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On the Degree of Approximation by Manifolds
of Finite Pseudo-Dimension

V. Maiorov and J. Ratsaby

Abstract. The pseudo-dimension of a real-valued function class is an extension of the
VC dimension for set-indicator function classes. A classH of finite pseudo-dimension
possesses a useful statistical smoothness property. In [10] we introduced a nonlinear
approximation widthρn(F , Lq) = infHn dist(F ,Hn, Lq) which measures the worst-
case approximation error over all functionsf ∈ F by the best manifold of pseudo-
dimensionn. In this paper we obtain tight upper and lower bounds onρn(W

r,d
p , Lq),

both being a constant factor ofn−r/d, for a Sobolev classWr,d
p , 1 ≤ p,q ≤ ∞. As

this is also the estimate of the classical Alexandrov nonlinearn-width, our result proves
that approximation ofWr,d

p by the family of manifolds of pseudo-dimensionn is as
powerful as approximation by the family of all nonlinear manifolds with continuous
selection operators.

1. Introduction

Vapnik and Chervonenkis [12], [13], [14] and later Blumer, Ehrenfeucht, Haussler, and
Warmuth [2] studied the classical problem of pattern recognition in which they obtained
results concerning uniform strong law convergence for families of indicator, as well
as real-valued, functions. As a consequence of their theory a new measure of richness
of classes of indicator functions, called the Vapnik–Chervonenkis (VC) dimension, was
introduced. Henceforth, letX be an arbitrary space equipped with a probability measure.
The VC dimension is defined as follows:

Definition 1 (Vapnik–Chervonenkis Dimension). Given a classH of indicator func-
tions of sets inX the Vapnik–Chervonenkis dimension ofH, denoted as VC(H), is
defined as the largest integerm such that there exists a samplexm = {x1, . . . , xm}, with
xi ∈ X, 1 ≤ i ≤ m, such that the cardinality of the set of sign vectorsSxm(H) =
{[h(x1), . . . , h(xm)] : h ∈ H} satisfies|Sxm(H)| = 2m. If m is arbitrarily large, then the
VC dimension ofH is infinite.
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Example. LetH be the class of indicator functions of interval sets onX = R. With
a single pointx1 ∈ X we have|{[h(x1)] : h ∈ H}| = 2. For two pointsx1, x2 ∈ X we
have|{[h(x1), h(x2)] : h ∈ H}| = 4. Whenm = 3, for any pointsx1, x2, x3 ∈ X we
have|{[h(x1), h(x2), h(x3)] : h ∈ H}| < 23 thus VC(H) = 2.

Pollard [7] and later Haussler [4] have extended the uniform SLN results to classes
of real-valued functions. In this case, the complexity measure analogous to the VC
dimension is the so-calledpseudo-dimension, denoted as dimp(H) which is defined as
follows: Let sgn(y) be defined as 1 fory > 0 and−1 for y ≤ 0. For a Euclidean vector
v ∈ Rm denote by sgn(v) = [sgn(v1), . . . , sgn(vm)].

Definition 2 (Pseudo-Dimension). Given a classH of real-valued functions defined
on X. The pseudo-dimension ofH, denoted dimp(H), is the largest integerm such that
there existx1, . . . , xm ∈ X and a vectorv ∈ Rm for which the cardinality of the set of
sign vectors satisfies{sgn[h(x1) + v1, . . . , h(xm) + vm] : h ∈ H} is equal to 2m. If m
can be arbitrarily large, then dimp(H) = ∞.

Example. ConsiderX = {1, . . . ,n}. Consider the family of indicator functionsH =
{h(x) = 1{x∈A} : A ⊂ X}. Then VC(H) = n. Now consider the family of real-
valued functionsG = {g(x) = h(x) + x : h ∈ H}. Then, since there exists av =
(−1,−2, . . . ,−n) such that|{sgn[g(1)+ v1, . . . , g(n)+ vn] : g ∈ G}| = 2n, it follows
that dimp(G) = n. Let F = { f (x) = 1{g(x)>0} : g ∈ G}. Then VC(F) = 0.

For several useful invariance properties of the pseudo-dimension, see Pollard [8] and
Haussler [4, Theorem 5]. We mention two useful properties. The first, appearing as
Theorem 4 in Haussler [4], states that for the case of finite-dimensional vector spaces of
functions the pseudo-dimension equals its dimension.

Property 1. LetH be an n-dimensional vector space of functions from a set X intoR.
Thendimp(H) = n.

