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Incremental Learning With Sample Queries

Joel Ratsaby

Abstract—The classical theory of pattern recognition assumes labeled
examples appear according to unknown underlying class conditional
probability distributions where the pattern classes are picked randomly
in a passive manner according to their a priori probabilities. This paper
presents experimental results for an incremental nearest-neighbor
learning algorithm which actively selects samples from different pattern
classes according to a querying rule as opposed to the a priori
probabilities. The amount of improvement of this query-based approach
over the passive batch approach depends on the complexity of the
Bayes rule.

Index Terms—Incremental learning, sample querying, nearest-
neighbor algorithm, active learning, model selection.

————————   F   ————————

1 INTRODUCTION

WE consider the general problem of learning multicategory classi-
fication from labeled examples. In many practical learning settings,
the time or sample size available for training are limited which
may have adverse effects on the accuracy of the resulting classifier,
for instance, learning to recognize handwritten characters. In case
of a limited sample size, it is of primary importance to make the
learning more efficient by obtaining specific training samples
which contain high amount of information about the separability
of the pattern classes. Researchers in the area known as active
learning have considered various such ways which usually require
some form of extra interaction between the learner and teacher
which permits the learner to actively select or query only for inter-
esting training samples. The on-line mode of learning is typically
more useful in such cases than the batch mode since the choice of
which examples to query for is often based on the performance of
the learner on the examples obtained so far. Some previous work
in this direction include querying for correct classification labels of
points in the feature space (cf. Angluin [1], Rivest and Eisenberg
[13]), the notion of selective sampling (cf. Cohn, et al. [4], Cohn [3])
where regions of high classification-uncertainty are identified and
from which labeled samples are randomly drawn.

In pattern classification problems, it is often not useful or pos-
sible to query for the correct classification of vectors in the fea-
ture space. For instance, in handwritten recognition problem the
computer (the learner) could ask the user for labels of patterns
generated by the computer, however, such information is not
useful since the labels provided by the user are not necessarily
representative of his handwriting style. His handwriting is char-
acterized by pattern-class conditional probability distributions
which may be weakly related to his ability to recognize letter
patterns generated by the computer. It is, however, possible to let
the learner select particular pattern classes, not necessarily ac-
cording to their a priori probabilities, and then obtain randomly
drawn patterns according to the underlying unknown class-
conditional probability distribution. We refer to such selective
sampling as sample querying. It is not immediate though, whether
the freedom to select different classes at any time during the

training stage is beneficial to the accuracy of the classifier
learned. Recent theory (cf. Ratsaby [12]) indicates that such sam-
ple querying can be an effective means of optimizing the learn-
ing accuracy for problems of zero Bayes error and where the
Bayes classifier is assumed to be contained in the family of learn-
able classifiers. It is conjectured that even in the case of nonzero
Bayes loss, sample querying can improve the learning rates.

In the current paper, we report on experimental results of an in-
cremental algorithm which utilizes the sample-querying procedure
based on such theory, parts of which we review in the next section.

2 THEORETICAL BACKGROUND

We use the following setting: Given M distinct pattern classes each

with a class conditional probability density fi(x), 1 ≤ i ≤ M, x ∈ Rd,

and a priori probabilities pi, 1 ≤ i ≤ M. The functions fi(x), 1 ≤ i ≤ M,

are assumed to be unknown while the pi are assumed to be known
or easily estimable as is the case of learning character recognition.

For a sample-size vector m = [m1, …, mM] where m mii

M
=

=∑ 1

denote by ζ m
j j

j

m
x y=

=
,4 9J L

1
 a sample of labeled examples con-

sisting of mi examples from pattern class i, where yj , 1 ≤ ≤j m ,

are chosen not necessarily at random from {1, 2, …, M}, and the

corresponding xj are drawn at random i.i.d. according to the class
conditional probability density f xyj

1 6 . The expected misclassifica-

tion error of a classifier c is referred to as the loss of c and is de-
noted by L(c). It is defined as the probability of misclassification of
a randomly drawn x with respect to the underlying mixture prob-
ability density function

f x p f xi i
i

M

1 6 1 6=
=
Â

1

.

