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2 Bernard Ycart and Joel Ratsaby

1 Introduction

Letn andd be two integers such that< d < n and denote byn| the set{1,...,n}. A class of binary
functions is a subset dfo, 1}1". As only binary functions are considered we refer to thempgnas
functions. They will also be viewed as binary vectofs:= (f(1),..., f(n)). Letx = {x1,...,z4}

be a subset ofz] andF C {0, 1}") be a class of functions. For any functigne ¥, denote byf| its

restriction tox, i.e., fix = (f(z1),..., f(zq)). The class is said toshatterx if:

[{fix: f € F}| =27,

where| - | denotes the cardinality of a finite set. TWapnik-Chervonenkis dimensiof F', denoted as
VC(F), is defined as the size of the largest geshattered byF'. The following Sauer-Shelah lemma
(Sauer (1972); Shelah (1972); Vapnik and Chervonenkisi)93 a fundamental result relating the VC-
dimension of a class of functions to its cardinality.

Lemma 1 Let F be a class of functions dn| with

d—1 n
F|>> <l> 1)
=0

ThenF shatters at least one s&tC [n] of cardinality|x| = d.

An interesting extension (see Theorem 1 in Frankl (1983)estthat such a threshold (which holds for
any classF) arises due to the simple fact that aidgal classF;y of this size must shatter some set of
sized. More generally, the lemma holds for classes on infinite dom& where instead ofF’| one has
maxycx |Fjy| with Y running over all finite subsets such that| > d. Aside of being an interesting
combinatorial result in set theory (Chapter 17 in BollofE#86)), Lemma 1 has been extended in various
directions notably by Frankl (1983); Haussler and Long &)98lon et al. (1997); Anstee et al. (2005)
and found applications in numerous fields such as combiiagtpeometry (Pach and Agarwal (1995);
Matousek (1998)), graph theory (Haussler and Welzl (198@hony et al. (1995a)), empirical processes
(Pollard (1984)) and statistical learning theory (Hausgl€92); Vapnik (1998)).

The VC-dimension has numerous extensions, for instanegggbudo-dimension for real-valued func-
tion classes, the scale-sensitive (or fat-shatteringedsion which characterizes the so-called Glivenko-
Cantelli classes (Alon et al. (1997)), and testing dimensiofRomanik and Smith (1994); Anthony et al.
(1995b)) of F', denoted as TQ¥F'), which is defined as the maximal integésuch thatll sets of sizel
are shattered by'. For other related dimensions see Haussler and Long (19@5athony and Bartlett
(1999).

Observe that as tends to infinity andl remains fixed, the right hand side of (1) is of ord&m?—1).
ThusO(n9~1) is a threshold point that dictates a sufficient cardinality ' to shatter at least one set
of sized. As we shall show, it is not a necessary condition since iically takes a class only of size
O(logn) to shatterll sets of sizel. In order to show this, our primary aim in this paper is to stigate
the size [o]f sets that are shattered bnmadomclassF' of functions (a random element of the power set
P({0,1})).

We consider two natural approaches: fixing the size té bad drawing a class’ with equal proba-
bility from all classes of siz& (uniform model, Definition 2), or drawing each individuahittion from
P({0,1}!") with an equal probability) in 2 random trials (binomial model, Definition 1). We state
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several results on the asymptotic behavior of the size dtesteal sets with an explicit dependencefon
or p asn tends to infinity.

As a preview of our results, let us sketch the evolution ofdize of sets shattered by a random class
F under the uniform model with increasihg= k... Initially, whenk is fixed, sets of siz€ are shattered
only if & > 24, It turns out that at least one such set is shattered with fiighability (v.h.p, i.e. tending
to 1 asn tends to infinity). As soon ak,, starts to increase to infinity there are shattered segmp$ize
and, moreover, any fixed set of siz€in particular the sefd]) is shatteredv.h.p.If the speed at whicl,,
grows is sufficiently slowk,, < log n, then regardless of the valuedfthere exists at least one set of size
d which isnotshattered (here,, < b, denotedim a,, /b, = 0). Fork,, = alogn + O(1), there exists a
finite d such thatall sets of sizel are shattered and at least one set of gizel which is not shattered.
Finally, for k,, > logn and any fixedl, all sets of sizel are shattered. A similar behavior holds for the
binomial model, wheré,, is now replaced bg"p,, i.e., the expected size of the random cl&ss