The second property is attributed to Vapnik and Chervonenkis [12] and appears as
Proposition A2.1(ii) of Blumer, Ehrenfeucht, Haussler, and Warmuth, which we restate
for real-valued functions. For nonnegative integersi > m we take

(m
i

) = 0.

Property 2. LetHn be a class of functions from X intoR of pseudo-dimension n≥ 1.
Let m≥ 0. Then for any sample xm = {x1, . . . , xm}, xi ∈ X, 1 ≤ i ≤ m, and vector
v ∈ Rm, the cardinality of the set Sxm(Hn) = {sgn[h(x1)+v1, . . . , h(xm)+vm] : h ∈ Hn}
satisfies ∣∣Sxm(Hn)

∣∣ ≤ n∑
i=0

(
m

i

)
≤ mn + 1.

This property follows from the next argument: denote by 1{x∈D} the indicator function
for the setD ⊂ X, i.e., it equals 1 ifx ∈ D and 0 otherwise. Since dimp(Hn) ≤ n then
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there does not exist a setx1, . . . , xm ∈ X andy1, . . . , ym ∈ R, m> n, such that

A = ∣∣{sgn[h(x1)+ y1, h(x2)+ y2, . . . , h(xm)+ ym] : h ∈ Hn}∣∣ = 2m.

Moreover,A equals

B = ∣∣{[1{h(x1)+y1≥0},1{h(x2)+y2≥0}, . . . ,1{h(xm)+ym≥0}] : h ∈ Hn}∣∣ .
We define the functiongh(z) = gh(x, y) ≡ h(x) + y, and we writez = (x, y). We
consider the class of indicator functions

G = {1{gh(z)≥0} : h ∈ Hn}.
It follows from the above that there does not exist a setz1, . . . , zm ∈ X× R with

m> n such that

C = ∣∣{[1{gh(z1)≥0}, . . . ,1{gh(zm)≥0}] : h ∈ Hn}∣∣ = 2m.

Then by definition of the VC dimension for indicator classes it follows that VC(G) ≤ n.
Using Proposition A2.1(ii) of Blumer et al., we obtainC ≤ mn + 1 which is true for
all m ≥ 0 andn ≥ 1. SinceA = B = C it follows that A ≤ mn + 1, which proves
Property 2.

Consider some normed spaceF consisting of functionsf (x), x ∈ X. In Ratsaby and
Maiorov [9], [10] we introduced a new nonlinearn width of a subsetF of a spaceF
defined as

ρn(F,F) ≡ inf
Hn

sup
f ∈F

inf
h∈Hn
‖ f − h‖F ,(1)

whereHn runs over all classes inF with dimp(Hn) ≤ n.
Let us compare this width to the classical Alexandrov nonlinear width, see Tikhomirov

[11] and DeVore [3]. Let‖ ·‖ be a norm onF . Let Mn be a mapping fromRn into the Ba-
nach spaceF which associates eacha ∈ Rn with the elementMn(a) ∈ F . Functionsf ∈
F are approximated by functions in the manifoldMn = {Mn(a) : a ∈ Rn}. The measure
of approximation off byMn is defined as the distance infa∈Rn ‖ f −Mn(a)‖. The degree
of approximation of a subsetF of F byMn is defined as supf ∈F infa∈Rn ‖ f − Mn(a)‖.
Denote byr a selection operator which takes an elementf ∈ F to Rn. Given such an
operatorr then the approximation off by a manifoldMn is Mn(r ( f )). The distance
between the setF and the manifoldMn is then defined as supf ∈F ‖ f − Mn(r ( f ))‖.
Restrictingr to be a continuous operator, the continuousnonlinear nwidth of F is
then defined asan(F;F) = infr :cont.,Mn supf ∈F ‖ f − Mn(r ( f ))‖, where the infimum
is taken over all continuous selection operatorsr and alln-dimensional manifoldsMn.
This width is determined for variousF andF in [3].

The Alexandrov nonlinear width does not in general reflect the degree of approxi-
mation of the more natural selection operatorr which chooses the best approximation
for an f ∈ F as its closest element inMn, i.e., that whose distance fromf equals
infg∈Mn ‖ f − g‖, the reason being that such anr is not necessarily continuous. In con-
trast, theρn width imposes no restriction as far as the selection mechanism is concerned,
namely, it selects forf an elementh( f ) where‖ f − h( f )‖ = infh∈Hn ‖ f − h‖. Many
interesting manifolds such as rational functions and splines with free knots are included
in the family{Hn} of all n-pseudo-dimensional manifolds.
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Introduce definitions. LetX = [0,1]d be the unit cube in the spaceRd, d ≥ 1.
Consider a normed spaceLq = Lq(X), 1 ≤ q ≤ ∞, consisting of functionsf (x),
x ∈ X, such that

‖ f ‖Lq =
(∫

X
| f (x)|q dx

)1/q

<∞.

