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On the Degree of Approximation by Manifolds
of Finite Pseudo-Dimension

V. Maiorov and J. Ratsaby

Abstract. The pseudo-dimension of a real-valued function class is an extension of the
VC dimension for set-indicator function classes. A clagsf finite pseudo-dimension
possesses a useful statistical smoothness property. In [10] we introduced a nonlinear
approximation widthon (F, Lq) = infyn dist(F, H", Lq) which measures the worst-
case approximation error over all functiofise F by the best manifold of pseudo-
dimensionn. In this paper we obtain tight upper and lower boundsoﬁ)(w,;’d, Lg),

both being a constant factor of /9, for a Sobolev clasw{)’d, 1<p,q=<oo As

this is also the estimate of the classical Alexandrov nonlineaidth, our result proves

that approximation OWE,'d by the family of manifolds of pseudo-dimensionis as
powerful as approximation by the family of all nonlinear manifolds with continuous
selection operators.

1. Introduction

Vapnik and Chervonenkis [12], [13], [14] and later Blumer, Ehrenfeucht, Haussler, and
Warmuth [2] studied the classical problem of pattern recognition in which they obtained
results concerning uniform strong law convergence for families of indicator, as well
as real-valued, functions. As a consequence of their theory a new measure of richness
of classes of indicator functions, called the Vapnik—Chervonenkis (VC) dimension, was
introduced. Henceforth, et be an arbitrary space equipped with a probability measure.
The VC dimension is defined as follows:

Definition 1 (Vapnik—Chervonenkis Dimension) Given a clasg+ of indicator func-
tions of sets inX the Vapnik—Chervonenkis dimension #f, denoted as V@), is
defined as the largest integarsuch that there exists a samplé = {x, ..., Xm}, with
Xi € X, 1 < i < m, such that the cardinality of the set of sign vect§s(H) =
{[h(X1), ..., h(xm)] : h € H} satisfied Sim(H)| = 2™. If mis arbitrarily large, then the
VC dimension ofH is infinite.
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Example. LetH be the class of indicator functions of interval setsXnr= R. With
a single pointx; € X we havel{[h(x1)] : h € H}| = 2. For two pointsx, X, € X we
have|{[h(x1), h(x2)] : h € H}| = 4. Whenm = 3, for any pointsxy, X2, X3 € X we
have|{[h(x1), h(X2), h(x3)] : h € H}| < 2% thus VQ'H) = 2. [ ]

Pollard [7] and later Haussler [4] have extended the uniform SLN results to classes
of real-valued functions. In this case, the complexity measure analogous to the VC
dimension is the so-callgoseudo-dimensigmienoted as dig() which is defined as
follows: Let sgr(y) be defined as 1 foy > 0 and—1 for y < 0. For a Euclidean vector
v € R™denote by sgfv) = [sgn(v1), ..., SgNvm)].

Definition 2 (Pseudo-Dimension) Given a clasgH of real-valued functions defined
on X. The pseudo-dimension &f, denoted dirp(H), is the largest integen such that
there exisixy, ..., Xxm € X and a vectow € R™ for which the cardinality of the set of
sign vectors satisfiesgnh(xy) + v1, ..., h(Xm) + vm] : h € H} is equal to 2. If m
can be arbitrarily large, then digt#) = oc.

Example. ConsiderX = {1, ..., n}. Consider the family of indicator functiortd =
{h(X) = Lixea : A C X}. Then VQH) = n. Now consider the family of real-
valued functionsG = {g(x) = h(X) + x : h € H}. Then, since there existsia=
(-1, —-2,...,—n)suchthat{sgnfg(1) + v1,...,9(n) +vy] : g € G}| = 2", it follows
that dim,(G) = n. LetF = {f(X) = Ligw~0) : 9 € G}. Then VCF) = 0. [ |

For several useful invariance properties of the pseudo-dimension, see Pollard [8] and
Haussler [4, Theorem 5]. We mention two useful properties. The first, appearing as
Theorem 4 in Haussler [4], states that for the case of finite-dimensional vector spaces of
functions the pseudo-dimension equals its dimension.

Property 1. LetH be an n-dimensional vector space of functions from a set XRnto
Thendimy(H) = n.

The second property is attributed to Vapnik and Chervonenkis [12] and appears as
Proposition A2.1(ii) of Blumer, Ehrenfeucht, Haussler, and Warmuth, which we restate
for real-valued functions. For nonnegative integers m we take("") = 0.