The results are stated in details in Sections 2 — 5 where Kimels of events are studied: (i) shattering
at least one set of sizg (ii) shattering a given set of sized, (iii) shattering all sets of sizé. Clearly, the
VC-dimension and the testing-dimension of a random classe related to (i) and (iii) respectively. In
order to have a more complete comparison we introduce battireen an intermediate dimension which
is related to (ii) and is defined as follows.

Let F be a class of functions frofm] to {0, 1}. Theinitial-dimensionof F, denoted as IDF"), is the
maximal integer! such that the sétl] is shattered by.

Clearly, the three dimensions are related by
VC(F) > ID(F) > TD(F). (2)

In subsequent sections we obtain the asymptotic distdbwtf VC(F') and ID(F") under the binomial and
uniform models where the (expected) number of functionkétass is fixed (Propositions 1 and 2). The
asymptotics of TDF') turns out to be much sharper as for = clog n its distribution is concentrated on
one or two valuesv.h.p. (Proposition 3). This has striking similarities with the lilenown result on the
concentration of the clique number for random graphs (sesChl of Bollobas (2001)).

In our analysis we use standard techniques from discreteapility and the theory of random graphs
(available in Janson et al. (2000)). In Ycart and Ratsab@720we applied these to study the VC-
dimension of a random class of functions with a fixed numbemafs,i.e. random hypergraphs.

The remainder of the paper is organized as follows: Sectidefihes the shattering events, the two
probability models and describes their interdependeneetiéhs 3, 4 and 5 study the asymptotics of the
VC-dimension, the initial-dimension and the testing-dirsien respectively.

2 Probability models and events

We start by defining the events under study. They are asedarth the shattering of sets by a random
class of functionsi,e. a random variable with values in the power 840, 1}["}). For clarity, we defer
the precise definition of probability distributions for diom classes of functions to Section 2.2.
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2.1 Events of interest

Letn > 1,1 < d < nandx = {z1,...,24} C [n]. Letn € {0,1}* denote a function fronx to {0, 1}.
The events that we are interested in are the subsé®${df, 1}") defined as follows:

Cxy := {F containing a functiorf such thatf,, =» }
Sx = {F shatteringk }
E; = {FsuchthatVQF) >d}
Aqg = {FsuchthatTHF)>d}.

The eventSy, is the set of classes that shatid It is thus equal to the event which is defined as follows:
Sq = {FsuchthatIBF)>d} .

The main goal of the paper is to evaluate the probabilitie8 9fS;, andA,. The events; and A, can
be expressed in terms of th#g’s, for x C [n] and|x| = d. These may in turn be expressed in terms of
theCx ,,'s, forn € {0, 1}*. By definition, the class shattersk if and only if for everyn € {0, 1}* there
exists a functiory whose restriction tex is 7). ThusSy is the intersection of the evert, ,,, n € {0,1}%,
ie,

Se= [] Cxun- (3)

ne{0,1}*

The VC-dimension ofF is at leastl if and only if there exists a satwith cardinalityd which is shattered
by F. ThereforeE, is the union of the eventS, over allx C [n] such thaf{x| = d, i.e,,

Ei= |J S (4)

xC[n],|x|=d

Finally, the testing-dimension ¢f is at leasti if and only if all setsx of cardinalityd are shattered bg.
ThereforeA, is the intersection of all the evenfg, x C [n] with |x| =d, i.e,,

Ay = ﬂ Sy . )

xC[n],|x|=d

2.2 Probability models

In this subsection we describe the underlying probabilibdels with which a random class is generated.
In addition to mathematical definitions, we also discuss booh generation may be carried out in prac-
tice. When stating probability quantities we will eithefaeto the probability law of a random variable,
e.g, P, p, P, or simply writeP for the underlying probability distribution of the space which the
random variables are defined.