In [10] we estimated this width in theL∞-metric for a Sobolev class

Wr,d
∞ =

{
f : ‖Dk f ‖L∞([0,1]d) ≤ 1, |k| ≤ r

}
,

where fork = [k1, . . . , kd] ∈ Zd the norm|k| = ∑d
i=1 ki , and Dk f = (∂k1+···+kd)/

(∂xk1
1 · · · ∂xkd

d ) f . In the current work we estimateρn for a general Sobolev class embed-
ded in the spaceLq which is defined as follows: Letr > 0, 1≤ p,q ≤ ∞, and if p ≤ q,
and let the conditionr/d > 1/p− 1/q be satisfied. Then

Wr,d
p ≡

{
f : ‖Dk f ‖L p[0,1]d ≤ 1, |k| ≤ r

}
.

2. Main Results

The main result is the following two theorems. The previously mentioned embedding
condition onr,d, p, andq is written more concisely asr/d > (1/p− 1/q)+ where
(y)+ = 0 if y ≤ 0 and(y)+ = y for y > 0.

Theorem 1(Lower Bound).For r > 0, 1≤ p,q ≤ ∞, and integers1 ≤ n,d ≤ ∞,
we have

ρn(W
r,d
p , Lq) ≥ c1

nr/d

for some finite constant c1 > 0 independent of n.

Theorem 2(Upper Bound).For r > 0, 1≤ p,q ≤ ∞ satisfying r/d > (1/p− 1/q)+,
and integers1≤ n,d ≤ ∞, we have

ρn(W
r,d
p , Lq) ≤ c2

nr/d

for some finite constant c2 > 0 independent of n.

We now proceed with the proofs of the two theorems.

3. Proofs

We start with some notation. Letc3, c4, . . . denote absolute constants. For the distance
between two function classesA,B ⊂ Lq we use dist(A,B, Lq) = sup{a∈A} inf{b∈B} ‖a−
b‖Lq . Thel m

p -norm of a vectorv ∈ Rm is denoted by‖v‖l m
p
= (∑m

i=1 v
p
i

)1/p
, 1≤ p ≤ ∞.

For a setG ⊂ Rm write sgn(G) = {sgn(z) : z ∈ G}.
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3.1. Proof of Theorem1

Denote byEm =
{
[z1, . . . , zm] : zi ∈ {−1,+1},1 ≤ i ≤ m

}
. The next claim follows

immediately from Lorentz, Yolitschek, and Makovoz [6, p. 489].

Claim 1. There exists a set G⊂ Em of cardinality greater than or equal to2m/16 such
that for anyv, v′ ∈ G, wherev 6= v′, the distance‖v − v′‖l m

1
≥ m/2.

In order to find a lower bound onρn(Wr,d
p , Lq) it suffices to boundρn(Fm, L1) from

below, whereFm ⊂ Wr,d
p is a function class which is constructed next. Fory ∈ R,

let ϕ(y) be a nonnegative function inWr,1
p which satisfies:|ϕ(y)| ≤ 1, ϕ(y) = 0 for

y 6∈ (0,1), andϕ(y) = 1 for y ∈ [ 1
4,

3
4].

Let m be a fixed positive integer such thatm= m̃d for some arbitrary integer̃m which
will be chosen below. LetD = {0,1, . . . , m̃−1}d. Forx ∈ Rd, let i = [i1, i2, . . . , i d] ∈
D define the functionϕi (x) =

∏d
j=1 ϕi j (xj ), where fory ∈ R, ϕi j (y) = ϕ(m̃y− i j ),

0≤ i j ≤ m̃− 1, 1≤ j ≤ d.
Consider the function class

Fm =
 fa(x) = 1

mr/d

∑
i∈D

aiϕi (x) : a ∈ Em

 ,(2)

where againEm = {a = [a1, . . . ,am] : ai ∈ {−1,+1},1 ≤ i ≤ m} and we take the
liberty in using a scalar as well as a vector index for a coordinate of the vectora.

Claim 2. We have Fm ⊂ Wr,d
p .