Let 1{x:x∈A} denote the indicator function of a set A. We use the
same notation to denote the Kronecker delta function 1

B x1 6< A  for x

being a discrete variable and where B(x) is a condition on x which
can either be true or false, for instance, an equality condition g(x) =
i. The loss is commonly represented as

L c1 6 1 6 1 6= B=
≠

E
x y c x y

1
, :

where expectation is taken with respect to the joint probability

distribution fy(x)p(y) where p(y) is a discrete probability distribu-

tion taking values pi over 1 ≤ i ≤ M, while y denotes the label of the

class whose distribution fy(x) was used to draw x. The loss L(c)
may also be written as

L c p Ei i x c x i
i

M

1 6 1 6< A=
π

=
Â 1

1
:

where Ei denotes expectation with respect to fi(x). The pattern rec-
ognition problem is to learn based on ζm the optimal classifier, also
known as the Bayes classifier, which by definition has minimum
loss which we denote by L*.

A multicategory classifier c is represented as a vector c(x) =

[c1(x), …, cM(x)] of Boolean classifiers, where ci(x) = 1, if c(x) = i and

ci(x) = 0 otherwise, 1 ≤ i ≤ M. The loss L(c) of a multicategory classi-
fier c may then be expressed as the average of the losses of its
component classifiers, i.e.,
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where for a Boolean classifier ci the loss is defined as

L c Ei i x c xi
2 7 1 6< A=

≠
1

1:
.

As an estimate of L(c) we define the empirical loss
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which may also can be expressed as
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Vapnik and Chervonenkis introduced a measure of complexity
of a class of Boolean classifiers which is known as the VC-
dimension, cf. [14]. It is defined as follows:

DEFINITION 1. (Vapnik-Chervonenkis Dimension) Given a class % of
Boolean classifiers b(x) over X, the Vapnik-Chervonenkis dimen-
sion of %, is defined as the largest integer l such that there exists a

sample xl = x1, …, xl of points in X such that the cardinality of the
set of Boolean vectors

S b x b x b
xl % %1 6 2 7 2 7J L= ∈1 1, , :K

satisfies S
x

l
l %1 6 = 2 . If l is arbitrarily large then the VC-

dimension of % is infinite.

The main interest in the VC-dimension quantity is due to the fol-
lowing result on a uniform strong law of large numbers which is a
variant of Theorem 6.7 in Vapnik [14]

LEMMA 1. (Uniform SLLN for Boolean Classifier Class) Let % be a class
of Boolean classifiers over X with VC(%) = k < ∞. Let

z x yl
j j

j

l
=

=
,4 9J L

1
, x Xj ∈ , yj ∈ 0,  1; @ , 1 ≤ ≤j l ,

be a sample of size l > k consisting of randomly drawn examples
according to any fixed probability distribution P on X × {0, 1}. Let

L b E
x y b x y

1 6 1 6 1 6= B=
≠

1
, :

with expectation with respect to P and

L b
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denote the loss and empirical loss for b, respectively. Then for arbi-
trary confidence parameter 0 < δ < 1, the deviation between the
empirical loss and the true loss uniformly over b ∈ % is bounded as

sup
b L b L b

k
ll

l
k

Œ - £
+ +

% 1 6 1 6 2 7 3 8
4

12 9ln ln d

with probability 1 − δ.

We consider a class of multicategory classifiers to be decomposed

into a multistructure S = S1 × S2 × L × SM, where Si is a nested

structure (cf. Vapnik [14]) of Boolean families %N ML
, ji = 1, 2, …, for

1 ≤ i ≤ M, i.e., S k k kj1 1 2 1
= % % %, , , , ,K K S k k kj2 1 2 2

= % % %, , , , ,K K

up to SM k k kjM
= % % %

1 2
, , , , ,K K where k ZZji

∈ +  denotes the

VC-dimension of %k ji
 and % %k kji ji

⊆
+1

, 1 ≤ i ≤ M. For any fixed

positive integer vector j ZZM∈ + , consider the class of vector

classifiers + % % % +
k j k k k kj j jM1 6 = × × × ≡

1 2
L , where we take the

liberty in dropping the multiindex j and write k instead of k(j).

