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Abstract

Consider a class H of binary functions h : X → {−1,+1} on an interval X =
[0, B] ⊂ IR. Define the sample width of h on a finite subset (a sample) S ⊂ X as
ωS(h) = minx∈S |ωh(x)| where ωh(x) = h(x) max{a ≥ 0 : h(z) = h(x), x − a ≤ z ≤
x+a}. Let S` be the space of all samples in X of cardinality ` and consider sets of wide
samples, i.e., hypersets which are defined as Aβ,h = {S ∈ S` : ωS(h) ≥ β}. Through
an application of the Sauer-Shelah result on the density of sets an upper estimate is
obtained on the growth function (or trace) of the class {Aβ,h : h ∈ H}, β > 0, i.e., on
the number of possible dichotomies obtained by intersecting all hypersets with a fixed
collection of samples S ∈ S` of cardinality m. The estimate is 2

∑2bB/(2β)c
i=0

(
m−`
i

)
.

Keywords: Binary functions, density of sets, VC-dimension
AMS Subject Classification: 06E30, 68Q32, 68Q25, 03C13, 68R05

1 Overview

Let B > 0 and define the domain as X = [0, B]. In this paper we consider the class H of all
binary functions h : X → {−1,+1} which have only simple discontinuities, i.e., at any point
x the limits h(x+) = limz→x+ h(z) from the right and similarly from the left h(x−) exist (but
are not necessarily equal). A main theme of our recent work has been to characterize binary
functions based on their behavior on a finite subset of X. In Anthony and Ratsaby [2006]
it was shown that the problem of learning binary functions from a finite labeled sample
can improve the generalization error-bounds if the learner obtains a hypothesis which in
addition to minimizing the empirical sample-error is also ‘smooth’ around elements of the
sample. This notion of smoothness is based on the simple notion of width of h at x which
is defined by

ωh(x) = h(x) max{a ≥ 0 : h(z) = h(x), x− a ≤ z ≤ x+ a}.

Viewing a binary function as a decision rule (or classifier), then the width of h on x may
represent a form of ‘confidence’ that h has in the value that it assigns to x since the larger
the width at x the farther the region where h decides the opposite.
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For a finite subset S ⊂ X (S is also referred to as a sample) the sample width of h
denoted ωS(h) is defined as

ωS(h) = min
x∈S
|ωh(x)|.

This definition of width resembles the notion of sample margin of a real-valued function f
(see for instance Anthony and Bartlett [1999]). We say that a sample S is wide for h if the
width ωS(h) is large. Wide samples implicitly contain more side information for instance
about a learning problem. The current paper aims at estimating the complexity of the class
of wide samples for functions in H. This complexity is related to a notion of description
complexity and knowing it enables to compute the efficiency of information that is implicit
in samples for learning (see Ratsaby [2007]).

2 Introduction

For any logical expression A denote by I{A} the indicator function which takes the value
1 or 0 whenever the statement A is true or false, respectively. Let ` be any fixed positive
integer. We denote by S` the space of all samples S ⊂ X of size `. On S`, consider the
following sets of wide samples,

Aβ,h = {S ∈ S` : ωS(h) ≥ β}, β > 0.

We refer to such sets as hypersets. It will be convenient to associate with these sets the
indicator functions on S` which are denoted by

h′β,h(S) = IAβ,h(S).

These are referred to as hyperconcepts and we may write h′ for brevity. For any fixed width
parameter γ > 0, define the hyperclass

H′γ =
{
h′γ,h : h ∈ H

}
. (1)

In words, H′γ consists of all sets of subsets S ⊂ X of cardinality ` on which the corresponding
binary functions h are wide by at least γ.

The aim of the paper is to compute the complexity of the hyperclassH′γ that corresponds
to the class H. Since the domain X is infinite, then so is H′γ , and hence, one cannot
simply measure its cardinality. Instead, we apply a standard combinatorial measure of the
complexity of a family of sets as follows: let Y be an arbitrary domain and G an infinite
class of subsets of Y . For any subset S = {y1, . . . , yn} ⊂ Y let

ΓG(S) = |G|S | (2)

where G|S = {[IG(y1), . . . , IG(yn)] : G ∈ G}. The vector [IG(y1), . . . , IG(yn)] is sometimes
referred to as a labeling or a dichotomy of the sample S. The growth function (see for
instance Anthony and Bartlett [1999]) is defined as

ΓG(n) = max
S:S⊂Y,|S|=n

ΓG(S).
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It measures the rate at which the number of dichotomies, obtained by intersecting subsets
G of G with a finite set S, increases with respect to the cardinality n of S in the extreme
case, i.e., for the maximal possible S. This quantity is also known as the trace of G, see for
instance Bollobás [1986].