Property 2. LetH" be a class of functions from X in®of pseudo-dimensiona 1.

Let m> 0. Then for any sample™ = {X1,...,Xm}, Xi € X, 1 <i < m, and vector
v € R™ the cardinality ofthe set,a(H") = {sgnh(x1)+v1, ..., h(Xm)+vm] : h € H"}

satisfies

S (HM| < > <r|n) <m"+ 1

i=0

This property follows from the next argument: denote Ry g, the indicator function
forthe setD C X, i.e.,itequals 1 ik e D and O otherwise. Since di(iH") < nthen
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there does not exista set, ..., Xmn € X andys, ..., ¥ym € R, m > n, such that
A= |{sgnh(x) + Y1, h(X2) + Y2, ..., h(Xm) + ym] : h € H"}| = 2™,
Moreover, A equals

B = [{[Lihex) +y2201 Loy 1y2201 - - - » L +ym=0] 1 € HY|

We define the functiom,(z2) = gn(X,y) = h(x) + vy, and we writez = (X, y). We
consider the class of indicator functions

G = {Lig@>0 - h e H"}.

It follows from the above that there does not exist azet.., z, € Xx R with
m > n such that

C = [{[Lig@=01: - - - » Lign(zm=0)] : h € H"}| =2

Then by definition of the VC dimension for indicator classes it follows that®C< n.
Using Proposition A2.1(ii) of Blumer et al., we obtah < m" + 1 which is true for
allm > 0 andn > 1. SinceA = B = C it follows that A < m" + 1, which proves
Property 2.

Consider some normed spageconsisting of functiond (x), x € X. In Ratsaby and
Maiorov [9], [10] we introduced a new nonlinearwidth of a subse¥ of a spaceF
defined as

(1) on(F, F) = 'QI fﬁfh'ﬂln If—hlz,

whereH" runs over all classes i with dim,(H") < n.

Let us compare this width to the classical Alexandrov nonlinear width, see Tikhomirov
[11] and DeVore [3]. Lefl - || be a norm or. Let M,, be a mapping frorR" into the Ba-
nach spac& which associates eaehe R" with the elemenM; (a) € F. Functionsf ¢
F are approximated by functions in the manifdld, = {M,(a) : a € R"}. The measure
of approximation off by M, is defined as the distance ipg- || f — My (a)||. The degree
of approximation of a subsét of F by M, is defined as sypg infacrn || f — Mn(@)|].
Denote byr a selection operator which takes an elemérg F to R". Given such an
operatorr then the approximation of by a manifoldM,, is My(r (f)). The distance
between the sef and the manifoldM, is then defined as syg- || f — My (r(f))].
Restrictingr to be a continuous operator, the continumaslinear nwidth of F is
then defined as,(F; F) = infr.cont, m, SUR g | T — Mp(r ())]l, where the infimum
is taken over all continuous selection operatoesd alln-dimensional manifoldgav,,.

This width is determined for various andF in [3].

The Alexandrov nonlinear width does not in general reflect the degree of approxi-
mation of the more natural selection operatavhich chooses the best approximation
foran f € F as its closest element iM,, i.e., that whose distance frorh equals
infge, | f — gll, the reason being that suchais not necessarily continuous. In con-
trast, theo, width imposes no restriction as far as the selection mechanism is concerned,
namely, it selects fof an elemenh(f) where| f — h(f)| = infrepn || f — hJ|. Many
interesting manifolds such as rational functions and splines with free knots are included
in the family {"} of all n-pseudo-dimensional manifolds.
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Introduce definitions. LeX = [0, 1] be the unit cube in the spad®, d > 1.
Consider a normed spadg, = Lq(X), 1 < g < oo, consisting of functionsf (x),

X € X, such that
1/q
1, = </ |f(x)|qu> .
X

In [10] we estimated this width in the,,-metric for a Sobolev class
Wit = {f 1 ID*fllL o) < L 1Kl <},

where fork = [Ky, ..., kq] € Z% the normlk] = Y%, ki, andDKf = (gki+tke)/
(0x¥ ... ax) f . In the current work we estimajs, for a general Sobolev class embed-
ded in the spacky which is defined as follows: Let> 0,1 < p,q < oo, andifp < q,
and let the condition/d > 1/p — 1/q be satisfied. Then

Wi = {f :D*FllL o <1 K <r}.

