at

subsequences of length k+1 = 4 and comparing them across x(n) and x̃(n) over
1  t  n we obtain

P
n

t=1 I{✓t 6=  t} = 8 and indeed 8  r(3, 2) · 5 = 15.
From (8.67) it follows that the function Fd is Lipschitz with constant r(k, k⇤).
Let the constant !0 be defined as

!0 : =
`

n
,

then from (8.53), we wish to bound the probability that there is some ! 2 (!0, 1]
such that

���F̂d � �d
��� > ✏ and � � !

where from above F̂d := 1
⌫
Fd.

The probability of this event is bounded from above by the following proba-
bility,

P
⇣
9! 2 (!0, 1] :

���F̂d � �d
��� > ✏, � � !

⌘
 P

0

@
[

!0!1

n���F̂d � �d
��� > ✏, � � !

o
1

A .

(8.68)
From (8.32) it follows that,

���F̂d � �d
��� =

����
1

�
�F̂d �

1

⇡d
⇡d�d

����

 1

�

����F̂d � ⇡d�d
���+ ⇡d�d

����
1

�
� 1

⇡d

����

=
1

�

����F̂d � ⇡d�d
���+

�d
�

|�� ⇡d| .

Hence the right side of (8.68) is bounded from above by

P

0

@
[

!0!1

⇢
1

�

����F̂d � ⇡d�d
��� >

✏

2
, � � !

�1

A+ P

0

@
[

!0!1

⇢
�d
�

|�� ⇡d| >
✏

2
, � � !

�1

A

 P

0

@
[

!0!1

⇢����F̂d � ⇡d�d
��� >

�✏

2
, � � !

�1

A+ P

0

@
[

!0!1

⇢
|�� ⇡d| >

�✏

2�d
, � � !

�1

A

 P

0

@
[

!0!1

⇢����F̂d � ⇡d�d
��� >

�✏

2
, � � !

�1

A (8.69)

+ P

0

@
[

!0!1

⇢
|�� ⇡d| >

�✏

2
, � � !

�1

A (8.70)
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where the last inequality follows from the fact that 0  �d  1.
We now bound (8.69). Let us bound the probability of one term in the union

of (8.69),

P
✓����F̂d � ⇡d�d

��� >
�✏

2
,� � !

◆
= P

✓����F̂d �
⇡d�d
�

���� >
✏

2
,� � !

◆

= P
✓����

Fd(S⇤(n))

�n
� n⇡d�d

�n

���� >
✏

2
,� � !

◆

= P
✓���Fd(S

⇤(n))� n⇡d�d
��� >

n�✏

2
,� � !

◆

= P
✓���Fd(S

⇤(n))� E
h
Fd(S

⇤(n))
i��� >

n�✏

2
,� � !

◆
. (8.71)

Now, we can write (8.71) as follows,

X

s⇤(n):�(s⇤(n))�!

P
⇣
s⇤(n)

⌘
I
⇢���Fd(s

⇤(n))� EFd(S
⇤(n))

��� >
n�(s⇤(n))✏

2

�


X

s⇤(n):�(s⇤(n))�!

P
⇣
s⇤(n)

⌘
I
n���Fd(s

⇤(n))� EFd(S
⇤(n))

��� >
n!✏

2

o


X

s⇤(n)2Sn
k⇤

P
⇣
s⇤(n)

⌘
I
n���Fd(s

⇤(n))� EFd(S
⇤(n))

��� >
n!✏

2

o

= P
⇣���Fd(S

⇤(n))� EFd(S
⇤(n))

��� >
n!✏

2

⌘
. (8.72)

Since the Markov chain S⇤(n) has all the properties of the chain S⇤(m) in the
previous section, we use Lemma A.1. We apply (A.98) to the function Fd/r
which is Lipschitz with constant 1 and define (!, ⌘) as

(!, ⌘) :=
2r⇢

!

s
2

n
ln

✓
2

⌘

◆
(8.73)

then we obtain

P
✓����

Fd(S⇤(n))

r
� E

✓
Fd(S⇤(n))

r

◆���� >
n!(!, ⌘)

2r

◆
 ⌘

from which it follows that

P
✓���Fd(S

⇤(n))� EFd(S
⇤(n))

��� >
n!(!, ⌘)

2

◆
 ⌘. (8.74)

Let

J(!(1),!(2), ⌘) :=

⇢
x(n) :

����F̂d(x
(n))� ⇡d�d

�(x(n))

���� >
(!(1), ⌘)

2
, �(x(n)) > !(2)

�
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then

P (J(!,!, ⌘)) = P
✓����F̂d(S

⇤(n))� ⇡d�d
�(X(n))

���� >
(!, ⌘)

2
, �(X(n)) > !

