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Measuring the complexity of physical systems has been traditionally a problem in
numerous engineering applications. Lin [Entropy 10 (1) (2008) 1-5] showed that the
structural complexity is related to other properties of a solid such as symmetry and its
stability over time. In Ratsaby [Entropy 10 (1) (2008) 6-14] a model was introduced which
defines the complexity of a solid structure not by a qualitative notion of entropy but by an
algorithmic notion of description complexity. According to the model, a dynamic structure
in a random surrounding acts as an interfering entity that deforms randomness. In the
current Note we report on the results of an empirical study that analyzes the output
response of a simulated elastic beam subjected to a field of external random forces input.
The relationship between the complexity of the system and the stochasticity of the output
is shown to support this model and is a first indication that solids act similar to algorithmic
selection rules.

© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

RESUME

La mesure de la complexité des systémes physiques intervient dans de nombreuses
applications des sciences de I'ingénieur. Lin [Entropy 10 (1) (2008) 1-5] a montré que
la complexité structurelle d'un systéme est liée aux propriétés ayant trait a ses symétries
géométriques ainsi qu'a sa stabilité dans le temps. Le modéle de Ratsaby [Entropy 10 (1)
(2008) 6-14] suggere d'évaluer la complexité des systéemes physiques par analogie a la
mesure de la complexité des algorithmes. Selon ce modéle, un systéme physique sollicité
par un environnement chaotique réagit comme une entité qui absorbe une partie du
caractére aléatoire des sollicitations qui s’exercent sur celui-ci. Cette Note a pour objet
de présenter la réponse d'un systéme vibratoire simple soumis a un champ de forces
aléatoires. On montrera principalement que la relation obtenue entre la complexité du
systéme et le caractére aléatoire du champ de déplacements qui en résulte, est analogue a
celle qui prévaut pour les régles de sélection des algorithmes informatiques.

© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Measuring the complexity of dynamic structures has been traditionally a problem in the systems analysis literature. The
world is full of dynamic complex systems that consist of simple components but which yet have a complex deterministic
behavior. Examples of such systems are cellular automata, ecosystems, social systems, sensor networks (consisting of many
simple processing units). A complex system is one whose dynamic structure is intricate and requires a long description. For
dynamic systems the notion of complexity is usually attributed to the high level of unpredictability of their behavior. While
a complex system does not necessarily have to be stochastic it still takes a considerable amount of analysis and compu-
tations to determine its behavior (the connection between randomness and complexity will be discussed later). In [1] an
approximate entropy measure is used to distinguish between systems of different levels of complexity including determin-
istic and chaotic ones. Lin [2,3] introduced a new notion of entropy, called static entropy. His aim was to revise information
theory in order to broaden the notion of entropy such that the naturally occurring phenomenon of increased symmetry
of a system and the increased similarity of its components (observed in many spontaneous processes in nature) may be
explained by information theoretic principles. He generalized the notion of entropy to dynamic (deterministic) structures
and postulated that such processes are driven by an information minimization or symmetry maximization process. In [4] a
model was introduced which defines the complexity of a solid structure not by a qualitative notion of entropy but by an
algorithmic notion of description complexity. This model gives a precise quantitative definition of the information content of
a given object. Based on concepts of randomness and complexity of finite binary strings it explains the relationship between
algorithmic complexity of a solid to its information content and its stability. According to the model, dynamic structures
are like points of interference in a random surrounding. Due to their complexity they resist randomness and become less
stable over time. Dynamic structures cannot maintain their complexity indefinitely. Eventually, they undergo change in the
direction of being less algorithmically complex which weakens their interference with the randomness of the surroundings
and consequently become more stable. According to the model, a solid is represented by an algorithmic selection rule which
interacts with external random force sequences that arise when random particles hit the structure. Through the inequality
that relates stochasticity and chaoticity of random binary sequences it is shown in [4] that Lin’s notion of stability cor-
responds to the stability of the frequency of 1s in the selected subsequence. This explains why more complex dynamic
structures are less stable. Lin’s third law is represented as the inevitable change that dynamic structure undergo towards
conforming to the randomness in the surroundings. The current note presents first evidence in support of the theory of [4].
We report on recent results of experiments done in [5] that simulated a vibrating elastic solid subjected to a random exter-
nal force. The solid studied is a one-dimensional vibrating elastic beam on which a random input force sequence is applied.
The output response consists of the displacement of the beam observed at its other end over a finite time interval. The
relationship between the complexity of the structure to the stochasticity of the output sequence is computed and is shown
to agree with the model of [4].