Since we are interested in hypersets as opposed to simple sets G (as above) then we
consider the trace on a finite collection ζ ⊂ S` of samples (instead of a finite sample S as
above). It will be convenient to define the cardinality of such a collection as the cardinality
of the union of its component sets, i.e., for any given finite collection ζ ⊂ S` let

|ζ| =

∣∣∣∣∣∣
⋃

S:S∈ζ
S

∣∣∣∣∣∣ (3)

and we use m to denote a possible value of |ζ|. As a measure of complexity of H′γ we
compute the growth as a function of m, i.e.

ΓH′γ (m) = max
ζ:ζ⊂S`,|ζ|=m

ΓH′γ (ζ).

3 Main result

Let us state the main result of the paper.

Theorem 1 Let `,m > 0 be integers and B > 0 a real number. Let H be the class of binary
functions on [0, B] with only simple discontinuities. For a given parameter value γ > 0, the
growth function of the hyperclass H′γ on the space S` satisfies the following upper bound,

ΓH′γ (m) ≤ 2
2bB/(2γ)c∑

i=0

(
m− `
i

)
.

Remark 1 For m > `+B/γ, the following simpler bound holds

ΓH′γ (m) ≤ 2
(
eγ(m− `)

B

)B
γ

.

Before proving this result we need some additional notation. We denote by 〈a, b〉 a
generalized interval set of the form [a, b], (a, b), [a, b) or (a, b]. For a set R we write IR(x) to
represent the indicator function of the statement x ∈ R. In case of an interval set R = 〈a, b〉
we write I〈a, b〉.

Proof: Any binary function h may be represented by thresholding a real-valued function f
on X, i.e., h(x) = sgn(f(x)) where for any a ∈ IR, sgn(a) = +1 or −1 if a > 0 or a ≤ 0,
respectively. The idea is to choose a class F of real-valued functions f which is rich enough
(it has to be infinite since there are infinitely many binary functions on X) but as simple
as possible. This is important since, as we will show, the growth function of H′γ is bounded
from above by the complexity of a class that is a variant of F .

We start by constructing such an F . For a binary function h on X consider the cor-
responding set sequence {Ri}i=1,2,... which satisfies the following properties: (a) [0, B] =
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⋃
i=1,2,...Ri and for any i 6= j, Ri ∩ Rj = ∅, (b) h alternates in sign over consecutive sets

Ri, Ri+1, (c) Ri is an interval set 〈a, b〉 with possibly a = b (in which case Ri = {a}). Hence
h has the following general form

h(x) = ±
∑

i=1,2,...,

(−1)iIRi(x). (4)

Thus there are exactly two functions h corresponding uniquely to each sequence of sets Ri,
i = 1, 2, . . . .. Unless explicitly specified, the end points of X = [0, B] are not considered
roots of h, i.e., the function ‘continues’ with the same value it takes at the endpoints
(formally, h(x) = h(0) for x < 0 and h(x) = h(B) for x > B). Now, associate with the set
sequence R1, R2, . . . the unique non-decreasing sequence of right-endpoints a1, a2, . . . which
define these sets (the sequence may have up to two consecutive repetitions except for 0 and
B) according to

Ri = 〈ai−1, ai〉, i = 1, 2, . . . . (5)

with the first left end point being a0 = 0. Note that different choices for 〈 and 〉 (see earlier
definition of a generalized interval 〈a, b〉) give different sets Ri and hence different functions
h. For instance, suppose that X = [0, 7] then the following set sequence R1 = [0, 2.4),
R2 = [2.4, 3.6), R3 = [3.6, 3.6] = {3.6}, R4 = (3.6, 7] has a corresponding end-point sequence
a1 = 2.4, a2 = 3.6, a3 = 3.6, a4 = 7. Note that a singleton set introduces a repeated value in
this sequence. As another example consider R1 = [0, 0] = {0}, R2 = (0, 4.1), R3 = [4.1, 7]
with a1 = 0, a2 = 4.1, a3 = 7.