◆

= P
✓���Fd(S

⇤(n))� n⇡d�d
��� >

n�(X(n))(!, ⌘)

2
, �(X(n)) > !

◆

 P
✓���Fd(S

⇤(n))� EFd(S
⇤(n))

��� >
n! (!, ⌘)

2

◆

 ⌘. (8.75)

As above, for !(1)  !  !(2) we have J(!(1),!(2), ⌘) ✓ J(!,!, ⌘) and for
⌘a  ⌘b, J(!(1),!(1), ⌘a) ✓ J(!(1),!(1), ⌘b). Define the set �j ⇢ [0, 1] as follows,

�j =

"
!0 + (1� !0)

✓
1

2

◆j+1

,!0 + (1� !0)

✓
1

2

◆j
#
. (8.76)

We have
S1

j=0 �j = [!0, 1]. Now, substitute for

✏ := 

✓
!

2
,
(! � !0)⌘

2

◆
(8.77)

then the probability in (8.69) is bounded from above as follows,

P

0

@
[

!0!1

⇢����F̂d �
⇡d�d
�

���� >
✏

2
, � � !

�1

A = P

0

@
[

!0!1

J

✓
!

2
,!,

(! � !0)⌘

2

◆1

A

= P

0

@
1[

j=0

[

!2�j

J

✓
!

2
,!,

(! � !0)⌘

2

◆1

A


1X

j=0

P

0

@
[

!2�j

J

✓
!

2
,!,

(! � !0)⌘

2

◆1

A


1X

j=0

P
 
J

 
!0 + (1� !0)

✓
1

2

◆j+1

,!0 + (1� !0)

✓
1

2

◆j+1

,
⌘

2
(1� !0)

✓
1

2

◆j
!!

(8.78)

where the last inequality follows from the fact that for all ! 2 �j we have
!/2  !0 + (1 � !0)(

1
2 )

j+1  ! and !  !0 + (1 � !0)(
1
2 )

j . From (8.75) it
follows that (8.78) is bounded from above by

⌘

2
(1� !0)

1X

j=0

✓
1

2

◆j

 (1� !0)⌘

and thus (8.69) is bounded by (1� !0)⌘.
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We now proceed to bound (8.70).

Define gd : Sr(k,k
⇤)

k⇤ ! {0, 1} as follows: for any state-subsequence ✓ 2 Sr(k,k
⇤)

k⇤

let

gd(✓) =

(
1, if p̂(1| < ✓ >k

1) <
1
2 � T

0, otherwise.

For a sequence s⇤(n) = {s⇤
t
}n
t=1, s

⇤
t
2 Sk⇤ for 1  t  n, define

Gd(s
⇤(n)) :=

nX

t=1

gd(✓t)

where ✓t = (s⇤
t�r(k,k⇤)+1, . . . , s

⇤
t�1, s

⇤
t
).

Note that Gd/n is the average number of times that the sequence s⇤(n) visits
a state at which the decision is 0. That is, we have

Gd(S⇤(n))

n
=
⌫

n
= �

and so from (8.63) we have

E [Gd] = nE [�] = n⇡d.

Using the definition of the regions (8.65) one can show using the argument
of (8.67) that Gd is Lipschitz with constant r(k, k⇤). Consider the probability
of one term in the union in (8.70). We have,

P
✓
|�� ⇡d| >

�✏

2
,� > !

◆
= P

✓����
Gd(S⇤(n))

n
� EGd

n

���� >
�✏

2
,� > !

◆

= P
✓���Gd(S

⇤(n))� EGd

��� >
n�✏

2
,� > !

◆
. (8.79)

Now, we can write (8.79) as follows,

X

s⇤(n):�(s⇤(n))>!

P
⇣
s⇤(n)

⌘
I
⇢���Gd(s

⇤(n))� EGd(S
⇤(n))

��� >
n�(s⇤(n))✏

2

�


X

s⇤(n):�(s⇤(n))>!

