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1 Introduction
Let n andd be two integers such that1 6 d 6 n and denote by[n] the set{1, . . . , n}. A class of binary
functions is a subset of{0, 1}[n]. As only binary functions are considered we refer to them simply as
functions. They will also be viewed as binary vectors:f = (f(1), . . . , f(n)). Let x = {x1, . . . , xd}
be a subset of[n] andF ⊂ {0, 1}[n] be a class of functions. For any functionf ∈ F , denote byf|x its
restriction tox, i.e., f|x = (f(x1), . . . , f(xd)). The classF is said toshatterx if:

∣

∣{f|x : f ∈ F}
∣

∣ = 2d,

where| · | denotes the cardinality of a finite set. TheVapnik-Chervonenkis dimensionof F , denoted as
VC(F ), is defined as the size of the largest setx shattered byF . The following Sauer-Shelah lemma
(Sauer (1972); Shelah (1972); Vapnik and Chervonenkis (1971)) is a fundamental result relating the VC-
dimension of a class of functions to its cardinality.

Lemma 1 LetF be a class of functions on[n] with

|F | >

d−1
∑

i=0

(

n

i

)

. (1)

ThenF shatters at least one setx ⊂ [n] of cardinality|x| = d.

An interesting extension (see Theorem 1 in Frankl (1983)) states that such a threshold (which holds for
any classF ) arises due to the simple fact that anyideal classF0 of this size must shatter some set of
sized. More generally, the lemma holds for classes on infinite domainsX where instead of|F | one has
maxY ⊂X |F|Y | with Y running over all finite subsets such that|Y | > d. Aside of being an interesting
combinatorial result in set theory (Chapter 17 in Bollobás(1986)), Lemma 1 has been extended in various
directions notably by Frankl (1983); Haussler and Long (1995); Alon et al. (1997); Anstee et al. (2005)
and found applications in numerous fields such as combinatorial geometry (Pach and Agarwal (1995);
Matous̆ek (1998)), graph theory (Haussler and Welzl (1987); Anthony et al. (1995a)), empirical processes
(Pollard (1984)) and statistical learning theory (Haussler (1992); Vapnik (1998)).

The VC-dimension has numerous extensions, for instance, the pseudo-dimension for real-valued func-
tion classes, the scale-sensitive (or fat-shattering) dimension which characterizes the so-called Glivenko-
Cantelli classes (Alon et al. (1997)), and thetesting dimension(Romanik and Smith (1994); Anthony et al.
(1995b)) ofF , denoted as TD(F ), which is defined as the maximal integerd such thatall sets of sized
are shattered byF . For other related dimensions see Haussler and Long (1995) and Anthony and Bartlett
(1999).

Observe that asn tends to infinity andd remains fixed, the right hand side of (1) is of orderO(nd−1).
ThusO(nd−1) is a threshold point that dictates a sufficient cardinality for F to shatter at least one set
of sized. As we shall show, it is not a necessary condition since it typically takes a class only of size
O(log n) to shatterall sets of sized. In order to show this, our primary aim in this paper is to investigate
the size of sets that are shattered by arandomclassF of functions (a random element of the power set
P({0, 1}[n])).

We consider two natural approaches: fixing the size to bek and drawing a classF with equal proba-
bility from all classes of sizek (uniform model, Definition 2), or drawing each individual function from
P({0, 1}[n]) with an equal probabilityp in 2n random trials (binomial model, Definition 1). We state
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several results on the asymptotic behavior of the size of shattered sets with an explicit dependence onk
or p asn tends to infinity.

As a preview of our results, let us sketch the evolution of thesize of sets shattered by a random class
F under the uniform model with increasingk = kn. Initially, whenk is fixed, sets of sized are shattered
only if k > 2d. It turns out that at least one such set is shattered with highprobability (w.h.p., i.e. tending
to 1 asn tends to infinity). As soon askn starts to increase to infinity there are shattered sets ofanysize
and, moreover, any fixed set of sized (in particular the set[d]) is shatteredw.h.p.If the speed at whichkn

grows is sufficiently slow,kn ≪ log n, then regardless of the value ofd, there exists at least one set of size
d which isnot shattered (herean ≪ bn denoteslim an/bn = 0). Forkn = α log n + O(1), there exists a
finite d such thatall sets of sized are shattered and at least one set of sized + 1 which is not shattered.
Finally, for kn ≫ log n and any fixedd, all sets of sized are shattered. A similar behavior holds for the
binomial model, wherekn is now replaced by2npn, i.e., the expected size of the random classF .