Next, define the corresponding sequence of midpoints

µi =
ai + ai+1

2
, i = 1, 2, . . . .

Define the continuous real-valued function f : X → [−B,B] that corresponds to h (via the
end-point sequence) as follows:

f(x) = ±
∑

i=1,2,...

(−1)i+1(x− ai)I[µi−1, µi] (6)

where we take µ0 = 0 (see for instance, Figure 1). Clearly, the value f(x) equals the width
ωh(x). Note that for a fixed sequence of endpoints ai, i = 1, 2, . . . the function f is invariant
to the type of intervals Ri = 〈ai−1, ai〉 that h has, for instance, the set sequence [0, a1),
[a1, a2), [a2, a3], (a3, B] and the sequence [0, a1], (a1, a2], (a2, a3], (a3, B] yield different
binary functions h but the same width function f . For convenience, when h has a finite
number n of interval sets Ri, then the sum in (4) has an upper limit of n and we define
an = B. Similarly, the sum in (6) goes up to n− 1 and we define µn−1 = B. Let us denote
by

F+ = {|f | : f ∈ F}. (7)

It follows that the hyperclass H′γ may be represented in terms of the class F+ as follows:
define the hypersets

Aβ,f = {S ∈ S` : f(x) ≥ β, x ∈ S}, β > 0, f ∈ F+
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Figure 1: h (solid) and its corresponding f (dashed) on X = [0, B] with B = 800

with corresponding hyperconcepts f ′γ,f = IAβ,f (S), let

F ′γ = {f ′γ,f : f ∈ F+}

and let us define
H′γ = F ′γ . (8)

Hence, it suffices to compute the growth function ΓF ′γ (m).
Let us now begin to analyze the hyperclass F ′γ . By definition, F ′γ is a class of indicator

functions of subsets of S`. Denote by ζN ⊂ S` a collection of N such subsets. By a
generalized collection we will mean a collection of subsets S ⊂ X with cardinality |S| ≤ `.
Henceforth we fix a value m and consider only collections

ζN , such that |ζN | = m (9)

where the definition of cardinality is according to (3). Let us denote the individual compo-
nents of ζN by S(j) ∈ S`, 1 ≤ j ≤ N hence

ζN = {S(1), . . . , S(N)}.

The growth function may be expressed as

ΓF ′γ (m) = max
ζN⊂S`,|ζN |=m

ΓF ′γ (ζN ) = max
ζN⊂S`,|ζN |=m

∣∣∣{[f ′(S(1)), . . . , f ′(S(N))] : f ′ ∈ F ′γ
}∣∣∣ . (10)

Denote by S(j)
i the ith element of the sample S(j) based on the ordering of the elements of

S(j) (which is induced by the ordering on X). Then

ΓF ′γ (ζN )

=
∣∣∣∣{[I( min

x∈S(1)
f(x) > γ

)
, . . . , I

(
min
x∈S(N)

f(x) > γ

)]
: f ∈ F+

}∣∣∣∣
=

∣∣∣∣∣∣

∏̀
j=1

I
(
f(S(1)

j ) > γ
)
, . . . ,

∏̀
j=1

I
(
f(S(N)

j ) > γ
) : f ∈ F+


∣∣∣∣∣∣ . (11)
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Order the elements in each component of ζN by the underlying ordering on X. Then put the
sets in lexical ordering starting with the first up to the `th element. For instance, suppose
m = 7, N = 3, ` = 4 and

ζ3 = { {2, 8, 9, 10}, {2, 5, 8, 9}, {3, 8, 10, 13}}

then the ordered version is

{{2, 5, 8, 9}, {2, 8, 9, 10}, {3, 8, 10, 13}}.

For any x ∈ X let
θγf (x) = I (f(x) > γ) (12)

(we will sometimes write θf (x) for short). For any sample S(i) of cardinality |S(i)| ≥ 1 let

eS(i)(f) =
|S(i)|∏
j=1

θf (S(i)
j ).