Define by *k the subfamily of +k consisting of classifiers c that

are well-defined, i.e., ones whose components ci, 1 ≤ i ≤ M satisfy

Ui
M

i
dx c x IR= = =1 1: 1 6< A

and {x: ci(x) = 1} I {x: cj(x) = 1} = ∅, for 1 ≤ i ≠ j ≤ M.
From Lemma 1, it follows that the loss of any Boolean classi-

fier ci k ji
∈%  is, with high confidence, related to its empirical

loss as

L c L c m ki m i i ji i
2 7 2 7 4 9≤ + e ,

where

e m k const k m mi j j i ii i
, ln4 9 = ,

1 ≤ i ≤ M, where, henceforth, we denote by const any constant
which does not depend on the relevant variables in the expression.

Let the vectors m = [m1, …, mM] and

k k j k kj jM
≡ =2 7

1
, ,K

in ZZ M
+ . Define

e em k p m ki i j
i

M

i
,1 6 4 9=

=
Â

1

.

It follows that the deviation between the empirical loss and the
loss is bounded uniformly over all multicategory classifiers in a

class *k by e(m, k). We henceforth denote by ck
*  the optimal classi-

fier in *k, i.e., c L ck c k

* arg min= ∈* 1 6  and $ arg minc L ck c mk
= ∈* 1 6  is

the empirical loss minimizer over the class *k.

For any k ZZ M∈ + , by the triangle inequality we have with high

probability 1 − δ,

L c L c m k L c m k L c m kk m k m k k$ $ , , ,* *2 7 2 7 1 6 4 9 1 6 4 9 1 6≤ + ≤ + ≤ +e e e2

which, after passing the factor of two inside the constant in the
definition of e(m, k), says that $ck  has a loss which is no more than

e(m, k) from the best possible loss in *k. Denote by k* the minimal

complexity of a class *k which contains the Bayes classifier. We

refer to it as the Bayes complexity and, henceforth, assume ki
* < ∞ ,

1 ≤ i ≤ M. Theoretically, if k* was known then based on a sample of

size m  with a sample size vector m = [m1, …, mM] a classifier $ *c
k

whose loss is bounded from above by L* + e(m, k*) may be deter-

mined just by doing empirical loss minimization over *
k* , where

L L c
k

* *
*= 4 9  is the Bayes loss. This bound is minimal with respect

to k by definition of k* and we refer to it as the minimal criterion. It
can be further minimized by selecting a sample of size vector
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m m k
m ZZ m mM

ii
M

*

:
arg min ,=

∈ =%&'
()*+ =∑ 1

e1 6 .

The latter implies that a larger number of examples should be que-
ried from pattern classes which require more complex discrimi-
nating rules within the Bayes classifier.

Thus, sample-querying via minimization of the minimal crite-
rion makes learning more efficient through tuning the subsample
sizes to the complexity of the Bayes classifier. However, the Bayes
classifier depends on the underlying probability distributions
which in most interesting scenarios are unknown so k* should be
assumed unknown. In Ratsaby [12], an incremental learning algo-
rithm, based on Vapnik’s structural risk minimization (cf. Vapnik
[5], Devroye et. al. [5]), generates a random complexity sequence
$k n1 6 , corresponding to a sequence of empirical loss minimizers

$
$c
k n1 6  over * $k n1 6 , which converges to k* with increasing time n.

Based on this, a sample-query rule which achieves the same mini-
mization is defined without needing to know k*. The theory in [12]
holds for learning problems with a zero Bayes loss and where the
Bayes classifier is assumed to be contained in the structure of
families of classifiers. We now briefly describe the main ideas of
this incremental learning algorithm.