2. Main Results

The main result is the following two theorems. The previously mentioned embedding
condition onr, d, p, andq is written more concisely as/d > (1/p — 1/q), where
(Y)r =0ify <0and(y), =yfory > 0.

Theorem 1(Lower Bound).Forr > 0,1 < p,g < oo, and integersl < n,d < oo,
we have

C1

nr/d

pn(W, Lg) >
for some finite constant c> 0 independent of n
Theorem 2 (Upper Bound).Forr > 0,1< p, q < oosatisfyingyd > (1/p — 1/0),,
and integersl < n, d < oo, we have

C2

r.d
pn(Wy™, Lg) < r/d

for some finite constantc> 0 independent of n

We now proceed with the proofs of the two theorems.

3. Proofs

We start with some notation. Leg, c4, . .. denote absolute constants. For the distance
between two function classes B C Lqwe use distA, B, Lq) = SURac 4 INfiben) 12—
b||L,- Thel -norm of avectov € R™is denoted byv||ip = >, vip)l/p, 1<p<oo.

For a selG ¢ R™ write sgnG) = {sgn(z) : z € G}.
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3.1. Proof of Theoreni

Denote byEy, = {[z1....,2n] 1 z € {—-1,+1},1 < i < m}. The next claim follows
immediately from Lorentz, Yolitschek, and Makovoz [6, p. 489].

Claim 1. There exists a set @ Ey, of cardinality greater than or equal t2™1 such
that for anyv, v’ € G, wherev # v’, the distance|v — v’|||1m >m/2.

In order to find a lower bound oph(W,’J’d, L) it suffices to boungbn (Fm, L1) from
below, whereF,, C wg;d is a function class which is constructed next. joe R,
let (y) be a nonnegative function iW{,vl which satisfiesjp(y)| < 1, ¢(y) = 0 for
y & (0,1), andg(y) = 1fory e [, 3].

Letm be a fixed positive integer such thmt= M for some arbitrary integef which
will be chosen below. LeD = {0, 1, ..., m—1}9. Forx € RY, leti = [iq,is,...,iq] €
D define the functiorp-(x) = ]'[]9'=1 @i, (%), where fory € R, ¢j, (y) = ¢(My—ij),
O<ij=m-1,1<j<d.

Consider the function class

1
(2) Fn=13 fax) = /d Zai—(pi—(X) raekEmyg,
ieD
where agairE,, = {a = [ag,...,am] : & € {—1,+1},1 < i < m} and we take the
liberty in using a scalar as well as a vector index for a coordinate of the vector

Claim2. Wehave | C WFr;d.

We now prove the claim. For a multi-integere Z ¢, satisfying|a| = Zidzl a <,
denote byf @ the partial derivative of order. Let A = [0, 1/M]¢. All integrals below
ared-dimensional. We have

P

1
® ML = i [ (05000 9%
’ ieD
1 e~ o
4) = o7 Z/A |3 (e (M) | dx.

ieD
Using the fact thate| < r and lettingy;, = mx, 1 <i < d, then (4) is bounded from
above by

1 o : o
®) Wzmw—w’/ ATe“ o
i_GD [0~1] ]=l

The above integral is less than or equal to 1 sinceeW{,-l thus (5) reduces to

1
™ et =1
ieD

P
dy.

sincea; € Ep. This proves thaf, € W< [ ]
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We now have the following claim:

Claim 3. Let G C En, be a subset as defined in ClaimDenote by R(G) = { fa(x) :
a € G}. Then for any f# f' € Fn(G)

C3
’
1=l = 5.

where g = 279-1,

The proof follows: Letf # f’ be such thatf = f4(x), f" = fa(x). Then from the
definition of-(x) and from Claim 1 we have

/ 1 /
Nf—f,= W./[o,l]d Z(B{—al—)fﬂr(X) dx
ieD

ieD
1 .
Z(W/Aﬂfp(m)ﬁ)
d

1 1 av) m
EW A lp(y)|dy 5

C3
~ m/d’

dX) 2l =&

For a set of functiong” in L; denote by
Mo (F)y=maxs:3f,..., fsely, [Ifi = fjll, > Vi # |}

thee-packing number fofF in the L;-norm.
The next lemma follows directly from Haussler [5, Corollary 3].

