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ESTIMATE OF THE NUMBER

OF RESTRICTED INTEGER-PARTITIONS

Joel Ratsaby

Using the saddle-point method an estimate is computed for the number
wm,N(n) of ordered m-partitions (compositions) of a positive integer n under
a constraint that the size of every part is at most N . The approximation
error rate is O(n−1/5).

1. INTRODUCTION

Let n, m be positive integers. An ordered m-partition of n (also known as a
composition [1]) is a sequence of positive integers a1, . . . , amwhich are called parts

such that
m∑

i=1

ai = n. Many applications of combinatorics involve the number of

ordered m-partitions of n. This number is easy to compute. If zero-size parts are
allowed then based on the generating function 1/(1− x)m it is simple to show that

it equals
(n + m − 1

m − 1

)
, (see [4], p. 33). Note that if we are allowed to ignore the

ordering of the parts then this number reduces to the classical Stirling number of
the second kind (see [3], p. 244). Often it is the case where there is a constraint on
the size of the parts. For instance, consider ordered m-partitions of n where each
part must be of size between 1 and N for some constant N ≥ 1. There are known
recurrences for the number of such constrained ordered partitions (see for instance,
Theorem 4.2 of [1]). It is not difficult to compute this exactly as the following
lemma shows. First, we define the binomial coefficient quantity

(
n
k

)
=

{
n!

k!(n − k)!
if 0 ≤ k ≤ n

0 otherwise.

This definition is slightly more restrictive in that it does not allow the upper index
n to be negative or real (for more general definitions of the binomial coefficient, see
[3]).
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Lemma 1.1. For 1 ≤ m ≤ n, N ≥ 0, let wm,N (n) be the number of ordered

partitions of the integer n into m parts each of size at least 0 but no larger than N .

Then

wm,N (n) =

n∑

i=0,N+1,2(N+1),...

(−1)i/(N+1)
(

m
i/(N + 1)

)(
n − i + m − 1

n − i

)
.

Proof. Consider the polynomial

(1.1) (1 + x + x2 + · · · + xN )m =

(
1 − xN+1

1 − x

)m
.

The coefficient of xnin the above polynomial gives precisely the value of
wn,M (n). Hence we have for the generating function of wm,N (n)

W (x) =
∑

n≥0

wm,N (n)xn =

(
1 − xN+1

1 − x

)m
.

Let T (x) = (1 − xN+1)m and S(x) =
(

1

1 − x

)m

. Then by the binomial theo-

rem we have T (x) =
m∑

i=0

(−1)i
(m

i

)
xi(N+1) which generates the sequence tN (n) =

( m
n/(N + 1)

)
(−1)n/(N+1)

I (n mod (N + 1) = 0), where I(E) denotes the indicator

function which equals 1 if the expression E is true and 0 otherwise. Similarly,

for m ≥ 1, it is easy to show S(x) generates s(n) =
(
n + m − 1

n

)
. The product

W (x) = T (x)S(x) generates their convolution tN (n) ? s(n), namely,

(1.2) w(n) =
n∑

i=0,N+1,2(N+1),...

(−1)i/(N+1)
(

m
i/(N + 1)

)(
n − i + m − 1

n − i

)
. �

Remark 1.2. The above may alternatively be expressed as

wm,N (n) =
m∑

`=0

(−1)`
(
m

`

)(
n + m − 1 − `(N + 1)

m − 1

)

The aim of this paper is to obtain a simple and closed-form estimate of
wm,N (n) without involving a summation operator. The following is the main result
of the paper

(
we use the following notation to denote the Gaussian cumulative

distribution, Φ(x) = (1/
√

2π )
x∫

−∞
exp{−x2/2} dx

)
.

Theorem 1.3. Let n, N ≥ 1 and m =
2n

N

(
1 + c1n

−1/2
)

for any absolute constant

c1 > 0 . Denote by µ = N/2 and σ = (N/6)(1 + N/2). Then as n increases, the
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number wm,N (n) of compositions of n into m parts each of size no larger than N
satisfies

wm,N (n) =
1√

2πmσ
(N + 1)m exp

{
− (n − mµ)2

2mσ

}(
1 − 2Φ

(
− m1/10√σ

)

+ O
(

exp
(
− m1/5

)))
.

Remark 1.4. The approximation error rate is O(n−1/5).