2. Description of the problem

Consider an elastic beam having a length L (for instance, a bridge). It has some finite descriptive complexity consisting of
all the information contained in the engineering design documents. These documents can be put into a single computer file,
i.e,, a finite binary string z. This binary string has an algorithmic complexity which is defined as the length of the shortest
computer program that can generate it. This is the Kolmogorov complexity K(z) of z (see [6]). Now consider a random
input force sequence applied at one of the two ends of the bridge, for instance, suppose there is a person jumping up and
down sporadically on the bridge at its entrance (position 0). Denote by x the binary sequence representing this up/down
symbols over some fixed time-interval [0, T]. Intuitively, being that x is random makes its complexity K(x) maximal and
hence close to its actual length £(x) since there is no redundancy in the patterns of x that can be used to compress it
significantly below its length. Now consider an observer which measures the displacements on the beam at its other end
(position L). He records this over the time interval [0, T] and compares it to a fixed threshold thereby producing a binary
output sequence y consisting of up/down symbols that represent the displacement of the beam at position L. This sequence
has a finite algorithmic complexity K(y). In this note we report on recent results [5] that show that for such a physical
system, an estimate of the system complexity K(z), the output complexity K(y) and its level of randomness are related
according to the model of [4] which represents a solid as an algorithmic selection rule.

3. Algorithmic complexity and randomness
3.1. Algorithmic complexity

Kolmogorov [6] proposed to measure the conditional complexity of a finite object x given a finite object y by the length
of the shortest binary sequence 7w (a program for computing x) which consists of Os and 1s and which reconstructs x
given y. Formally, this is defined as

K(xly) = min{e(r) : ¢ (. y) = x} (1)

where £(;r) is the length of the sequence 7, ¢ is a universal partial recursive function which acts as a description method,
i.e., when provided with input (7, y) it gives a specification for x. The word universal means that the function ¢ can
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emulate any Turing machine (hence any partial recursive function). One can view ¢ as a universal computer that can
interpret any programming language and accept any valid program 7. The Kolmogorov complexity of x given y as defined
in (1) is the length of the shortest program that generates x on this computer given y as input. The special case of y being
the empty binary sequence gives the unconditional Kolmogorov complexity K(x). This has been later extended by [7] to the
prefix-complexity which requires ;v to be coded in a prefix-free format.

3.2. Algorithmic randomness

The notion of randomness of finite objects (binary sequences) aims to explain the intuitive idea that a sequence, whether
finite or infinite, should be measured as being more unpredictable if it possess fewer regularities (patterns). There is no for-
mal definition of randomness but there are three main properties that a random binary string of length n must intuitively
satisfy. The first property is the so-called stochasticity or frequency stability of the sequence which means that any binary
word of length k < n must have the same frequency limit (equal to 27%). This is basically the notion of normality that Borel
introduced and is related to the degree of unpredictability of the sequence. The second property is chaoticity or disorderli-
ness of the sequence. A sequence is less chaotic (less complex) if it has a short description, i.e., if the minimal length of a
program that generates the sequence is short. The third property is typicalness. A random sequence is a typical represen-
tative of the class £2 of all binary sequences. It has no specific features distinguishing it from the rest of the population.
An infinite binary sequence is typical if each small subset E of §2 does not contain it (the correct definition of a ‘small’
set was given by Martin-Lo6f [8]). The research area on algorithmic randomness studies the relationship between complexity
and stochasticity of finite and infinite binary sequences. Algorithmic randomness was first considered by von Mises in 1919
who defined an infinite binary sequence « of zeros and ones as random if it is unbiased, i.e. if the frequency of zeros
goes to 1/2, and every subsequence of o that we can extract using an admissible selection rule (see definition below) is
also not biased. Kolmogorov and Loveland [9] proposed a more permissive definition of an admissible selection rule as any
(partial) computable process which, having read any n bits of an infinite binary sequence «, picks a bit that has not been
read yet, decides whether it should be selected or not, and then reads its value. When subsequences selected by such a
selection rule pass the unbiasedness test they are called Kolmogorov-Loveland stochastic (KL-stochastic for short). Martin-
Lof [8] introduced a notion of randomness which is now considered by many as the most satisfactory notion of algorithmic
randomness. His definition says precisely which infinite binary sequences are random and which are not. The definition is
probabilistically convincing in that it requires each random sequence to pass every algorithmically implementable statistical
test of randomness. From the work of [10] Martin-L6f’s randomness can be characterized in terms of Kolmogorov complexity
(1) of a. An infinite binary sequence o = {;}°; is Martin L6f random if and only if there is a constant ¢ such that for all
n, K(aq,...,ay) >n—c where K is the prefix Kolmogorov complexity.

