SYSTEM COMPLEXITY, STABILITY AND PERFORMANCE: APPLICATION TO
PREDICTION

JOEL RATSABY

ABSTRACT. Complexity and stability of a system are interrelated. We consider a system that predicts an
input binary Markov chain. The system’s output is a binary sequence that indicates when prediction errors
occur. System complexity is defined as the average number of information bits needed to describe the
output, per input bit. System stability is the discrepancy between the average number of prediction errors
and average number of margin errors, on two input sequences. A bound on the prediction error is derived and
used as a system’s performance guarantee. All three concepts are interdependent: As complexity increases,
stability decreases and performance guarantee becomes more sensitive to changes in the input therefore less
robust.
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1. OVERVIEW

How are complexity and stability of a system related? It is known, for instance, in the study of ecological
systems [9] that more complex systems tend to be less stable. Is this true in general? In this paper we
undertake a probabilistic analysis for deterministic systems that act in a random environment. A system
acts as a deterministic switch, whose action is dictated by a binary decision rule. Based on past input from
the environment, it predicts the environment’s future state. Our results indicate that system complexity
and stability are oppositely related. As a system becomes more complex, its stability decreases. While our
analysis is for prediction systems, because the underlying action is that of a deterministic switch which selects
and copies input to output based on any binary decision rule, then the analysis can be extended, in general,
to other kinds of systems. We use samples for the sake of defining complexity, stability and performance
guarantee. The paper is not on the subject of statistical learning. Our results apply to systems that can be
derived by any means, such as by system design, through a search, or by inference from training samples.

The paper is organized as follows: In Section 2 we start with an introduction. In Section 3 we set up the
notation, definitions and assumptions. In Section 4, we define and estimate system complexity. In Section 5
we define a notion of system stability based on a significance test and state a result on its critical value. In
Section 6 we state a result on system’s performance guarantee, followed by the conclusions in Section 7. For
easier reading, the proofs of the results are deferred to the appendix.

2. INTRODUCTION

Let Z denote the set of all integers. Let an environment be modeled as a stationary binary Markov chain
X ={X;:teZ},

where X; € {—1,1}, and consider a system which acts as a digital switch (or gate) on this chain. Its aim is to
produce an output sequence Y from this random input X such that every bit of the output sequence consists
only of —1. It does so by predicting at time ¢ — 1 the value of the next input bit at time ¢. If the prediction
is —1 with sufficient confidence then it simply selects the input bit at time ¢, otherwise if the prediction is
1 with sufficient confidence then it selects the input bit at time ¢ and inverts its value. It then places it as
the output bit at time ¢. The decision of whether to select or not to select an input is based on a margin
function f(t), whose value is positive if the system predicts 1 for X; and negative if it predicts —1 for X;.
The larger the absolute value |f(¢)| the higher the confidence in prediction hence we refer to |f(t)| as the
confidence function.

Let us describe this action in more details. Denote by sgn(a) the sign function which equals 1 if a > 0,
and —1 if a < 0. Let a > 0 be any fixed positive real value. Let h(t) := sgn (f(¢)) be the system’s binary
prediction for X;. At every time ¢, if the system predicts —1 for input X, which we write as h(t) = —1,
with confidence level at least a, that is, f(t) < —a, then it selects X;. It then copies X; to be the output bit
Y; = X;. If the system predicts the input X; to be 1, that is h(t) = 1 where f(t) > a, then it selects X,
inverts its value to obtain X; and copies it to be output at time ¢, Y; = X;. Otherwise, |f(t)| < a and the
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system does not produce an output value Y; to avoid making a prediction error. We refer to a as confidence
threshold of the system and denote a prediction system by (f,a). Denote by

vi=[{t:|f(t)] = a}

the number of times that the confidence function exceeds the threshold a, namely, the number of times that
a system predicts. The output sequence is

Y= {Ytz};jzl .

Denote by W, := I{h(t) # X;} an indicator of the event that at time ¢ the prediction is incorrect. The
sequence

U= A{V, : [f(H)] = a}
is a prediction error sequence. The following example depicts the above behavior with 1 <t < m, m = 12.
We denote by >,, <_, and {, the event that f(t) > a, f(t) < —a, and |f(t)| < a, respectively. We write +
for 1 and — for —1,

Time: t 1 2 3 4 5 6 7 8 9 10 11 12
Input: X 4+ - + + - - 4+ - 4+ - — +
Confidence:  f(t) >0 >0 Oa <o >a Ca $a >a >a >a <-a >a
Prediction: h(t) + + -+ + + + - +
Error: v, 0 1 1 1 1 0 1 0 0
Output: Yy - 4+ + + + - 4+ - -

As can be seen, the output Y is a subsequence of the input X or its complement X as follows: at times t
when f(t) < —a it is a subsequence of X, and at times ¢t when f(t) > a it is a subsequence of X. Since not
every bit of the output sequence is —1 it means that the system is not completely successful in meeting its
aim.

Let us define a function ¢(y) := (y+1)/2 and apply it to the output Y to form a prediction error sequence,

Ei={¢ (Yt)};=1 :
The last row in the next table depicts this sequence with v =9,
Time: t 1 2 3 4 5 6 7 8 9 10 11 12

Input: X + - 4+ + - - 4+ - 4+ - - 4+
Confidence: f(t) >q >a <>a <_a >a <>a Oa >0 Za e <_g >g

Prediction: h(t) + + - + + o+ 4+ _ +
Error: v, 0 1 1 1 1 0 1 0 0
Output: Y: - 4+ + + + - o+ — _
o(Y): =4 0 1 1 1 1 0 1 0 0

As can be seen above, the two sequences are equal, = = ¥, hence the error sequence ¥ can be obtained
directly from the output sequence Y by evaluating the function ¢(Y).

We can view the event =Z; = 1 as a penalty of making a false prediction. We now generalize this notion.
Let b > 0 be a margin penalty parameter. Define a margin error event at time ¢ as the event that X, f(¢t) < b
(while the notion of margin is used in statistical learning theory [1], here we use it in a more general context
not for learning). This event occurs if the sign of the input differs from the sign of the margin function (which
means that a prediction error h(t) # X; occurs) or if their sign is the same but the absolute value of f is less
than b. We can now generalize the notion of penalty and define an indicator variable ng to take a value 1
if X f(t) < b, and zero otherwise. We define

20 = {E,E“}m

t=1

a sequence of indicators of margin errors at every time 1 < ¢ < m (in contrast to the sequence = which is

defined only at time instants ¢ where |f(¢)| > a). This margin error sequence has at least the number of 1

bits as the sequence Z since Z is equivalent to a subsequence of a margin error sequence with b = 0. 20 is a

result of a more strict assessment of the system’s prediction since we penalize the system even if it correctly

predicts the value of X yet with an insufficient level b of confidence. We are free to choose the value of b

independent of the system (f,a) and thereby control the level of assessment. The larger we set b the more

strict the assessment. The next table depicts 20 where >, <_p and ¢ denote the event that f(t) > b,
f(t) < =b, and |f(t)|] < b, respectively.
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Input: X + - + + - - + - + - - 4+
Confidence: f) >0 >0 Ca <o >a Oa O >0 >a >4 <ca >

>y >y Op <p O O O > Ov > Op >w
Prediction: ht) + - + + + + - +
Prediction error: W, 0 1 1 1 1 0 1 0 0
Output: ., - + +  + + - + - -
B(Y): = 0 1 11 1 0 1 0 0
Marginerror: 2% 0o 1 1 1 1 1 1 1 1 1 1 0

The only time instants where the sequence Z() has a 0 are when the prediction is correct and the confidence
level is at least b.

In this paper we define three properties of a prediction system: complexity, stability and performance
guarantee. Complexity is defined as the conditional entropy of ¥ (conditioned on its length v) divided by
m. It represents the average number of information bits, per input bit, needed to describe the failures of
a system in predicting an input sequence of length m drawn randomly from the environment. Stability is
defined as follows: we consider the difference between the average of the sequence = based on an input
sequence X (™ and the average of the sequence Z(») based on another input sequence X ™. If this difference
deviates from its expected value by more than a critical value, then a system is unstable. Performance is
defined as the prediction error probability, namely, the probability that =; = 1. We state an upper bound on
this probability, which serves as a performance guarantee. We study how these three properties interdepend.

We now proceed with the general setup and definitions.

3. SETUP

Let k*, k, m, n, be positive integers. We denote random variables by capital letters, for instance, X, S,
0O, Y and lower case letters x, s, 0, y to represent their values. We also use capital letters, for instance A, B,
R, U, to denote sets. The letters a, b denote functions.

3.1. Environment. In this section we present a probabilistic setup that defines the random environment.
Let k* > 1 and denote by {X; : t € Z} a sequence of binary random variables possessing the following Markov

property,

P(Xy=m | Xpo1 =241, X2 = T42,...)
= P(Xt =T |Xt,1 :.’Etfl,..‘,Xt,k* :.Z't,k*) (3.1)
where xy_g«,...,xs_1, x4 take a binary value of —1 or 1. This sequence is known as a discrete-time Markov
stochastic process, or Markov chain, of order k*. Let the environment be a stationary homogeneous Markov

chain of order k*. We assume that k* is unknown.
From the environment, we draw m + max {k, k*} consecutive values that form a finite Markov chain

X(m> = {Xt};ifmax{k,k‘*}+l' (32)
Denote by S~ a set of states s*(9), ¢ =0,1,...,2¥ —1, where s*(¥ := [s,t&o_)l, cee 53(0)] =[-1,...,-1,-1],
s = [82&121, ey 83(1)] =[-1,...,—-1,1], .. LD = [1,...,1]. Based on S, the chain X(™ can be
represented as a sequence
S M = {873, (33)
of random states where
S: = (th(k*71)7Xt7(k*f2)7~~-7Xt) € Sk~ (34)

defines the random state at time ¢. With respect to Si-, a state transition occurs from S; to Sj ; by
shifting left the sequence of bits in (3.4), to obtain S; | := (X;_(x=—_2), ..., X¢, X¢41). There are two possible
transitions that can occur from S} into Sf,;: a negative transition, where the bit X;,; is —1 and positive
transition where X;41 is 1.

We denote by @ the 2¢" x 28" transition probability matrix of the Markov chain {X; : t € Z} that satisfies
(3.1) and its (ij)*" entry is denoted by

Qlivjl =g (s

s*(i)> ] (3.5)
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We denote the probability of the two possible transitions from a state s*(® by

q(1s*), q(=1]s*®) (3.6)
(the remaining transitions from s*()) have probability zero) and we assume that for all 0 < i < 2k _ 1,
0<q (1 s*“’)) <1 (3.7)
thus the environment’s Markov chain is irreducible. (Another minor assumption about @ is made in Section
Let
T = [mg, s T ] (3.8)

denote the stationary probability distribution, where 7} is the probability that S} = s*() . We also write
T = for 0 <4 < 2k" — 1. That a stationary probability distribution exists follows from the fact that
the Markov chain is irreducible and the state space Sy~ is finite (Corollary 8.2, [11]).

When we write P(A) we mean ‘the probability of A’ without explicitly mentioning the underlying proba-
bility distribution with which it is measured.

Let us denote by P the joint probability distribution of a state sequence (S7,...,S;) defined as follows:
for any sequence (s7,...,s;) € SL.,

-1
P((S7,e0S7) = (sse o s)) =i [ o (574 Is7) - (3.9)
r=1

As mentioned in Section 1, in this paper we consider specific systems that predict the environment. Because
k*, and hence Si~, are not known, a prediction system is based on a binary function (Section 3.4) which is
defined on a set Sy of states where k£ may be different from k*.

Denote by S(™) the sequence of states of S, that corresponds to X (™) that is,

S0 = (ST, (3.10)
and

St = (Xim-1), Xe—(k-2),- -, Xt) € Sk (3.11)

There is a one-to-one correspondence between S(™ and $*(™) because given one of these sequences we
can obtain the uniquely corresponding sequence X (m) from which the second sequence is obtained.

Corresponding to the transition matrix @ there is a Markov model which is a directed labeled graph. Its
vertices are the states of Sy, the edges are the positive and negative transitions labeled with their correspond-
ing transition probabilities. We use this graph to define a metric on Sy in Section 3.3.

3.2. Sequences. For 1 < ¢ < r, define a projection operator < - >,: S, — S, as a mapping that takes a
state s €S, to a state

s=<s@ >= [, sV es, (3.12)
whose ¢ bits correspond to the ¢ least significant (rightmost) bits of s, We define
1 ifk*>k+1
r(k, k) = =R (3.13)
k—k*+2 ifk* <k.
For any state-sequence 6 € SZ(*’C”C*) consisting of r(k, k*) states in S« (if 7(k, k*) = 1 then 6 is a single state

of k* bits) we extend the definition (3.12) and denote by < 6 >, the ¢ least significant bits of the binary
sequence that corresponds to the state sequence 6, and let < 6 >Z denote the binary subsequence starting
at the i*” bit and ending at the j** bit from the right where the rightmost bit has index 0. For example,
suppose k* = 2, k =5 and m = 4, therefore — max {k,k*} +1 = —4, and let

4
96’() = (5674,36737967279571,900741?1,56279537174)

= 1,1,1,-1,-1,1,-1,1,-1
then at t = 2, §; € S§ (since k — k* + 2 = 5) and
0

(5:747 8:737 5:‘6727 5:717 S:)
((17 1)7 (17 71)7 (717 71)7 (71’ 1)7 (17 71))
(

573) 12 g1 (0) (1) ox(2))



SYSTEM COMPLEXITY, STABILITY AND PERFORMANCE 5

so < 6 >f=1,1,—-1,—1,1 and < 6; >o= —1. Note that the binary sequence that corresponds to a state
subsequence 6 € Sz(f’k ) has a length of r(k,k*) — 1+ k* = k+ 1 bits if k* < k or k* bits if k* > k+ 1. In
either case, 6 is equivalent to a binary sequence of length at least k + 1.
We denote by
Gt = (St*fT(k,k*)Jrla"'7‘9:7255:7175:) (314)

a sequence of r(k, k*) random state variables where ©; takes values in SZ&k’k*) according to the joint proba-
bility measure P.
As Oy is of length at least k + 1 bits, we also use the following equivalent representation,

@t = [thka e Xt}

and
Gt = [St—lth} (315)
where S;_1 € Sy, is the state at time ¢t — 1.