We now prove the claim. For a multi-integerα ∈ Z d
+, satisfying|α| =∑d

i=1 αi ≤ r ,
denote byf (α) the partial derivative of orderα. Let1 = [0,1/m̃]d. All integrals below
ared-dimensional. We have

‖ f (α)a ‖p
L p
= 1

mrp/d

∫
[0,1]d

∣∣∣∣∣∣
∑
i∈D

ai (ϕi (x))
(α)

∣∣∣∣∣∣
p

dx(3)

= 1

mrp/d

∑
i∈D

∫
1

∣∣ai (ϕ(m̃x))(α)
∣∣p dx.(4)

Using the fact that|α| ≤ r and lettingyi = m̃xi , 1 ≤ i ≤ d, then (4) is bounded from
above by

1

mrp/d+1

∑
i∈D

m̃rp
∣∣ai

∣∣p ∫
[0,1]d

∣∣∣∣∣ d∏
j=1

ϕ(αj )(yj )

∣∣∣∣∣
p

dy.(5)

The above integral is less than or equal to 1 sinceϕ ∈ Wr,1
p thus (5) reduces to

1

mrp/d+1
mrp/d

∑
i∈D

∣∣ai

∣∣p = 1,

sinceai ∈ Em. This proves thatfa ∈ Wr,d
p .
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We now have the following claim:

Claim 3. Let G⊂ Em be a subset as defined in Claim1.Denote by Fm(G) = { fa(x) :
a ∈ G}. Then for any f 6= f ′ ∈ Fm(G)

‖ f − f ′‖L1 ≥
c3

mr/d
,

where c3 = 2−d−1.

The proof follows: Let f 6= f ′ be such thatf = fa(x), f ′ = fa′(x). Then from the
definition ofϕi (x) and from Claim 1 we have

‖ f − f ′‖L1 =
1

mr/d

∫
[0,1]d

∣∣∣∣∣∣
∑
i∈D

(ai − a′
i
)ϕi (x)

∣∣∣∣∣∣dx

=
(

1

mr/d

∫
1

∣∣∣∣∣ d∏
j=1

ϕ(m̃xj )

∣∣∣∣∣dx

)∑
i∈D

|ai − a′
i
|

≥ 1

mr/d+1

(∫ 1

0
|ϕ(y)|dy

)d
m

2

≥ c3

mr/d
.

For a set of functionsF in L1 denote by

Mε(F) = max{s : ∃ f1, . . . , fs ∈ L1, ‖ fi − f j ‖L1 ≥ ε, ∀ i 6= j }
theε-packing number forF in theL1-norm.

The next lemma follows directly from Haussler [5, Corollary 3].

Lemma 1. LetHn = {h} be a set of Lebesgue-measurable functions on[0,1]d such
that ‖h‖L∞ ≤ β and dimp(Hn) ≤ n < ∞. Then for anyε > 0 the following upper
bound on theε-packing number holds:

Mε(Hn) ≤ e(n+ 1)

(
4eβ

ε

)n

.

We now proceed with the proof of Theorem 1.

Proof. LetHn be any set of Lebesgue-measurable functions with dimp(Hn) ≤ n.
For the setG ⊂ Em defined in Claim 1 consider the set

Fm(G) = { fa(x) ∈ Fm : a ∈ G}.
Let ε > 0 be any positive real number. Denote

δ = sup
f ∈Fm(G)

inf
h∈Hn
‖ f − h‖L1 + ε = dist(Fm(G),Hn, L1)+ ε.

Define the projection operatorP : Fm(G) → Hn, as follows: For anyf ∈ Fm(G) let
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P f be any element inHn such that

‖ f − P f ‖L1 ≤ δ.
Setβ = m−r/d. Introduce the cut operator

C f := C f (x) =
−β, f (x) < −β,

f (x), −β ≤ f (x) ≤ β,
β, f (x) > β.

Consider the set of functionsS := C P(Fm(G)) := {C P f : f ∈ Fm(G)}. Let f 6=
f ′ ∈ Fm(G). Then

‖C P f − C P f ′‖L1 = ‖(C P f − f )+ ( f ′ − C P f ′)+ ( f − f ′)‖L1

≥ ‖ f − f ′‖L1 − ‖ f ′ − C P f ′‖L1 − ‖ f − C P f‖L1.

If |h(x)| ≤ β for all x ∈ X, then‖h−C Ph‖L1 ≤ ‖h− Ph‖L1. Therefore, using Claim 3
we have

‖C P f − C P f ′‖L1 ≥ ‖ f − f ′‖L1 − ‖ f ′ − P f ′‖L1 − ‖ f − P f ‖L1 ≥
c3

mr/d
− 2δ.