The results are stated in details in Sections 2 – 5 where threekinds of events are studied: (i) shattering
at least one set of sized, (ii) shattering a given setx of sized, (iii) shattering all sets of sized. Clearly, the
VC-dimension and the testing-dimension of a random classF are related to (i) and (iii) respectively. In
order to have a more complete comparison we introduce between them an intermediate dimension which
is related to (ii) and is defined as follows.

Let F be a class of functions from[n] to {0, 1}. The initial-dimensionof F , denoted as ID(F ), is the
maximal integerd such that the set[d] is shattered byF .

Clearly, the three dimensions are related by

VC(F ) > ID(F ) > TD(F ). (2)

In subsequent sections we obtain the asymptotic distribution of VC(F ) and ID(F ) under the binomial and
uniform models where the (expected) number of functions in the class is fixed (Propositions 1 and 2). The
asymptotics of TD(F ) turns out to be much sharper as forkn = c log n its distribution is concentrated on
one or two valuesw.h.p. (Proposition 3). This has striking similarities with the well known result on the
concentration of the clique number for random graphs (see Chap. 11 of Bollobás (2001)).

In our analysis we use standard techniques from discrete probability and the theory of random graphs
(available in Janson et al. (2000)). In Ycart and Ratsaby (2007), we applied these to study the VC-
dimension of a random class of functions with a fixed number ofones,i.e. random hypergraphs.

The remainder of the paper is organized as follows: Section 2defines the shattering events, the two
probability models and describes their interdependence. Sections 3, 4 and 5 study the asymptotics of the
VC-dimension, the initial-dimension and the testing-dimension respectively.

2 Probability models and events

We start by defining the events under study. They are associated with the shattering of sets by a random
class of functions,i.e. a random variable with values in the power setP({0, 1}[n]). For clarity, we defer
the precise definition of probability distributions for random classes of functions to Section 2.2.



4 Bernard Ycart and Joel Ratsaby

2.1 Events of interest

Let n > 1, 1 6 d 6 n andx = {x1, . . . , xd} ⊆ [n]. Let η ∈ {0, 1}x denote a function fromx to {0, 1}.
The events that we are interested in are the subsets ofP({0, 1}n) defined as follows:

Cx,η := {F containing a functionf such thatf|x = η }

Sx := {F shatteringx }

Ed := {F such that VC(F ) > d }

Ad := {F such that TD(F ) > d } .

The eventS[d] is the set of classes that shatter[d]. It is thus equal to the event which is defined as follows:

Sd := {F such that ID(F ) > d } .

The main goal of the paper is to evaluate the probabilities ofEd, Sd, andAd. The eventsEd andAd can
be expressed in terms of theSx’s, for x ⊂ [n] and|x| = d. These may in turn be expressed in terms of
theCx,η ’s, for η ∈ {0, 1}x. By definition, the classF shattersx if and only if for everyη ∈ {0, 1}x there
exists a functionf whose restriction tox is η. ThusSx is the intersection of the eventsCx,η, η ∈ {0, 1}x,
i.e.,

Sx =
⋂

η∈{0,1}x

Cx,η . (3)

The VC-dimension ofF is at leastd if and only if there exists a setx with cardinalityd which is shattered
byF . ThereforeEd is the union of the eventsSx over allx ⊂ [n] such that|x| = d, i.e.,

Ed =
⋃

x⊂[n],|x|=d

Sx . (4)

Finally, the testing-dimension ofF is at leastd if and only if all setsx of cardinalityd are shattered byF .
ThereforeAd is the intersection of all the eventsSx, x ⊂ [n] with |x| = d, i.e.,

Ad =
⋂

x⊂[n],|x|=d

Sx . (5)

2.2 Probability models

In this subsection we describe the underlying probability models with which a random class is generated.
In addition to mathematical definitions, we also discuss howsuch generation may be carried out in prac-
tice. When stating probability quantities we will either refer to the probability law of a random variable,
e.g., Pn,p, P ∗

n,k or simply writeP for the underlying probability distribution of the space onwhich the
random variables are defined.