3.3. Metric. We assume that the state space Sx on which the class of binary functions is defined, has a metric
d that depends only on the possible state transitions, that is, on pairs of states between which there may be a
transition and not on the transition probabilities themselves since they depend on the environment’s transition
probabilities which are assumed to be unknown. One way to define a metric based on such knowledge is to
start with an undirected graph Gy = (Vi, Ex) where V;, and Ej represent the vertex and edge sets. The
vertices correspond to the states of Si and an edge exists between two distinct vertices u and v if it is possible
to have either a positive or negative transition from s to s’ or from s’ to s, where s and s’ are the states in
Sk that correspond to w and v. This graph is known as an undirected De Bruijn graph [7] of dimension k,
and is denoted by UB(2, k). We refer to it as Gj.

A path P(u,v) between vertices u and v is a finite sequence of edges that connects u and v. When a path
P exists its length I(P) is the number of edges in the sequence. Let

dist(u, v) := min {I(P) : P(u,v) exists}

be the length of the shortest path between u and v and let dist (u, v) := oo if there is no path between u and
v. We define dist(u,u) = 0 for every u € Vj. It is known that an undirected De Bruijn graph of dimension k
is connected, that is, there exists a path between any two vertices. The distance between the farthest pair is
k hence

diam (Sg) = k. (3.16)

The length of the shortest path between two vertices, namely, dist(u,v), is a metric on Vj since Gy is a
connected graph.
Define the metric between states s and s’ as

d(s,s") := dist(u,v) (3.17)

where u, v are the vertices that correspond to s and s’. It follows that d is a metric on S;. Define the
diameter of S as

diam(Sy) := d .
iam(Sg) Joax (s,s")

Next we mention a few additional standard concepts.

A dominating set of a graph Gy, is a set of vertices U C Vj, such that for every vertex v € Vi, \ U there
exists a vertex u € U such that u and v are connected by an edge. The domination number of Gy is the
size of the smallest dominating set. The directed De Bruijn graph, denoted by B(2, k), has an arc instead
of an edge from a vertex u to v if there is a transition from u to v. From [4], the domination number of the
directed De Bruijn graph B(2, k) is [2¥/3]. This bounds the domination number of UB(2, k), which we refer
to as G,.

A ~-cover of Sy with respect to the metric d is a set C C S such that for every element s € Sy there
exists an s’ € C such d(s,s’) <. The size of the smallest y-cover of Sy, is defined as the y-covering number
of S with respect to d, and is denoted by N,. Any dominating set of G, is also a 1-cover of Sy with respect
to the metric (3.17). Therefore the domination number of G}, is an upper bound on the 1-covering number of
Sk. We are not aware of existing results which bound the y-covering number of Gy, for general v but a simple
greedy algorithm for set covering yields an upper bound on the covering number of G} which is accurate to
within a factor of k + 1 (see [2], Section 6) .
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3.4. Classifier. In Section 1 we discussed prediction systems in general. In this section we consider classifi-
cation, or decision rules, which subsequently are used to form prediction systems. We start by defining the
class H of all binary functions h : S — {—1,1}. We henceforth refer to h as a classifier since it classifies
each state s into one of two categories. For a subset R C Sy, let

. R /
dist(s, R) := gleuéd(s, s').
From [2], we define the width of h at s as
wp(s) = dist (s, Rﬁ(s)) (3.18)

where Ry, R_ C S are regions classified as 1 and —1 by h, , respectively, and h(s) is the complement of
h(s). For every s € Sy, we have s € Ry,(5), hence s € Ry, ) and therefore wy(s) > 0. Define

fh : Sk — {—diam (Sk) B T P diam (Sk)}

by

fn(s) := h(s)wn(s) (3.19)
to be a signed width function associated with h. We refer to this function also as margin function. The
decision of h at s can be expressed in terms of the margin as follows, h(s) = sgn (f(s)). Thus f, not only
contains the binary decision information of h but its value gives a form of confidence in the decision of h.
We use this further below to define a notion of confidence and assign a penalty for making a low-confidence
decision. Note that we can evaluate the width and margin functions because k is known and thus the edges of
the De Bruijn graph on S; are known (the environment’s space Si+ and its corresponding transition matrix

@, both of which are assumed to be unknown, are not needed for this evaluation).
Using the notation of (3.15), for s € Sy, and = € {—1,1}, let

and for any h € ‘H define the margin of h at s as
Zfr(s). (3.21)
Consider 6; := [s;—1,x:] at time ¢. We use h to define a decision for x; based on state s;_; using the following

decision rule:
DEcISION RULE: If h(s;—1) = 1 then decide 1 for x;, else decide — 1.

Note that if h(s;—1) # x4 then x4 f,(si—1) is negative, and vice versa, so a decision error event at time ¢
is expressed as either one of the following two equivalent events

h(st—1) # @ <= x4 fn(st—1) < 0. (3.22)
If h(si—1) = x4 then x4 fr(s:—1) is non-negative. If x4 fj(s;—1) < v then either h decides the wrong value for
x4 or the margin value f;(s;—1) is lower than . We use this further below to define margin error.
3.5. Margin. Denote by 7 € (0,diam(S;)] a parameter and let
b= ) > 0 (323)

where b(0) = 0, be a non-decreasing function which is called the margin penalty whose value is used to define
the margin error.

Definition 1. (Margin error) For ©; = (S;_1, X}), let the event
X fn(St-1) < b(v) (3.24)
be defined as a margin error of classifier h at time ¢.

When b(y) = 0, (3.24) is the same as decision error event (3.22). Note that (3.24) is true if the sign of
frn(Si—1) differs from the sign of X, that is, if h decides the wrong value for X; based on the state S;_1 at
time ¢ — 1, or if it decides the correct value but the margin is lower than b(v). The event (3.24) may also be
expressed in terms of ©; as follows,

<O >0 fr (<O >F) < b(y). (3.25)
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Definition 2. (Margin error sequence) Based on X (m) define the margin error sequence as the following
sequence of margin error indicators

GO () = {\pgm‘”)(h)}zl = {H{thh(st—l) < b(”Y)}}

m

(3.26)

t=1

Definition 3. (Average margin error) The average number of times that a margin error occurs on X (m) by
classifier h is defined as the average margin error

m

1

LY (h) := — " w{™ 7 (n). 3.27
SRS (3:27)
Its expected value, with respect to the probability distribution of the chain X (™), is denoted by
LN () = E {Lff;(“’))(h)}
= P(Xifn(Si—1) <b(v)). (3.28)

3.6. System. In the previous sections we introduced several definitions that involve a classifier based on a
binary function A. In this section we define a prediction system to be a system that uses classifier h to predict
only when there is a sufficiently high confidence. We declare the value of the width function wy, at a state s
to be the confidence of prediction at that state. Denote by v € (0, diam(Sy)] a parameter and let

a = a(y) (3.29)

denote a non-decreasing function whose value represents decision confidence threshold and where a(0) = 0.
We now use a(7) to define a prediction system.

Definition 4. (Prediction system) Given h € H and v € (0, diam (X)] denote by (h,v) a prediction system
which is based on the following prediction rule for predicting the value of X;: if f;(Si—1) > a(y) then decide
1, otherwise if f5(S:—1) < —a(y) decide —1, otherwise reject making a decision. We refer to wy, := |fy| as

the confidence function of the system and to a(vy) as the decision confidence threshold of the system.

From (3.29), if v = 0 then a(y) = 0 and in this case the prediction system always makes a decision since
the confidence function is non-negative. Henceforth, by a system we mean a prediction system.

Definition 5. (System output) The output Y; € {—1,1} of a prediction system (h,~) at time ¢ is defined as
follows:
Xe if fo(Se—1) < —a(v)
Vo= X, i fu(Si) > a(9)
null otherwise

<. {1 X =1

where

-1 ifX=1

and null means there is no output value at ¢.

Definition 6. (Aim of system) The aim of a prediction system is to output —1 at time ¢ if at time ¢ — 1 it
predicts with confidence at least a(y), otherwise not to output any value. That is, a system aims to output
only the value —1 at all times in which it makes a prediction and no output at any other time.

So at time ¢t — 1, if a system is confident that X; will be —1 then at time ¢ it will copy the value X; to
its output. If at time ¢ — 1, it is confident that X; will be 1 then at time ¢ it will copy the complement
value of X, to the output. (This aim of outputting only —1 extends what is referred to in [12] as matching
the environment.) Definition 6 implies that we can represent the action of a prediction system as copying
the input (or its complement) to the output, as described in Definition 5. This fact can be used to apply
the analysis and results of the paper to other systems which perform a subsequence selection operation to
produce output from input [5, 12-16].

From Definition 5 it follows that whenever a system predicts correctly it outputs Y; = —1, otherwise if it
predicts incorrectly then it outputs Y; = 1. Hence the probability that a system (h,~) wrongly predicts X
equals

(vi= 1j\fh (Sa)l 2 a()) (3.30)
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which can also be expressed as

P (X (S < Ol (5101 > ). (3.31)
We henceforth refer to (3.31) as probability of prediction error and denote it by
L(h|y) := L (hla(7)). (3.32)

In Section 3.1, we defined a random sequence X ™ of the environment. After obtaining a X from the
stationary environment, at a future time we draw an additional n 4+ max {k, k*} consecutive bits to obtain a
second sequence

xm .= {Xt}?zimax{k’k*}Jrl . (3.33)
For input X (), denote by
vi=v@ (3.34)
the number of times that the sequence S(™) enters a state s € Sy, such that the width satisfies wy,(s) > a (or
equivalently, |f(s)| > a). The system output sequence is denoted by

o)
Y = (V3 (3.35)
where ¢, 1 <1 < (9| are time instants when the width function satisfies wy, (St,,l) > a.

Definition 7. (Error sequence) Let system (h,+) predict an input sequence X . We denote by error
sequence the sequence of prediction error indicators when the confidence function satisfies |fy,(s)| > a,
L@

T (h) o= () = {H{thfhwn_l) < 0}} | (3.36)

=1

Definition 8. (Average prediction error) For input X ("), the average number of prediction errors conditioned
on having a confidence of at least a(7y), is defined as

1
£ (h) = > > W, (3.37)
L] fn(Se,—1) | >a(v)
where v is defined in (3.34).

For y € {—1,1} let us define the function

(3.38)

Consider a system (h,~y) and its error sequence \I/(”(u))(h). Recall from above that a system’s output equals
—1 when the system predicts correctly and 1 when it predicts incorrectly. Therefore, from (3.36), for every
1 <1< @) we have

\I}tz = (}/tz) . (339)

(a)
Note that {U;};_, is a zero-one representation of the output sequence (3.35), namely, the output sequence
Y ) contains all the information about a system’s prediction errors.

3.7. Discrepancy. A notion of system stability is presented in Section 5. It is based on the following
function of X ™ and X which we denote as the discrepancy of system (h,7),

Tonn(hy) := 2557 () = LEED) (1) (3.40)
Discrepancy measures the difference in performance between two systems that have the same classifier h,
where one is based on a positive decision confidence threshold a(y) > 0 and whose performance is measured on

a future input sequence X ™, and the other is based on a zero decision confidence threshold with performance
based on a past input sequence X ™). In Section 5 we use the discrepancy to define a notion of system stability.

Define the function Xﬁ’“”) {s €Sk |fn(s)] > aly)} — {0,1} as follows,

S {1, if X, fn (Si—1) < 0 given that |fy (Si—1)
t =

| > a(v)
0, if X¢fn (Si—1) > 0 given that |fp, (Si—1)| > a

()
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We have
"] = P (X (51-1) <Ol (510 2 ). (3.41)
With (3.31) and (3.32) we have
E [XEW} = L(h|y). (3.42)

Note that L (h|y) is constant with respect to ¢ because the Markov chain is stationary (Section 3.1). Fix
any h € H and v € (0,diam(S)]. The expected value of the average prediction error is

1
Eler ] = E| > X fu(S,-1) <0}
L] fr(Se; 1) >a(7)

v

1
= E |E|- > T{Xy, fn (Sy,—1) < 0}
L] fn(Se,—1)[>a(v)

1 (h%)
= E, ;]E Z thm v
L] fr(Se,—1) | >a(y)
M1
= E,|-vL(h
L)
= L(hly). (3.43)

3.8. Admissible. Let v = 0 and consider a prediction system (h,0). This system has a confidence threshold
a(0) = 0. Define the probability of false prediction at time ¢ by (h,0) as

Po = P(h (Stfl) = _17Xt = 1) + P(h (Stfl) = l,Xt = —1)7
and the probability of correct prediction at time ¢ by system (h,0) as
qo ‘= P(h (St—l) = 717Xt = 71) +P(h (St—l) = 17Xt = 1) .

Consider a system (h,7) with v > 0 which has a confidence threshold |f,(S:—1)| > a(y) where a is any
non-decreasing function with a(0) = 0. Denote the probability of false prediction at time ¢ by (h,~) as

Pa i= Pa(y) = P (fn (Si-1) < —a(7), Xy = 1) + P (fn (Si-1) > a(), X = —1)

and the probability of correct prediction at time ¢ by system (h,~y) as
qa ‘= Ga(y) = P(fn(Si-1) £ —a(v),Xe=-1)+ P(fh (Stfl) >a(y), X =1).

Proposition 9. Let a(v), b(y) be any non-decreasing functions that take the value 0 at v = 0. For a
prediction system (h,~y), with confidence threshold a(vy), where h € H, v € (0, diam(Sg)], if the following
inequality is satisfied
Ly X (3.44)
Pa Po
then
L(hla(y)) < LD ().