Now we assume thatδ ≤ c3/4mr/d. From the above inequality and Claim 1 it follows
that for anyg, g′ ∈ S, g 6= g′,

‖g− g′‖L1 ≥
c3

2mr/d
,

and the cardinality|S| = 2m/16. Fix α = c3/2mr/d. Then

Mα(S) ≥ 2m/16.(6)

From the other hand, we have‖g‖L∞ ≤ β for any g ∈ S. From Definition 2
of pseudo-dimension it directly follows that dimp(C P(Fm(G))) ≤ dimp(P(Fm(G))).
SinceP(Fm(G)) ⊂ Hn, then dimp(P(Fm(G))) ≤ dimp(Hn) ≤ n. Hence dimp(S) =
dimp(C P(Fm(G))) ≤ n. According to Lemma 1 we have

Mα(S) ≤ e(n+ 1)

(
4eβ

α

)n

.(7)

Recall thatβ = m−r/d, c3 = 2−d−1, andα = c3m−r/d/2 = m−r/d/2d+1. From (6) and
(7) we obtain the inequality

2m/16 ≤ e(n+ 1)

(
4eβ

α

)n

= e(n+ 1)(2d+4e)n.

Let γn = [32 log2(2
d+4e)]n. Recall thatm = m̃d. Choose the integer̃m such that

γ
1/d
n ≤ m̃ ≤ 2γ 1/d

n , which is possible sinceγ 1/d
n > 1. Then the last inequality implies

that

2 log2(2
d+4e) ≤ log2(e(n+ 1))

n
+ log2(2

d+4e)

which is false for alln ≥ 1. It follows that the assumption ofδ ≤ c3/4mr/d is contradicted
for anyn ≥ 1. Henceδ > c3/4mr/d ≡ c1/nr/d. According to the definition ofδ, ε is any
positive number, so it follows that dist(Fm(G),Hn, L1) ≥ c1/nr/d. Using Claim 2 we
obtain

dist(Wr,d
p ,Hn, Lq) ≥ dist(Wr,d

p ,Hn, L1) ≥ dist(Fm,Hn, L1) ≥ c1

nr/d

which proves the theorem.



298 V. Maiorov and J. Ratsaby

3.2. Proof of Theorem2

To establish an upper bound it suffices to consider a specific manifold of pseudo-
dimensionn and use theL∞-metric for approximation. For a positive integern consider
the family4n of possible partitions of the domainX = [0,1]d attained by the construc-
tive spline algorithm of Birman and Solomjak [1]. We will not describe the algorithm
here but only mention the particular properties of the family of partitions obtained by
the algorithm. Let5 be a partition ofX into a finite number of half-opend-dimensional
cubes1k = {x ∈ Rd : ak,i ≤ xi < bk,i ,1 ≤ i ≤ d}, whereak,i , bk,i ∈ [0,1]. Let
the cardinality of5, denoted|5|, be the number of cubes in the partition5. A parti-
tion5′ which is obtained from5 by dividing certain cubes1k into 2d cubes is called
an elementary extension of5. The class4n consists of all partitions of cardinalityn
which can be obtained from the trivial partition50 = X = [0,1]d by a finite number of
elementary extensions.

We consider the approximating manifoldGn to be comprised of all functionsg which
are piecewise polynomials of degreer − 1 over then cubes of any partition5n in the
above family4n. Specifically, denote by 11k(x) the characteristic function over1k and
let P(1k) be the space of all functions onX of the form p(x)11k(x) wherep(x) is an
algebraic polynomial ofx of degree at mostr −1. Associated with a partition5n define
the classP(5n) consisting of all functionsg(x) = ∑n

k=1 pk(x) where pk ∈ P(1k),
1k ∈ 5n, 1≤ k ≤ n.

Now, according to Theorem 3.1, p. 305, of Birman and Solomjak [1], for anyf ∈ Wr,d
p

there exists a partition5n, f ∈ 4n of X and an associated classP(5n, f ), both dependent
on f , such that

dist( f, P(5n, f ), L∞) = inf
g∈P(5n, f )

‖ f − g‖L∞ ≤
c

nr/d
(8)

for some constantc > 0 independent ofn. As this is true for anyf ∈ Wr,d
p then it holds

also for the worst functionf ∈ Wr,d
p , i.e.,

sup
f ∈Wr,d

p

inf
g∈P(5n, f )

‖ f − g‖L∞ ≤
c

nr/d
.