The two probability models by which a random classF of binary functions on[n] will be created
are denoted by ‘binomial’ and ‘uniform’. In the binomial model, a probability parameter0 6 p 6 1 is
defined and the random classF is constructed through2n independent coin tossings, one for each function
in {0, 1}[n], with a probability of success (i.e. selecting a function intoF ), equal top.
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Definition 1 (Binomial model) Letn be a positive integer. Letp be a real such that0 6 p 6 1. We call
binomial classwith parametersn andp a random class of functions containing any given function with
probability p, independently of the others. We shall denote byFn,p a binomial class with parametersn
andp and byPn,p its probability distribution. Thus ifF is any element ofP({0, 1}[n]),

P(Fn,p = F ) = Pn,p(F ) = p|F |(1 − p)2
n−|F | . (6)

An alternate way to construct a random classF is to first choose its cardinalityk, 0 6 k 6 2n, and
then select a class by a uniform random drawing from the family F (k) ⊂ P({0, 1}[n]) of all subsets of
{0, 1}[n] havingk elements.

Definition 2 (Uniform model) Letn be a positive integer. Letk be an integer such that1 6 k 6 2n. We
call uniform classwith parametersn andk a random class with uniform distribution over all classes of
k functions. We shall denote byF∗

n,k a uniform class with parametersn andk and byP ∗
n,k its probability

distribution. Thus ifF is any element ofP({0, 1}[n]),

P(F∗
n,k = F ) = P ∗

n,k(F ) =







1/
(

2n

k

)

if |F | = k

0 if |F | 6= k .
(7)

These models are the most natural ways to define probability distributions on the setP({0, 1}[n]) of all
classes of functions on[n]. They match the two basic models of random graphs (see Chap. 1of Janson
et al. (2000)).

The denomination ‘binomial model’ comes from the fact that the total number of functions in a binomial
class follows a binomial distribution as does the total number of edges in a binomial graph. More precisely,
if we denote byK the total number of functions in a binomial class, it is immediate from (6) that

∀k = 0, . . . , 2n, Pn,p(K = k) =

(

2n

k

)

pk(1 − p)2
n−k . (8)

The two models are obviously related. Indeed, the conditional distribution of a binomial class, conditioned
on having a cardinalityk, is that of a uniform class,i.e., for anyB ⊆ P({0, 1}[n]),

Pn,p(B |K = k) = P ∗
n,k(B) . (9)

Conversely, knowing the values ofP ∗
n,k(B) for all k, one can computePn,p(B) using the formula of total

probabilities:

Pn,p(B) =

2n

∑

k=0

P ∗
n,k(B)Pn,p(K = k) . (10)

In practice, one can construct a binomial class by first selecting its cardinalityK according to the binomial
distribution (8) and then choose a uniform class of this size. The expected number of functions in a
binomial class is clearlyE(K) = p2n. Whenn is large, we expect both models to have the same behavior
provided thatk ∼ p2n. This intuition is partially justified by the theoretical results presented in Section
2.1 of Bollobás (2001) or Section 1.4 of Janson et al. (2000). Some minor discrepancies between both
models will be pointed out in Sections 3 and 5.
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One practical approach to construct a uniform class of cardinality k is to construct a randomn × k
binary matrix with thenk entries taking values0 or 1 independently with probability1/2. Denoting by
Q∗

n,k the corresponding probability measure, then for anyM ∈ Mn×k({0, 1}),

Q∗
n,k(M) =

1

2nk
. (11)

Clearly, the columns of a binary matrixM are vectors of lengthn which are binary functions on[n].
Hence the set of columns ofM represents a class of binary functions. It containsk elements if and only
if all columns are distinct, or less thank elements if two columns are the same. A binary matrix whose
columns are distinct is calledsimple(seee.g. Anstee et al. (2005)), and we shall denote byS their set.
We claim that the conditional distribution of the set of columns of a random binary matrix, knowing that
it belongs toS, is the uniform distributionP ∗

n,k. To see this, observe that the probability for a random
binary matrix to be simple is

Q∗
n,k(S) =

2n(2n − 1) · · · (2n − k + 1)

2nk
. (12)

For any fixed classF of k binary functions there arek! corresponding simple matrices inMn×k({0, 1}).
Therefore the conditional probability for the set of columns of a random matrix to beF is

Q∗
n,k(F |S) =

k!

2nk

2nk

2n(2n − 1) · · · (2n − k + 1)
=

1
(

2n

k

) = P ∗
n,k(F ) . (13)

Thus the process of independently drawing random binary matrices until a simple one is obtained, yields
a uniform class of functions. In practice, ifk is reasonably small compared to2n, then the probability of
the conditioning eventS is close to1 so, typically, after one or two random matrix generations a uniform
classF of cardinalityk is obtained.