Proof. Define the sets A := {0 = [s, 2] : |fn(s)| > a(7)}, Ao := {0 =[s,z] : |fu(s)| > 0}. The set Ay = Q,
where  denotes the sample space which consists of all possible = [s,x], s € Sg, z € {—1,1}, since the
inequality |fx(s)| > 0 is true. Define the set By := {60 : zfr(s) < 0} and B, := {6 : zfx(s) < b(7y)}. From
(3.41) and (3.42) we have,

L(hla(y)) =P (thh (S11) < o\m (Si1)| > aw))

:P(BO‘A).
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From (3.28) we have
L) (h) = P (X fa(Se-1) < b(7))
— P(B,)
-p (BV)AO) (3.45)
where (3.45) follows from the fact that A9 = Q. We have,
P (BO‘AO) <P (BW‘AO)
since b(y) > 0. It suffices to show that if (3.44) is satisfied then
P (B0|A) <P (B(,’Ao) . (3.46)
For brevity, we write a := a(y). We have
A Bo={0:|fu(s)| > a,xfu(s) < 0}
={0: ful(s) < —a,x =1} J{0: fa(s) > a,2 = —1}. (3.47)
Denote by A~ := {0 = [s, ] : fn(s) < —a} and A" := {0 = [s,2] : fr(s) > a}. Thus,
P(A,By) =P (A_7X = 1) +P (A+,X = —1).

Denote by Ay = {0 = [s,2] : fu(s) < 0} and Al := {0 = [s,2] : fn(s) > 0}. Substituting 0 for a in (3.47)
and Ag for A yields
P (Ao, By) = P (A5, X =1) + P (A, X = —1).
The inequality (3.46) can be written as
P(AB) _ P(A)
P (Ap,By) — P(Ao)

(3.48)

and after substituting, it is expressed as
PA",X=1)+P(A", X =-1) < P(A)
P(Ay, X =1)+P (A5, X =-1) ~ P(A)

(3.49)

We have
P(A)=P(A",X=1)+P(A", X=1)+P(4", X =-1)+ P (4", X =-1)
and similarly for P(Ap). Thus, (3.49) is expressed as
P(A",X=1)+P(A", X =—1)
P(A7, X =1)+ P (A7, X =-1)
PA,X=1)+PAH,X=1)+P(A,X=-1)+P(A", X = 1)
< .
TP(AG,X=1)4+P(A7, X =1)+P (A5, X =—1)+ P (A7, X =—1)

This is rearranged into the inequality,
P(A”,X=-1)+P(A",x=1)
L+ pa=x=nrrarx=1
1 " (A: X771)+P(f+ X=1)
P(Ay X=1)+P(Af,X=-1)

and then expressed as the inequality,

PA"X=-1)+PAY X=1) P(Ay,X=-1)+P(A{,X =1)
P(A-,X=1)+P(A+,X=-1) " P(4;,,X=1)+P(A], X =-1)

The latter is precisely the inequality

G D

Da pO7
which is satisfied by the premise of the Proposition. Therefore it follows that (3.49), (3.48) and therefore
(3.46) holds. Therefore the statement of the proposition holds. O



SYSTEM COMPLEXITY, STABILITY AND PERFORMANCE 11

The Proposition holds for any functions a(y) and b(v), where v € (0, diam(Sg)], as defined in (3.29) and
(3.23). In particular, it holds for a(vy/2) and b(27). Therefore from (3.28), (3.43) and Proposition 9, if

Qa(~/2) > 4o
Pa(~/2) Po
then
L(h|y/2) := L(hla(y/2)) < L¢CD (n).

This means that the expected discrepancy is non-positive since

E[Cpn(h)] = E[e07/2 (0)] —E [L8E ()]
= L(hy/2) - L@ ()
< o (3.50)

This fact is used in the definition of system’s stability (Section 5). We denote the class of admissible
prediction systems by
A CH x (0,diam (Sg)]

and define it as the following collection

A :={(h,7) : (h,7) satisfies (3.44)} .

3.9. Assumption. We need to state an assumption on the Markov environment. In Section A.1 we show
that there exists a finite integer [y, such that for I > [y, the transition matrix @ in (3.5) satisfies Q' > 0, that
is, every entry of Q!, denoted by p®(s\)|s()), is positive. We henceforth choose

lo ;= min{l: Q' > 0} (3.51)

and in theory, if Q was known then [y can be evaluated by computing @' for a sequence of [ > 1 until the
first { is found such that @' > 0. Denote by po the minimum entry of Q'

po = min pt) (54 (3.52)
1,7

then the fact that Q% > 0 implies that po > 0.
We henceforth make the following assumption:

Assumption 1. The environment’s transition matriz Q satisfies one of the following conditions: (i) the
minimum, entry of Q% is po # 275 or (i) po = 275" and for all 0 < i < 28" —1, the transitions probabilities
(5.6) are %.

Remark 10. In both parts (i) and (ii) of the above assumption, () may have a uniform stationary distribution
Tl = [2*’“* ey 2*’“*] , which means Q is doubly stochastic and lim;_, . Q' is a matrix U, of the same size as
Q, with all its entries identical to 2% . Part (ii) treats the special case where this limit U is reached exactly
at time [, that is, Q" = U.

We use [y and pg in the following definition. According to the cases of Assumption 1, define

-_— k* 1 . .
IZQT“’ . if case (7) holds and [p =1
X 2k~ ‘£ nan (4 .
p(k*, 1) := (1_2””0)(,0,1)/% (1_(1_2k*#0)1/,0) if case (¢) holds and [y > 2 (3.53)
2k —1 if case (44) holds.

In the first condition of (3.53), (3.7) implies that @ > 0 and thus pg is the minimum entry of Q.

3.10. Cover. In this section we provide some estimates on the covering number of the class F of signed
width functions. This is used in an upper bound on the performance of a prediction system (Section 6).
Denote the [, -norm of f; by

1Fnll := max | fn(s)]. (3.54)

Denote by
F={fn:heH}. (3.55)
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R r
An a-cover of F with respect to the [, norm on Sy is a set F,, := {f](a)} such that for every element
=1

f € F there exists an f;‘” € F, such

Hf - f}‘”H <a. (3.56)
We denote by
B = () 3.57
j i=sgn fj (3.57)
the binary function that corresponds to f(a) (note that j := j(a) and we omit the dependence on « for

brevity). The size r of the smallest a-cover of F is defined as the a-covering number of F with respect to
loo norm on Sy, and is denoted by M.
From [2], Section 3.2, it follows that

N, < <2 FM%(S’“W + 1) e (3.58)

where N, is the a-covering number of Si with respect to the metric d defined in (3.17). In the next section,
we introduce a notion of system complexity.

4. COMPLEXITY

In [17], system complexity is defined as the uncertainty that a system meets its functional requirements.
We take a similar approach and define complexity of a system to be the uncertainty that it fails to predict.
We define this as the average expected description length of the sequence of indicators for the errors made
by a prediction system. This definition of system complexity not only depends on the system but also on
the probabilistic properties of its environment (via the expected value) since the environment is the source
of uncertainty in its ability to meet the functional requirement of predicting the random input.

Recall that by Definition 4, a prediction system makes a decision only when its confidence exceeds a
threshold a(7). Because of the relationship (3.39), the output sequence Y ) defined in (3.35) indicates when
a system makes a prediction error. Essentially, it is a binary description of a system’s failure to predict a
random input sequence. Denote by H (Y(”) |v) the conditional entropy of the sequence Y ) given its length
v. By the property of entropy [6], H(Y *)|v) is the minimal expected length of a codeword needed to describe
the output of a system given an input sequence of length n, conditioned on knowing the number v of times
that the system produces an output (namely, makes a prediction). Thus it is the number of information bits
needed to describe the sequence of errors.

Definition 11. (Complezity) Let (h,v) be a prediction system with confidence function a(7y). Let X ™ be
an input sequence from the environment and Y*) the corresponding system’s output sequence. Let length v
denote the random length of Y(*). Define the complexity of (h,v) as

Clh,y) = %H (v ). (4.1)

The complexity of a system is the average number of information bits (minimal expected description
length) per input bit, which is needed to describe failures of a system in predicting an input sequence of
length n from the environment.

Let us obtain an upper bound on the complexity C(h,v). For a binary random variable that takes one
of its two values with probability p € [0,1] and the other with probability 1 — p, denote its entropy by
H(p) := —plogp — (1 — p)log(1 — p), where all logs are to base 2. We have,

HYW |v) = Xn:P(V —DH (Y(”) v = z)
=1

n l
<> Pw=0Y HY,). (42)
=1 r=1

From (3.30), (3.31) and (3.32) the binary variable Y;_ has entropy H(L(h|v)). Continuing from (4.2), we

have
n l

S P =1)S H (%) = H(L(h 1) S IP(w = 1) = H (L(h 7)) E[].
=1
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We have
E] =E | I{|fi (S—1)| > a(7)}
= ZIE []I{|fh (Stfl)‘ > a(')/)}]
=> P(Ifn (Se-1)| > a(y))
— P,
where

Py = P =P (| fn (Si-1)| > a(y)).
Hence the complexity of system (h, ) is bounded as follows,
0<C(h,) < H(L(h|y)) Pa <1 (43)

since the entropy of a binary random variable has a maximum value of 1.

As v increases, P, decreases (since a(7) is non-decreasing) and the upper bound on C(h,~) decreases. As
the prediction by (h,~y) becomes more accurate, L(h |y) decreases away from 1/2 and the entropy H (L(h|7v))
decreases away from 1, therefore the upper bound on C(h, ) decreases. If the prediction error L(h|y) decreases
with increasing confidence threshold a(v) (this is typical behavior for a good system), then as 7 increases,
a(7) increases, and therefore both P, and H (L(h|y)) decrease which results in decreasing complexity C(h,~).

A particular case is when the confidence threshold a = 0 and h is the Bayes’ classifier. The system predicts
at every state of Sy (has full coverage) with optimal accuracy. In this case, P, = 1 and H(L(h|y)) takes a
lowest value over all systems with a = 0, hence the system minimizes the upper bound on the complexity
over all such systems.

The next section studies a second property, stability of a system.

5. STABILITY

According to Definition 5, for input X (™, a system’s output Y *) corresponds to the error sequence (3.36)
via the function (3.39). In the current section we define a notion of stability of an admissible system (h, 7).
It measures how the average of this sequence changes when we present two different random input sequences.
We evaluate the discrepancy Y., ,(h,7) and declare a system (h,~) as unstable if the discrepancy deviates
from the expected value by a statistically significant amount. We start by constructing a test of significance.

Define the following null hypothesis:

NurLL HypoTHESIS: The expected discrepancy for an admissible system (h,~) is non-positive, that is,
E’rm,n(h"y) < 0.

From (3.50) it follows that the null hypothesis is true.

Theorem 13 which is stated below, shows that the event T, ,(h,7) > € has a probability less than . We
use this result for constructing a significance test, as follows: let (™), 2(™) be the realizations of the random
variables X (™) and X ()| respectively. Denote by 3, the realization (based on w(")) of the random variable
25,"’7/2>(h) and define by a,, the realization (based on (™)) of the random variable Lﬁg(%))(h). We define
the following significance test of level ¢ and critical value € (e is stated in Theorem 13):

SIGNIFICANCE TEST: if 8, > a,, + € then reject the null hypothesis.

We use this test to decide if system (h, ) is stable as follows: Calculate the critical value € using Theorem
13 and apply the above significance test. If the difference (3, — «,, is larger than e then reject the null
hypothesis. This means that the discrepancy value deviates by a statistically significant amount from its
expected value and we declare that the system is unstable. This is formalized in the next definition.

Definition 12. (Stability) Let (h,~y) be an admissible system. Let m, n, and £ < n be positive integers. Let
X)X he drawn from a Markov chain (environment). Evaluate the discrepancy Y, ,(h,7). For any
0 <0 <1ande(d) >0 we say that system (h,) is €(d)-stable if

P(Bwe (/n,1]:v>wn, Ton(h,y) >e(d) <6 (5.1)
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where v is defined in (3.34). Alternatively stated, a system (h, ) is €(d)-stable if with a confidence of at least
1 -0, for all w € (¢/n,1] such that v > wn, the discrepancy Y, n(h,7) < €(9).

According to this definition, a larger value of € means that the range of possible discrepancy values that
are permitted while still declaring the system as e-stable, is larger. A smaller € means that the system is
more stable. In (5.1), w is the ratio of the output sequence length v to n. It needs to be larger than £/n to
ensure that with large probability, the average (in Definition 8) converges to its mean.

We need a function to serve as a critical value e such that the significance test holds for any admissible
system (h, ). Formally, we seek a function

€= 6(m7 n7 g? fy? w? 5)7

such that for any 0 < 6 <1,
P((x(m)w(”)) :3(h,y) € A, 3w e (U/n, 1], v > wn, Ty n(h,v) > e) <. (5.2)

Note that the bound (5.2) holds uniformly over all admissible prediction systems (h,7) € A. Therefore
after drawing X (™ and X, the function e serves as a critical value for any choice of admissible system
(h, ) thus one can search over all A for a more stable system. This choice can be made even after the two
random sequences are drawn. Since the discrepancy depends on the length v of the output sequence, which
is random and hence not known in advance (in contrast to m and n), we ensure that the bound also holds
uniformly over the range ¢ < v < n. This way Theorem 13 holds for any admissible system (h,v) and any
random output sequence of length at least ¢ that may result.

Theorem 13 holds with the following choice of confidence threshold (3.29) and margin penalty (3.23),

a(y) =427, b(y) = 84y (5.3)

which are used in the definition of discrepancy in (3.40). Define

el 7,00.5) = <><>¢ (ot (o[ 5] 1) v (A= 20000Y)

2k kY )p(k", [0)\/:1 (NW3 In (2 [% + 1) +In (W» (5.4)

Theorem 13. (Critical value) Let a and b be the confidence threshold and margin penalty as defined in (5.3).
For positive integers m, n, k, k* and £ <n, let Ny denote the y-covering number of the state space Sy, with
respect to distance function d. Let X(™, X be drawn from a Markov chain of order k*. For any 0 < 6§ <1,
the probability that there exists an admissible system (h,7v) € A and there exists w € (£/n,1] such that the
length of the output sequence v is at least wn and the discrepancy Yo, ,(h,7y) > e(m,n,{,v,w,?), is no more
than §.

The proof of the theorem is in Section A.2.