At any time n, the criterion function is e ⋅, $k n1 64 9  and is defined

over the m-domain ZZ M
+ . A gradient descent step of a fixed size is

taken to minimize the current criterion. After a step is taken, a new
sample-size vector m(n + 1) is obtained and the difference m(n + 1)
− m(n) dictates the sample-query at time n, namely, the increment
in subsample size for each of the M pattern classes. With increasing
n the vector sequence m(n) gets closer to an optimal path defined as
the set which is comprised of the solutions to the minimization of

e(m, k*) under all different constraints of m mii

M
=

=∑ 1
, where m

runs over the positive integers. Thus for all large n the sample-size
vector m(n) is optimal in that it minimizes the minimal criterion
e(⋅, k*) for the current total sample size m n1 6 . This constitutes the

sample-querying procedure of the learning algorithm. The remain-
ing part simply does empirical loss minimization over the current
class * $k n1 6  and outputs $

$c
k n1 6 . By assumption, since the Bayes classi-

fier is contained in *
k* , it follows that for all large n, the loss

L c L m k
k n m ZZ m m nM

ii
M

$ min ,$
*

:

*

1 6 1 6 4 9�� �� ≤ +
∈ =%&'

()*+ =∑ 1

e ,

which is basically the minimal criterion mentioned above. Thus,
the algorithm produces a classifier $

$c
k n1 6  with a minimal loss even

when the Bayes complexity k* is unknown.
In the next section we consider specific model classes consisting

of nearest-neighbor classifiers on which we implement this incre-
mental learning approach.

3 INCREMENTAL NEAREST-NEIGHBOR ALGORITHM

Fix and Hodges (cf. Silverman, et al. [2]) introduced the simple but
powerful nearest-neighbor classifier which based on a labeled

training sample x yi i i

m
,2 7> C =1

, xi ∈ Rd, yi ∈ {1, 2, …, M}, when given

a pattern x, it outputs the label yj corresponding to the example

whose xj is closest to x. Every example in the training sample is
used for this decision (we denote such an example as a prototype),
thus, the empirical loss is zero. The condensed nearest-neighbor
algorithm (Hart [9]) and the reduced nearest neighbor algorithm

(Gates [8]) are procedures which aim at reducing the number of
prototypes while maintaining a zero empirical loss. Both proce-
dures are convergent and, when given a training sample of size
m , they output a nearest neighbor classifier which has a zero em-

pirical loss and is based on l m≤  prototypes. Learning in this
manner may be viewed as a form of empirical loss minimization
with a complexity regularization component that puts a penalty
proportional to the number of prototypes.

A cell boundary ei,j of the Voronoi diagram (cf. Preparata and
Shamos [11]) corresponding to a multicategory nearest-neighbor
classifier c is defined as the (d − 1)-dimensional perpendicular-
bisector hyperplane of the line connecting the x-component of two

prototypes xi and xj. For a fixed l ∈{1, …, M}, the collection of Vo-

ronoi cell boundaries based on pairs of prototypes of the form (xi,

l), (xj, q) where q ≠ l, forms the boundary which separates the deci-
sion region labeled l from its complement and which represents

the boolean nearest-neighbor classifier cl. Denote by kl the number

of such cell boundaries and denote by sl the number of prototypes

from a total of ml examples of pattern class l. Using Delaunay trian-

gulation (cf. Preparata and Shamos [11]) the value of kl may be cal-

culated directly from the knowledge of the sl prototypes, 1 ≤ l ≤ M.