In the next section we present the proof. Table 1 shows a numerical example
where wm,N (n) is approximated by ŵm,N (n) (the estimate of Theorem (1.3)) with

N = 6, c1 = 1, m =
2n

N

(
1 + c1n

−1/2
)

and all numerical values truncated to four

significant digits.

n m wm,N (n) ŵm,N (n) % error

10 5 826 787 4.671

20 9 1.385 · 106 1.341 · 106 3.143

50 20 1.92 · 1015 1.892 · 1015 1.451

80 30 5.423 · 1023 5.385 · 1023 0.717

100 37 4.052 · 1029 4.028 · 1029 0.582

150 55 4.885 · 1044 4.862 · 1044 0.479

200 72 1.061 · 1059 1.058 · 1059 0.326

Table 1. wm,N (n)-versus-its wm,N (n) versus its approximation

ŵm,N (n), c1 = 1, N = 6

For this example Figure 1.1 shows the numerical approximation error (in
percent) versus the theoretical relative error term of O(n−1/5).
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2. PROOF OF THEOREM 1.3

We use the saddle point asymptotic method (see [2]) which is a counterpart of
the Laplace’s method for evaluation of integrals. Let G(z) be analytic in a region
Ω containing 0. Then by definition it has a convergent power series expansion
G(z) =

∑
n≥0

cnzn. By Cauchy’s coefficient formula (Theorem IV.4, [2]) , which is

a consequence of Cauchy’s residue theorem (Theorem IV.3), the nth coefficient cn

of G equals

(2.1) cn =
1

2πi

∮

C

G(z)
dz

zn+1
,

where C is a simple loop encircling 0 in Ω. Denote by

F (z) ≡ G(z)

zn+1

then the method dictates to choose a contour C that passes through (or near) a
saddle point ζ, i.e., a point where the derivative F ′(ζ) = 0 and F (ζ) 6= 0. At ζ, F
reaches its maximum value along C and is also the minimum of the maxima along
other neighboring contours. When G has nonnegative coefficients cn (as is the case
where the coefficients express a combinatoric expression such as wm,N (n)) there
exists a saddle point on the positive real axis. It follows that a small neighborhood
of the saddle point provides the dominant contribution to the integral (this is called
the central part of the integral while the remaining part is called the “tail”). When
this contribution can be estimated by local expansion one may resort to Laplace’s
method of integral approximation.

We now proceed with approximating this integral for our specific problem
where by (1.1) we have

G(z) = Hm(z)

where

H(z) =
1 − zN+1

1 − z
.

Clearly, we need to have

(2.2) n ≤ Nm

since otherwise it is not possible for m parts of size at most N to cover n. On the
positive real axis F is convex since its second derivative is positive hence it has a
unique minimum there. The saddle point is the solution to the equation F ′(z) = 0
which is equivalent to solving

z
G′(z)

G(z)
= n + 1.
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Substituting for G we obtain the following equation

(2.3)
zH ′(z)

H(z)
m = n + 1.

Take

(2.4) m =
2n

N

(
1 + c1n

−1/2
)

,

for c1 > 0 any absolute constant. We have H ′(1)/H(1) = N/2 hence, when z = 1,
the left side of (2.3) equals n

(
1 + c1n

−1/2
)

which for large n is close to n. Hence we
take z = 1 as an approximation to the saddle point (solution of (2.3)) and choose
the contour C to be a circle of radius 1 centered at the origin.

In polar coordinates we have z = reiθand dz = rieiθ thus substituting for
r = 1, the integral (2.1) becomes

1

2πi

∮

C

(
1 − zN+1

1 − z

)m
dz

zn+1
=

1

2π

π∫

−π

(
1 − ei(N+1)θ

1 − eiθ

)m
e−inθdθ

=
1

2π

π∫

−π

em ln g(θ)e−inθdθ,

where

(2.5) g(θ) =
1 − ei(N+1)θ

1 − eiθ
.

We split the integral into two parts as follows:

(2.6)
1

2π

π∫

−π

em ln g(θ)e−inθdθ =
1

2π

θ0∫

−θ0

em ln g(θ)e−inθdθ

︸ ︷︷ ︸
(I)

+
1

2π

2π−θ0∫

θ0

em ln g(θ)e−inθdθ

︸ ︷︷ ︸
(II)

where we later choose θ0 to go to zero such that the first (central) part is dominant
and the second (tail) is negligible compared to the total with increasing n, the exact
rate will later be shown to satisfy

(2.7) mθ 2
0 → +∞, mθ 3

0 → 0.

We start with analyzing integral (II). Represent the complex number g by g(θ) =
R(θ) exp

(
iT (θ)

)
with

(2.8) ln(g) = lnR + iT
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then we have

(2.9) R2(θ) =
1 − cos

(
(N + 1)θ

)

1 − r cos(θ)
.