P
⇣
s⇤(n)

⌘
I
n���Gd(s

⇤(n))� EGd(S
⇤(n))

��� >
n!✏

2

o


X

s⇤(n)2Sn
k⇤

P
⇣
s⇤(n)

⌘
I
n���Gd(s

⇤(n))� EGd(S
⇤(n))

��� >
n!✏

2

o

= P
⇣���Gd(S

⇤(n))� EGd(S
⇤(n))

��� >
n!✏

2

⌘
. (8.80)

We use Lemma A.1 since as is shown in the Appendix, the Markov chain S⇤(n)

satisfies the necessary conditions. With the choice of (8.73) for , applying (A.98)
to Gd/r and S⇤(n) yields the following bound (as in (8.74))

P
✓���Gd(S

⇤(n))� EGd(S
⇤(n))

��� >
n!(!, ⌘)

2

◆
 ⌘. (8.81)



J. Ratsaby/On finite state machines in random environments 36

Let

J(!(1),!(2), ⌘) :=

(
x(n) :

����(x(n))� ⇡d
��� >

�
�
x(n)

�

2
(!(1), ⌘), �(x(n)) > !(2)

)

then

P (J(!,!, ⌘)) = P
✓����(X(n))� ⇡d

��� >
�(X(n))(!, ⌘)

2
, �(X(n)) > !

◆

 P
✓���Gd(S

⇤(n))� EGd(S
⇤(n))

��� >
n! (!, ⌘)

2

◆

 ⌘. (8.82)

Substituting for ✏ the value in (8.77) and using the sets of (8.76), with (8.78)
and (8.82), implies that (8.70) is bounded from above by (1� !0)⌘.

Hence for a fixed decision function d, with the choice of (8.77) we conclude
from (8.68)–(8.82) that

P
⇣
E(`)

d,✏

⌘
 P

 
9! 2 [!0, 1] :

�����
1

�n

�nX

t=1

⌅l � �d

����� > 

✓
!

2
,
(! � !0)⌘

2

◆
, � � !

!

 2 (1� !0) ⌘. (8.83)

8.4. Combining

We now combine the results of sections 8.2 and 8.3 to obtain an upper bound on

the probability that for the random decision function d̂ the event E(`)

d̂,✏
occurs.

We have

P
⇣
E(`)

d̂,✏

⌘
= P

⇣
E(`)

d̂,✏
, Ad⇤

⌘
+ P

⇣
E(`)

d̂,✏
, Ad⇤

⌘

= P
✓
E(`)

d̂,✏

����Ad⇤

◆
P (Ad⇤) + P

✓
E(`)

d̂,✏

����Ad⇤

◆
P
�
Ad⇤

�
. (8.84)

From (8.8), we haveAd⇤ :=
n
x(m) : 8i, d̂(i) = d⇤(i) or d̂(i) = REJECT

o
. Hence

given that Ad⇤ holds then d̂ ⇣ d⇤ and hence P
✓
E(`)

d̂,✏

����Ad⇤

◆
= P

⇣S
d:d⇣d⇤ E

(`)
d,✏

⌘

where the index d runs over all decision functions in ⌥2k such that d ⇣ d⇤. Thus
(8.84) is bounded from above by

P (Ad⇤) + P
 
[

d:d⇣d⇤

E(`)
d,✏

!
. (8.85)

For arbitrary 0 < �  1, recalling the choice of (8.10) then the first term of
(8.85) is bounded from above by �/2 provided that the system’s model threshold
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T for state s(i) equals T (a)
⇣

�i

3 ,
��i

2k+2

⌘
or T (b)

⇣
�i

2 ,
��i

2k+3

⌘
subject to whether case

(a) or (b) holds, respectively.
In the statement of the theorem, k⇤ is assumed to be unknown so the system

cannot know which case holds. The threshold for case (a) is bounded from above
by that of case (b), and the latter is bounded from above by T (�i, �) (which is
defined in (7.1)). Letting (7.1) be the system’s decision threshold T for state
s(i) means that the first term of (8.85) is bounded from above by �/2 in either
case (a) or (b).

The derivation leading to the bound of (8.83) holds for any d, in particular
for d that satisfies d ⇣ d⇤. Let us choose for ⌘ the following value

⌘ :=
�

22k+2(1� !0)

then, with the choice of (8.77) for ✏ we bound the second term of (8.85) using
(8.83) as follows,

P
 
[

d:d⇣d⇤

E(`)
d,✏

!


X

d:d⇣d⇤

P
⇣
E(`)

d,✏

⌘

 22
k+1(1� !0)⌘ (8.86)

=
�

2

where (8.86) follows from the fact that for any fixed d⇤ there are
P2k

j=0

�2k
j

�
= 22

k

possible decision functions d that satisfy d ⇣ d⇤ since for every 0  i  2k � 1
there are two choices: REJECT or not REJECT (in which case d(i) = d⇤(i)).
Thus (8.86) and (8.11) imply that (8.85) is bounded from above by �.

