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Abstract

Structural risk minimisation (SRM) is a general complexity regularization method
which automatically selects the model complexity that approximately minimises
the misclassification error probability of the empirical risk minimiser. It does so by
adding a complexity penalty term e(m,k) to the empirical risk of the candidate
hypotheses and then for any fixed sample size m it minimises the sum with respect
to the model complexity variable k.

When learning multicategory classification there are M subsamples m;, corre-
sponding to the M pattern classes with a priori probabilities p;, 1 <¢ < M. Using
the usual representation for a multi-category classifier as M individual boolean clas-
sifiers, the penalty becomes Zf\i 1 pi€(mg, k;). If the m; are given then the standard
SRM trivially applies here by minimizing the penalised empirical risk with respect
to ki, 1,...,M.

However, in situations where the total sample size Zf\i 1 m; needs to be minimal
one needs to also minimize the penalised empirical risk with respect to the variables
m;,t=1,..., M. The obvious problem is that the empirical risk can only be defined
after the subsamples (and hence their sizes) are given (known).

Utilising an on-line stochastic gradient descent approach, this paper overcomes
this difficulty and introduces a sample-querying algorithm which extends the stan-
dard SRM principle. It minimises the penalised empirical risk not only with respect
to the k;, as the standard SRM does, but also with respect to the m;, ¢ =1,..., M.

The challenge here is in defining a stochastic empirical criterion which when
minimised yields a sequence of subsample-size vectors which asymptotically achieve
the Bayes’ optimal error convergence rate.

1 Introduction

Consider the general problem of learning classification with M pattern classes
each with a class conditional probability density f;(z), 1 <i < M, 2 € R,
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and a priori probabilities p;, 1 < i < M. The functions f;(z), 1 <i < M, are
assumed to be unknown while the p; are assumed to be known or unknown
depending on the particular setting. The learner observes randomly drawn
i.i.d. examples each consisting of a pair of a feature vector z € R? and a label
y € {1,2,..., M}, which are obtained by first drawing y from {1,..., M}
according to a discrete probability distribution {py,...,pa} and then drawing
x according to the selected probability density f,(x).

Denoting by ¢(x) a classifier which represents a mapping c : R? — {1,2,...,
M} then the misclassification error of c¢ is defined as the probability of mis-
classification of a randomly drawn x with respect to the underlying mixture
probability density function f(x) = M p;fi(x). This misclassification er-
ror is commonly represented as the expected 0/1-loss, or simply as the loss,
L(c) = El{e(z)£y(2)}, of ¢ where expectation is taken with respect to f(z) and
y(x) denotes the true label (or class origin) of the feature vector z. In general
y(x) is a random variable depending on x and only in the case of f;(x) having
non-overlapping probability 1 supports then y(x) is a deterministic function?® .
The aim is to learn, based on a finite randomly drawn labelled sample, the op-
timal classifier known as the Bayes classifier which by definition has minimum
loss. In this paper we pose the following question:

Question: Can the learning accuracy be improved if labeled examples are
independently randomly drawn according to the underlying class conditional
probability distributions but the pattern classes, i.e., the example labels, are
chosen not necessarily according to their a prior: probabilities ?

We answer this in the affirmative by showing that there exists a tuning of the
subsample proportions which minimizes a loss criterion. The tuning is relative
to the intrinsic complexity of the Bayes-classifier.