As we now show, the tail integral (II) is negligible compared to the total integral
(I) + (II). Denote by the ratio

(2.10) ρ ≡

∣∣∣∣∣∣∣∣∣

2π−θ0∫

θ0

exp
{
m ln g(θ) − inθ

}
dθ

θ0∫

−θ0

exp
{
m ln g(θ) − inθ

}
dθ +

2π−θ0∫

θ0

exp
{
m ln g(θ) − inθ

}
dθ

∣∣∣∣∣∣∣∣∣

then it suffices to show that ρ � 1. Since θ0 is small, then over the interval [0, θ0],
R strictly decreases and for all remaining θ its value never surpasses R(θ0) hence
|g(θ)| ≤ R(θ0) for θ ∈ [θ0, 2π − θ0] and the numerator of (2.10) is bounded from
above by 2π exp

{
m lnR(θ0)

}
. Dividing both numerator and denominator of (2.10)

we obtain

ρ ≤ 2π

/ ∣∣∣∣∣

θ0∫

−θ0

exp

{
m ln

( g(θ)

R(θ0)

)}
exp {−inθ} dθ

+

2π−θ0∫

θ0

exp

{
m ln

( g(θ)

R(θ0)

)}
exp {−inθ} dθ

∣∣∣∣∣.

Bounding from above the absolute value of the second integral and, for the first inte-
gral, using <{exp {−inθ}} ≥ <{exp {−inθ0}}, ={exp {−inθ}} ≥ ={exp {−inθ0}}
for θ ∈ [−θ0, θ0] (where < and = denote the real and imaginary parts) we obtain

ρ ≤ 2π
∣∣∣∣ exp {−inθ0}

θ0∫

−θ0

exp

{
m ln

(
g(θ)

R(θ0)

)}
dθ

∣∣∣∣− 2(π − θ0)

.

For the first term in the denominator above we have

∣∣∣∣∣∣
exp {−inθ0}

θ0∫

−θ0

exp

{
m ln

(
g(θ)

R(θ0)

)}
dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

θ0∫

−θ0

exp

{
m ln

(
g(θ)

R(θ0)

)}
dθ

∣∣∣∣∣∣

which equals

(2.11)

∣∣∣∣
θ0∫

−θ0

exp {m ln (R0(θ))} exp {imT (θ)}dθ

∣∣∣∣,
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where we denote by R0(θ) ≡ R(θ)/R(θ0). From (2.5) we may express g(θ) as





exp

{
i

(N + 1)θ

2

}

exp
{
i

θ

2

}





exp

{
i

(N + 1)θ

2

}
− exp

{
−i

(N + 1)θ

2

}

exp
{
i

θ

2

}
− exp

{
−i

θ

2

}

=

exp

{
i

(N + 1)θ

2

}

exp
{

i
θ

2

}
sin

(
(N + 1)θ

2

)

sin
(

θ

2

) .

Clearly, the polar angle of this expression is

(2.12) T (θ) =
Nθ

2

which is an odd function of θ. Together with R0(θ) being an even function it follows
that the right side of (2.11) equals

(2.13) 2

∣∣∣∣∣

θ0∫

0

exp {m ln (R0(θ))} cos (mNθ/2) dθ

∣∣∣∣∣ .

Next, from a Maclaurin series expansion of R0(θ) we determine that R0(θ) is
concave on [0, θ0] hence is bounded there from below by a linear function

`(θ) =
1 − R0(0)

θ0
θ + R0(0).

In (2.13) the integrand is positive hence the expression is bounded from below by

(2.14) 2 exp
{
m ln

(
R0(0)

)}
∣∣∣∣∣

θ0∫

0

exp {m ln (1 − bθ)} cos (mNθ/2) dθ

∣∣∣∣∣

where b ≡
(
R0(0)−1

)
/
(
θ0R0(0)

)
which is positive since R0(0) ≥ 1. Expanding the

log factor in θ we obtain for the integral above

θ0∫

0

exp {−mγbθ} cos (mNθ/2) dθ

for some absolute constant γ > 0. Letting u = mθ and changing variables this
becomes

1

m

mθ0∫

0

exp {−γbu} cos (Nu/2)du

=

(
(2N sin(Nmθ0/2)− 4γb cos(Nmθ0/2)) exp {−γbmθ0} + 4γb

4γ2b2 + N2

)
1

m
.
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The first factor is bounded from below by a constant c2 > 0 independent of m.
Hence the expression in (2.14) is bounded from below by

2c2m
−1 exp

{
m ln

(
R0(0)

)}
.