To use Theorem 13, one first chooses positive integers m, n, £ < n, k, k* where k* represents the true
unknown order of the environment’s Markov chain (since k* is assume unknown, then the choice of k* is
based on a theoretical scenario for a Markov chain environment). Then one draws X ™) followed by X (™) at
a future time, then picks any admissible system (h,v) € A, evaluates Lg,l;(%'))(h), obtains the system’s error
sequence \Il(”(am))(h) (defined in (3.36)), evaluates 2772 and obtains the discrepancy value Ton(h, 7).

v(a()

One then chooses for w any value in the interval (¢/n, 1] such that the random length »(*(") (which is known
since the sequence X (™) has already been drawn and \Il(”(am))(h) has been already obtained) is no smaller
than wn. Then any value of 0 < § < 1 is chosen, and the values for m, n, ¢, k, k*, v, w are plugged into the
expression of €(m, n, ¢,v,w, d) to obtain the critical value € that is specified in the theorem. One is guaranteed
by the theorem with probability at least 1 — ¢ that if the measured discrepancy value is larger than this value
of € then the system is unstable, otherwise it is e-stable. Hence, with a single pair of random sequences X (™),
X we can determine if any admissible system is e-stable or not for a given environment.

Remark 14. The value £ is the required minimum length of the error sequence ¥*). The theorem holds only
if the value of w is greater than ¢/n. If after drawing X ™) and evaluating the error sequence ¥(*), the length
v < £, then the theorem cannot be applied, that is, e cannot be used as a critical value.
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So far we studied two properties of a system, complexity and stability. We saw that the an upper bound
on the complexity of a system (h,~y) decreases as y increases and, from Theorem 13, we see that the critical
value € decreases as v increases. Therefore, a less complex system (h,+) has a smaller value of e. Hence, a
less complex system is more stable.

The next section studies a third property which is referred to as system performance guarantee.

6. PERFORMANCE

In this section we state an upper bound on the probability of prediction error L(h|y) (defined in (3.32)).
In the context of Section 2 this bound represents a system’s performance guarantee. Similar to the average
prediction error in Definition 8, next we define the average prediction margin error of a system.

Definition 15. (Average prediction margin error) For input XM  the average number of margin errors
when making a prediction by system (h,~), is defined as

ﬁ(m"'Y/G)(h) — i Z \IJELW;’Y)7 (6.1)

v(a) V(a)
| fn(Sey—1)|Za(v/6)

where v := (9 is the number of times that the sequence S (m) enters a state s € Si, such that the confidence
function satisfies | f5(s)| > a(y/6) and \Ilgn’v) is defined in Definition 2.

The average prediction margin error is used in the next theorem to obtain an upper bound on the prediction
error (3.32) of a system. The theorem holds with the following choice of confidence threshold (3.29) and
margin penalty (3.23),

a(v) =21y, b(y) = 44y. (6.2)

£(m, 7y, w, 6) = ‘W\/i (N'y/ﬁ In <2 {%w + 1) +In (%)) (6.3)

where r(k, k*) is defined in (3.13).

Let

Theorem 16. (Performance guarantee) Let a and b be the confidence threshold and margin penalty as defined

n (6.2). For~ >0, let Ny be the y-covering number of Sy, with respect to the metric d. Let m and £ < m be
positive integers. Let X(™) be a Markov chain drawn randomly from the environment. For any 0 < 6 < 1,
the following bound holds,

v(a)

P (Hh €M, 30 <~ < diam(Si), 3w € (¢/m, 1] : L(h|y) > £m/®) (h) + &(m, vy, w, 8), v > wm) <.
(6.4)

The proof is in Section A.3.
We refer to the sum

LD () = L7579 (h) + €(m, v, w,6)

v(a)

as the performance guarantee function since the theorem guarantees with a probability of at least 1 — § that
the prediction error probability L(h|y) (considered as the performance of system (h,~)) is no larger than
£ ’6)(/1). Note that while the bound (6.4) holds uniformly over all systems (h,v) with probability at least

1 — 0, it is not loose, to the extent that it still depends on the specific system (h,~y) that is considered. The
E(mv'Y/G)

(@) (h) which depends on h and ~y, and also via the second term which

dependence is via the first term
depends on 7.

The parameter v influences the sensitivity of the performance guarantee function Ly "”(h) to an input
(™) Two input sequences whose states are close with respect to d, may yield very different values for
LoD (h) if 7y is small. Yet if v is large, then their corresponding values LoD (h) will be close. A higher value
of v means the performance guarantee function is less sensitive to a change in the input, and we say that the
performance guarantee function is more robust.
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7. CONCLUSIONS

This paper studies a problem of predicting a binary Markov chain by a prediction system. A system
is a pair of structural and behavioral components. The structural component is a classifier h, a binary
function defined over a finite state space. The behavioral component is based on a parameter « that controls
the confidence threshold used for prediction with h. The output of a system consists of a binary sequence
that indicates errors made by the system in predicting an input sequence. We define system complexity,
system stability and system performance guarantee function. Complexity of a system is the average number
of information bits (minimal expected description length) needed to describe the output, per input bit.
Stability is defined as the difference between average prediction error and the average prediction margin
error on two input sequences. Performance guarantee is stated as an upper bound on the prediction error
probability. These three quantities are interrelated via their dependence on the behavioral parameter . This
parameter influences the performance guarantee function in such a way that a larger value of v makes it more
robust and less sensitive to fluctuations in random input. Our results show that, with a larger value of v, a
system becomes less complex, more stable and its performance guarantee is less sensitive to fluctuations in
input.

APPENDIX

Starting in Section A.3 and onwards the proofs of the statements are provided. Section A.1 states a lemma
which is used in the proofs.

A.1. Concentration. The total variation distance between two discrete probability distributions p and ¢
on a domain X is defined as (see for instance, Definition 13.2, [3])

I = dqllpy == sup |p(A) — q(A)]
Acx
and is related to the [;-distance as follows (Lemma 13.3, [3]),

1
lp = dllzyv = 5 lIp—ally - (A1)

A normalized Hamming metric for sequences s*(") = {si}}_; € Sl is defined as follows: for any s ) () ¢

Sp.,
du (", q" ™) = 3T # a7} (A2)
t=1

For a discrete time Markov chain with transition matrix @ defined in (3.5), denote its i** row by ¢(-]1), that
is, the conditional probability distribution given that the current state is s*(*). For discrete time [, we denote
the entries of the matrix Q' by ¢(¥)(j|i), and ¢\ (-|i) denotes the i** row of Q'. Define

T = max Hq(l)(-ﬁ) -7
0<i<2F* —1

TV

where 7* is defined in (3.8). The next lemma is Theorem 1.1 of [8] applied to our finite Markov chain. It
establishes a concentration bound for $*(") and functions that are Lipschitz with respect to the Hamming
norm. (That we can apply this theorem follows from the fact that a Markov chain can be regarded as a hidden
Markov chain by letting the emission alphabet be identical to the state space and emission probabilities to
be delta-functions.)

Lemma 17. (/8] Theorem 1.1) For 1 < a < oo and0< 3 <1, if 1 < af'~! forl=1,2,..., then for any
@ : Sp. — R with Lipschitz constant 1 with respect to the Hamming metric, the following holds:

P ((p (S*(”)) —E¢ (S*(”>) > ’I’LIﬁ) <exp (771(1;#6)2ng> (A.3)
and
P (E(p (S*(n)) > (S*(")) + TLH) < exp (—%) . (A.4)

For this to be useful we need to ensure that we can apply this lemma to the random sequences X ™ and
X drawn from the environment Markov chain. Let us investigate this for X (™) (the case for X (™ would
then follow directly).

From Section 3.1, it follows that the sequence S*(™ is a sample of a homogeneous Markov chain with two
types of transitions, a negative and a positive one and, from Section 3.1, we denote their probabilities by
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p(—1]i) == p(—1|s*@) and p(1]i) := p(1]s*?), respectively, 0 < i < 2F" — 1. The transition matrix Q of (3.5)
has the following form,

a(—1]0) 4(1]0) 0 L
0 0 q(—1]1) q(1]1) 0 P,
0 0 0 q(—1|2) q(112) 0 -
0 0 0 0 0 0 g(=112M =1 (12K )
Q=] 125" g(1)25" 1) 0 T 0
0 0 q(—1[28 7 41) q(1]2%" 1 41) 0 e 0
0 0 0 0 q(—1|2*" "1 +2) q(1|2k —1+2) 0 - 0
0 0 0 0 0 w0 (=128 —1)  q(1)2*" —1)

It is clear that for all £* > 2, @ is not a (strictly) positive matrix. Thus we need some additional work to
show that the condition of Lemma 17 holds for our Markov chain under all the cases of Assumption 1 with
p as defined in (3.53).

A non-negative irreducible matrix is regular (or primitive) if it has a single eigenvalue on the unit circle
[10]. As mentioned in Section 3.3, the Markov chain is irreducible with a non-negative transition matrix.
By assumption (3.7), @ has at least one positive entry on the diagonal, then it follows that @ is primitive
([10] Example 8.3.3). From [10] p.693, lim; ., Q' exists and is a matrix all of whose rows are identical to
the stationary probability distribution of the Markov chain. More relevant for us, by the Frobenius’s test
for primitivity ([10], (8.3.16)), it follows that because @ is primitive then there exists a finite integer [o,
such that for I > Iy, Q' > 0, that is, all the elements of Q' are positive ([10], Example 8.3.4 shows that
lp < 22k _ ok™+1 4 2). And Q' is row-stochastic, that is for every row, the sum of the entries is 1 (this can
be shown by induction on 7). We choose [y as in (3.51). That Q% > 0 implies the minimum value jio of Q"
satisfies

o > 0. (A.6)

Recall from (3.8) that 7* := [7‘(‘6, ey ﬂ';k*il} is the stationary probability distribution of the chain. Note
that every row of Q" (which is a 2¥" x 2*" matrix) has an entry whose value is no larger than 1/2F" because
Q" is row-stochastic and hence the sum of the entries in every row is 1. Hence

1
po < ok (A.T)

Define the constant
co = co(k™,Ip) :=1—2F pg
then, by (A.6) and (A.7), it follows that

(A.8)

0<c< 1.
We need to consider the cases of Assumption 1. We start with case (i) where the environment has a @
such that o # 27*" so that co > 0. In this case, by Proposition 10.5(ii) [3], if lo > 2, we have for every 0 < i,
j <28 —1, and every [ > Iy,

1
6l -] < ()l (A.9)
Co
This means that the distance between the i*" row of Q' and the stationary distribution is
PLA] -
W ( Wiy ol < (2 o
[rexe SRR AR (A.10)
i=0 0
where |-||; denotes the l;-norm. Therefore, from (A.1) and (A.10),
2k
(l) * < 1/1y
Hq T TV <2co) “
2\ (1)
=|—- . All
< 260 (CO ) ( )

(A.5)
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Letting
_ ok*—=1 —(lo—1)/Io
a=2" "¢, (A.12)
and
_ 1/l
B=c (A.13)

means that we may use Lemma 17 for $*(") (whose transition matrix is (3.5)) together with any function ¢
that is Lipschitz with constant 1. Substituting (A.8) for ¢y and plugging (A.12) and (A.13) for @ and 8 in
the bound of Lemma 17, then the concentration bound (A.3) becomes

P (SD (S*(n)) —Ep (S*(n)) > nf{) < exp {—;L (’;)2} , (A.14)

and (A.4) becomes
P (E(p (S*(n)) — (S*(n)) > nn) < exp {—Z (2)2} , (A.15)

21@*71
_ _ . (A.16)
L2812k ) 070 (1= (1= 28 ) ")

with

p:

If [p = 1 (and still under case (i) of Assumption 1) then @ > 0 and by Proposition 10.5(i) [3], |q(l)(j|i) - 7r]*’ <
cé. Following the above steps it suffices to choose a@ = 28" =1¢o and B = ¢o to obtain

o 1-2Fy,
1-5 2u0

We now consider case (i) of Assumption 1 where the environment’s @ has pio = 2~*" and therefore (A.16)
cannot be used. The stationary distribution in this case is uniform so Q is doubly stochastic and lim;_,.c Q" =
U is reached exactly at time [y, that is, Q" = U. The matrix Q is as in (A.5) with ¢(1[i) = g(—1[i) = 1, for
all 0 < i <28 — 1. We have lo = k* and the limit matrix U has all entries equal to 9—k (if £* = 1 then
Q =VU). For | > | the left side of (A.9) equals zero because the limit is reached at lp. But for 1 <1 < I the
left side of (A.9) is bounded from above by 2. Thus for all [ > 1, the left side of (A.11) is bounded from
above by 28" ~1(1/2)!. We let o = 2" =2 and 8 = 1/2 to yield p = 2¥ 1.

All the above holds for the sequence S*(™) | with m replacing n.

In summary, we showed that for every case of Assumption 1, the necessary condition of Lemma 17 that
7; < a1 holds and therefore the lemma can be used as a concentration inequality for both sequences X (m)
and X In the following sections, we use this fact in proving Lemma 16 and Theorem 13 which deal with
S*(m) and §*(™) | respectively.

p:

A.2. Proof of Theorem 13. Recall the definition of discrepancy,
Yo (hy7) := L0772 (B) — L) ()

where v := v(a(y)) is the random length of the output sequence and error sequence based on which the
average £ is defined. We need to show that for arbitrary and fixed 0 < § < 1, the probability is no more
than § that for input sequences X (™ and X which are randomly drawn from the environment, there
exists w € (¢/n, 1] and an admissible system (h,v) € A such that the length v of its output sequence satisfies
v > wn and its discrepancy satisfies Yy, ,, (h,y) > €(m, n, 4,7y, w,d), where £ < n is a positive integer fixed in
advance.