The two probability models by which a random cla&sof binary functions orn] will be created
are denoted by ‘binomial’ and ‘uniform’. In the binomial melda probability parametér < p < 1is
defined and the random clagss constructed througti* independent coin tossings, one for each function

in {0, 1}["], with a probability of success.é. selecting a function int&), equal top.
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Definition 1 (Binomial model) Letn be a positive integer. Letbe a real such thad < p < 1. We call
binomial classwith parameters: andp a random class of functions containing any given functioti wi
probability p, independently of the others. We shall denoteFhy, a binomial class with parameters
andp and byP, ,, its probability distribution. Thus i’ is any element oP ({0, 1}[]),

P(F,

P F) = Pn,p(F) = p‘Fl(l _p)2"7|F\ . (6)

An alternate way to construct a random cl&Sss to first choose its cardinality, 0 < & < 2", and
then select a class by a uniform random drawing from the faif) c P({0,1}["]) of all subsets of
{0, 1} havingk elements.

Definition 2 (Uniform model) Letn be a positive integer. Lét be an integer such that< £ < 2”. We
call uniform classwith parameters: andk a random class with uniform distribution over all classes of
k functions. We shall denote by, , a uniform class with parametersandk and byP; , its probability

distribution. Thus ifF is any element oP ({0, 1}]),

1/(3) if |Fl=k
P(Fi, = F) = Pou(F) = i’“) ¢ 2 )
| .

These models are the most natural ways to define probabiitsitaitions on the seP ({0, 1}[")) of all
classes of functions om]. They match the two basic models of random graphs (see Chafplanson
et al. (2000)).

The denomination ‘binomial model’ comes from the fact tihattotal number of functions in a binomial
class follows a binomial distribution as does the total nendf edges in a binomial graph. More precisely,
if we denote byK the total number of functions in a binomial class, it is imriagel from (6) that

n

Vk=0,...,2", P,,(K=Fk = <2k >pk(1 —p)¥ k. (8)

The two models are obviously related. Indeed, the conditidistribution of a binomial class, conditioned
on having a cardinality, is that of a uniform class.e., for anyB C P ({0, 1}["]),

Pop(B|K =k) =P, x(B) . 9)
Conversely, knowing the values 6, , (B) for all £, one can comput&, ,(3) using the formula of total
probabilities:

on
P p(B) = ZP;,k(B)Pn,p(K:k) : (10)
k=0

In practice, one can construct a binomial class by first selgids cardinality/X” according to the binomial
distribution (8) and then choose a uniform class of this.siZbe expected number of functions in a
binomial class is clearli£(K) = p2™. Whenn is large, we expect both models to have the same behavior
provided thatt ~ p2™. This intuition is partially justified by the theoreticalsdts presented in Section
2.1 of Bollobas (2001) or Section 1.4 of Janson et al. (20@®me minor discrepancies between both
models will be pointed out in Sections 3 and 5.
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One practical approach to construct a uniform class of pafity % is to construct a random x k
binary matrix with thenk entries taking value8 or 1 independently with probability /2. Denoting by
Q;, . the corresponding probability measure, then for ahye Mo ({0,1}),

Qn (M) = 2% (11)

Clearly, the columns of a binary matrix/ are vectors of lengtl which are binary functions ofn].
Hence the set of columns @f represents a class of binary functions. It contéirdements if and only

if all columns are distinct, or less tha@nelements if two columns are the same. A binary matrix whose
columns are distinct is callesimple(seee.g. Anstee et al. (2005)), and we shall denote$their set.

We claim that the conditional distribution of the set of aohs of a random binary matrix, knowing that

it belongs toS, is the uniform distribution?, ;. To see this, observe that the probability for a random
binary matrix to be simple is

R 12)

For any fixed clas$” of k binary functions there ark! corresponding simple matrices.vt,, ({0, 1}).
Therefore the conditional probability for the set of colwswi a random matrix to bg' is

k' znk 1 .