3.3. Selection rule

In this section we describe the notion of a selection rule. As mentioned in the previous section this is a principal concept
used as part of tests of randomness of sequences. Let Z be the space of all finite binary sequences and denote by Z;, the set
of all finite binary sequences of length n. An admissible selection rule R is defined based on three partial recursive functions
f,gand hon Z. Let x=1xq,...,x,. The process of selection is recursive. It begins with an empty sequence @. The function
f is responsible for selecting possible candidate bits of x as elements of the subsequence to be formed. The function g
examines the value of these bits and decides whether to include them in the subsequence. Thus f does so according to
the following definition: f(¥) =i, and if at the current time k a subsequence has already been selected which consists of
elements x;,, ..., x; then f computes the index of the next element to be examined according to element f(x;,,...,x;) =1
where i ¢ {i1,...,i}, i.e,, the next element to be examined must not be one which has already been selected (notice
that maybe i <ij, 1< j <k, ie., the selection rule can go backwards on x). Next, the two-valued function g selects this
element x; to be the next element of the constructed subsequence of x if and only if g(x;,,...,x;) = 1. The role of the
two-valued function h is to decide when this process must be terminated. This subsequence selection process terminates
if h(xi;,....,x;)=1or f(x,...,x,) >n. Let R(x) denote the selected subsequence. By K(R|n) we mean the length of the
shortest program computing the values of f, g and h given n.

3.4. Randomness deficiency

Kolmogorov introduced a notion of randomness deficiency §(x|n) of a finite sequence x € &, as follows:
8(xjn) =n — K(x|n)

where K(x|n) is the Kolmogorov complexity of x not accounting for its length n, i.e., it is a measure of complexity of the
information that codes only the specific pattern of Os and 1s in x without the bits that encode the length of x (which is
logn bits). Randomness deficiency measures the opposite of chaoticity of a sequence. The more regular the sequence the
less complex (chaotic) and the higher its deficiency.
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3.5. Biasness

From the previous sections we know that there are two principal measures related to the information content in a
finite sequence x, stochasticity (unpredictability) and chaoticity (complexity). An infinitely long binary sequence is regarded
random if it satisfies the principle of stability of the frequency of 1s for any of its subsequences that are obtained by an
admissible selection rule [11,9].

Kolmogorov [6] showed that the stochasticity of a finite binary sequence x may be precisely expressed by the deviation
of the frequency of ones from some 0 < p < 1, for any subsequence of x selected by an admissible selection rule R of
finite complexity K(R|n). The chaoticity of x is the opposite of its randomness deficiency, i.e., it is large if its Kolmogorov
complexity is close to its length n. The works of [6,12] relate this chaoticity to stochasticity. In [12] it is shown that
chaoticity implies stochasticity. This can be seen from the following relationship (with p =1/2):

3(x|n) + K(R|n) 4+ 2log K(R|n
|V(R(X))_1/2KC\/<|>+ (RIn) + 2log K (R|n) )
¢(R(x))
where for a binary sequence s, we denote by v(s) = % the frequency of 1s in s where #(s) denotes the number of 1s in

s, and £(R(x)) is the length of the subsequence selected by R, ¢ > 0 is some absolute constant.

From this we see that as the chaoticity of x grows (randomness deficiency decreases) the stochasticity of the selected
subsequence grows (the bias from 1/2 decreases). The information content of the selection rule, namely K(R|n), has a direct
effect on this relationship: the lower K(R|n) the stronger the stability (smaller deviation of the frequency of 1s from 1/2).
In [13] the other direction which shows that stochasticity implies chaoticity is proved.

4. Aim

In this note we report on recent experimental results that indicate that the fundamental notion of randomness and its
relationship to complexity (as discussed in the previous section) underlie the behavior of real physical systems. Besides
offering a new way of interpreting the interaction of a general physical system and external stimulus the result that we
present directly support the ideas of [4] (discussed above) and indirectly raise the possibility that, at least in part, some
laws of physics could be the result of a subtle interplay between random sequences of actions and complex dynamic
structures.

Our focus is on a system composed of a vibrating elastic solid (described by the classical equations of solid mechanics)
and its interaction with a random input force. We show that as a result of this interaction the solid deforms the randomness
of the input sequence and produces an output sequence whose stochastic and algorithmic properties follow those of an
output subsequence selected by a selection rule of a finite complexity. Based on computer simulations of a large number
of solids, we discuss the results of experimental work [5] that seem to indicate that the complexity of the system inversely
affects the stochasticity of the solid’s displacement (the observed output) in a manner that agrees with the theory (2).