It follows from the above that

ρ = O
(
m exp {−c3m}

)

for some constant c3 > 0 independent of m. Hence we showed that the tail integral
(I) is negligible compared to the total sum of (I) and (II). We continue now to
analyze integral (I). Using (2.8) we have

(2.15)
1

2π

θ0∫

−θ0

em ln g(θ)e−inθdθ =
1

2π

θ0∫

−θ0

e
m

2
ln R2

e−i(nθ−mT )dθ.

We may expand lnR2(θ) into series around the origin to obtain

lnR2(θ) = 2 ln(N + 1) − N

6

(
N

2
+ 1

)
θ2 + O(θ3).

Letting

(2.16) σ ≡ σ(r, N) =
N

6

(
N

2
+ 1

)

then (2.15) equals

(2.17)
1

2π
(N + 1)m (1 + O(mθ 3

0 )
)(

θ0∫

−θ0

exp

{
−mσθ2

2

}
cos
(
nθ − mT (θ)

)
dθ

− i

θ0∫

−θ0

exp

{
−mσθ2

2

}
sin
(
nθ − mT (θ)

)
dθ

)
,

where we used exp
{
−mO(θ3)/2

}
= 1 + O(mθ3) for |θ| ≤ θ0. As was shown above,

T (θ) = Nθ/2 is odd hence it follows that the second integral in (2.17) vanishes.
Hence we are left with approximating the first integral

(2.18)

θ0∫

−θ0

exp

{
−mσθ2

2

}
cos
(
θ(n − mN/2)

)
dθ.

A second order approximation of the cosine is not appropriate here since its fre-
quency may increase faster than the rate of decrease of θ0. This would yield an
approximation (based on a negative quadratic) which is too loose over the domain of
integration. Instead, we state an auxiliary lemma that allows us to obtain a more
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accurate approximation of the integral in (2.18). Let Φ(x) denote the Gaussian
cumulative probability distribution function.

Lemma 2.1. Let a > 0 be fixed. Then the integral

I =

L∫

−L

exp
{
−ax2

}
cosxdx

equals √
π

a
exp

{
− 1

4a

}(
1 − 2Φ

(
−
√

2aL
)

+ O
(
exp

{
−L2a

}))

with L → +∞.

Proof. First, we have

(2.19)

L∫

−L

exp
{
−ax2

}
cosxdx

=
1

2
exp

{
− 1

4a

}( L∫

−L

exp

{
−
(√

ax − i

2
√

a

)2}
dx

+

L∫

−L

exp

{
−
(√

ax +
i

2
√

a

)2
}

dx

)

=
1

2
√

a
exp

{
− 1

4a

}(
√

aL∫

−
√

aL

exp

{
−
(

x − i

2
√

a

)2
}

dx

+

√
aL∫

−
√

aL

exp

{
−
(

x +
i

2
√

a

)2
}

dx

)
.

Consider the rectangle with vertices (−L
√

a, 0), (L
√

a, 0), (L
√

a,−1/(2
√

a), and
(−L

√
a,−1/(2

√
a)). We integrate the function exp

{
−az2

}
over the complex plane

where the rectangle serves as the contour of integration:

(2.20)

L
√

a∫

−L
√

a

exp
{
−x2

}
dx +

∫ −L
√

a

L
√

a

exp

{
−
(

x − i

2
√

a

)2
}

dx

+

−1/(2
√

a)∫

0

exp
{
−
(
L
√

a + iy
)2}

dy +

0∫

−1/(2
√

a)

exp
{
−
(
−L

√
a + iy

)2}
dy.
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Since exp
{
−az2

}
is analytic inside and on the rectangle it follows by the Null

Integral property (Theorem IV.2, [2]) that the sum above equals zero. We now
show that each of the last two integrals converges to zero with increasing L. The
first of the two can be bounded as follows,

(2.21)

−1/(2
√

a)∫

0

exp
{
−
(
L
√

a + iy
)2}

dy ≤
−1/(2

√
a)∫

0

∣∣∣exp
{
−
(
L
√

a + iy
)2}∣∣∣ dy

=

−1/(2
√

a)∫

0

∣∣exp
{
−L2a + y2 − i2yL

√
a
}∣∣dy

= exp
{
−L2a

}−1/(2
√

a)∫

0

exp
{
y2
}

dy

which is O
(
exp

{
−L2a

})
since the integral in (2.21) is finite (using the given con-

dition that a > 0 is fixed). Similarly, the second of the two integrals can be shown
to vanish at the same rate. Together with (2.20) and Cauchy’s residue theorem it
follows that

(2.22)

L
√

a∫

−L
√

a

exp
{
−x2

}
dx =

L
√

a∫

−L
√

a

exp

{
−
(

x − i

2
√

a

)2
}

dx + O
(
exp

{
−L2a

})
.