Consider the manifold
Gn =

⋃
5n∈4n

P(5n).

We now find the upper bound for the pseudo-dimension ofGn. Letmbe a positive integer.
Let x1, . . . , xm ∈ X be any set ofm points inX and letv be any vector inRm. Denote by
g = [g(x1)+v1, . . . , g(xm)+vm] and sgn(g) = [sgn(g(x1)+v1), . . . , sgn(g(xm)+vm)].
We have, ∣∣{sgn(g) : g ∈ Gn}∣∣ = ∣∣∣∣∣ ⋃

5n∈4n

{sgn(g) : g ∈ P(5n)}
∣∣∣∣∣

≤
∑
5n∈4n

|{sgn(g) : g ∈ P(5n)}| .

As all cubes in5n are mutually disjoint the last expression equals∑
5n∈4n

∏
1k∈5n

∣∣{sgn(pk) : p ∈ P(1k)}
∣∣ ,(9)
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wherepk = [ p(xi1)+vi1, . . . , p(ximk
)+vimk

], {xi1, . . . , ximk
} is the subset of{x1, . . . , xm}

which is contained in1k, and{yi1, . . . , yimk
} are the correspondingy values.

TheclassP(1k) is avector spaceof functionsof the formp(x) =∑i :|i |≤r−1 ai x
i1
1 · · · xid

d ,

ai ∈ R for a multi-integeri ∈ Z d
+, where|i | = ∑d

j=1 i j . The number of such terms is
bounded from above byα ≡ c42rd for some absolute constantc4 > 0. Therefore the
dimension of the linear manifoldP(1k) is bounded from above byα which is indepen-
dent ofk andn. By Property 1, it follows that the pseudo-dimension of the classP(1k)

is bounded from above byα, for any 1≤ k ≤ n.
For a fixed partition5n, it follows from Property 2 that|{sgn(pk) : p ∈ P(1k)}| ≤

mα
k + 1, for each 1≤ k ≤ n. Let Cn denote the number of partitions5n in 4n. Then (9)

is bounded from above by

Cn

n∏
k=1

(mα
k + 1) ≤ Cn

(
n∏

k=1

(mk + 1)

)α

≤ Cn

(
1

n

n∑
k=1

(mk + 1)

)nα

= Cn

(
1+ m

n

)nα
,

where we used a well-known inequality relating the arithmetic and geometric means.
We now show thatCn ≤ 2c5n for some constantc5 > 0 independent ofn.

As noted earlier, the family4n is defined in such a way that every partition5n ∈ 4n is
the result of a finite sequence of elementary extensions starting from the trivial partition.
Consider such a sequence of partitions{5ni }ki=0 which starts from the trivial partition5n0

of cardinalityn0 = 1 and ends in a partition5nk ∈ 4n of cardinalitynk = n. From p. 302
of [1] it follows that there are no more than 2n possible cardinality sequencesn0, . . . ,nk,
corresponding to possible partition sequences. For a fixed cardinality sequence there are
no more than 26

k
i=0ni possible sequences of partitions{5ni }ki=0 for which |5ni | = ni and

all elementsni , 1≤ i ≤ k, satisfy the inequality above equation (2.20) and Lemma 2.3,
p. 301, in [1]. Using (8), it then follows that

∑k
i=0 ni ≤ c6n for some constantc6 > 0

independent ofn. Therefore the total numberCn of possible partition sequences{5ni }ki=0
is no more than 2n2c6n = 2c5n. Thus (10) is bounded from above by 2c5n (1+m/n)nα.
Solving for them such that this last expression is strictly less than 2m yieldsm ≤ c7n,
for some constantc7 > 0 independent ofn. Thus we have proved that form ≥ c7n, for
any set of pointsx1, . . . , xm ∈ X andv1, . . . , vm ∈ R, |{sgn(g) : g ∈ Gn}| < 2m which
proves that dimp(Gn) ≤ c7n.

Hence the manifoldGn/c7 has pseudo-dimensionn and we conclude by
ρn(W

r,d
p , Lq) = inf

Hn
sup

f ∈Wr,d
p

inf
h∈Hn
‖ f − h‖Lq

≤ sup
f ∈Wr,d

p

inf
g∈Gn/c7

‖ f − g‖L∞

≤ sup
f ∈Wr,d

p

inf
g∈P(5n/c7 , f )

‖ f − g‖L∞ ,

the latter being bounded from above byc2/nr/d using (8) for some constantc2 > 0
independent ofn. This proves the theorem.
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