Before continuing let us introduce some notation. We write const to denote
absolute constants or constants which do not depend on other variables in
the mathematical expression. We denote by {(z;,;)}7, an iid. sample of
labelled examples where ™ denotes the total sample size, y;, 1 < j < m, are
drawn i.i.d. and taking the integer value ‘i’ with probability p;, 1 < i < M,
while the corresponding z; are drawn according to the class conditional prob-
ability density f, (z). Denote by m; the number of examples having a y-
value of ‘i". Denote by m = [my,...,my] the sample size vector and let
|m|| = =¥, m; = m. The notation argmin, ,g(k) for a set A means the
subset (of possibly more than one element) whose elements have the mini-
mum value of g over A. A slight abuse of notation will be made by using it
for countable sets where the notation means the subset of elements k such

I According to the probabilistic data-generation model mentioned above, only regions
in probability 1 support of the mixture distribution f(z) have a well-defined class
membership.



that? g(k) = infpg(k’). The loss L(c) is expressed in terms of the class-
conditional losses, L;(c), as L(c) = M, p;Li(c) where L;(¢) = E;1{c(), and
E; is the expectation with respect to the density f;(x). The empirical coun-
terparts of the loss and conditional loss are L, (c) = M, DiLim,(c) where
Lim,(c) = mi > jw,—=i Le(z;)# Where throughout the paper we assume the a
priori probabilities are known to the learner (see Assumption 1 below).

2 Structural Risk Minimisation

The loss L(c) depends on the unknown underlying probability distributions
hence realistically for a learning algorithm to work it needs to use only an
estimate of L(c). For a finite class C of classifiers the empirical loss L,,(c) is
a consistent estimator of L(c) uniformly for all ¢ € C hence provided that the
sample size m is sufficiently large, an algorithm that minimises L, (c) over C'
will yield a classifier ¢ whose loss L(¢) is an arbitrarily good approximation of
the true minimum Bayes loss, denoted here as L*, provided that the optimal
Bayes classifier is contained in C. The Vapnik-Chervonenkis theory [Vapnik,
1982] characterises the condition for such uniform estimation over an infinite
class C of classifiers. The condition basically states that the class needs to have
a finite complexity or richness which is known as the Vapnik-Chervonenkis
dimension and is defined as follows: for a class H of functions from a set
X to {0,1} and a set S = {zy,...,x;} of | points in X, denote by Hg =
{[h(z1),...,h(x;)] : h € H}. Then the Vapnik-Chervonenkis dimension of H
denoted by VC(H) is the largest [ such that the cardinality ‘H‘ S’ = 2. The
method known as empirical risk minimisation represents a general learning
approach which for learning classification minimises the 0/1-empirical loss
and provided that the hypothesis class has a finite VC dimension then the
method yields a classifier ¢ with an asymptotically arbitrarily-close loss to the
minimum L*.

As is often the case in real learning algorithms, the hypothesis class can be
rich and may practically have an infinite VC-dimension, for instance, the class
of all two layer neural networks with a variable number of hidden nodes. The
method of Structural Risk Minimisation (SRM) was introduced by Vapnik
[1982] in order to learn such classes via empirical risk minimisation.

For the purpose of reviewing existing results we limit our discussion for the
remainder of this section to the case of two-category classification thus we use
m and k as scalars representing the total sample size and class VC-dimension,

2In that case, technically, if there does not exists a k in A such that g(k) = infy g(k')
then we can always find an arbitrarily close approximating elements k,, i.e., Ve > 0
3N (e) such that for n > N(e) we have |g(ky,) — infy (k)| < e.



respectively. Let us denote by Cj a class of classifiers having a VC-dimension
of k and let ¢ be the classifier which minimises the loss L(c) over Cy, i.e.,
cj, = argmin,cc, L(c). The standard setting for SRM considers the overall class
C of classifiers as an infinite union of finite VC-dimension classes, i.e., ;2 Ck,
see for instance Vapnik [1982], Devroye et. al. [1996], Shawe-Taylor et. al.
[1996], Lugosi & Nobel [1996], Ratsaby et. al. [1996]. The best performing
classifier in C denoted as ¢* is defined as ¢* = argmin, ., L(c}). Similarly,
denote by ¢ the empirically-best classifier in Cy, i.c., & = argmin,ce, Ly, (c).
Denoting by k* the minimal complexity of a class which contains ¢*, then
depending on the problem and on the type of classifiers used, k* may even
be infinite as in the case when the Bayes classifier is not contained in C. The
complexity £* may be thought of as the intrinsic complexity of the Bayes
classifier.