The probability of this event is bounded from above by

P ({ (x(m), x(”)) 23R, 3y, 3w, £/ () — LEC) (h) > ¢, v > wn}) (A17)

where v := v(@(7/2) ig the length of the output sequence and for brevity we write 3y, 3h, Jw , instead of
Iy € (0,diam (Sg)], 3h € H, Jw € (¢/n, 1], respectively.
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A.2.1. Bounding (A.17). In addition to a(y) = 42y, b(y) = 84~ (defined in (5.3)) let us define

a(y) =4y, aly) = 8y, a(y) := 10,
and

b(y) := 437, b(y) := 44y, b(v) := 457,
all of which are positive for v > 0 and satisfy

—b(27) < =b(y) < =b(v) +
< =b(y) < =b(y) +v
< =b(y) < =b(y) +v (A.18)
< =b(y) < =b(v) +7 < —b(y/2)
< —a(y)
< —a(y/2) < —a(v/2) +~
< —a(2y) < —aly) < —aly) + 2y (A.19)
< —a(y) < —aly) + 3y
< —a(v/2) < —a(v/2) +v
< —aly) <-a(y) +v
< —a(y/4) < —a(v/8)
< 0. (A.20)

For 6 € Si11 we write § = [s, z] and define the sets Ay, Bpy C Sp41 by

Ay =40 () = a(N}, Busy 1= {0 2fa(s) = b(x)} . (A21)
Define the counterpart of €0/ 2)(h) as follows
w(n.7/2) 1
AN OESS > T{X, fa(Sy,—1) > 0}. (A.22)
L[ fn(Se,-1)|>a(v/2)
Denote by
£ (1) i= P (Xt (S1-1) <3011 (51-0)] = )
and

L () == 1= L) (]).
Define the sets

Ay =10 1a()] 2 a0}, By 1= {05 () 2 b(3) |-

Let us fix , h and w in the expression whose probability is (A.17). We consider the event g/ (h) —

Lg(%)) (h) > €, v > wn, and bound its probability from above by a sum of two terms. The first is a probability
of an event that involves just the sequence X (™ and the second term is a probability that involves just the
sequence X (™) as follows,

P (E(U"”/Q) (h) — LD (B) > €, v > wn)
< P (2,(,””/2)(11) — I (hly) > e, v > wn) +P (EW (hly) — L@ (h) > 62) (A.23)
where

€e=¢€1 + € (A.24)

and the second term in (A.23) does not have the condition that involves v because v does not depend on
X (m),
We have

L&) (bly) = P (B

Ah,'y) (A.25)
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thus the first term in (A.23) equals
P (f/(w (hly) — E(VH’V/Z)(h) > €, V> wn) =P (P (Bh,v

flhﬁ) — ELH’W/Q)(}L) > €1, V> wn) . (A.26)

Denote by
Paay) = O Ao}
— % (A.27)
where the equality follows from (3.34). We have,
P (Bh,v ’Ahw) ~EP ) = Pn(AlM/Q) (P (max‘ih,w) —E P () B, (Ah,"//2))
+ P (Bh,wleh,'y) S : (A.28)

P (/ih;y> pn (Ah77/2)
We have,

’—’) (P (Anjo) = P (Ans)).-
Thus the first term of (A.23) is bounded from above by
P (P (ma flhﬂ) - E,(,"”Y/Q)(h)pn (Apqyy2) > Elpn(Ahn,/g)/z, v > wn)
+ P (Pn(A,WQ) — P(Ans) > €1Py(Apny)/2P (Bh,7 ‘AM) V> wn) . (A.29)
For convenience, we denote by

P, (Bh,os Apyj2) o= El(jnﬁ/z)(h)pn (Any/2)

since E,(,nﬁm)(h) is the empirical probability of the set By, o conditioned on the state being in Ay, - /2.
Therefore (A.17) is bounded from above by

P (30,3730 P (Buos Ausy ) = P (Buos A ) > @1 PalAny2)/2, v > wn)

(A.30)
P (3h, 37, 3w : By (Apqya) — P (Am) > 1P, (Ap /) /2P (B,m ‘Am) v o.m)
A.31)
+ P (3/% Iy L) (hly) — LECD (B > 62) . (A.32)
Denote by
AD = {0 =[s.4]: [£70(9)] 2 ()} (A.33)
and

(M ._ rie)) DAt
Bj’,yr = {0 cxf; (s) > by )} .
We have the following.

Claim 18. For h and h; such that fj, and f; satisfy (3.56) with o =, we have
P (Bh,’W‘ANh,"/) < P (B(’Y) A('Y) ) (A34)

3y g /4
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Proof. Consider 0 = [s,x] € By, () An., then xfy(s) > b(y) and |f,(s)| > a(y). If 2 = —1 then
fu(s) < =b(v)

and we have,

IA

fn(s) +7
v) +
)

where the last inequality follows from (A.20). Therefore xf;ﬂ(s) > b() and hence 6 € BJ(L) If z =1 then
fn(s) > b(7y) and we have,

£7(s)

IN

_5(
,g(

IA

therefore xf]h)(s) > 5(7) and hence 6 € BJ%)

We conclude that By, , C BJ(ZY) Next, consider 6 = [s,2] € Ay . If fu(s) < —a(y), then from (A.20) we
have

F(s) < fals) +
< —a(y) +~
< —a(y/4). (A.35)
If frn(s) > a(y) then
F7(5) = fuls) =
> a(y) =~
> a(v/4)
Therefore, we conclude that flm - AE.BM. And with the above, Bh,v ﬂfihﬁ - B]('ZY) N A;tyq)/zx from which
(A.34) follows. a
Next, we have the following:
Claim 19. For h and h; such that fj, and fjm satisfy (3.56) with a = 7, we have
Po (B AT L) < Pu (Buoy Ans) (A.36)

Proof. Consider any 6 = [s,z] € A

i 7/4(]3](.:3. If £ = —1 then fp)(s) < —b(7). From (3.56) we have

fn(s) < fOs) 4
< —b(y) +
2 _aw)
(Z) 0

where (i) and (ii) follow from (A.20). Hence for this 6, fx(s) < —a(y) and zfx(s) > 0 (since z = —1) and
therefore 6 € Ay, () Bho. If x =1 then f]ﬁ)(s) > b(y) and we have

Fls) = £ (s) —~

> b(y) =7
> a(y)
>0
so we conclude that
AT B € Ana () Bro- (A.37)

Hence (A.36) follows. O
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We have the following claim.
Claim 20. For h and h; such that fj, and f]h) satisfy (3.56) with oo = ~,
Po(AS3.) > Po(Apy0)-
Proof. Consider 6 € Ay, /5. If fr(s) < —a(vy/2) then we have

£7(s) fn(s) +7

—a(v/2) +7

—a(27)

where the last inequality follows from (A.20). It follows that 6 € A§‘72)'v‘
17(8) 2 fuls) =

>a(y/2) =
> a(2y)

IN N IA

so e AY)

;- This proves (A.38).

Claim 21. For h and h; such that f;, and fjm satisfy (3.56) with o =,
it )
P(Ay) 2P (A0),).

Proof. Consider any 6 = [s,z] € AE.’Y) If fp)(s) < —a(y/2) then

/2

fn(s) < f(s) 4y
< —a(v/2)+v
< —a)

which follows from (A.20) and hence 6 € A, . If fﬁ)(s) > a(7y/2) then

fuls) = £7(s) =
> a(y/2) —~v
> a(v)

so 0 € Ay,,. Therefore Agjg/z C Ay, and (A.39) is proved.
A.2.2. Bounding (A.30). Denote by
Ai= 2= Py(Apypo).
The probability in (A.30) is expressed as follows,
P (Elh, 3y,3w: P (Bhﬂ, AM) — Py (Bhos Anya) > a1M/2, A > w)
which is bounded from above by
P (3h7 3y, 3w: P (maﬁhﬁ) — By (Buo, Apya) > elw/2) .
Let

K ('Va w, 77) = Qr(k" k*)p(L*7 [0) g In (AA)

w n n
where p and r are defined in (3.53) and (3.13), and denote by

Henceforth, for conciseness, we write Jw for Jw € (wp, 1]. Define

22

(A.38)

If frn(s) > a(vy/2) then we have

(A.39)

(A.40)

(A.41)

J(v1,72,m) = {gj(n) : dh 3w, P (Bh,’ygvAh,’m) > Pn (B0, Ay ) +
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For 71 <7 < 79, we claim P (Bh,vz,fihﬁz) <P (ma;lhﬂ): first, ma C Bhﬂ as b(72) > b(y) since b
is non-decreasing with ~. Secondly, Ahm C flhﬁ because a(v2) > a(y) as a is non-decreasing with . Hence,
Bh v, N Ak, € Bhy[)An from which the claim follows. Next we claim P, (Bh 0, Ak v, ) = Pn (Br,o, Any)

as we next show: we have a(y) > a(v1) therefore |f;(s)] > a(y) implies that |f;(s)] > a(y1) hence Aj  C
Ap,~,- So we have By o) An,y € Bro[)Ah,y and the claim follows. Also,

w (w—wo)n w (w—wo)n
Z = V)« Z = .
K’(’Yva 9 )_5(71727 2 (A43)
because N, is non-decreasing with decreasing «. It follows that
J (y1,72,m) € J (v, 7,m)- (A.44)
Let
- ~ - wak (v, w1,
My (w1, w2,m) = {x(") P (maAh,v> > Py (Bno, Any) + w} (A.45)
then for w; < w < wy we have
Mh,’Y (whw?a 77) g Mh,’y (w7wa 77) (A46)
and for nq < m,
Mh,w(W,wﬂ?a) - Mhﬁ/(wvwvnb) (A47)
which follows from the fact that x (v,w1,n) > & (y,w,n) and we > w.
We have,
P(J(v,7,n) =P [ 2™ :3n,2Me |J M, <§w %) . (A.48)
wo<w<1

Define the set A; C [0, 1] as follows,

wo + (1 — wo) (;)Hl o+ (1 — wo) @ﬂ . (A.49)

We have [wo, 1] C [J;2, A;. The right side of (A.48) is no larger than

P <3h7 XM ¢ G U M, (%w (w_;")")) : (A.50)

=0 wel;

A=

Now, for any h € H there exists a j € {1,...,N,} such that (3.56) is satisfied with @ = 5. Define

M; ~ (w1,we,m) = {w(") : P (B;TQ)AE,WW)M) > P, (BJ(:Y"/)A;7“3/4) + M} . (A.51)
For the same reason that (A.46) and (A.47) hold, we have for w1 <w < wa, 1, < My,
Mjﬂ’ (w17w27 77) g Mﬁ"{ (‘U:Wﬂ?) (A52)

and
M (wyw,nq) © Mj .y (w,w,m) .

Then from Claim 18 and Claim 19 it follows that if there exists an h such that X (™ e M, ~ (w1, ws2,n) then
there exists a j € {1,...,N,} such that X € M;, (wy,ws,n). Hence if there exists w € [wp, 1] such that
there is an h with X" € M;, ., (%,w,n) then there exists a j € {1,...,N,} such that X("™) € M , (%,w,n).

Therefore from (A.50) we have,

P e (31<g <, x0 e () U i (e 25200))

1=0 welh;
Ny oo 1\ 1 1\ 1 7 1\
< ;;P (Mm (wo + (1 — wp) (5) ,wo + (1 — wo) (§> 5 (1 —wo) <§> >) (A.53)
where the inequality follows from (A.52) as for every w € A; we have w/2 < wp + (1 — wo) (%)H—l <w

Let
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9 200) ==1{|17 ()] 2 a(1/9), 257 (5) 2 ()} (A.54)

and

G(v) @(n) Zg(v)
Then
GOy = S| (©0%)| > ata/a). ©0, £ (©014) )
t=1

= nP (A7) . BY) (A.55)

and

B [a) (ew)} — E[of (40, 80)]
Zﬂ{etl e A§V3/4ﬂ3§7j}
- (A§”3/4B§?) (4.56)
and therefore,

PO ) = P(E[G] (57)] > Gi(stm) 4 ), (A.57)

We now show that the functions Gg'y,z are Lipschitz. For two state sequences s*(™ and u*(™ e Sj. we use
the Hamming metric (A.2). Consider s*(™) = (s%,...,s%) and w*™) = (uf,...,u}) € S{. such that

1 Sn
du(s*™ ™) < A
and define
0 = (Si_r(kkr)t1s- -+ St=155¢)
and
Ve = (U p(oger)s1r e Up—1:Ug)-

Define the following subsets of {1,...,n},

I

{1: 1< 0, >h)| < atr/9),
{1:]17< 0, >h)| < ar/9),
Iy = {z:‘fﬁ>(< 0, >k)‘ a(v/4),
{

1< 0, >8] = /),

I (< >h)| < al/)
(< gy >8] > alv/4)
“’<< Y >¥)

(<, >h)| = atv/4)

IQ =

I4 =

(A.58)
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Fix any v € (0,diam(S)], 7 € {1,...,N,} we have

G ™) = GV ™)| < Z |92(60) — 92 (w)|
= IZ; ‘g(”) 0:) — 9\ (W) Z ‘g (0n) — 957 ()| + Z ‘gm 01,) g”(wtl)‘
el
+ZXI: ‘gﬂ) 01,) g](”y)(wtl)‘
€ly
= 1213 ‘O—H{< Vi, >0 fjm(< Wy, >8> b(y H ; ‘H{< 0, >0 f“)(< 0, >F) > B(v)} —0‘
ely clz
+ZZI ‘H{< 0, >0 [ (< 0y >E) > 6(7)} —H{< Yo >0 [ (< by, >8) > Z)(’y)}’ (A.59)
€ly
< Y {0 A+ D T{0n A Ut + > T{0, # tu}
lely lels lely
< iﬂ{et # i}
rym
< r(k,k*)i]l{sj £ 47} (A.60)
= T'(kvk*);zl(S*(”),q*(”))
< r(kEN)A (A.61)

where (A.60) holds since for every t such that s; # uf (where recall, sf, uj € Sg+) there are at most r(k, k*)
time instants 7 such that 6, contains state s}, 1, contains state u; and 6, # 1,. For instance, let n = 9,
k=3, k* = 2 and let the binary sequences that correspond to s*(™ and u*(") be

¢z = -111 -1 1 -1 -1 1 1 -1 -1 -1

g = -111 1 -1 -1 -1 -1 1 -1 -1 -1,
then r(k,k*) = 3 and 0, ¢ € S3. We have >_;" | I{s} # u;} = 5. Looking at subsequences of length k+1 = 4
(because 6 and v are k + 1 bit long) and comparing them across 2™ and 7 over 1 < t < n we obtain
S I{6; # v} = 8 and indeed 8 < r(3,2) - 5 = 15. From (A.61) it follows that G(W) is Lipschitz with
constant r(k, k*). So G(V /7 is Lipschitz with constant 1 and, from Section A.1, we may use (A.15) for S* )
and G(V)/r We have

*(n *(n WK 7w7
P (M, (@,w,n) < ]P’<]E (657 )] > 60 (57) +n#>
) *(n) «(n
e [&ns ) G%) (5°™) |, whlw.m)
r T 2r
n WK 2

Plugging the choice of x (A.41) in the right side of (A.62) gives

(M. (w0.1)) < 5 (A.63)
From (A.53) and (A.63), it follows that
Ny n [e’s) 1 l
PO G < X gt -a Y (5) =t - o) (A.61)
j=1 v 1=0
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Now, substitute for €1 in (A.30) the following,

v w (w—wo)yn
—g( L 2 VT A.
€1 K(2,2, B ) ( 65)

Define the set I'; C (0, diam (S)] as follows,

(%) ™ diam (k) (%) diam (Sk)} (A.66)

and the set |J;2, I'; contains the possible range (0, diam (Sy)] for 1.
From (A.30), (A.40), (A.42) and (A.G5), the probability in (A.30) is bounded from above by

P U J(%,%vn) =P G U J(%»%’W)

~v€(0,diam(S)] 1=0~el,

< iﬁ” UJ(%,%WI)

=0 ~yel'y

< gp (J ((;)m diam (Sy), <;>m diam (Sk) , 7 <;>l diam (Sk)>> (A.67)

where (A.67) follows from (A.44) and the fact that for all v € I'; we have v/2 < (3)"*!diam (S;) < v and
v < (3)'diam (Sy).