We now describe the system that was simulated.

4.1. The solid

The solid consists of an elastic homogeneous and one-dimensional beam of length L. Let us denote by x the position
on the beam so that 0 < x < L and by X the unit vector on the x-axis. Denote by f = f(x, t)X a force applied at time t on
position x in the direction of X. We define by u = u(x, t)x the displacement at time t on x. The classical equation which
describes the field of displacements u at a specific position and time when a force f is applied is as follows:

3%u  E d%u

otz p 9x2
where E is Young’s modulus (the ratio of stress to corresponding strain when the beam behaves elastically), and p is the
mass density. We impose the following boundary conditions:

u0,t)=u(L,t)=0, Vt>0 (4)

yxozfmo O<x<L,t>0) (3)

i.e., the beam is fixed at its two ends so the only displacements is due to internal elasticity stresses of the material. Let
up(x), uq(x) be two given functions that satisfy uy(0) =ug(L) = 0. As initial conditions we set the following,

ux,0)=ugx), O0<x<lL (5)
au
g(x,O)zul(x), O<x<lL (6)

Egs. (3)-(6) represent the model that describes the deformations of the elastic solid. Using standard numerical approxi-
mation we divide the length L into N 4 2 equally spaced discrete points xj, j=1,2,..., N+ 1 starting at x; =L/(N 4+ 1)
and similarly discretize the time interval [0, T] into B + 1 time instants tj, i =0,1,..., B starting at tg = 0. Denoting by
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Fig. 1. Output’s complexity O versus the complexity M, (a) with random force input, (b) with no input.
i(j,n), 1< j< N, 1<n<B the discrete approximation of u(x;,t;), where u is the solution of (3)-(6) and denoting by

f( Jj,n) = f(xj, ty) the force applied at these discrete points then we have the corresponding set of difference equations

AX
u(0,n)=u(N+1,n)=0, u(j,0) =ug(x;) and u(j, 1) =uo(xj)+ (At)uq(x;) (8)

. . . - At\*E _ . .
u(j,n+1)=2u(j,n) —u(j,n—1)+ (At) f(],n)+-~-+<—) ;[u(]+l,n)—2u(],n)—|—u(1—1,n)] (7)

5. Results

In this section we report on the results of [5] which simulated the response of a solid described by the equations of
the previous section. The solid is put into a vibrational state and is henceforth called a system which is then subjected to
an input random force sequence. Let us now describe this in details: a system is a one-dimensional elastic beam whose
length is divided into 31 positions, 0,1, ...,30. Let n denotes discrete time. A vibrating force sequence f(15,n) is applied
at position 15 of the beam while for all remaining positions the applied force is of zero magnitude. The non-zero force
sequence f(15,n) makes the solid vibrate a priori hence we call the system a vibrating solid. This force sequence consists
of a series of ternary values —1, 0, +1. The length of the sequence is 200 and the symbols are obtained sequentially by a
repeated series of random draws using the random variable F with the following probability distribution: let 0 < p < 1,
then F takes the value 0 with probability 1 — p, the value +1 with probability p/2, and —1 with probability p/2. The
complexity of the sequence is controlled by the choice of p. Different values of p were used for different trials and used as
the parameter of the distribution of F. An external input force sequence I1(1,n) is applied at position 1 consisting of 200
randomly drawn binary values +1 and —1 each with probability 1/2. The output of the system consists of the displacement
of the solid at five positions represented by the real-valued functions (N — 5,n), ..., i(N — 1,n), 1 < n < 200. Their
values are discretized from real a to ternary V(a) using the following rule: given a € R then V(a) = +1, 0 and —1 if
a>Tt, |a] <t and a < —1, respectively, with T = 0.1. The five ternary sequences are appended together to form a single
ternary output sequence of length 1000 (henceforth called the output sequence). The subsequence of this output which
consists only of +1 and —1 values is selected (this is called the output subsequence). As an estimate of the complexity
K (x) of a sequence x we follow [14] (who used the theory of algorithmic complexity as a reference for developing practical
distance measures for applications of pattern recognition) and use a compression algorithm (Gzip, which is a variation of
the algorithm of [15]) to compress x. The length of the resulting compressed version of x is used as an approximation
of K(x). While algorithmic complexity theory holds only for the non-computable function K it has been shown [14] that
compressor functions C (which include most existing algorithms such as Gzip) that are computable and satisfy (at least
asymptotically with increasing sequence length) the properties of idempotency C(xx) = C(x), symmetry C(xy) = C(yX),
monotonicity C(xy) > C(x) and distributivity C(xz) + C(y) < C(xz) + C(yz) up to an O (logn)-error additive term, yield good
approximations of K. Henceforth, by system complexity we mean the length of the compressed version of the vibrating
force sequence. The output complexity is the length of the compressed version of the ternary output sequence. We now
summarize and discuss the results obtained by [5] (for the specific experimental and statistical details we refer the reader
to that paper). The experiments consisted of several hundreds of simulation trials where in each trial the response of
a system (vibrating solid) to an externally applied input force sequence was computed. The numerical equations (7)-(8)
represented the solid’s model. As a choice of parameter values the following were used, L =20, T =70, E =0.7, p = 0.4,
N =30, B =200. Let M denote the ratio of the compressed length divided by the uncompressed length of the system and
let O denote this ratio for the output sequence. A large M (or O) means that the compressed length is larger hence the
complexity of the system (or output sequence) is larger. We sometime simply refer to M and O as the system and output
complexity, respectively. Fig. 1 displays two sets of trials. In each trial of set (a) a random input force sequence was applied
at position 1 (as described above). In each trial of set (b) no input sequence was applied. As is seen, the resulting behavior
is clearly different in each of the two sets of trials. With an input present, as the complexity M increases there appears to
be a decreasing trend in the value of O and an increase in the spread, i.e., the range of possible values of 0. With no input,
both O and its spread of values are basically constant with respect to M.
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Fig. 2. Output frequency of 1s versus M.