The idea behind SRM is to minimise not the pure empirical loss L,,(cx) but
a penalised version taking the form L,,(cx) + €(m, k) where €(m, k) is some
increasing function of k£ and is sometimes referred to as a complexity penalty.
The classifier chosen by the criterion is then defined by

¢" = argmin, ;< (Lin(Cr) + €(m, k)). (1)

The term €(m, k) is proportional to the worst case deviations between the true
loss and the empirical loss uniformly over all functions in C;. More recently
there has been interest in data-dependent penalty terms for structural risk
minimisation which do not have an explicit complexity factor k but are related
to the class Cp by being defined as a supremum of some empirical quantity
over Cy, for instance the maximum discrepancy criterion [Bartlett et. al., 2002]
or the Rademacher complexity [Kultchinskii, 2002].

We take the penalty to be as in Vapnik [1982] (see also Devroye et. al. [1996])
e(m, k) = const \/kl% where again const stands for an absolute constant
which for our purpose is not important. This bound is central to the compu-
tations of the paper?.

It can be shown [Devroye et. al., 1996] that for the two-pattern classification
case the error rate of the SRM-chosen classifier ¢* (which implicitly depends
on the random sample of size m since it is obtained by minimising the sum in

3There is actually an improved bound due to Talagrand, cf. Anthony & Bartlett
[1999] Section 4.6, but when adapted for almost sure statements it yields

O(4/ k“%) which for our work is insignificantly better then O (\ / W)



(1)), satisfies

k*1
L(¢*) > L(c*) + const -

(2)

m

infinitely often with probability 0 where again c* is the Bayes classifier which
is assumed to be in C and k* is its intrinsic complexity. The nice feature of
SRM is that the selected classifier ¢* automatically locks onto the minimal
error rate as if the unknown k* was known beforehand.

3 Multicategory classification

A classifier ¢(x) may be represented as a vector of M boolean classifiers b;(z),
where b;(x) = 1 if x is a pattern drawn from class ‘i’ and b;(x) = 0 otherwise.
A union of such boolean classifiers forms a well-defined classifier c(x) if for
each 2 € R?, b;(z) = 1 for exactly one i, i.e., UL, {z : bj(z) = 1} = R* and
{z :bi(x) =1} {z : bj(x) = 1} =0, for 1 < i # j < M. We also refer to
these boolean classifiers as the component classifiers ¢;(x), 1 < i < M, of a
vector classifier ¢(x). The loss of a classifier ¢ is just the average of the losses
of the component classifiers, i.e., L(c) = S, p;L(c;) where for a boolean
classifier ¢; the loss is defined as L(c;) = E;l{,(2)£1}, and the empirical loss
is Lim,(ci) = mi 2741 Leya)»1y Which is based on a subsample {(z;,4)}7,
drawn i.i.d. from pattern class “i”.

The class C of classifiers is decomposed into a structure S = S; x Sy X - - - X Sy,
where S; is a nested structure (cf. Vapnik [1982]) of classes By,, i = 1,2,. .., of
boolean classifiers b;(z), i.e., S = By, Ba, ..., By, ..., So = B1,Bs, ..., By,, . ..
up to Sy = By, Bs, ..., By, .. where k; €Z . denotes the VC-dimension of
By, and By, C By, +1, 1 <4 < M. For any fixed positive integer vector k € Zﬂf
consider the class of vector classifiers C, = By, X By, X - - - X By,,. Define by Gy
the subclass of Cj, of classifiers ¢ that are well-defined (in the sense mentioned
above).

For vectors m and k in Z%, define e(m, k) = SN, pe(m;, k;) where as before
e(my, k;) = const 1/%1_”“. For any 0 < § < 1, we denote by €(m;, k;,0) =

T tln L
ilnmithg and e(m, k,86) = M, pie(my, ki, 0). Lemma 1 below states an

m;
upper bound on the deviation between the empirical loss and the loss uniformly
over all classifiers in a class G, and is a direct application of Theorem 6.7
Vapnik [1982]. Before we state it, it is necessary to define what is meant by

an increasing sequence of vectors m.