Now, consider a similar rectangle with vertices

(−L
√

a, 0), (L
√

a, 0), (L
√

a, 1/(2
√

a )), (−L
√

a, 1/(2
√

a )).

We integrate the function exp
{
−az2

}
over the complex plane where the rectangle

serves as the contour of integration:

(2.23)

L
√

a∫

−L
√

a

exp
{
−x2

}
dx +

−L
√

a∫

L
√

a

exp

{
−
(

x +
i

2
√

a

)2
}

dx

+

1/(2
√

a)∫

0

exp
{
−
(
L
√

a + iy
)2}

dy +

0∫

1/(2
√

a)

exp
{
−
(
−L

√
a + iy

)2}
dy

which equals zero by the same reasoning as above. The last two integrals above
also vanish at the rate of O

(
exp

{
−L2a

})
so it follows that

(2.24)

L
√

a∫

−L
√

a

exp
{
−x2

}
dx =

L
√

a∫

−L
√

a

exp

{
−
(

x +
i

2
√

a

)2
}

dx + O
(
exp

{
−L2a

})
.
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From (2.19), (2.22) and (2.24) it follows that

(2.25)

L∫

−L

exp
{
−ax2

}
cosxdx

=
1√
a

exp

{
− 1

4a

}


L
√

a∫

−L
√

a

exp
{
−x2

}
dx + O

(
exp

{
−L2a

})


 .

The integral on the right may be expressed as

(2.26)

L
√

a∫

−L
√

a

exp
{
−x2

}
dx =

1√
2

L
√

2a∫

−L
√

2a

exp

{
−x2

2

}
dx.

By definition of the Gaussian distribution function Φ it follows that the integral on
the right equals

(2.27)
√

π
(
1 − 2Φ

(
−
√

2aL
))

.

From (2.25), (2.26) and (2.27) the statement of the lemma follows. �

We continue with the proof of the theorem. Denote by ∆ = |n − mN/2| and
a = (mσ)/(2∆2) then the expression in (2.18) can be written as

(2.28)

θ0∫

−θ0

exp

{
−mσθ2

2

}
cos
(
θ(n − mN/2)

)
dθ

=

θ0∫

−θ0

exp

{
−mσθ2

2

}
cos (θ∆)dθ =

1

∆

θ0∆∫

−θ0∆

exp
{
−aα2

}
cosα dα.

Let us choose θ0 = m−2/5 hence mθ 2
0 → +∞, mθ 3

0 → 0 and therefore the O(mθ 3
0 )

term in (2.17) vanishes with increasing m. Hence we have

(2.29)
√

aθ0∆ =

√
mσ

2
m−2/5 = m1/10

√
σ

2

which increases to infinity with m and n (by (2.4)). A crucial fact is that a does
not decrease arbitrarily close to zero with increasing n and rather can be bounded
from below by some fixed constant. To see this, using (2.4), plug the values for m
and ∆ to get

a =
mσ

2∆2
=

mσ

2 |n − mN/2|2
=

n(1 + c1n
−1/2)σ

N
∣∣n − (1 + c1n−1/2)n

∣∣2
=

σ(1 + c1n
−1/2)

Nc 2
1
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where the right side is strictly greater than zero for all n. Thus we may resort to
Lemma 2.1, letting L = θ0∆, and obtain that the expression in (2.28) is asympto-
tically equal to

√
π

a

exp
{
− 1

4a

}

∆

(
1 − 2Φ

(
−
√

2aθ0∆
)

+ O
(
exp

{
− (θ0∆)

2
a
}))

.

Upon substituting for a and ∆ in this expression, then together with (2.17) and
(2.18) we obtain as an estimate of wm,N (n) the following expression,

(3.30)
1√

2πmσ
(N + 1)

m
exp

{
− (n − mN/2)2

2mσ

}(
1 − 2Φ

(
−m1/10

√
σ
)

+ O
(
exp

{
−m1/5

}))
,

with σ as defined in (2.16). It follows that the sum of (I) and (II) in (2.6) and
hence the integral (2.1) takes this value asymptotically with n.
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