In Sections 3 and 5, we use this alternate representation ofP ∗
n,k in order to compute the asymptotic

probability of several types of shattering events (described in Section 2.1) asn tends to infinity, and for
values ofkn such thatQ∗

n,kn
(S) tends to1. From (12), it is easy to deduce that this is true provided that

kn ≪ 2n/2.
The next auxiliary lemma is a technical result which will permit the interchange ofQ∗

n,kn
andP ∗

n,kn

and hence simplify some of the analysis in subsequent sections.

Lemma 2 Assumekn ≪ 2n/2 and letB ⊂ P({0, 1}[n]). Then eitherP ∗
n,kn

(B) and Q∗
n,kn

(B) both
converge to the same limit or diverge.

Proof: As seen above,

P ∗
n,kn

(B) = Q∗
n,kn

(B |S) =
Q∗

n,kn
(B ∩ S)

Q∗
n,kn

(S)
.

We have
Q∗

n,kn
(B) + Q∗

n,kn
(S) − 1 6 Q∗

n,kn
(B ∩ S) 6 Q∗

n,kn
(B).

Sincek ≪ 2n/2 thenQ∗
n,kn

(S) tends to1. Hence the limits ofQ∗
n,kn

(B), Q∗
n,kn

(B∩S) andQ∗
n,kn

(B|S)
are the same. 2
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In the next sections we present for each of the eventsEd, Sd andAd two types of results: the first type
describes the values of the parameter (kn or pn) for which the probability of the event tends to0 or 1
(these are presented as Lemmas, Corollaries and Remarks). The second type gives the behavior of the
probability around the critical value of the parameter where the transition occurs (these are presented as
Propositions).

3 Asymptotics for the VC-dimension
By definition of the VC-dimension, a class of fewer than2d functions cannot shatter a set of sized. As
we show in this section, as soon as the number of functions is at least2d then at least one set of sized is
shattered by a random classF w.h.p.

Lemma 3 For any integerd > 0 let k be an integer satisfyingk > 2d. Then

lim
n→∞

P ∗
n,k(Ed) = 1.

Proof: It suffices to prove the result fork = 2d sinceP ∗
n,k(Ed) > P ∗

n,2d(Ed). Using Lemma 2 it suffices

to show thatQ∗
n,2d(Ed) tends to1. Denote byMd the ‘complete’ matrix withd rows and2d columns

formed by all2d binary vectors of lengthd, ranked for instance in alphabetical order. The eventE∗
d

occurs if there exists anx = {x1, . . . , xd} ⊂ [n] such that the submatrix whose rows and columns are
indexed byx and[2d] respectively, is equal toMd. Let m = ⌊n/d⌋. Let

xi = {di + 1, di + 2, . . . , d(i + 1)} , 0 6 i 6 m − 1, (14)

Consider the event defined as the set of those matrices havinga submatrix whose rows are indexed by
xi and equal toMd. For i = 0, . . . , m − 1, thesem events are clearly independent and have the same
probability2−d2d

. Hence the probability that at least one of them is fulfilled is

1 − (1 − 2−d2d

)⌊n/d⌋,

which tends to1 asn increases. 2

Remark 1 Whenkn < 2d no set of sized is shattered and henceP ∗
n,kn

(Ed) = 0. For kn > 2d,
P ∗

n,kn
(Ed) tends to1. Hence for a uniform class, the critical value of the cardinality kn for the eventEd

is 2d.

Remark 2 For any fixedk > 0, it follows that w.h.p. a uniform classF of cardinality k has a VC-
dimension of at least⌊log2 k⌋, where⌊·⌋ denotes the integer part andlog2(a) the logarithm in base2.

Since any class of cardinalityk cannot shatter a subset of[n] of size greater than⌊log2 k⌋ then this is
also an upper bound on the VC-dimension ofF . Hence, under the uniform modelP ∗

n,k, the VC-dimension
ofF converges in probability to⌊log2 k⌋.

We proceed now to obtain the asymptotic distribution of VC(F) whereF is a random class under the
binomial modelPn,pn

. Since the number of functions in{0, 1}[n] increases exponentially fast withn, in
order to keep the expected cardinality of the random class a constant we choose a rate of decrease forpn
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Fig. 1: VC-dimension of a random class of cardinalityk (n → ∞)

aspn = c2−n for somec > 0. From Section 2, the numberK of functions in a random classFn,p follows
the binomial law (8) with parameters2n andpn. It therefore converges to the Poisson distribution with
parameterc, i.e.,

lim
n→∞

Pn,pn
(K = k) = e−c ck

k!
.