Thus the process of independently drawing random binaryiceatuntil a simple one is obtained, yields
a uniform class of functions. In practice /ffis reasonably small comparedd, then the probability of
the conditioning even$ is close tol so, typically, after one or two random matrix generationgidoum
classF of cardinalityk is obtained.

In Sections 3 and 5, we use this alternate representatidt} gfin order to compute the asymptotic
probability of several types of shattering events (desctilm Section 2. 1) as tends to infinity, and for
values ofk;, such thaty;, , (9) tends tol. From (12), it is easy to deduce that this is true provided tha
kn < 2n/2_

The next auxiliary lemma is a technical result which will pérthe interchange of);, , and P} ,
and hence simplify some of the analysis in subsequent s&ctio

Lemma 2 Assumek,, < 2"/2 and letB C P({0,1}[")). Then eitherP}, (B) andQ} , (B) both
converge to the same limit or diverge.

Proof: As seen above,
n,kn ( ) - Qn,kn ( | ) - ;’k“ (S)

We have

Qnk, (B) + @, () —1< Q4 (BNS) <@y, (B).

Sincek < 2m/? then@;, ;. (S) tendstol. Hence the limits o), , (B), @, ;, (BNS)andQ;, ;. (BIS)
are the same. O
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In the next sections we present for each of the eveitsS,; and A, two types of results: the first type
describes the values of the parameter ér p,,) for which the probability of the event tends fioor 1
(these are presented as Lemmas, Corollaries and Rematks)setond type gives the behavior of the
probability around the critical value of the parameter vehiire transition occurs (these are presented as
Propositions).

3 Asymptotics for the VC-dimension

By definition of the VC-dimension, a class of fewer thzthfunctions cannot shatter a set of sizeAs
we show in this section, as soon as the number of functioridémst2¢ then at least one set of sidds
shattered by a random clagsw.h.p.

Lemma 3 For any integerd > 0 let k be an integer satisfying > 2¢. Then

lim P, (Eq) = 1.

Proof: It suffices to prove the result far = 2¢ sinceP); ; (Ea) > P ,.(Eq4). Using Lemma 2 it suffices
to show thatQ* ,,(£,) tends tol. Denote byM, the ‘complete’ matrix withd rows and2? columns
formed by all2? binary vectors of lengthl, ranked for instance in alphabetical order. The evépt

occurs if there exists ar = {z1,...,24} C [n] such that the submatrix whose rows and columns are
indexed byx and[27] respectively, is equal td/,. Letm = [n/d]. Let

x;={di+1,di+2,...,di+1)}, 0<i<m—1, (14)

Consider the event defined as the set of those matrices hawdngmatrix whose rows are indexed by
x; and equal taMl,. Fori = 0,...,m — 1, thesem events are clearly independent and have the same
probability2*d2d. Hence the probability that at least one of them is fulfilled i

1 _ (1 _ 2—(12‘1)Ln/dj’
which tends td asn increases. O

Remark 1 Whenk,, < 27 no set of sizel is shattered and hencg; , (Es) = 0. For k, > 2¢,
Py . (Eq) tends tol. Hence for a uniform class, the critical value of the cardityak,, for the eventt,

is 2(1.

Remark 2 For any fixedk > 0, it follows that w.h.p. a uniform clas§ of cardinality £ has a VC-
dimension of at leadtlog, k|, where|-| denotes the integer part aridg, (a) the logarithm in base.

Since any class of cardinality cannot shatter a subset pf] of size greater thamlog, k| then this is
also an upper bound on the VC-dimensiotfofHence, under the uniform modgy , , the VC-dimension
of F converges in probability tdlog, & |.