Definition 1 (Increasing sample-size sequence) A sequence m(n) of sample-



size vectors is said to increase if: (a) at every n, there exists a j such that
mj(n+1) > m;j(n) and m;(n+1) > m;(n) for 1 <i+#j < M and (b) there
exists an increasing function T(N) such that for all N > 0, n > N implies
every component m;(n) > T(N), 1 <i< M.

Definition 1 implies that for all 1 < i < M, m;(n) — oo as n — oo. We
will henceforth use the notation m — oo to denote such an ever-increasing
sequence m(n) with respect to an implicit discrete indexing variable n. The
relevance of Definition 1 will become clearer later, in particular when consid-
ering Lemma 3.

Definition 2 (Sequence generating procedure) A sequence generating proce-
dure ¢ is one which generates increasing sequences m(n) with a fixed function
Ts(N) as in Definition 1 and also satisfying the following: for all N,N' > 1
such that Ty(N') = T,(N)+1 then |N'—N| < const, where const is dependent
only on ¢.

The above definition simply states a lower bound requirement on the rate of
increase of T3(N). We now state the uniform strong law of large numbers for
the class of well-defined classifiers.

Lemma 1 (Uniform SLLN for multicategory classifier class) For any k € %J‘f
let Gy be a class of well-defined classifiers. Consider any sequence-generating
procedure as in Definition 2 which generates m(n), n = 1,...,00. Let the

empirical loss be defined based on examples {(xj,yj)};”:(?), each drawn i.i.d.
according to an unknown underlying distribution over R x {1,...,M}. Then

Ly (c) — L(c)‘ < const e(m(n), k,d) with
Ly (c) — L(c)‘ > const €(m(n), k),
n = 1,2,..., occur infinitely often with probability 0, where m(n) is any se-
quence generated by the procedure.

Jor arbitrary 0 < 6 < 1, sup,g,

probability 1 — ¢ and the events sup g,

The outline of the proof is in Appendix A. We henceforth denote by c; the
optimal classifier in Gy, i.e., ¢; = argmin g, L(c) and ¢, = argmin g, Ly, (c) is
the empirical minimiser over the class G.

In Section 2 we mentioned that the intrinsic unknown complexity £* of the
Bayes classifier is automatically learned by minimising the penalised empirical
loss over the complexity variable k. If an upper bound of the form of (2) but
based on a vector m could be derived for the multicategory case then a second
minimisation step, this time over the sample-size vector m, will improve the
SRM error convergence rate. The main result of this paper (Theorem 1) shows
that through a stochastic gradient descent such minimisation improves the
standard SRM bound from e(m, k*) to e(m*, k*) where m* minimises ¢(m, k*)
over all possible vectors m whose magnitude ||m/| equals the given total sam-
ple size m. The technical challenge is to obtain this without assuming the



knowledge of k*. Our approach is to estimate k* and minimise an estimated
criterion. Due to lack of space, we only provide sketch of proofs for the stated
lemmas and theorem. The full proofs will appear in the full paper [Ratsaby,
2003].

Concerning the convergence mode of random variables, upper bounds are
based on the uniform strong law of large numbers, see Appendix A. Such
bounds originated in the work of Vapnik [1982], for instance his Theorem 6.7.
Throughout the current paper, almost sure statements are made by a standard
application of the Borel-Cantelli lemma. For instance, taking m to be a scalar,

1
the statement sup,cp |L(b) — L, (b)| < consty/ % with probability at

least 1 — ¢ for any § > 0 is alternatively stated as follows by letting 9,, = #:

For the sequence of random variables L,,(b), uniformly over all b € B, we have

L(b) > Ly,(b) + consty/ % occur infinitely often with probability 0.
Concerning our, perhaps loose, use of the word optimal, whenever not explic-
itly stated, optimality of a classifier or of a procedure or algorithm is only with
respect to minimisation of the criterion, namely, the upper bound on the loss.