Conditioned on having a cardinality ofK = k, by Remark 2, a random classF will have VC(F) =
⌊log2 k⌋ w.h.p.Hence the event that the VC-dimension of the binomial classFn,pn

is at leastd is asymp-
totically distributed as⌊log2 K⌋, whereK follows the Poisson distribution with parameterc. This is stated
formally in the next result.

Proposition 1 Fix any constantc > 0 andd > 1. Assume thatpn obeyslimn→∞ pn2n = c. Then

lim
n→∞

Pn,pn
(Ed) =

∞
∑

k=2d

e−c ck

k!
.

Proof: From (10), we have

Pn,pn
(Ed) =

2n

∑

k=0

P ∗
n,k(Ed)

(

2n

k

)

pk
n(1 − pn)2

n−k .

Clearly, by definition of the VC-dimension, the factorP ∗
n,k(Ed) = 0 equals zero for allk < 2d. For

k > 2d, P ∗
n,k(Ed) > P ∗

n,2d(Ed) hence

P ∗
n,2d(Ed)

2n

∑

k=2d

(

2n

k

)

pk
n(1 − pn)2

n−k
6 Pn,pn

(Ed) 6

2n

∑

k=2d

(

2n

k

)

pk
n(1 − pn)2

n−k .

The result follows sinceP ∗
n,2d(Ed) tends to1 (by Lemma 3) and the binomial distribution with parameters

2n andpn converges to the Poisson distribution with parameterc. 2
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While Lemma 3 established that a random class of functions ofcardinality at least2d shatters one or
more sets of sized w.h.p., one can expect at leastO(n) sets of sized to be shattered. We now proceed to
show that anyparticular set of sized has a positive probability of being shattered.

4 Asymptotics for the initial-dimension
Consider a random classF of k binary functions on[n]. Can afixedset of sized in [n], for instance[d],
be shattered byF? The answer is affirmative, providedk is large enough. As it turns out, the initial-
dimension ofF has an asymptotic behavior which is similar to the distribution of its VC-dimension. We
start with computing the probability of the eventSx (see (3)) under the binomial modelPn,p.

Lemma 4 Let n > 1, 1 6 d 6 n andx = {x1, . . . , xd} ⊂ [n]. Then under the binomial model with
parametersn andp ∈ [0, 1] we have

Pn,p(Sx) =
(

1 − (1 − p)2
n−d

)2d

. (15)

Proof: From (3),Sx is the intersection of the eventsCx,η, η ∈ {0, 1}x. We will prove that these events
are independent underPn,p and that each has probability

Pn,p(Cx,η) = 1 − (1 − p)2
n−d

. (16)

We start with the latter. For an eventB let us denote byB its complement

B = P({0, 1}[n]) \ B.

We will use calligraphic capital letters to denote classes of functions and regular capital letters to denote
events. LetC be a fixed class andF be a random class. Consider the eventC := ‘F contains at least one
element ofC’. Its complementC is: ‘no function ofC is contained inF ’. By Definition 1, its probability
is

Pn,p(C) = (1 − p)|C|. (17)

Let Cx,η be the class of functions that coincide withη onx, i.e., f|x = η (there are2n−d such functions).
Applying (17) to the eventCx,η yields (16).

It remains to show that the eventsCx,η, η ∈ {0, 1}x are independent. It is a basic fact (see for instance
Feller (1968), p. 115) that the independence of(Bi)i∈I is equivalent to the independence of their com-
plements(Bi)i∈I . For 1 6 h 6 2d, let η1, . . . , ηh be distinct elements of{0, 1}x. Consider the class
C =

⋃

i=1,...,h Cx,ηi
whose cardinality is|C| = h2n−d. The event ‘F ∩C = ∅’ means that for all functions

f in F , f|x 6= ηi, 1 6 i 6 h, or equivalently, the event
⋂

i=1,...,h Cx,ηi
occurs. Resorting once more to

(17) we have

Pn,p





⋂

i=1,...,h

Cx,ηi



 = (1 − p)h2n−d

=

h
∏

i=1

Pn,p(Cx,ηi
).

From this it follows that the events(Cx,η)η∈{0,1}x are mutually independent, and hence, so are the events
(Cx,η)η∈{0,1}x . 2
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From (15), and using the standard expansion

(1 − t)N = exp



−N
∑

i>1

ti

i



 (18)

which holds for−1 < t < 1 (see Feller (1968), p. 49), it follows thatPn,pn
(Sx) tends to zero ifpn ≪ 2−n

and to1 if pn ≫ 2−n. As it was previously done for the eventEd (Lemma 3 and Remark 1), we now
state the critical value of the expected cardinality for theeventSd under the binomial model.