The Boolean classifier cl may be taken as an element of an in-
finite class of Boolean classifiers based on partitions of R

d by

arrangements of kl hyperplanes of dimensionality d − 1, where
each of the cells of a partition is labeled either 0 or 1. From Dev-

roye et al. [p. 512, 5], the number of cells in a partition is 2kl  if kl

≤ d and is no more than (ekl/d)d when d < kl. Combined with
Theorem 19.6, p. 311, which upper bounds the loss of a Boolean
nearest-neighbor classifier, it follows that the loss of a multicate-

gory nearest-neighbor classifier c which consists of sl prototypes

from ml examples, 1 ≤ l ≤ M, is bounded as L(c) ≤ Lm(c) + e(m, k),

where the a priori probabilities are taken as known, m = [m1, …,

mM], k = [k1, …, kM] and

e em k p m kl
l

M

l l, ,1 6 2 7=
=
Â

1

,

where

 e m k const d k m ek d ml l l l l

d

l, ln2 7 1 6 2 7= + +�� ��1 .

Letting k* denote the Bayes complexity then e(⋅, k*) represents the
minimal criterion.

The next algorithm uses the Condense and Reduce proce-
dures in order to generate a sequence of classifiers $

$c
k n1 6  with a

complexity vector $k n1 6  which tends to k* as n → ∞. A sample-

querying procedure referred to as Greedy Query (GQ) chooses at
any time n to increment the single subsample of pattern class
j*(n) where m

j n* 1 6  is the direction of maximum descent of the

criterion e ⋅, $k n1 64 9  at the current sample-size vector m(n). For the

part of the algorithm which utilizes a Delaunay-Triangulation
procedure, we use the fast Fortune’s algorithm (cf. O’Rourke
[10]) which can be used only for dimensionality d = 2. It turns
out that since all we are interested is in counting Voronoi borders
between all adjacent Voronoi cells, then an efficient computation
is possible also for dimensions d > 2. Here, one may use algo-
rithms that compute the adjacencies of facets of a polyhedron, cf.
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Fukuda [7]. Specifically, for a set S of points x1, …, xn ∈ Rd one

first transforms xi to a point zi on a paraboloid and which is de-

fined as zi = [xi, 1, …, xi, d, ixi2] where ixi denotes the l2-norm in

R
d, xi, j is the jth component of the vector xi, 1 ≤ i ≤ n, 1 ≤ j ≤ d. It is

well known that the polyhedron in R
d+1 with facets being the

hyperplanes tangent to the paraboloid at the points zi is a lifting
of the Voronoi diagram of the set S. Adjacent Voronoi cells in the
diagram map to adjacent facets of the polyhedron. Linear pro-
gramming is then used for finding adjacent facets efficiently (cf.
Fukuda [6]).

Incremental Nearest Neighbor (INN) Algorithm
Initialization: (Time n = 0)
Let increment-size ∆ be a fixed small positive integer. Start
with m(0) = [c, …, c], where c is a small positive integer.
Draw

ζ ζm m

j

M
j0 0

1

1 6 1 6= %&'
()* =

where ζ mj 01 6
 consists of mj(0) randomly drawn i.i.d. ex-

amples from pattern class j.
While (number of available examples ≥ ∆) Do:

1)� Call Procedure CR: $
$c CR
k n

m n

1 6
1 64 9= ζ .

2)� Call Procedure GQ: m(n + 1) = GQ(n).

3)� n := n + 1.
End While
//Used up all examples.
Output: NN-classifier $

$c
k n1 6 .

Procedure Condense-Reduce (CR)
Input: Sample ζm(n) stored in an array A[] of size m n1 6 .
Initialize: Make only the first example A[1] be a prototype.
//Condense
Do:
ChangeOccured := FALSE.
For i m n= 1, ,K 1 6 :

•� Classify A[i] based on available prototypes using
the NN-Rule.

•� If not correct then
-  Let A[i] be a prototype.
-  ChangeOccured := TRUE.

•� End If

End For
While (ChangeOccured).
//Reduce
Do:
ChangeOccured := FALSE.
For i m n= 1, ,K 1 6 :

•� If A[i] is a prototype then classify it using the re-
maining prototypes by the NN-Rule.

•� If correct then
-  Make A[i] be not a prototype.
-  ChangeOccured := TRUE.

•� End If
End For
While (ChangeOccured).

Run Delaunay-Triangulation Let $ $ , , $k n k kM1 6 = 1 K , $ki

denotes the number of Voronoi-cell boundaries associ-

ated with the $si  prototypes.