The proof of Corollary 7.1 follows directly from the above, with the exception
of section 8.4 where instead of bounding T (a) and T (b) we use them directly. ⇤
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Appendix

The total variation distance between two discrete probability distributions p
and q on a domain X is defined as (see for instance, Definition 13.2, [3])

kp� qk
TV

:= sup
A⇢X

|p(A)� q(A)|

and is related to the l1-distance as follows (Lemma 13.3, [3]),

kp� qk
TV

=
1

2
kp� qk1 . (A.87)

A normalized Hamming metric for sequences s⇤(n) = {s⇤
t
}n
t=1 2 Sn

k⇤ is defined
as follows: for any s⇤(n), q⇤(n) 2 Sn

k⇤ ,

dH
⇣
s⇤(n), q⇤(n)

⌘
:=

nX

t=1

I {s⇤
t
6= q⇤

t
} . (A.88)

For a discrete time Markov chain with transition matrix Q defined in (2.3),
denote its ith row by q(·|i), that is, the conditional probability distribution
given that the current state is s⇤(i). For discrete time l, we denote the entries of
the matrix Ql by q(l)(j|i), and q(l)(·|i) denotes the ith row of Ql. Define

⌧l := max
0i2k⇤�1

���q(l)(·|i)� ⇡⇤
���
TV

where ⇡⇤ is defined in (2.7). The next lemma is Theorem 1.1 of [10] applied
to our finite Markov chain. It establishes a concentration bound for S⇤(n) and
functions that are Lipschitz with respect to the Hamming norm. (That we can
apply this theorem follows from the fact that a Markov chain can be regarded
as a hidden Markov chain by letting the emission alphabet be identical to the
state space and emission probabilities to be delta-functions.)

Lemma A.1. ([10] Theorem 1.1) For 1  ↵ < 1 and 0  � < 1, if ⌧l  ↵�l�1

for l = 1, 2, . . ., then for any ' : Sn
k⇤ ! R with Lipschitz constant 1 with respect

to the Hamming metric, the following holds:

P
⇣
'
⇣
S⇤(n)

⌘
� E'

⇣
S⇤(n)

⌘
> n

⌘
 exp

✓
�n(1� �)22

2↵2

◆
(A.89)

and

P
⇣
E'
⇣
S⇤(n)

⌘
> '

⇣
S⇤(n)

⌘
+ n

⌘
 exp

✓
�n(1� �)22

2↵2

◆
.

For this to be useful we need to ensure that we can apply this lemma to the
samples X(m) and X(n) of the environment’s Markov chain. Let us investigate
this for X(n) (the case for X(m) would then follow directly).

The sequence X(n), and hence S⇤(n), is a sample of a homogeneous Markov
chain with two types of transitions, a type-1 and type-0 transition (see section
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2) which occur with a probability q(1|s⇤(i)) and q(0|s⇤(i)), respectively, 0  i 
2k

⇤ � 1. The transition matrix Q of (2.3) has the following form (recall the
notation of (2.5)),

Q :=

0

BBBBBBBBBBBB@

q(0|0) q(1|0) 0 ··· ··· ··· ··· ··· ··· 0
0 0 q(0|1) q(1|1) 0 ··· ··· ··· ··· 0
0 0 0 0 q(0|2) q(1|2) 0 ··· ··· 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 ··· ··· 0 q(0|2k
⇤�1�1) q(1|2k

⇤�1�1)

q(0|2k
⇤�1) q(1|2k

⇤�1) 0 ··· ··· ··· ··· ··· ··· 0

0 0 q(0|2k
⇤�1+1) q(1|2k

⇤�1+1) 0 ··· ··· ··· ··· 0

0 0 0 0 q(0|2k
⇤�1+2) q(1|2k

⇤�1+2) 0 ··· ··· 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 ··· ··· 0 q(0|2k
⇤
�1) q(1|2k

⇤
�1)

1

CCCCCCCCCCCCA

.

It is clear that for all k⇤ � 2, Q is not a (strictly) positive matrix. Thus we
need some additional work to show that the condition of Lemma A.1 holds for
the environment’s Markov chain under all the cases of Assumption 1 with ⇢ as
defined in (6.3).