Corollary 1 The probabilityPn,pn
(Sd) that the initial-dimension is at leastd tends to0 or 1 according

to whether the expected cardinalitypn2n of the class tends to0 or ∞, respectively. In particular, forany
fixedd > 0, if the expected cardinality tends to infinity then the initial dimension is at leastd w.h.p.

The proof follows from Lemma 4 and the above arguments. Whenpn = c2−n the initial-dimension
converges in distribution according to the following result.

Proposition 2 Fix anyc > 0 andd > 1 and assumepn satisfieslimn→∞ pn2n = c. Then

lim
n→∞

Pn,pn
(Sd) = (1 − exp(−c2−d))2

d

.

Proof: From (18) we havelimN→∞(1 − c/N)N = e−c hence

lim
n→∞

(1 − pn)2
n−d

= exp(−c2−d).

The result directly follows from Lemma 4. 2

For pn = c2−n, it is interesting to compare the asymptotic probability distributions of the VC-dimen-
sion and the initial dimension, deduced from Propositions 1and 2.

P(VC(F) = d) ≡ Pn,pn
(Ed) − Pn,pn

(Ed+1) and P(ID(F) = d) ≡ Pn,pn
(Sd) − Pn,pn

(Sd+1) .

They turn out to be remarkably close. Table 1 gives their significant values, forc = 10. The two
distributions differ by approximately one unit.

d 1 2 3 4
P(VC(F) = d) .0098 .2099 .7310 .0487
P(ID(F) = d) .2766 .6428 .0672 .0000

Tab. 1: Asymptotic distributions of the VC and the initial-dimensions under the binomial modelPn,pn for pn = c2−n

andc = 10.

Remark 3 From Propositions 1 and 2, the asymptotic probability distributions of the eventsEd andSd

have a similar functional form with respect to the expected cardinality c, but the former has a significantly
earlier transition from zero to one. On Figure 2, the asymptotic probability of E4 and S4 are plotted
against the expected cardinality of the class.
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Fig. 2: Limiting probability distribution of the eventsEd (solid) andSd (dots) ford = 4, with respect to the expected
cardinalityc of the random class. Inflection points atc = 15 andc = 44, respectively.

d 1 2 3 4 5 6 7 8 9 10
E(VC(F)) 0.74 1.52 2.51 3.52 4.52 5.52 6.51 7.51 8.51 9.50
E(ID(F)) 0.42 0.91 1.55 2.24 2.96 3.75 4.55 5.30 6.07 6.97

Tab. 2: Expectations of the asymptotic probability distributionsof the VC-dimension and initial-dimension under the
binomial modelPn,pn for pn2n = c = 2d, d = 1, . . . , 10.

Suppose thatpn is chosen so that the binomial classF has expected sizepn2n = c = 2d. Using
the above probability distributions for the VC-dimension and the initial-dimension, the corresponding
expected valuesE(VC(F)) andE(ID(F)) can be computed and analyzed in terms of the expected class
size c. Table 2 displays these values forc = 2d, d = 1, . . . , 10. As seen, the expected value of the
VC-dimension ofF is just slightly smaller than the sized of a set that could in theory be shattered by
some class of the same cardinality asF .

5 Asymptotics for the testing-dimension

From Lemma 3 (Corollary 1) it follows that as the cardinalityk (or expected cardinalitypn2n) of a random
class tends to infinity, the VC-dimension and the initial-dimension both tend to infinity. It is still possible
however that as this occurs, the eventAd of the random class shatteringall sets of sized (see Section 2.1)
doesnot occur, even ford = 1. As we now show, the expected value of the number of unshattered sets of
sized may tend to infinity even when the cardinality of the class tends to infinity.

In order to show this, we use the standard first-moment method(see Janson et al. (2000), p. 54). LetX
be the random variable that counts the number of sets of sized which arenot shattered by a random class
F . We may expressX as a sum of indicatorsISx

(F) of the complement of the eventsSx (see Section
2.1), over all setsx with |x| = d. Hence the events ‘X = 0’ and Ad are identical. Using Lemma 4, we
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may express the expected value ofX as

En,p(X) =
∑

x:|x|=d

En,p(ISx
(F))

=
∑

x:|x|=d

Pn,p(Sx)

=
∑

x:|x|=d

(

1 −
(

1 − (1 − p)2
n−d

)2d)