Lemmal. LetH" = {h} be a set of Lebesgue-measurable functionfOoa]¢ such
that |||, < B anddimp(H") < n < oo. Then for anys > 0 the following upper
bound on the-packing number holds

n
M(H") <e(n+1) <?) .
We now proceed with the proof of Theorem 1.

Proof. LetH" be any set of Lebesgue-measurable functions with, dfl) < n.
For the seG C E,, defined in Claim 1 consider the set
Fn(G) = {fa(x) € Fn:a e G}.
Lete > 0 be any positive real number. Denote

§= sup inf |f —h|, +&=dist(Fn(G), H", L1) +&.
f €Fm(G) he™"

Define the projection operatd?® : F,(G) — H", as follows: For anyf € F(G) let
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P f be any element if{" such that

If—Pfl, <.
Setp = m~/4, Introduce the cut operator
=B, f(x) < -8,
Cf=Cfx)y={fx), -B<fXx <8,
B, f(x) > B.

Consider the set of functionS := CP(Fn(G)) := {CPf : f € Fn(G)}. Let f #
f’ € Fn(G). Then

[CPf—CPf |, =I(CPf—f)+(f'"=CPf)+(f - ),
> f = e, = I1f" = CPf,, = If —CPf,.
If In(x)| < Bforallx € X, then|h—CPh|, < |lh—Ph],. Therefore, using Claim 3
we have

/ / / / C
ICPT—CPllL, = IIf = £, — I F/ = P, — [ f = P, > —

= _W—Z(S.

Now we assume that< cz3/4m’/9. From the above inequality and Claim 1 it follows
that foranyg, g’ € S,g # ¢,

/ Cs
lg—gll, = Sy’
and the cardinalityS| = 2™, Fix o = c3/2m/9. Then
(6) My (S) = 218,

From the other hand, we havgl|l., < B for anyg € S. From Definition 2
of pseudo-dimension it directly follows that digC P(Fn(G))) < dimp(P(Fm(G))).
Since P(Fm(G)) C H", then dimy(P(Fn(G))) < dimy(H") < n. Hence dim(S) =
dimp(C P(Fm(G))) < n. According to Lemma 1 we have

A n
(7) Ma(S) < e(n + 1) (?) .
Recall thats = m™/9, ¢z = 2791 anda = csm™"/9/2 = m~"/4/29+1 From (6) and
(7) we obtain the inequality

om/16 e(n + 1) (%) =e(n+ 1)(2d+4e)n.

Let yn = [32log,(2%**e)]n. Recall thatm = m?. Choose the integei such that
v/ < < 239 which is possible since’® > 1. Then the last inequality implies

that

2log,(2%e) <

7logz(e(: D), log,(2**e)

whichis false for alh > 1. It follows that the assumption éf< c3/4m’/ is contradicted
foranyn > 1. HenceS > c3/4m’/9 = ¢;/n"/9. According to the definition of, ¢ is any
positive number, so it follows that digt,(G), H", L1) > ¢;/n"/9. Using Claim 2 we
obtain

C1
nr/d
which proves the theorem. ]

dist( W59, 1", Lg) > distWy?, H", L) > dist(Fy, H", L) >
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3.2. Proof of Theoren?2

To establish an upper bound it suffices to consider a specific manifold of pseudo-
dimensiom and use thé& ..-metric for approximation. For a positive integeconsider

the family 2, of possible partitions of the domak = [0, 1]¢ attained by the construc-
tive spline algorithm of Birman and Solomjak [1]. We will not describe the algorithm
here but only mention the particular properties of the family of partitions obtained by
the algorithm. Lef1 be a partition ofX into a finite number of half-opeth-dimensional
cubesAg = {x € RY : & < X < by, 1 <i < d}, whereay;, b; € [0,1]. Let

the cardinality off1, denotedIl|, be the number of cubes in the partitibh A parti-

tion I1" which is obtained fronil by dividing certain cubed into 2 cubes is called

an elementary extension ©f. The classg,, consists of all partitions of cardinality
which can be obtained from the trivial partitidfy = X = [0, 1]¢ by a finite number of
elementary extensions.

We consider the approximating manifdjd to be comprised of all functiorgwhich
are piecewise polynomials of degnee- 1 over then cubes of any partitiodl, in the
above familyE,. Specifically, denote byl (x) the characteristic function ovey, and
let P(A) be the space of all functions o% of the form p(x) 14, (x) wherep(x) is an
algebraic polynomial ok of degree at most— 1. Associated with a partitiof, define
the classP(I1,) consisting of all functiong(x) = Y p_; pk(X) Wherepc € P(Ay),
Axell,1<k<n.