Return (NN-classifier with complexity vector $k n1 6 ).
Procedure Greedy-Query (GQ)

Input: Time n.

j n m k nj M m
m nj

* : arg max , $1 6 1 64 9
1 6

= ≤ ≤
∂

∂1 e .

Draw: ∆ new i.i.d. examples from class j*(n). Denote them
by ζ.
Update Sample:

ζ ζ ζ
m n m

j n j n n* *
:1 6 1 61 61 6+
=

1

U ,

while ζ ζm n m ni i+ =11 6 1 6: , for 1 ≤ i ≠ j*(n) ≤ M.

Return: m n e
j n

1 6 1 6+�
�

�
�∆ * , where ej is an all-zero vector

except 1 at jth element.

3.1 Experimental Results
We ran algorithm INN on four two-dimensional (d = 2) multicate-
gory classification problems and compared its generalization error
versus total sample size m  with that of batch learning, the latter
uses Procedure CR (but not Procedure GQ) with uniform subsam-
ple proportions, i.e., mi

m
M= , 1 ≤ i ≤ M. Each problem consists of

four equiprobable pattern classes with a zero Bayes loss. The gen-
eralization curves were averaged over 15 independent learning
runs (both for INN and Batch learning) where each run reaches a
total of 800 examples. The results are displayed in Fig. 1, Fig. 2,
Fig. 3, and Fig. 4 as a series of pairs, the first picture showing the
pattern classes of the specific problem while the second shows the
learning curves for the two learning algorithms plotted in a
semilog form. In all problems, from the difference between the
Batch and INN learning curves, we see that Algorithm INN out-
performed the simple Batch approach, the latter ignoring the in-
herent Bayes complexity and using an equal subsample size for
each of the pattern classes. In contrast, the INN algorithm learns
incrementally over time which of the classes are harder to separate
and queries more from these pattern classes. Asymptotically the
learning rates of INN and batch appear to have a constant factor
difference. Denote by q(k) the proportion-vector corresponding to

the vector k, i.e., q k k
k

k
k1 6 = 1 4, ,K , where

k kj
j

=
=
Â

1

4

.

Let u = 1
4

1
4, ,K  and let

D q k u q kj

q k

u
j

j

j
1 62 7 1 6 1 6

|| ln=
=
Â

1

4

denote the Kullback-Leibler distance between q(k) and u. For each

of the four classification problems, we calculated D q k u$||4 94 9  for $k

being the complexity vector when the total number of examples

m = 800  which we assume is large enough so that q k q k$ *4 9 4 9. .

Both D q k u$||4 94 9  and the improvement in the generalization error

exhibited by the use of sample querying, increase as we go in
Fig. 1, Fig. 2, Fig. 3, and Fig. 4. Thus, the amount of improvement
is proportional to the degree to which the Bayes complexity vector
k* differs from being uniform.
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Fig. 1. Classification problem #1. at m = 800, the value of D(q(k)||u) = 0.242.

Fig. 2. Classification problem #2. at m = 800, the value of D(q(k)||u) = 0.275.

Fig. 3. Classification problem #3. at m = 800, the value of D(q(k)||u) = 0.531.
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4 CONCLUSION

We considered the general problem of learning multicategory
classification from labeled samples in a setting where the sample
size or time available for training are limited, and where the class
a priori probabilities are known or easily estimable. We intro-
duced a novel notion of sample querying based on an incre-
mental learning approach, which adaptively tunes the subsample
sizes of each of the pattern classes according to the unknown
complexity of the Bayes optimal classifier. The principle is gen-
eral enough to be used in any learning algorithm that permits a
model-selection criterion and for which the error rate for the
classifier is calculable in terms of the complexity of the model.
Experimental results for an incremental nearest-neighbor algo-
rithm (INN) show that sample querying improves the expected
misclassification error (the loss) over that of batch learning by an
amount which depends on the underlying complexity of the
Bayes classifier.
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