=

(

n

d

) (

1 −
(

1 − (1 − p)2
n−d

)2d)

. (19)

Assumep = pn = c 2−n log n, for some positive constantc. As n tends to infinity then

En,pn
(X) =

2d

d!
nd−c2−d

(1 + o(1)). (20)

ThusEn,pn
(X) tends to0 if c < d2d, to +∞ if c > d2d, sopn = d2d−n log n appears as a threshold for

the expected number of unshattered sets. As we have previously done for the eventsEd andSd (Lemma 3
and Corollary 1) we now state the behavior of the probabilityof Ad at the extreme values of the expected
cardinality of the class. It is reasonable to expect that thesame threshold as for the expected value of
X , also holds for the probability ofAd. Lemma 5 below states that the probability ofAd tends to1 if
pn ≫ d2d−n log n. We believe that it tends to0 if pn ≪ d2d−n log n. However, the first moment method
only gives the first claim. For the second claim, the second-moment method (see for instance Janson
et al. (2000) p. 54 or Spencer (1991) Theorem 3.1) may be used.This requires estimating the correlation
between pairs of eventsSx, Sy which we were not able to do under the binomial model.

Lemma 5 If pn ≫ d2d−n log n, then the probabilityPn,pn
(Ad) that the testing-dimension is at leastd

tends to1.

Proof: Assume thatpn = c2−n log n. Then from (20),En,pn
(X) tends to zero ifc > d2d. Hence

lim
n→∞

Pn,pn
(Ad) = lim

n→∞
Pn,pn

(X > 0) 6 lim
n→∞

En,pn
(X) = 0

which follows from an application of Markov’s inequality for a non-negative integer-valued random vari-
able. 2

To obtain more precise estimates around the threshold, we shall use the uniform model. Proposition 3
below gives the asymptotic probability of the eventAd at the threshold, as was previously done for the
eventsEd andSd in Propositions 1 and 2.

Proposition 3 Letd > 1 andk = kn be positive integers such that

lim
n→∞

kn − αd log n = c,

where

αd = −
d

log(1 − 2−d)
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andc is a real constant. Then

lim
n→∞

P ∗
n,kn

(Ad) = exp

(

−
2d

d!
(1 − 2−d)c

)

.

Remark 4 Denotecn = kn − αd log n. If cn tends to+∞, thenP ∗
n,kn

(Ad) tends to1. If cn tends to
−∞, thenP ∗

n,kn
(Ad) tends to0. Hence the critical value of the class-cardinalitykn is αd log n: between

the binomial model and the uniform one, the threshold for theclass cardinality shifts from2d log n to
αd log n.

Consider a random class of cardinalitykn = α log n. If α 6= αd for all d, thenw.h.p.the testing dimension
of the class equals the largest integerd such thatα > αd. If α = αd for some positive integerd, then
w.h.p. all sets of sized − 1 are shattered (sinceα > αd−1), at least one set of sized + 1 is not (since
α < αd+1), and there may be a positive probability that all sets of size d are shattered. Therefore the
testing dimension of the class in this case (α = αd) is eitherd − 1 or d w.h.p. Hence for any value of
α the testing-dimension of a random class with cardinalityα log n concentrates on one or two values.
Thus Proposition 3 expresses a concentration result for thetesting-dimension which is similar to the well-
known concentration theorem by Matula for the clique numberof random graphs (see Theorem 7.1 in
Janson et al. (2000) or Theorem 11.4 p. 228 of Bollobás (2001)).

We now proceed with the proof.

Proof: As in Section 3, we use Lemma 2 and replaceP ∗
n,k by Q∗

n,k. In terms of matrices, the event
Sx is identical to the event that the submatrixM with row indicesi ∈ x ⊂ [n] and column indices
1 6 j1, . . . , j2d 6 k, is equal to the matrixMd up to a permutation of columns (see the proof of Lemma
3).

As before, letX count the subsetsx of sized that are not shattered by the random classF , i.e.,

X =
∑

x:|x|=d

ISx
(F) .

Consider anyx ⊂ [n] then recall from (3) thatSx =
⋂

η Cx,η henceSx =
⋃

η Cx,η whereη runs over
the set{0, 1}x.

Consider anyh distinct functionsη1, . . . , ηh ∈ {0, 1}x. A random matrix has every one of itsk columns
different from everyηi, 1 6 i 6 h, with probability

Q∗
n,k(Cx,η1

∩ . . . ∩ Cx,ηh
) = (1 − h2−d)k .