From (A.64), the I*" term in (A.67) is bounded by 1(1—w)(1/2)'diam (Sy,) and so (A.30) is bounded from
above by

I =

o0

l
(1 — wo)ndiam (S5) S (%) < 2(1 — wo)ndiam (Sy) . (A.68)

1=0
A.2.3. Bounding (A.31). We obtain a bound from above on the following probability,
P (Hh, 3y, 3w : Py (Apsye) — P (AM) > €1 By( A 2) /2P (B,m ‘Ah,ﬁ) v wn) .
From (A.27), this is bounded from above by
P (30,3730 Py (Anyys) = P (Ans) > ew/2P (B ’AM))

which in turn is bounded from above by

P (37, 3h, 3w : Py(Apy2) — P(Ans) > elw/2> . (A.69)
Define the set,

M}, (wr,ws, 1) = {Iw P () > P (Any) + (A.70)

wak (7/2,w1,m) }
2

and let

_Jom . p (4 ™ wak (7/2,w1,m)
M} (w1,w2,7) = {x( Vi Py (A7) > P (Al),) + B

From (A.20), Claim 20 and Claim 21, it follows that if there exists a v and h such that X (™ ¢ My, (w1, w2,1n)
then there exists a j such that Xm e M]’-ﬁ(whwg, 7).
With the choice of ¢; as in (A.65), then (A.69) becomes

P (3% 3h, Fw: Bu(Apnje) > P(Any) + elw/2)

= P (37, 3h, Jw: XM ¢ M, . (w/2,w, (W — wo)’yn/2))

IN

P (Elfy, J<G<N,, Fw: XM ¢ M (w/2,w, (w— wo)’yn/2)> . (A.71)
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The probability in (A.71) is expressed as,

P U {x(”) P <G <N, Fw, 2™ € M (w/2,w, (w fwo)wn/Q)}
~v€(0,diam(Sy)]

P U U {x(”) P <G <N, Tw, 2™ € M (w/2,w, (w —wo)’yn/Q)}

1=0~el;
o0
< ZIP’ U {x(") SN, Fw, 2 e M; . (w/2,w, (w —wo)’yn/Q)} . (A.72)
=0 vyely
Denote by
o0 := (1/2")diam(Sy). (A.73)
For every v € I';, we have v < g; < 2v hence for any
0 =ls,z] € A%)w (A.74)
we have
6| = a2y)
> a(a)

because @ is non-decreasing.
Fix any h and let fi(m) be an element in the g;-cover C,, of F that is closest to f3, in the loo-norm (3.54)

and let f;w be the closest to f in the y-cover C,. Denote by
AD), = {9 =[s,z] :

Y
204

F7(s)

if £{7(s) < ~a(2y) then

> d('y')} . (A.75)

Then, for any v € I'; and any 0 = [s, 7] € AS'TQW

F9%) < fuls) +a

< )+ o+

W

< —a2y)+ oty

Gy

< —ala)+a+y

(i)

< —alon) + 20

@

< —a(or) (A.76)

where (i) follows from the definition of the set A;Bw (ii) is from the fact that a is a non-decreasing function

and ¢; < 2y for all v € I, (iii) follows from v < g for v € Iy, and (iv) follows from (A.20) where
—a(y) + 2y < —a(y) holds in particular for v = g;. If fp)(s) > a(2v) then
f6) 2 fuls) — a1
> f]@)(s) et

>a(2y) —o—~

>ala) —o—7

> ala) — 20

> (o). (A.77)

Hence from (A.75), (A.76), and (A.77) it follows that 6 € Agggll) Therefore for all v € I';, we have

A c Al (A.78)

Y 1,01 "
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Now consider any 0 € A'Eijl)' If fi(g’)(s) < —a(g;) then for every v € I'; we have

[76) < )+
< fU) v+ (A.79)
(4)
< —ale)+vta
@)
< —ay)+rta
(4dd)
<
(iv)
< i) (A.50)
where (i) follows from (A.75), (ii) and (iii) are from the fact that for all v € T, v < g, and ¢ < 2,
respectively, and (iv) follows from (A.20). If fl.(m)(s) > a(g;) then for every v € I'; we have

1) = fuls) —
> fs) =7 - o (A.81)
> ala) —v—w
> aly)—v—a
> a(y) =3y
> a(y/2). (A.82)
From (A.80) and (A.82) it follows that
(e1) Q)
AL A (A.83)
Define by
' n (e0) @)\ , wer (o1, w1,m)
M;y (wy, w2, m) = { ) (A e ) >P (Af;,) : } (A.84)

Then it follows from (A.78), (A.83) and from the fact that

K’(’Y/27w1’n) > K/(’Yvwlvn) > K/(Qhwlan)

that for any 0 <[ < oo and any v € I';, for all h € H there exists ¢ € {1,..., N, } and j € {1,...,N,} (both
depending on h) such that the following holds,

M]/'w(wh w2, 77) - Mi,l(wlvw% 77)

Therefore, the I*" term in the sum (A.72) is bounded from above as follows,

P U {x(”) P31 < <Ny, Jw, 2™ e M) (w/2,w, (w fwo)'yn/Q)}
vyely

< P ({x(”) 231 <P <N, Jw, 2" e Mi,l (w/2,w, (w— wo)gm/Q)}) (A.85)

where we also used the fact that for v € T';, v < g;.
Now, for w; < w < ws we have
Miﬁl(wl,wz,n) - Miyl(w,w,n) (A.86)
which follows from the fact that & (g1, w1,1) > & (g1, w,n) and wy > w. Let us fix 7. Using the sets (A.49) we
have

P U My (w/2,w, (w— wo)oimn/2)

w€[wo,1]

U U My (w/2,w, (w —wo)ain/2)

=0welAy

ZIP’( ”(wo—l—(l—wo) (;)llﬂwo-i—(l—wo) (;)ll+l,772m(1—wo) @)l)) (A.87)

IN
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)l/+1 < w

where the inequality follows from (A.86) as for every w € Ay we have w/2 < wy + (1 — wo) (
Define

1
2

0a(0) = 1{[ ()| = alen) | (A.88)
and
Qi (0™) : Zqzl
Then,
B (455]) = s (o)
and

1Efeu(e™)] = 13 Elwen
= P(A®%).

As in (A.57), we obtain

P (Mz (w,w,m)) =P (Qi,z(S*(m) >E Qi (57™)] + w) : (A.89)
2
Replace a(v/4), f ) in the sets (A.58) by a(or), fi(gl) then using the analysis (A.59)-(A.61), it follows that

the functions Q; are LlprhltZ with constant r(k, k*) (the bound there is actually looser in this case because
the sum over the region I vanishes). Then from the argument that leads to (A.63) it follows that (A.89) is
bounded from above by n/N,,.

Therefore (A.87) is bounded from above by

T )Y (1>l’ _ (1 —wo)ar
2N, ’ 2 No

Hence, (A.85) is bounded from above as follows,

N,
ZIP’ (Hw, X ¢ Mi,l (w/2,w, (w— wo)gm/Q))

i=1

B g (o ()0 () 0w (2))

- Efnﬂfwwm
R Ne,
= 7l —wo)ar
Substituting for g; according to (A.73) then it follows that (A.72) and, therefore, the left side of (A.71)
and (A.31) are bounded from above by

1
n(1 — wp)diam(Sy) Z o= n(1 — wp)diam(Sy).
1=0

Thus, with the conclusion of Section A.2.2, namely (A.68), we conclude that the sum of (A.30) and (A.31)
is bounded from above by

4n(1 — wp)diam (Sg) . (A.90)
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A.2.4. Bounding (A.32). We wish to bound from above (A.32), that is,
P (ah, Fy: L) (hly) — LECD) (R) > 62> . (A.91)

This is done following the same steps taken in the previous section. The condition in (A.91) equals

(1 _i” (hw)> - (1 —Zi’;@””(h)) > e

which equals

—(b(2 =)
IOy~ L (hly) > eo.

m

From (A.25), the right side is expressed as
—(b(2 ~ ~
P (Lfn( Dy - p (B,w (AM) > 62) . (A.92)
We have,

— i Z I{X:fn (Se—1) > b(7)}

Vo
L] fn(Se, 1) =0

where g is defined as the number of times that the sequence S(™) enters a state s such that |f,(s)| > 0,
which obviously is always true, therefore

vg=m (A.93)
(we choose this alternate representation in order to follow the same notation and steps as in the previous
section for ease of understanding). Define

Apo =10 [fn(St,-1)] > 0}.
Denote by

. 1 &
P, (Ah,,O) = a ZH{@f S Ah.,()}
t=1

IZ40)
= = =1. A.94

Thus the expression inside the probability in (A.92) equals

L0 ()~ P (Bas | Ansy) = m (280 P (A1) ~ P (Bu Ans))
P (ma;lh’”) P, (lh,o) P (;hﬁ) ' (49
For the second term of (A.95) we have,
- ~ 1 1
P (Bh W,Ah,ﬂ P (Ano) P (;1,, 8

:P(Bh’y Ah’y)P(Ah”‘/) m(AhO)P(Ah’Y)

Thus (A.92) is bounded from above by
—(b(2 N ~ ~ ~
P (Lgn( W))(}L)Pm (Ahp) - P (B;Lﬁ, Ah’7> > Eng(Ah,())/2>

+ P (P(Ays) = PulAno) > &P (41,0)/2P (B |Any ). (A.96)
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We have,
—(b(2v s - p Apo
[in( ))(h)Pm (Ahp) = I'm (Bh,Q'Ya h, )

thus (A.91) is bounded from above by

P (ah, Iy : Py (B, Ano) — P (BM,AM) > €28 (Ano) /2)

(A.97)
+ P (Hh, 3’}/ - P (Ah’—y) — Pm (Ah,O) > GQPm(Ah’o)/QP (Bhﬁ ’Ahﬁ)) .
(A.98)
Denote by
B = {0:0f7(s) 2 b}
We have the following.
Claim 22. For h and h; such that fj, and f; satisfy (3.56) with o =, we have
Pm (Ah,Oa Bh,2’y) S pm (A§77)7 BJ(:’/Y)) . (A99)
Proof. Consider 6 = [s,z] € Ap o) Bh2y. If = —1, then fi(s) < —b(2v) so
17(8) < fuls) +
< —b(2y) + v
< —b(y)
where the last inequality follows from (A.20). If x = 1 then f1(s) > b(27) so
FO8) = fuls) —
> b(2y) =~
> b(v).
Therefore 0 € B;:g And b(v) > a(y) so 8 € Agﬁg and therefore 6 € Agvv) ﬂB](VV) Hence Ap () Bra2y C
SOy =142,
Am N Bj,w ) U
We have the following.
Claim 23. For h and h; such that fj, and f; satisfy (3.56) with o =+, we have
™ B A B
P (A0 B < P (Ansy Bus ) - (A.100)

e

=
v

&

(\YARAVARLY
gA
\
2

tPerefor? A%) C Ay, From (A.20), we have b(y) > b(y) therefore B](Z/) C By.,. Hence, AEQ ﬂB](ZY) C
Ap~ N Bhy- O
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A.2.5. Bounding (A.97). From (A.93) and (A.94) it follows that P,,(Ax0) = 1 therefore (A.97) is expressed
as follows,

P (Hh, 3y By (Broys Ano) — P (ma AM) > 62/2) . (A.101)
Let
K (v,m) = 2r(k, k") p(k", o) %m (%) (A.102)

where p and r are defined in (3.53) and (3.13). Define
~ ~ ~ K R
T(v,72m) = {x<m> :3h, Py (Bnss Ano) > P (B Any ) + (72”7)} (A.103)

For 71 < 7 < 72, we claim P, (Bh,yss Anyp) < P, (Bh,~v, An,0). We have By, ., C By, 4 as b(y2) > b(v) since
b is non-decreasing with . Hence, B}, , [ An,0 C Bh,y () An,o from which the claim follows. Next we claim

that P (ma,flhm) > P (Ehmﬁhw) as we next show: we have a(y) > a(y1) therefore |fr(s)] > a(y)
implies that |f,(s)| > a(y1) hence Ay, C Ap,.,. Also, b(y) > b(71) so | fu(s)] > b(y) implies that | f,(s)] >
b(y1) hence By C Bj 4. So we have By () An,y € Br,y, [ An,4 and the claim follows. Also,

K (7,m) < & (y1,m) (A.104)
because N, is non-decreasing with decreasing a. It follows that

Define (
. _ _ K (7,
Mh~(n) == {$<m) : P (Bh,2y, Ano) > P (maAh.,w) + VTW)}
and

o p M HW @ [\, &6
Mj,(n) = {x( )-Pm(Aj7w’Bj,7w)>P(Aj7ij7w)+T}-

From Claim 22 and Claim 23 it follows that if there exists an h and « such that X (m) g My, ., then there
exists a j € {1,..., N} such that X(™ ¢ M; . Therefore we have,