We proceed now to obtain the asymptotic distribution of(¥Q where F is a random class under the
binomial modelP, ,,, . Since the number of functions {9, 1}[") increases exponentially fast with in
order to keep the expected cardinality of the random clasmsatant we choose a rate of decreasefor



8 Bernard Ycart and Joel Ratsaby

VvC

Fig. 1: VC-dimension of a random class of cardinalkityn — oo)

asp,, = 27" for somec > 0. From Section 2, the numbéf of functions in a random class, ;, follows
the binomial law (8) with paramete$ andp, . It therefore converges to the Poisson distribution with

parameter, i.e.,
k

. _.C
T}er;o P,y (K=k)=e i

Conditioned on having a cardinality & = k, by Remark 2, a random clags will have VC(F) =
|log, k| w.h.p.Hence the event that the VC-dimension of the binomial cfasg, is at least is asymp-
totically distributed aslog, K |, whereK follows the Poisson distribution with parametefThis is stated
formally in the next result.

Proposition 1 Fix any constant > 0 andd > 1. Assume that,, obeydim,, .. p,2" = ¢. Then

oo k
lim P, (Ea)= Y e

k=24

Proof: From (10), we have

on

* 2m n_
Pan (B0) = 30 PeaEa) (3 )b )
k=0

Clearly, by definition of the VC-dimension, the facthﬁk(Ed) = 0 equals zero for alk < 2¢. For
k> 2% Pr (Eq) > P;,.(FEq) hence

2m on
% 2” n__ 2" n__
PrantE) Y (5 )b = o < P B < 3 () )k -

k=24 k=2d

The result follows sincé’” ., (£;) tends tol (by Lemma 3) and the binomial distribution with parameters

2™ andp,, converges to the Poisson distribution with parameter O
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While Lemma 3 established that a random class of functiortmadinality at leas2? shatters one or
more sets of sizé w.h.p, one can expect at leadt{n) sets of sizel to be shattered. We now proceed to
show that anyarticular set of sized has a positive probability of being shattered.

4 Asymptotics for the initial-dimension

Consider a random class of & binary functions orjn]. Can afixedset of sized in [n], for instanced],
be shattered by*? The answer is affirmative, providédis large enough. As it turns out, the initial-
dimension ofF has an asymptotic behavior which is similar to the distidoubf its VC-dimension. We
start with computing the probability of the eve$it (see (3)) under the binomial modg}, ,,.

Lemmad Letn > 1,1 < d < nandx = {z1,...,24} C [n]. Then under the binomial model with
parameters: andp € [0, 1] we have

PstSi = (10— )" (15)

Proof: From (3), 5% is the intersection of the event, ,, n € {0,1}*. We will prove that these events
are independent undét, ,, and that each has probability

2n—d

Pn,p(cx,n) =1-(1-p) (16)

We start with the latter. For an evehRtlet us denote by3 its complement
B =P({0,1}"\ B.

We will use calligraphic capital letters to denote clasdefsiioctions and regular capital letters to denote
events. Let be a fixed class and@ be a random class. Consider the event= ‘7 contains at least one
element ofC’. Its complement is: ‘no function ofC is contained inF’. By Definition 1, its probability
is

P, ,(C)=(1-p)cl. (17)

LetCx,, be the class of functions that coincide witlonx, i.e., fix = n (there are"~% such functions).
Applying (17) to the even€y ,, yields (16).

It remains to show that the everd ,,, n € {0, 1}* are independent. It is a basic fact (see for instance
Feller (1968), p. 115) that the independencé Bf);c; is equivalent to the independence of their com-
plements(B;);cr. Forl < h < 29, letny,...,n, be distinct elements of0, 1}*. Consider the class
C = Ui—1....» Cx.n Whose cardinality i$C| = h2"~“. The eventF NC = (' means that for all functions

finF, fix # mi, 1 < i < h, or equivalently, the everp’t]izlwh Cx,n, occurs. Resorting once more to
(17) we have

h
— n—d —
Pop ﬂ Cui | =0 _p)h2 = H P p(Cxi)-
i=1

i=1,...,h

From this it follows that the even(@x,n)ne{m}x are mutually independent, and hence, so are the events
(Cx,n)ne{o,l}X- O
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From (15), and using the standard expansion

4
(1—t)N =exp —NZ 7 (18)

i>1

which holds for-1 < ¢ < 1 (see Feller (1968), p. 49), it follows th&}, ,, (Sx) tendsto zeroip,, < 2=™
and tol if p, > 27". As it was previously done for the evehl; (Lemma 3 and Remark 1), we now
state the critical value of the expected cardinality foreélientS; under the binomial model.