Then for ζN we denote by

vζN (f) = [eS(1)(f), . . . , eS(N)(f)]

where for brevity we sometimes write v(f). Let

VF+(ζN ) = {vζN (f) : f ∈ F+}

or simply V (ζN ). Then from (11) we have

ΓF ′γ (ζN ) =
∣∣VF+(ζN )

∣∣ . (13)

Denote by X ′ the union

X ′ =
N⋃
j=1

S(j) = {xi}mi=1 ⊂ X (14)

and take the elements to be ordered as xi < xi+1, 1 ≤ i ≤ m− 1. The dependence of X ′ on
ζN is left implicit. We will need the following procedure which maps ζN to a generalized
collection.

Procedure G: Given ζN construct ζN̂ as follows: Let Ŝ(1) = S(1). For any 2 ≤ i ≤ N , let

Ŝ(i) = S(i) \
i−1⋃
k=1

Ŝ(k).

Let N̂ be the number of non-empty sets Ŝ(i).

Note that N̂ may be smaller than N since there may be an element of ζN which is
contained in the union of other elements of ζN . It is easy to verify by induction that the
sets of ζN̂ are mutually exclusive and their union equals that of the original sets in ζN . We
have the following:
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Claim 1
∣∣VF+(ζN )

∣∣ ≤ ∣∣VF+(G(ζN ))
∣∣ , where G() denotes the output of procedure G applied

to the argument.

Proof: We make repetitive use of the following: let A,B ⊂ X ′ be two non-empty sets and
let C = B \A. Then for any f , any b ∈ {0, 1}, if [eA(f), eB(f)] = [b, 0], then [eA(f), eC(f)]
may be either [b, 0] or [b, 1] since the elements in B which caused the product eB(f) to
be zero may or may not also be in C. In the other case if [eA(f), eB(f)] = [b, 1] then
[eA(f), eC(f)] = [b, 1]. Hence

|{[eA(f), eB(f)] : f ∈ F+}| ≤ |{[eA(f), eC(f)] : f ∈ F+}| .

The same argument holds also for multiple A1, . . . , Ak, B and C = B \
⋃k
i=1Ai. Let

ζN̂ = G(ζN ). We now apply this to the following:

|{[eS(1)(f), eS(2)(f), eS(3)(f), . . . , eS(N)(f)] : f ∈ F+}|
=

∣∣{[eŜ(1)(f), eS(2)(f), eS(3)(f), . . . , eS(N)(f)
]

: f ∈ F+

}∣∣ (15)
≤

∣∣{[eŜ(1)(f), eŜ(2)(f), eS(3)(f), . . . , eS(N)(f)
]

: f ∈ F+

}∣∣ (16)
≤

∣∣{[eŜ(1)(f), eŜ(2)(f), eŜ(3)(f), eS(4)(f) . . . , eS(N)(f)
]

: f ∈ F+

}∣∣ (17)
≤ · · ·
≤

∣∣{[eŜ(1)(h), eŜ(2)(h), eŜ(3)(h), eŜ(4)(h), . . . , eŜ(N)(h)
]

: f ∈ F+

}∣∣ (18)

where (15) follows since using G we have Ŝ(1) = S(1), (16) follows by applying the above
with A = Ŝ(1), B = S(2) and C = Ŝ(2), (17) follows by letting A1 = Ŝ(1), A2 =
Ŝ(2), B = S(3), and C = Ŝ(3). Finally, removing those sets Ŝ(i) which are possibly
empty leaves N̂ -dimensional vectors consisting only of the non-empty sets so (18) becomes∣∣{[eŜ(1)(f), . . . , e

Ŝ(N̂)(f)
]

: f ∈ F+

}∣∣ . ut
Hence (11) is bounded from above as

ΓF ′γ (ζN ) ≤
∣∣VF+(G(ζN ))

∣∣ . (19)

Denote by N∗ = m − ` + 1 and define the following procedure which maps a generalized
collection of sets in X to another.

Procedure Q: Given a generalized collection ζN = {S(i)}Ni=1, S(i) ⊂ X. Construct ζN∗ as
follows: let Y =

⋃N
i=2 S

(i) and let the elements in Y be ordered according to their ordering
on X ′ (we will refer to them as y1, y2, . . .). Let S∗(1) = S(1). For 2 ≤ i ≤ m − ` + 1, let
S∗(i) = {yi−1}.
We now have the following:

Claim 2 For any ζN ⊂ S` with |ζN | = m, we have∣∣VF+(G(ζN ))
∣∣ ≤ ∣∣VF+(Q(G(ζN )))