Using the expression for the probability of a union of events(see Feller (1968) (1.5), p. 89) one obtains

Q∗
n,k(Sx) =

2d

∑

h=1

(−1)h−1

(

2d

h

)

(1 − h2−d)k .

If k = kn tends to infinity, this sum tends to zero and the first term dominates. Hence:

Q∗
n,kn

(Sx) = 2d(1 − 2−d)kn(1 + o(1)) .
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Forkn = αd log n + c + o(1),

Q∗
n,kn

(Sx) = 2d(1 − 2−d)cn−d(1 + o(1)) . (21)

Denoting byEn,k(X) the expectation ofX with respect toQ∗
n,k, we have

En,kn
(X) =

(

n

d

)

Q∗
n,kn

(Sx) , (22)

which tends to2d

d! (1 − 2−d)c with increasingn. It remains to show that

lim
n→∞

Q∗
n,kn

(X = 0) = lim
n→∞

exp(−En,kn
(X)) ,

i.e. that a Poisson approximation holds forX (Barbour et al., 1992). The technique of proof, based on the
Stein-Chen method, is quite standard: we shall use the results stated in Janson (1994).

For d = 1, the subsetsx are singletons and the eventsSx are independent. Their common probability
is Q∗

n,kn
(Sx) = n−1(1 + o(1)). Hence

Q∗
n,kn

(X = 0) =
(

1 − n−1(1 + o(1))
)n

= exp(−1)(1 + o(1)) .

Ford > 2, the family of indicators(ISx

) is dissociatedin the sense of Janson (1994) p. 10: the two sets
of random variables{ISx

, x ∈ J} and{ISy
, y ∈ K} are independent whenever everyx ∈ J is disjoint

from everyy ∈ K. Denote byΓ the set of allx ⊂ [n] with |x| = d. Forx ∈ Γ, denote byΓx the set of
all y such thatx ∩ y 6= ∅. By Theorem 4 p. 10 of Janson (1994), the total variation distance between the
distribution ofX and the Poisson distribution with parameterEn,kn

(X) is bounded above by

(1 ∧ E(X)−1)





∑

x∈Γ

∑

y∈Γx

Q∗
n,kn

(Sx)Q∗
n,kn

(Sy) +
∑

x∈Γ

∑

y∈Γx\{x}

Q∗
n,kn

(Sx ∩ Sy)



 (23)

The result will follow by proving that each of the two sums in (23) converges to zero. The first sum
hasO(n2d−1) terms, each of orderO(n−2d), by (21). We decompose the second sum according to the
number of elements inx ∩ y as follows:

∑

x∈Γ

∑

y∈Γx\{x}

Q∗
n,kn

(Sx ∩ Sy) =

d−1
∑

h=1

∆h ,

where
∆h =

∑

|x∩y|=h

Q∗
n,kn

(Sx ∩ Sy).

Clearly, there areO(n2d−h) terms in∆h. From (3) we have

Sx ∩ Sy =





⋃

η∈{0,1}x

Cx,η





⋂





⋃

ζ∈{0,1}y

Cy,ζ



 =
⋃

η,ζ

(

Cx,η ∩ Cy,ζ

)

.
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A randomly drawn functionf on [n] generated byn coin flips with probability1/2 has a probability
of (1/2)d for each of the individual events ‘f|x = η’ and ‘f|y = ζ ’. The probability that both events
‘f|x = η’ and ‘f|y = ζ ’ occur simultaneously is(1/2)2h−d provided thatη|x∩y = ζ|x∩y and0 otherwise.
It follows that

Q∗
n,k(Cx,η ∩ Cy,ζ) =

{

(1 − 2−d+1 + 2−2d+h)k if η ≡ ζ onx ∩ y

(1 − 2−d+1)k otherwise.

Hence
∆h 6 a n2d−h(1 − 2−d+1 + 2−2d+h)k

for some positivea, not depending onn andk. Fork = kn = αd log n + c + o(1), there exists a positive
constantb such that

∆h 6 b n2d−h+αd log(1−2−d+1+2−2d+h) .

That∆h tends to zero follows from having a negative exponent,i.e.,

2d − h + αd log(1 − 2−d+1 + 2−2d+h) < 0 (24)

for d > 2 andh = 1, . . . , d− 1. Indeed, the left hand side of (24) vanishes both forh = 0 andh = d. As
a function ofh, its second derivative is positive on[0, d] hence it is strictly convex. Therefore it is strictly
negative for allh = 1, . . . , d − 1. Hence∆h tends to zero with increasingn. 2
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