Corollary 1 The probabilityP, ,. (Sq) that the initial-dimension is at leasttends to0 or 1 according
to whether the expected cardinaljty 2™ of the class tends t0 or oo, respectively. In particular, foany
fixedd > 0, if the expected cardinality tends to infinity then the alilimension is at least w.h.p.

The proof follows from Lemma 4 and the above arguments. Wher= ¢2~" the initial-dimension
converges in distribution according to the following resul

Proposition 2 Fix anyc > 0 andd > 1 and assume,, satisfiedim,, .., p,2™ = c¢. Then

d

lim P, ,, (Sq) = (1— exp(—cQ_d))2 .

Proof: From (18) we havéimy ., (1 — ¢/N)¥ = e~¢ hence

lim (1 —pn)zn_d = exp(—c27%).

n—oo
The result directly follows from Lemma 4. O

Forp, = ¢27", itis interesting to compare the asymptotic probabilitstdbutions of the VC-dimen-
sion and the initial dimension, deduced from Propositioasd 2.

P(VC(]‘—) = d) = Pn,;nn (Ed) — Pmpn (Ed+1) and P('D(]‘—) = d) = Pn);,,n(Sd) — Pmpn (Sd+1) .

They turn out to be remarkably close. Table 1 gives theiriggmt values, forc = 10. The two
distributions differ by approximately one unit.

d 1 2 3 4
P(VC(F) =d) | .0098 .2099 7310 .0487
P(ID(F) =d) | .2766 6428 .0672 .0000

Tab. 1: Asymptotic distributions of the VC and the initial-dimeoss under the binomial mod#&, ,,,, forp, = c2™"
andc = 10.

Remark 3 From Propositions 1 and 2, the asymptotic probability disitions of the event&,; and .Sy
have a similar functional form with respect to the expectadinality ¢, but the former has a significantly
earlier transition from zero to one. On Figure 2, the asyntigtprobability of £, and S, are plotted
against the expected cardinality of the class.



VC-dimensions of random function classes 11

14+ -

0 24 48 72 96 120

Fig. 2: Limiting probability distribution of the event®, (solid) andS, (dots) ford = 4, with respect to the expected
cardinalityc of the random class. Inflection pointseat= 15 andc = 44, respectively.

d 1 2 3 4 5 6 7 8 9 10
E(VC(F)) | 0.74 152 251 352 452 552 651 751 851 9.50
E(D(F)) | 042 091 155 224 296 3.75 455 530 607 6.97

Tab. 2: Expectations of the asymptotic probability distributiafshe VC-dimension and initial-dimension under the
binomial modelP, ., for p,2" = c=2%d=1,...,10.

Suppose thap,, is chosen so that the binomial clagshas expected sizg,2” = ¢ = 2¢. Using
the above probability distributions for the VC-dimensiamdahe initial-dimension, the corresponding
expected valueEB(VC(F)) andE(ID(F)) can be computed and analyzed in terms of the expected class
sizec. Table 2 displays these values for= 2¢, d = 1,...,10. As seen, the expected value of the
VC-dimension ofF is just slightly smaller than the sizéof a set that could in theory be shattered by
some class of the same cardinality/as

5 Asymptotics for the testing-dimension

From Lemma 3 (Corollary 1) it follows that as the cardinalitfor expected cardinality,,2™) of arandom
class tends to infinity, the VC-dimension and the initialkdnsion both tend to infinity. It is still possible
however that as this occurs, the evdntof the random class shatteriadl sets of sizel (see Section 2.1)
doesnotoccur, even forl = 1. As we now show, the expected value of the number of unslealttsts of
sized may tend to infinity even when the cardinality of the classl&eto infinity.