∣∣ .
Proof: Let ζÑ = Q(G(ζN )) and as before ζN̂ = G(ζN ). Note that by definition of Proce-
dure Q, it follows that ζÑ consists of Ñ = N∗ non-overlapping sets, the first S̃(1) having
cardinality ` and S̃(i), 2 ≤ i ≤ Ñ , each having a single distinct element of X ′. Their union
satisfies

⋃Ñ
i=1 S̃

(i) = X ′.
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Consider the sets VF+(ζN̂ ), VF+(ζÑ ) and denote them simply by V̂ and Ṽ . For any
v̂ ∈ V̂ consider the following subset of F+,

B(v̂) = {f ∈ F+ : v̂(f) = v̂} .

We consider two types of v̂ ∈ V̂ . The first does not have the following property: there exist
functions fα, fβ ∈ B(v̂) with θγfα(x) 6= θγfβ (x) for at least one element x ∈ X ′. Denote by

θγf = [θγf (x1), . . . , θγf (xm)]. In this case all f ∈ B(v̂) have the same θγf = θ̂, where θ̂ ∈ {0, 1}m.
This implies that

eS̃(1)(f) = eŜ(1)(f) = v̂1

while for 2 ≤ j ≤ Ñ we have
eS̃(j)(f) = θ̂k(j)

where k : [N∗] → [m] maps from the index of a (singleton) set S̃(j) to the index of an
element of X ′ and θ̂k(j) denotes the k(j)th component of θ̂. Hence it follows that

|VB(v̂)(ζÑ )| = |VB(v̂)(ζN̂ )|.

Let the second type of v̂ satisfy the complement condition, namely, there exist functions
fα, fβ ∈ B(v̂) with θγfα(x) 6= θγfβ (x) for at least one point x ∈ X ′. If such x is an element of

Ŝ(1) then the first part of the argument above holds and we still have

|VB(v̂)(ζÑ )| = |VB(v̂)(ζN̂ )|.

If however there is also such an x in some set Ŝ(j), 2 ≤ j ≤ N̂ then since the sets S̃(i),
2 ≤ i ≤ Ñ are singletons then there exists some S̃(i) ⊆ Ŝ(j) with

eS̃(i)(fα) 6= eS̃(i)(fβ).

Hence for this second type of v̂ we have

|VB(v̂)(ζÑ )| ≥ |VB(v̂)(ζN̂ )|. (20)

Together with the previous case, we have that (20) holds for any v̂ ∈ V̂ .
Now, consider any two distinct v̂α, v̂β ∈ V̂ . Clearly, B(v̂α)

⋂
B(v̂β) = ∅ since every f

has a unique v̂(f). Moreover, for any fa ∈ B(v̂α) and fb ∈ B(v̂β) we have ṽ(fa) 6= ṽ(fb) for
the following reason: there must exist some set Ŝ(i) and a point x ∈ Ŝ(i) such that θγfa(x) 6=
θγfb(x) (since v̂α 6= v̂β). If i = 1 then they must differ on S̃(1), i.e., eS̃(1)(fα) 6= eS̃(1)(fβ).
If 2 ≤ i ≤ N̂ , then such an x is in some set S̃(j) ⊆ Ŝ(i) where 2 ≤ j ≤ Ñ and therefore
eS̃(j)(fα) 6= eS̃(j)(fβ). Hence no two distinct v̂α, v̂β map to the same ṽ. We therefore have∣∣VF+(ζN̂ )

∣∣ =
∑
v̂∈V̂

|VB(v̂)(ζN̂ )|

≤
∑
v̂∈V̂

|VB(v̂)(ζÑ )| (21)

= |VF+(ζÑ )|
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where (21) follows from (20) which proves the claim. ut
Note that by construction of ProcedureQ, the dimensionality of the elements of VF+(Q(G(ζN )))

is N∗, i.e., m−`+1, which holds for any ζN (even maximally overlapping) and X ′ as defined
in (9) and (14). Let us denote by ζN∗ any set obtained by applying Procedure G on any
collection ζN followed by Procedure Q, i.e.,

ζN∗ =
{
S∗(1), S∗(2), . . . , S∗(N

∗)
}

with a set S∗(1) ⊂ X ′ of cardinality ` and

S∗(k) = {xik}, where xik ∈ X
′ \ S∗(1), k = 2, . . . , N∗.