To verify the above results a statistical analysis was performed. Linear regression yielded the following estimate for O:
0 (M) = 0.341 — 2.284M. This confirms that with an increase in the system’s complexity there is a decrease in the com-
plexity of the output sequence. The negative correlation between these two complexities suggests that the system deforms
the input randomness thereby producing a less complex output sequence.

When no input is present the output complexity is almost unaffected by the system’s complexity. There is hardly any
correlation between them as observed via a linear regression estimate for O which yields a slope of —0.12 with respect to
M (by absolute value this is almost two orders of magnitude less than the slope when there is an input present). Thus the
level of chaoticity in the output sequence is not simply due to the vibrating force but is caused by the system’s interaction
with the random input sequence.

Linear regression on the spread S of values of O with respect to M yields the following estimate: S(M) = —0.044 +
2.245M. Thus as the system becomes more complex there is higher variability in the complexity of the output sequence.
These results agree with the model introduced in [4] which says that a solid effectively acts as a selection rule picking
bits from the input sequence and producing a possibly less random output. This is evident in the significant decrease in
the output complexity and increase in its spread of values which indicates that the possibility of a less-complex output
sequence increases as the system’s complexity rises. To test the level in which the system deforms the randomness of the
input sequence an experiment was done to measure the stochasticity of the output subsequence. In Fig. 2 we plot the
frequency of 1s in the output subsequence (this is the number of 1s divided by the number of non-zero symbols in the
output sequence). As can be seen, with an increase in the system complexity there appears to be an increase in the spread
of possible frequency-of-1 values. To verify this we measured the spread W of possible values of frequency of 1s in the
output subsequence as a function of the compressed system length divided by the length of the output (binary) subsequence
(henceforth denoted by M’). Linear regression on W yields an estimate W (M') = +/—0.214 + 0.95M’. This result indicates
that as M’ increases there is an increase in the spread of possible values of frequency of 1s in the output subsequence at
a rate which agrees with the rate of O(/K(R|n)/£(R(x))) as predicted by (2). We note again that our compressed lengths
are based on the computable compressor algorithm (Gzip) while (2) applies to the non-computable Kolmogorov complexity
K hence we are not validating the theory but using it only as a reference.

6. Conclusions

The results described in previous section imply that a system based on classical equations of mechanics consisting of a
vibrating solid subjected to external random input-force acts similar to an algorithmic selection rule of a finite complexity.
It produces an output sequence whose stochastic and chaotic properties are effected by the system’s complexity in a man-
ner which follows basic principles of algorithmic randomness. The results are only a first step in the direction of testing
the model of [4]. The solid studied here has a complexity that depends not just on the intrinsic parameters E, p of the
differential equations but also on the pattern of the vibrational force. Further work is needed to examine the response of
different kinds of solid structures. A more general question is how to measure the descriptional complexity of a dynamic
system that is described based on a set of differential equations.
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