In order to show this, we use the standard first-moment mggemlJanson et al. (2000), p. 54). Dét
be the random variable that counts the number of sets of/sid@ch arenot shattered by a random class
F. We may expresX as a sum of indicator;_ (F) of the complement of the events (see Section
2.1), over all setx with |x| = d. Hence the eventsX = 0’ and A, are identical. Using Lemma 4, we
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may express the expected valuedfis

Enp(X) = Z Enm(HEx(]:))

x:|x|=d
= Z Pmp(gﬂ
x:|x|=d
i
_ _ _( _ )2n—d
x:;d (1 (1 1-p ) )

_ (Z) (1 “(i-a _p>2“)2d> | (19)

Assumep = p, = ¢2~ " logn, for some positive constant As n tends to infinity then

B () = 282" (1 4 o(1)). (20)

ThusE, ,, (X) tends ta if ¢ < d2¢, to +oc if ¢ > d2¢, sop,, = d2?~"logn appears as a threshold for
the expected number of unshattered sets. As we have prgvinrse for the event&; andS,; (Lemma 3
and Corollary 1) we now state the behavior of the probalilftyl; at the extreme values of the expected
cardinality of the class. It is reasonable to expect thatstmae threshold as for the expected value of
X, also holds for the probability afi;. Lemma 5 below states that the probability 4§ tends tol if

P > d29 " log n. We believe that it tends wif p,, < d2¢-"logn. However, the first moment method
only gives the first claim. For the second claim, the secondaent method (see for instance Janson
et al. (2000) p. 54 or Spencer (1991) Theorem 3.1) may be Udes requires estimating the correlation
between pairs of events,, §y which we were not able to do under the binomial model.

Lemma5 If p,, > d2? " logn, then the probability, ,, (A,) that the testing-dimension is at least
tends tol.

Proof: Assume thap,, = c2~"logn. Then from (20)[E,, ,,. (X) tends to zero it > d2¢. Hence

lim P,,, (A4) = lim P,, (X >0)< lim E,, (X)=0

n—oo

which follows from an application of Markov’s inequalityrfa non-negative integer-valued random vari-
able. O

To obtain more precise estimates around the threshold, aleuge the uniform model. Proposition 3
below gives the asymptotic probability of the evehi at the threshold, as was previously done for the
eventsk,; andSy in Propositions 1 and 2.

Proposition 3 Letd > 1 andk = k,, be positive integers such that

lim k, — aglogn =c,

n—oo

where
d

A= log(1 —2-9)
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andc is a real constant. Then
2(1
lim P;:’kn (Aq) = exp <_E(1 — 2_(1)6) .

Remark 4 Denotec,, = k,, — aglogn. If ¢, tends to+oo, thenP;:kn (Aq) tends tol. If ¢, tends to
—oo, thenP,; ;. (Aq) tends to). Hence the critical value of the class-cardinality is c; log n: between
the binomial model and the uniform one, the threshold fordlass cardinality shifts fron2?log n to
aglogn.

Consider arandom class of cardinafity = alog n. If a # a4 for all d, thenw.h.p.the testing dimension
of the class equals the largest integesuch thatn > a4. If @ = a4 for some positive integef, then
w.h.p. all sets of sizel — 1 are shattered (since > «4_1), at least one set of sizé+ 1 is not (since
a < agy1), and there may be a positive probability that all sets of diare shattered. Therefore the
testing dimension of the class in this case=€ «y) is eitherd — 1 or d w.h.p. Hence for any value of
« the testing-dimension of a random class with cardinalityg n concentrates on one or two values.
Thus Proposition 3 expresses a concentration result faegtiemg-dimension which is similar to the well-
known concentration theorem by Matula for the clique nundfeiandom graphs (see Theorem 7.1 in
Janson et al. (2000) or Theorem 11.4 p. 228 of Bollobas (9001

We now proceed with the proof.

Proof: As in Section 3, we use Lemma 2 and repldge, by @7, ;. In terms of matrices, the event
Sx is identical to the event that the submatfix with row indicesi € x C [n] and column indices

1< j1,...,70¢ < k, is equal to the matrid/, up to a permutation of columns (see the proof of Lemma
3).
As before, letX count the subsets of sized that are not shattered by the random cl&sse.,
X= Y Iz (7).
x:|x|=d

Consider any C [n] then recall from (3) thaf, = ﬂn Cx.n henceSy = U,7 Ux,n wheren runs over
the set{0, 1}*.