N
P(J (v,7,m) <P (31 <G<Ny, XU e Mj (n)) <D P(M),(n)- (A.106)
j=1
Let
g 2(0) == 1{|17 )] 2 a(3), 2£(s) = b) } (A-107)
and N
GO = 3400,
t=1
Then
a©em) = SI{[r7 (e0})| = at, ©, £ (00}) = b }
t=1
— mP, (AS,’”W),BJ(.%)) (A.108)
and
™ (om)] — 5 (400 B
£[e2 (0)] = &t (432, 659)]
= mP (A§77),B§j’7)) (A.109)

and hence we express the probability of the event M ]’-77 as follows,

P (M, (n) = P (Gf}(s*(m)) >E [G%) (S*(m)} + W) . (A.110)
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We now show that the functions G ) are Lipschitz. For two state sequences s*(™) and u*(™) e Si. we use

the Hamming metric (A.2). Consider s*(m) = (s%,...,s5) and w ™) = (u,...,u%,) € S{. such that

rm

dH(S*(m),u*(m)) < A

and define
0r = (sr—r(k,k*)-',-l?'“as:—laS:)
and
Ve = (U (k)1 Yio1s U )-
Define the following subsets of {1,...,m},
L= {7 <0 5] <al), [£7 (< v >D| <)}
L= {1 [f70(< 00 >h)| <), |17 (< v > > )}
Iy = {1 [57(< 00 >D)| 2 aty), |17 (< v >h)] < i)}
L= {7 (< 0 D] 2 a0, |£7(< v >h)| = a0) -
Fix any v € (0,diam(S)], j € {1,..., N} we have
= ‘QJ(VW) 0r,) 9;77) 1/&, ‘gﬂ) Or,) 9](77) () ‘+ > ‘gﬂ) Or,) gj(wa,)(wtz)‘
len l€ls
+> ’9(7) Or,) gﬂ(%)‘
lely

(A.111)

= S |o-1{<vu >0 £ (< v > b} + 30 I{< 00 >0 F7(< 8, >4) 2 b))~ 0|

lels lels
+Z ‘H{< etz >0 f](’Y)(< atl >If) 2 b(f)/)} 7H{< wtz >0 f](’Y)(< wtz >If) 2 b(fy)}’
lely
< D {0y A+ T{0, E b+ Y T{0, £ vy}
lely lels lely
< D O T{0 # )
t=1
< r(k k)Y I{s; # 4}
t=1
_ T(k‘, k*)dH(S*(m), q*(m))
<k kDA

(A.112)

(A.113)

(A.114)

From (A.114) it follows that Gﬂz is Lipschitz with constant r(k, k*). So Gg?,; /7 is Lipschitz with constant 1

and, from Section A.1, we may use (A.14) for S*(™) and G;Zg/r We have

P (M, (n))

IN

p (6570 > & a2 (s00)] + ™0

_ (G§77)(5*(m)) - 261 (5] +Wé(w7)>

r r 2r

o5 () )

Plugging the choice of x (A.102) in the right side of (A.115) gives

IN

(A.115)
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P (M; ., (w,w,n)) < /\i/ (A.116)
Y
From (A.106) and (A.115), it follows that
Ny n
P (10m) D57 =1 (A.117)
g=1"""7

Now, substitute for €5 in (A.101) the following,

€2 =k (7,7m)- (A.118)
Then it follows that (A.101) equals
P U J0:2vm ). (A.119)
v€(0,diam(Sy)]

Define the set I'; C (0, diam (S)] as follows,

T, = {(;)ZH diam (Sy), (;)ldiam (sk)} (A.120)

and the set | J;2, I'; contains the possible range (0, diam (Sy)] for . Therefore (A.119) is bounded from above
as follows,

P U J@.2vm|=p(U U I6.2v.m)
~v€(0,diam(Sy)] 1=0~€l

Y Pl U T(n2vm)
=0

vel

ip (J ((;)ldiam (S), (;)l diam (k) , 7 (;)ldiam (Sk)>> (A121)

where (A.121) follows from (A.105) and the fact that for all v € T} we have v < (3)'diam (S;) < 2v and
v < (%)ldiam (Sk)-

From (A.117), the I** term in (A.121) is bounded by n(1/2)!diam (Sy) and so (A.101) is bounded from
above by

IA

IN

o l
. 1 .
ndiam (Sg) IZ; (§> < 2ndiam (Sg) . (A.122)
A.2.6. Bounding (A.98). The following probability
P (30,39, P (Ans) = P (Ano) > 2Pn(An0)/2P (B |Ans ) ) (A.123)

is bounded from above by
P (30,37, P (Any) = Pu (Ano) > 2P (A10)/2) - (A.124)
Recall from (A.94) that Py, (As0) = 1, hence (A.124) is bounded from above by
P (Hh, 3, P (A,W) >14 62/2) .

This latter probability equals zero because the inequality P (flhﬂ> > 1+ €2/2 does not hold for any h and
~. Therefore, (A.123) and hence (A.98) vanish.
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A.2.7. Finalizing. The conclusion of Section A.2.6, together with the fact that (A.101) is bounded from

above by (A.122), and with the choice for €5 in (A.118) and k as defined in (A.102), it follows that (A.91)

is bounded from above by 2ndiam (Si). And together with the bound of (A.90) on the sum of (A.30) and
(A.31), it follows that (A.17) is bounded from above by

4n(1 — wp)diam (Sg) + 2ndiam (S) = 21 (2 (1 — wp) + 1) diam (Sk) . (A.125)

From (3.58) it follows that

. Ny
Ny < <2 {%%(S’ﬂ + 1) " (A.126)

Let us substitute the right side of (A.126) for AV, /5 in the expression (A.41) for £ (v/2,w/2, (w — wo)yn/2)
used in (A.65). We obtain

w n w — wo)Yn

Substitute v for « in (3.58) and place the right side in the expression (A.102) for  (v,vn) used in (A.118).
We obtain

ea = 2r(k, k™) p(k*, o) 2 In <&)
m m

2 3diam (Sk)" > < 1 >>
< 2 (ke k) p(k* 1)1 | = (N jin (2 [222R g ) L (=) ). A.128
(k, )0 0)\/m( ot (2] 20 y (A128)
Substitute the sum (A.24) for € in (A.17). With (A.127), (A.128), it follows that if we let
4 * * ;
e r(k, k" )p(k*,lo) [2 <N’Y/6 In (2 [6dlam (Sk)-‘ N 1) thn ( 2 ))
w n gl (w —wo)yn

+2r(k, k*)p(k*, [0)\/1721 <Ny/3 In (2 {ww + 1) +1n (%)) (A.129)

then (A.17) is bounded from above by (A.125) which is expressed as 27 (3 — 2wp) diam (Sg). Setting this
bound to 4, solving for 7, substituting for 7 in (A.129) and using (3.16) yields the statement of the theorem.

A.3. Proof of Theorem 16. We need to show that

P (Hh € M, 30 <y < diam(Sg), Jw € (¢/m, 1], L(h|y) > £ /®) (h) + £(m,,w,8), @ > wm) (A.130)

v(a)

is no larger than § where £ is defined in (6.3).
Define

and

all of which are positive for v > 0 and satisfy
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=b(y) < =b(v) +v
< =b(y) < —b(y) +
< —a(2y)
< —a(y) < —a(y) +v
< —a(2y)
< —a(y) < -al(y) +2v
< —aly) < —aly) + 3y
< —a(y/2) < —a(y/2) +v
< —a(v/6)
< 0. (A.131)

Let us fix 7, h and w in the expression whose probability is (A.130). We consider the event L(h|fy) —

£m/® (h) > €, v > wm, and bound its probability
P (L(h”y) — £imn/6) (h) >e€,v> wm) . (A.132)

v(a)

For 0 € Sy41 we write 8 = [s, z] and define the sets Ay, o, B,y € Sp41 by

Ap~y={0: |fn(s)] > a(v)}, Br:={0: zfn(s) > b(y)}. (A.133)
Define the counterpart of (6.1) as follows,

—(m, 1
T S Xy fu(Su-1) = b(y)} (A.134)
1] fr(Se; 1) > a(v/6)
From (3.31), (3.32) we have,
L) = B (X (51-1) < 0] (S2)| 2 ).
Denote by
T(h]y) =P (thh (Sia) > o]\fh (Si)| am) .
Therefore, since b(0) = 0 then with (A.133) we have
Z(h}’y) =P (Bh,O ‘Ah,'y) .

We have,
L(h|y) = £7/9 (h) =1 = T(hly) - 1+ 2" (8)
—(m,v/6) -
=L, (h) = L(h|7)
_ 7(m./6)
- Eu (h) -P (Bh,O ‘Ah,'y) .
Denote by
. 1
Pm(Ah;y/G) = %Zﬂ{et S Ah,'y/(i}
t=1
v
- o Al
m (A.135)
We have,
/o) 1 F(ma/6) | 2
[:V (h) B P(Bh’o ‘Ah" ) = EV (h)P’” Ah, 6) — }D(Bh,07Ah7 )
v Pm (Ah,w/(i) ( ( v/ ) v >

1 1
+ P(Bno. Ans) | = - . A.136
( o ’Y) <Pm (Ah,'y/(i) P (Ahﬁ)) ( )
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We have,

1 1
P (Bpo, A = -
( h,0 h,w) <Pm (Ah,w/fi) P (Ah,'v)>

P(Any) = P (Apqe) )

=P (Bh,O |Ah,'y ) P (Ahv’y) (

P (Bn,o|An~) 5
= DWOn01%na) (g, ) — By (An,
P (An/6) ( " (A

Thus (A.132) is bounded from above by
—(m,v/6 N ~
P (.cim R Pry (Ansje) — P (Bro, Anny) > €Po(Annys6)/2, v > wm)
+ P (P(A,W) — Po(Anny6) > €Pon(Apry6)/2P (Bro Ay ), v > wm) . (A.137)
For convenience, we denote by
~ —(m,v/6 ~
Pm (Bh,'y7 Ah,’y/b‘) = ‘C(u i )(h’)Pm (Ahy’Y/ﬁ)

since Z,(,m’wﬁ)(h) is the empirical probability of the set By, , conditioned on the state being in Ay, - /6.
Therefore (A.130) is bounded from above by

P (ah, 37,3w : Py (B Anass) — P (Bro, Anry) > €A ne)/2, v > wm) (A.138)
+ P <3h,, Iy, 3w : P (Any) = P (Ansse) > € Anny6)/2P (Buo |Any ), v > wm) . (A.139)
Denote by
AD = {0 = [s.a): ’fﬁ)(S)‘ >a(+)}, (A.140)
and

B, = {05 af(s) 2 b}
We have the following:
Claim 24. For h and h; such that fj, and f; satisfy (3.56) with o =+, we have
Bo (Bhs Annse) < P (B](VW) A}Q) . (A.141)
Proof. Consider 0 = [s,z] € Bp, () Ap /6, then 2fy(s) > b(y) and |fn(s)| > a(y/6). If z = —1 then
fu(s) < =b()

and we have,

F7(s)

which follow from (A.131). If 2 = 1 then fi,(s) > b() and we have,
17(8) 2 fu(s) =

therefore acfjﬁ)(s) > b(y) and ‘f;w’ > a(vy). Therefore ;rf]w(s) > b(y) and ’f;“’)‘ > a(y). Hence 0 €
B 1 AL) . Therefore, By () Anyys € BLY N AL from which (A.141) follows. O

Next, we have the following:
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Claim 25. For h and h; such that f; and f]h) satisfy (3.56) with o = v, we have
P (B(W A%)) < P(Bho, Anzy) . (A.142)

277

Proof. Consider any 8 = [s,x] € Agw,z ﬂBj(ﬂ;) If x = —1 then fjm(s) < —b(v). From (3.56) we have

fu(s) < f7s) +
< b))+
< —a(2y)
? 0

where (i) and (ii) follow from (A.131). Hence for this 0, f,(s) < —a(27v) and zfj,(s) > 0 (since x = —1) and
therefore 6 € Ap, 24 () Br,o- If 2 =1 then fp)(s) > b(y) and we have

Fuls) > £7(s) =~

> b(y) -7
> a(2y)
>0
therefore § € Ap, 24 N By 0. Hence
A \BY) € Apay () Bro- (A.143)
Hence (A.142) follows. O

We have the following claim.
Claim 26. For h and h; such that fj, and f]h) satisfy (3.56) with oo = ~,
PAY)

al

) > P(Ans). (A144)
Proof. Consider 6 € Ap, . If fr(s) < —a(y) then we have
L7 < Ils)
—a(y) +7
—a(2y)
where the last inequality follows from (A.131). It follows that 6 € A%)A/
1) 2 fuls) =

>a(y) =~
> a(2y)

INIACIA

If fr(s) > a(y) then we have

™)
sofe Ay

Claim 27. For h and h; such that f;, and fjm satisfy (3.56) with o =,

This proves (A.144). d

P, (A}L,'V/G) > P, (A;YW)/?

) . (A.145)

Proof. Consider any 6 = [s, ] € A;WJ/Q. If f]@)(s) < —a(vy/2) then

I < 7+
< —a(v/2) +v
< —a(v/6)
which follows from (A.131) and hence § € Ay, /6. If f;y)(s) > a(v/2) then
fas) = £7(s) =
> a(y/2) =
> a(v/6)
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s0 0 € Ay /6. Therefore A;7“3/2 C Ap 6 and (A.145) is proved.