Now, according to Theorem 3.1, p. 305, of Birman and Solomjak [1], forfalayvv,g’d
there exists a partitiofl, 1 € &, of X and an associated claBsI1, 1), both dependent
on f, such that
®) dist(, P, 1), L) = __inf 1T =gl = —
for some constart > 0 independent afi. As this is true for anyf < ng then it holds
also for the worst functiorf € W,'J’d, ie.,

sup inf || f L. < ¢
—gl, < —.
fewge 9P(Tnn) I = 7

Consider the manifold

Gn=|J Pay.
Mhe&n
We now find the upper bound for the pseudo-dimensidpof.etm be a positive integer.
Letx, ..., Xn € X be any set ofn points inX and letv be any vector ilR™. Denote by

0 =[9(XD)+v1, ..., 9(Xm)+vm] and sgrig) = [sgn(g(x1)+v1), . .., SGNG(Xm) +vm)].
We have,

L fson@ : g € P(IMy)}

JICYSIOM

D l{sgn@) : g € Py}l

Mhe&n

l{sgn@) : g € G"}|

IA

As all cubes inrI,, are mutually disjoint the last expression equals
9 > T ltsonmio : p e P(an}

IheEn Axelly

’
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wherep, = [p(Xi,)+vi,, .- -, p(ximk)+vimk], Kigs oo Xi } isthe subsetdfxy, ..., Xm}

which is contained i\, and{yi,. ..., Vi, } are the correspondingvalues.
The clas®(Ay) is a vector space of functions of the foptx) = >y &xy - - - Xy,
a € R for a multi-integeri € Z4, whereli| = Z?Zlij. The number of such terms is

bounded from above by = c,2'9 for some absolute constacf > 0. Therefore the
dimension of the linear manifol®(Ay) is bounded from above hy which is indepen-
dent ofk andn. By Property 1, it follows that the pseudo-dimension of the cR&Ay)
is bounded from above hy, forany 1< k < n.

For a fixed partitionTI,, it follows from Property 2 thal{sgn(p,) : p € P(AW}| <
mg + 1, for each 1< k < n. Let C, denote the number of partitiod%, in E,. Then (9)
is bounded from above by

Co[Jomi + 1 < Cy (H(mk+1)>
k=1 k=1
= “n ﬁ k+)

k=1

mh ne

- C, (1+ —) ,
n

where we used a well-known inequality relating the arithmetic and geometric means.
We now show tha€, < 2%" for some constarts; > 0 independent af.

As noted earlier, the famil, is defined in such a way that every partitidp € &y is
the result of a finite sequence of elementary extensions starting from the trivial partition.
Consider such a sequence of partitipfs, }{‘zo which starts from the trivial partitiof ,,
of cardinalityng = 1 and ends in a partitiol,, € &, of cardinalityn, = n. From p. 302
of [1] it follows that there are no more thafl @ossible cardinality sequenaas . . ., ng,
corresponding to possible partition sequences. For a fixed cardinality sequence there are
no more than 3" possible sequences of partitiofidy, }};O for which|ITy, | = n; and
all elements;, 1 <i <k, satisfy the inequality above equation (2.20) and Lemma 2.3,
p. 301, in [1]. Using (8), it then follows thaz:‘zo n; < cgn for some constants > 0
independent ofi. Therefore the total numbex, of possible partition sequencgsy, }ik=0
is no more than "2%" = 2%" Thus (10) is bounded from above b$72(1 + m/n)™.
Solving for them such that this last expression is strictly less th&ry2ldsm < c¢;n,
for some constant; > 0 independent afi. Thus we have proved that far > c7n, for
any set of pointxy, ..., Xm € X andvy, ..., vm € R, [{sgn@) : g € G"}| < 2™ which
proves that dirp(G") < c7n.

Hence the manifol@™¢" has pseudo-dimensionand we conclude by

(W5, Lg) =inf sup inf || f —hi,

fEW{,‘d €
< sup inf |If—glL,
fewge 969"
< sup _inf |If—dlL..

fEW{J'd gEP(Hn/c7, )

the latter being bounded from above by/n'/® using (8) for some constay > 0
independent of. This proves the theorem. ]
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