Consider any: distinct functionsyy, ..., n, € {0, 1}*. Arandom matrix has every one of itolumns
different from everyy;, 1 < i < h, with probability

Qi (Cxpy N ... NCxpyy) = (1= h27 %k
Using the expression for the probability of a union of evéaee Feller (1968) (1.5), p. 89) one obtains
< 2 h—1 2d d\k
* Sx == _1 - 1 — h2_ g .
Qa0 =30 Ja e

If & = k, tends to infinity, this sum tends to zero and the first term dhaeis. Hence:

Qi (Sx) = 24(1 = 279" (1 + 0(1)) .



14 Bernard Ycart and Joel Ratsaby
Fork, = aglogn + ¢+ o(1),
Qi (%) = 241 =279 n~ (1 + o(1)) . (21)

n,kn

Denoting byE,, (X) the expectation ok with respect ta);, ,, we have

n

(0 = () Q1B @2)

which tends tofi—(f(l — 2~4)¢ with increasing:. It remains to show that

lim Q; Jon (X =0)= lim exp(—E,, (X)),

n—oo n—0o0

i.e. that a Poisson approximation holds for(Barbour et al., 1992). The technique of proof, based on the
Stein-Chen method, is quite standard: we shall use thetsesated in Janson (1994).

Ford = 1, the subsets are singletons and the eveistg are independent. Their common probability
is Q 1, (Sx) =n~'(1+o0(1)). Hence

(X =0) = (1=n7 1+ 0(1))) " = exp(~1)(1 + (1)) -

Ford > 2, the family of indicatorgls ) is dissociatedn the sense of Janson (1994) p. 10: the two sets
of random variablegls , x € J} and{I[s , y € K} are independent whenever every J is disjoint

from everyy € K. Denote byl" the set of allx C [n] with |x| = d. Forx € T', denote by['x the set of
all y such thaix Ny # (). By Theorem 4 p. 10 of Janson (1994), the total variatioradist between the
distribution of X and the Poisson distribution with paramelgr;,, (X) is bounded above by

(IAE(X (Z > @k (S Sy + > D Q:,,kn@_xms_y)) (23)

xelyely xelyely\{x}

The result will follow by proving that each of the two sums BB} converges to zero. The first sum
hasO(n??~1) terms, each of orde?(n2%), by (21). We decompose the second sum according to the
number of elements ir Ny as follows:

d—1
S Y QGRS =Y A,
h=1

xel yely \{x}

where

Z ann § § )

|xNy|=h

Clearly, there ar€®(n2?—") terms inA;,. From (3) we have

SxNSy = ( U Ux,n) N ( U Uy,c) =J(CxnnCy)-

n€{0,1}* ¢ce{o,1}
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A randomly drawn functiorf on [n] generated by: coin flips with probabilityl /2 has a probability
of (1/2)¢ for each of the individual eventsy = n and ‘fj, = ¢’. The probability that both events
‘fx =n'and‘f, = ¢’ occur simultaneously i§1,/2)%"~4 provided that)|x~, = (jxny ando otherwise.
It follows that

0T T o) (1 —27d+1 p 2=2d+h)k jf 5y = Conx Ny
* N —
n,k\“x,m y,¢ .

(1 —27d+hk otherwise.

Hence
Ay < anQd—h(l _g—d+1 2—2d+h)k

for some positive:, not depending on andk. Fork = k,, = aglogn + ¢+ o(1), there exists a positive
constanb such that
A, < bn2d—htaa log(1—27 4+t yo—2d+h) .
ThatA,, tends to zero follows from having a negative exponiet,
2d — h + aglog(l — 274+ 4 272d+h) (24)

ford > 2andh =1,...,d — 1. Indeed, the left hand side of (24) vanishes bothifer 0 andh = d. As
a function ofh, its second derivative is positive ¢\ d] hence it is strictly convex. Therefore it is strictly
negative forallh = 1,...,d — 1. HenceA,, tends to zero with increasing a
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