A.3.1. Bounding (A.138). Denote by
v ~
A= E = Pm(Ah;y/G)~

The probability in (A.138) is expressed as follows,
P (30,37,30 5 P (Bus Anrys) = P (Bho, Ans) > A/2, A > w)
which is bounded from above by
P (ah, 3y, 3w : Py (B Annss) — P (Bho, Any) > ew/2> .
Let

K (v, w,1) = 2r(k,k)p(k*, ko) [2 (&)

w m n
where p and r are defined in (3.53) and (3.13), and denote by

Henceforth, for conciseness, we write Jw for 3w € (wo, 1]. Define

2

WK ( w (w—wu)ﬁ)
m) ~ Y1 35 2
J(v1,72,1m) = {13( : 3h 3w, Py (Bhyss Ahvas6) > P (Bho, Anzy, ) + }
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(A.146)

(A.147)

(A.148)

For v1 < v < 7, we claim P, (Bh,.yQ,Ahm/(j) <P, (Bh,’yaAh;y/G): to see this, note that Ay, ,/6 € Apn /6
because a(y2/6) > a(y/6) as a is non-decreasing with . And, Bp,, € B, as b(vy2) > b(7y) since b is
non-decreasing with . Hence, By , () An,vo/6 € Bhy () An /6 from which the claim follows. Next we claim
P (Bh,0,An,2+,) = P (Bh,, An,2y) as we next show: we have a(27y) > a(2v;) therefore | f5(s)| > a(2v) implies
that |fx(s)] > a(2v1) hence Ap 2y C Ap 24,. So we have By, o () An,2y € Bho[)An,2y, and the claim follows.

Also,
w (w—wo)n w (w—wo)n
-~ 77 < - =~ 77
H<’7727 2 )_5(71727 2

because N, is non-decreasing with decreasing a. It follows that

J (v1,72,m) € J(v, 7, m).
Let

My (w1, w2,m) = {fﬂ(m) : Py (Bhys Anyj6) > P (Bhyo, Anzy) + 5

then for w; < w < wy we have

Wak (77 Wi, T]) }

Mh,’Y (w17w2a 77) g Mh,’)’ (wvwa 7])
which follows from the fact that x (y,w1,n) > & (v,w,n) and ws > w, and for 7, < 7, we have

Mh,,w(%wﬂ?a) - Mh,’y(WaW,Ub)~
We have,

o) =2 ({am s e U an, (S 00)

2
wo<w<1
Define the set A; C [0, 1] as follows,

wo + (1 — wo) (;)Hl w0+ (1 — wo) <;>l} .

We have [wg, 1] C ;2 Ar. The right side of (A.154) is no larger than

P (Hh, XM ¢ [j U M, <%w W)) :

=0 weA;

A=

Now for any h € H there exists a j € {1,...,A,} such that (3.56) is satisfied with o = ~. Define

(A.149)

(A.150)

(A.151)

(A.152)

(A.153)

(A.154)

(A.155)

(A.156)
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, _ .. p (g4 ) 4\ 4 w2k (1, w1,m)
M;, (wr,ws,n) == {m m B (BmAm) > P (BMAM) + 5 . (A.157)
For the same reason that (A.152) and (A.153) hold, we have for wy < w < wa, Ny < My,

Mjﬂ’ (w17w27 77) g Mj,’y (w7w7n) (A158)

and
Mjﬁ (wvw’ 7711) - Mjﬁ/ (wvwvnb) :

Then from Claim 24 and Claim 25 it follows that if there exists an h such that X (™) e Mp, ~ (w1, w2, n) then
there exists a j € {1,...,A} such that X € M, (w1, w2, n). Hence if there exists w € (wp, 1] such t-hat
there is an h with X(™) € M, ., (%,w,n) then there exists a j € {1,..., N} such that X0 e M, (¢, w,m).

Therefore from (A.156) we have,

P(J(wn))sp(al_jw,x(m) cU U M, (;w(w_zwm»

=0 weA,
Ny oo 1 1+1 1 I+1 " 1 1
< Y ye (Mm (Wo s-a) (3) wt-w(3) Ba-wo(3) )) (A.159)
j=11=0
where the inequality follows from (A.158) as for every w € A; we have w/2 < wp + (1 — wy) (%)lJrl <w
Let
g0 =1{|£" ()] 2 a(. 2£(s) 2 b } (A.160)
and .
CHCCIRS WAL
t=1
Then
a©em) = SI{|r7 (e0})| = at, ©0, £ (00}) = b }
t=1
— 5 ™M g
= mPp, (Aj,W,Bm) (A.161)
and
() m _ s M M
slo(om)] = 5w (a755)
_ ey o) A g
= E Zﬂ{etz €4 Bj,vw}
1=1
— (QON=160)
= mpP (aA7)B7) (A.162)
and therefore,
*(m *(m mwk (7y,w, 1
P (M) (w,w,m) = P (G§73(S (m) > E [G%) (S ( ))] + %) . (A.163)

As is shown in Section A.2.1, here also, the functions G%) are Lipschitz with constant r(k, k*). So Gﬁa /r

is Lipschitz with constant 1 and, from Section A.1, we may use (A.14) for $*(™) and Ggg /. We have

P (Mjy (w,w,m))

IN

P <G§73 (507) > B [ (s0m)] 4 m ) ’7)>

= P

()  ax(m (V) ( gx(m)
I N
r r 2r

exp {—"; <$>2} (A.164)

IN
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Plugging the choice of £ (A.147) in the right side of (A.164) gives

P (Mj,, (w,w,n)) < . (A.165)

From (A.159) and (A.165), it follows that

.N"y %] l
n 1
P (rm) Y g (L=wo) D (5] =n(l—wo). (A.166)
= 2N, —\2
Now, substitute for € in (A.138) the following,
7w (W—wo)yn
=r|-, =, —— ). Al
E=kK (2, 5" 5 > (A.167)
Define the set I'; C (0, diam (S)] as follows,
1\ n
I = {(2) diam (Sg) , <§> diam (Sk)} (A.168)
and the set |J;=, I'; contains the possible range (0, diam (Sy)] for .

We have

J (g;'}'? 7]) = {l.(TrL) : dh 3w7Pm (BhﬁaAh,’y/G) > P(Bh,OaAh,’Y) +

From (A.138), (A.146), (A.148) and (A.167), the probability in (A.138) is bounded from above by

P U J(g,%w) =P G U J(%,%W)

~€(0,diam(Sg)] I=0~ely

5 (U (30)
=0

vEL

gﬁ” (J ((;)’“ diam (Sy) , <;>H1 diam (i), <;>l diam (Sk)>> (A.169)

where (A.169) follows from (A.150) and the fact that for all v € I'; we have /2 < (3)""'diam (Sg) < v and
v < (%)ldiam (Sk)-

From (A.166), the I** term in (A.169) is bounded by n(1 — wp)(1/2)!diam (S;) and so (A.138) is bounded
from above by

IN

IN

e’} l
(1 — wo)ndiam (Sx) S (%) < 2(1 — wo)ydiam (Sk) . (A.170)
=0

A.3.2. Bounding (A.139). We obtain a bound from above on the following probability,
P (Hh, 3y, 3w : P (Any) = P (Ansss) > €Pon(Any6) /2P (Bho [Any ) s v > wm)
From (A.135), this is bounded from above by

P (3h7 Iy, 3w P(Ans) — P (Apsys) > €w/2P (B |AM))

which in turn is bounded from above by

P (3% 3h, 3w : P(Aps) = Po(Ap6) > ew/2) . (A.171)
Define the set,
/ o (m) . ® w2m(7/23w1777)
M, (wi,w2,n) = 2™ : P(Ap ) > P (Apqye) + — 5 (A.172)

and let
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M]/','y (wl,wg,n) = {]}(m) . P (A;:YQ)W) > Pm (A§7'3/2

wak (7/2,w1,7)
) O

From (A.131), Claim 26 and Claim 27, it follows that if there exists a v and h such that X (™) ¢ My, (w1, w2,1)
then there exists a j such that X (™ e M; (w1, w2,m).
With the choice of € as in (A.167), then (A.171) becomes

P (37, 3h, 3w : P(Aps) > Po(Apne) + ew/2)
= P (ny, Jh, Jw : XM € My, (w/2,w, (w— wo)’yn/2))
< P (3% <G <N, Tw: X0 e M) (w/2,w, (w — wo)vn/Q)) . (A.173)
The probability in (A.173) is expressed as,

P U {w(m) D < G <N, Fw, 2™ € M (w/2,w, (w— wo)'yn/Q)}
~v€(0,diam(Sg)]

P U U {x(m) D31 <G <Ny, Jw, 2™ e M) (w/2,w, (W fwo)'yn/Q)}

1=0~ely
< Z]P’ U {m(m) AN <G SN, Fw, 2™ € M (w/2,w, (w— wo)’yn/2)} . (A.174)
=0 ~ely
Denote by
o0 := (1/2")diam(Sy). (A.175)
For every v € I';, we have v < g; < 2v hence for any
0 =1s,z] e A (A.176)
we have
1) = ace)
> a(a)

because @ is non-decreasing.
Fix any h and let fi(“) be an element in the g;-cover C,, of F that is closest to f; in the lo-norm (3.54)
and let fj("’) be the closest to fy in the y-cover C. Denote by

i,y

A, = {9 =[s,x]:

fz-”)(S)‘ > d(v’)}- (A.177)

Then, for any v € T, and any 0 = [s, 2] € AV)

0) if f17(s) < —a(2y) then

£9%) < fuls) +a

< f;V)(S)'*‘Qz-i—W

@)

< a2y taty

@

< —ala)+ oty

i)

< —ala) + 20

(iv)

< *d(gl) (A.178)

where (i) follows from the definition of the set Af,jw (ii) is from the fact that @ is a non-decreasing function

and g < 2v for all v € Ty, (iii) follows from v < g; for v € I, and (iv) follows from (A.131) where
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—a(y) + 2y < —a(v) holds in particular for v = g;. If f]m(s) > a(2v) then

) > fu(s) — o
> f(s) — o -

>a(2v) —a—v

> alo) — o1 —

> a(or) — 201

> a(or). (A.179)

Hence from (A.177), (A.178), and (A.179) it follows that 0 € AE?QZZ). Therefore for all v € I';, we have

A C AR, (A.180)
Now consider any 6 € A(fglg. If f;g’)(s) < —a(or) then for every v € I'; we have

) < fuls) +

< ) +v+a (A.181)
(i)

< —ala)+v+a

@

< i+t a

(ii4)

< —a(y) + 3y

(iv)

< —a(y/2) (A.182)

where (i) follows from (A.177), (ii) and (iii) are from the fact that for all v € T';, v < g, and g < 27,
respectively, and (iv) follows from (A.131). If fi(‘")(s) > a(g;) then for every v € I'; we have

) = fals) =
> f9s) -7 o (A.183)
=z ala)—v—a
> a(y)-7-a
> a(y) =3y
> a(vy/2). (A.184)
From (A.182) and (A.184) it follows that
Ale) c A (A.185)
Define by
My (wy,wa,n) i= {x(m) : P (AE%?) > P, (AEQ;Z)) + 7012’{(912’ @i, 1) } . (A.186)

Then it follows from (A.180), (A.185) and from the fact that

K(7/27w177]) 2 K(’Y7wl7n) Z K(Qhwlvn)

that for any 0 <! < oo and any v € I';, for all h € H there exists i € {1,..., N, } and j € {1,...,N,} (both
depending on h) such that the following holds,

M]/',v(wlv w2, 77) g Mi,l(UJhUJQ, 77)

Therefore, the I** term in the sum (A.174) is bounded from above as follows,

P U {x(m) C I <G<SN,, Tw: 2™ e M., (w/2,w, (w— wo)yn/2)}
vel

< P ({w(m) D31 < <Ny, Fw, 2™ e My (w/2,w, (W — wo)gm/2)}> (A.187)

where we also used the fact that for v € I'j, v < g;.
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Now, for w; < w < wy we have . .
M; (w1, w2,m) C© M (w,w,m) (A.188)
which follows from the fact that & (y,w1,n) > £ (v,w,n) and wy > w. Let us fix 7. Using the sets (A.155) we
have

Pl U Mii(w/2,w (w-w)an/2)

w€[wo,1]

U U M (w/2,w, (w — wo)oin/2)

'=0weA

Z]P’< ”(w0+(1—w0) (;)l/+1,wo+(1—wo) <;)l/+1,n§l(1—wo) <;>l>> (A.189)

)l/+1 < w

IN

where the inequality follows from (A.188) as for every w € Ay we have w/2 < wo + (1 — wp) (3
Define

qi1(0) = 11{ (8)‘ > d(@z)} (A.190)
and
Qi1(© Z%l (A.191)
Then,
P (A5) = 1y ()
and
Lefou(om)] - A s
- (AE@;B) -
We obtain
P (Mg (w,w,m)) =P (E Qi (5] > Quits™) + w> : (A.192)

From Section A.2.3, the functions @);; defined in (A.191) are Lipschitz with constant r(k, k*) hence from
the argument that leads to (A.165) it follows that (A.192) is bounded from above by 7n/A,,.
Therefore (A.189) is bounded from above by

oo

nai (1w )Z (1>l' _ (1 —wo)ar
2N, ’ 2 No

I'=0

Hence, (A.187) is bounded from above as follows,
N,
ZIF’ (Elw, XM e My (w/2,w, (w— wo)gm/2))

=1
N@ 00

< ;;P( Zl<w0+(1wo) <;>l/+1,wo+(1wo) (;)llﬂ,nzgl(lwo) (;)l/>>

(1 — )

Nl —wo)oi

< E A 741
i=1 Ne

= (1l —wo)ar
Substituting for g; according to (A.175) then it follows that (A.174) and, therefore, the left side of (A.173)
and (A.139) are bounded from above by

1
n(1 — wp)diam(Sg) Z o= 2n(1 — wo)diam(Sg).
1=0
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Thus, with the conclusion of Section A.3.1, namely (A.170), we conclude that the sum of (A.138) and
(A.139) is bounded from above by

4n(1 — wp)diam (Sg) . (A.193)
A.3.3. Finalizing. From (3.58) it follows that
: Nyse
Ny < <2 {MW + 1) . (A.194)
v

Let us substitute the right side of (A.194) for N\, /5 in the expression (A.147) for £ (7/2,w/2, (w — wo)y1/2)
used in (A.167). We obtain

Ar(k, k*)p(k*, lo) Eln( 2Ny /2 )
w m \ (w—wo)¥n

Therefore if in (A.132) we let € be the right side of (A.195) then (A.132) is bounded from above by (A.193).
Setting this bound to d, solving for 7, substituting for n in (A.195), using (3.16) and replacing € in (A.132)
by £(m,v,w, d) yields the statement of the theorem.

O
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