Hence we have

max
ζN⊂S`,|ζN |=m

ΓF ′γ (ζN ) ≤ max
ζN⊂S`,|ζN |=m

∣∣VF+ (Q(G(ζN )))
∣∣ (22)

≤ max
ζN∗ :|ζN∗ |=m

∣∣VF+(ζN∗)
∣∣ (23)

where (22) follows from (11), (13) and Claims 1 and 2 while (23) follows by definition of
ζN∗ . Now, ∣∣VF+(ζN∗)

∣∣ = |{[eS∗(1)(f), . . . , eS∗(N∗)(f)] : f ∈ F+}|
≤ 2 |{[eS∗(2)(f), . . . , eS∗(N∗)(f)] : f ∈ F+}| (24)

where (24) follows trivially since eS∗(1)(f) is binary. So from (23) we have

max
ζN⊂S,|ζN |=m

ΓF ′γ (ζN ) ≤ 2 max
ζN∗ :|ζN∗ |=m

|{[eS∗(2)(f), . . . , eS∗(N∗)(f)] : f ∈ F+}|

≤ 2 max
x1,...,xm−`∈X

∣∣∣{[θγf (x1), . . . , θγf (xm−`)] : f ∈ F+

}∣∣∣ (25)

where x1, . . . , xm−` run over any m − ` points in X. Define the following infinite class of
binary functions on X by

ΘγF+
= {θγf (x) : f ∈ F+}

and for any finite subset
X ′′ = {x1, . . . , xm−`} ⊂ X

let
θγf (X ′′) =

[
θγf (x1), . . . , θγf (xm−`)

]
and

ΘγF+
(X ′′) = {θγf (X ′′) : f ∈ F+}.

We proceed to bound |ΘγF+
(X ′′)|.

The class ΘγF+
is in one-to-one correspondence with a class CγF+

of sets Cf ⊂ X which
are defined as

Cf = {x : θγf (x) = 1}, f ∈ F+.
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We claim that any such set Cf equals the union of at most K = bB/(2γ)c intervals. To see
this, note that based on the general form of f ∈ F+ (see (6) and (7)) in order for f(x) > γ
for every x in an interval set I ⊂ X then I must be contained in an interval set of the form
(5) and of length at least 2γ. Hence for any f ∈ F+ the corresponding set Cf is comprised
of no more than K distinct intervals as I. Hence the class CγF+

is a subset of the class CK
of all sets that are comprised of the union of at most K subsets of X. A class H is said to
shatter A if

∣∣{h|A : h ∈ H}
∣∣ = 2k, where k is the cardinality of A. The Vapnik-Chervonenkis

dimension of H, denoted as V C(H), is defined as the cardinality of the largest set shattered
by H. We claim that the VC-dimension of CK is VC(CK) = 2K. This can be shown by
induction: it is clear that for K = 1, the class C1 can shatter any pair of points but cannot
shatter a three point set since the alternating dichotomy 1, 0, 1 cannot be obtained by a
single interval set. Now, assume that it holds for K − 1, i.e., that V C(CK−1) = 2(K − 1).
Consider any set E = {x1, x2, x3, . . . , x2K} ⊂ X where {x3, . . . , x2K} is shattered by CK−1.
The set of dichotomies of E obtained by the class CK includes the set of dichotomies obtained
by the product class C1×CK−1 on {{x1, x2}, {x3, . . . , x2K}}. Since C1 shatters {x1, x2} and
by the inductive hypothesis CK−1 shatters {x3, . . . , x2K} then V C(CK) ≥ 2K. To see that
V C(CK) ≤ 2K, note that it cannot obtain the alternating dichotomy 101 . . . 01 on any set
{x1, x2, . . . , x2K , x2K+1} which proves the claim.

Continuing, it follows from the Sauer-Shelah lemma (see Sauer [1972]) that the growth
of CγF+

on any finite set X ′′ ⊂ X of cardinality m− ` (see (2)) satisfies

ΓCγF+
(X ′′) ≤

2K∑
i=0

(
m− `
i

)
.

Since |ΘγF+
(X ′′)| = ΓCγF+

(X ′′) then from (8) and (25) it follows that

|ΓH′γ (m)| ≤ 2
2bB/(2γ)c∑

i=0

(
m− `
i

)
which proves the statement of the theorem. �
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