A nonnegative irreducible matrix is regular (or primitive) if it has a single
eigenvalue on the unit circle [12]. As mentioned in section 2, the Markov chain is
irreducible with a nonnegative transition matrix. By assumption (2.6), Q has at
least one positive entry on the diagonal, hence it follows that Q is primitive ([12]
Example 8.3.3). From [12] p.693, liml!1 Ql exists and is a matrix all of whose
rows are identical to the stationary probability distribution of the Markov chain.
More relevant for us, by the Frobenius’s test for primitivity ([12], (8.3.16)), it
follows that because Q is primitive then there exists a minimum integer l0, such
that for l � l0, Ql > 0, that is, all the elements of Ql are positive ([12], Example
8.3.4 shows that l0  22k

⇤ � 2k
⇤+1 + 2). We choose l0 as in (6.1). That Ql0 > 0

implies that the minimum value µ0 of Ql0 satisfies

µ0 > 0. (A.90)

Recall from (2.7) that ⇡⇤ :=
h
⇡⇤
0 , . . . ,⇡

⇤
2k⇤�1

i
is the stationary probability dis-

tribution of the chain. Note that every row of Ql0 (which is a 2k
⇤ ⇥ 2k

⇤
matrix)

has an entry whose value is no larger than 1/2k
⇤
because Ql0 is row-stochastic

and hence the sum of the entries in every row is 1. Hence

µ0  1

2k⇤ . (A.91)

Define the constant
c0 = c0(k

⇤, l0) := 1� 2k
⇤
µ0 (A.92)

then, by (A.90) and (A.91), it follows that

0  c0 < 1.

We need to consider the cases of Assumption 1. We start with case (i) where
the environment has a Q such that µ0 6= 2�k

⇤
so that c0 > 0. In this case, by



J. Ratsaby/On finite state machines in random environments 41

Proposition 10.5(ii) [3], if l0 � 2, we have for every 0  i, j  2k
⇤ �1, and every

l � l0, ���q(l)(j|i)� ⇡⇤
j

��� 
✓

1

c0

◆
cl/l00 . (A.93)

This means that the distance between the ith row of Ql and the stationary
distribution is

���q(l) (·|i)� ⇡⇤
���
1
=

2k
⇤
�1X

j=0

���q(l)(j|i)� ⇡⇤
j

��� 
✓
2k

⇤

c0

◆
cl/l00 (A.94)

where k·k1 denotes the l1-norm. Therefore, from (A.87) and (A.94),

���q(l) (·|i)� ⇡⇤
���
TV


✓
2k

⇤

2c0

◆
cl/l00

=

 
2k

⇤
c1/l00

2c0

!⇣
c1/l00

⌘l�1
. (A.95)

Letting

↵ = 2k
⇤�1c�(l0�1)/l0

0 (A.96)

and
� = c1/l00 (A.97)

means that we may use Lemma A.1 for S⇤(n) (whose transition matrix is (2.3))
together with any function ' that is Lipschitz with constant 1. Substituting
(A.92) for c0 and plugging (A.96) and (A.97) for ↵ and � in the bound of
Lemma A.1, then the concentration bound (A.89) becomes

P
⇣
'
⇣
S⇤(n)

⌘
� E'

⇣
S⇤(n)

⌘
> n

⌘
 exp

(
�n

2

✓


⇢

◆2
)
, (A.98)

with

⇢ :=
↵

1� �
=

2k
⇤�1

(1� 2k⇤µ0)
(l0�1)/l0

⇣
1� (1� 2k⇤µ0)

1/l0
⌘ . (A.99)

If l0 = 1 (and still under case (i) of Assumption 1) thenQ > 0 and by Proposition
10.5(i) [3],

��q(l)(j|i)� ⇡⇤
j

��  cl0. Following the above steps it su�ces to choose

↵ = 2k
⇤�1c0 and � = c0 to obtain

⇢ :=
↵

1� �
=

1� 2k
⇤
µ0

2µ0
.

We now consider case (ii) of Assumption 1 where the environment’s Q has
µ0 = 2�k

⇤
and therefore (A.99) cannot be used. The stationary distribution in

this case is uniform so Q is doubly stochastic and liml!1 Ql = U is reached
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exactly at time l0, that is, Ql0 = U . The matrix Q is as above with q(1|i) =
q(0|i) = 1

2 , for all 0  i  2k
⇤ � 1. We have l0 = k⇤ and the limit matrix U

has all entries equal to 2�k
⇤
(if k⇤ = 1 then Q = U). For l � l0 the left side of

(A.93) equals zero because the limit is reached at l0. But for 1  l < l0 the left
side of (A.93) is bounded from above by 2�l. Thus for all l � 1, the left side of
(A.95) is bounded from above by 2k

⇤�1(1/2)l. We let ↵ = 2k
⇤�2 and � = 1/2

to yield ⇢ = 2k
⇤�1.

All the above holds also for the sample S⇤(m) of the Markov environment,
with m replacing n.

In summary, we showed that for every case of Assumption 1, the necessary
condition of Lemma A.1 that ⌧l  ↵�l�1 holds and therefore the lemma can be
used as a concentration inequality for both samples X(m) and X(n) in the proof
of Theorem 7.1.