4 Standard SRM Loss Bounds

We will henceforth make the following assumption.

Assumption 1 The Bayes loss L* = 0 and there exists a classifier ¢; in the
structure S with L(cy) = L* such that k; < oo, 1 < i < M. The a priori
pattern class probabilities p;, 1 <1 < M, are known to the learner.

Assumption 1 essentially amounts to the Probably Approximately Correct
(PAC) framework, Valiant [1984], Devroye et. al. [1996] Section 12.7, but with
a more relaxed constraint on the complexity of the hypothesis class C since
it is permitted to have an infinite VC-dimension. Also, in practice the a pri-
ort pattern class probabilities can be estimated easily. In assuming that the
learner knows the p;, 1 < ¢ < M, one approach would have the learner allo-
cate sub-sample sizes according to m; = p;m followed by doing structural risk
minimisation. However this does not necessarily minimise the upper bound
on the loss of the SRM-selected classifier and hence is inferior in this respect
to Principle 1 which is stated later. We note that if the classifier class was
fired and the intrinsic complexity £* of the Bayes classifier was known in
advance then because of Assumption 1 one would resort to a bound of the
form O (klogm/m) and not the weaker bound that has a square root, see ch.
4.5 in Anthony & Bartlett [1999]. However, as mentioned before, not know-
ing k* and hence using structural risk minimisation as opposed to empirical
risk minimisation over a fixed class, leads to using the weaker bound for the



complexity-penalty.

We next provide some additional definitions needed for the remainder of the
paper. Consider the set F* = {argminke%fL(c};)} ={k: L(c) = L* = 0}
which may contain more than one vector k. Following Assumption 1 we may
define the Bayes classifier ¢* as the particular classifier ¢j. whose complexity
is minimal, i.e., k* = argmingc py {[|k||oc } Where [|k|oc = maxi<i<ar |ki]. Note
again that there may be more than one such k*. The significance of specifying
the Bayes classifier up to its complexity rather than just saying it is any
classifier having a loss L* will become apparent later in the paper.

For an empirical minimiser classifier ¢, define by the penalised empirical loss

(cf. Devroye et. al. [1996]) L,.(¢x) = Lm(Ck) + €(m, k). Consider the set
F = {argmin, g, L(¢},)} which may contain more than one vector k. In stan-
+

dard structural risk minimisation [Vapnik, 1982] the selected classifier is any
one whose complexity index k € F'. This will be modified later when we intro-
duce an algorithm which relies on the convergence of the complexity k to some
finite limiting complexity value with increasing® m. The selected classifier is
therefore defined to be one whose complexity satisfies k = argmin, _ 5| k||oo-
This minimal-complexity SRM-selected classifier will be denoted as ¢;, or sim-
ply as ¢*. We will sometimes write k, and ¢, for the complexity and for the
SRM-selected classifier, respectively, in order to explicitly show the depen-
dence on discrete time n.

The next lemma states that the complexity k converges to some (not neces-
sarily unique) k* corresponding to the Bayes classifier ¢*.

Lemma 2 Based on m examples {(x;,y;)}j, each drawn i.i.d. according to
an unknown underlying distribution over R x {1,..., M}, let & be the chosen
classifier of complexity k. Consider a sequence of samples (™™ with increas-
ing sample-size vectors m(n) oblained by a sequence-generating procedure as
in Definition 2. Then (a) the corresponding complexity sequence Ky, converges
a.s. to k* which from Assumption 1 has finite components. (b) For any sam-
ple (™™ in the sequence, the loss of the corresponding classifier ¢ satisfies
L(¢;) > const e(m(n), k*) infinitely often with probability 0.

The outline of the proof is in Appendix B. For the more general case of L* > 0
(but two-category classifiers) the upper bound becomes L*+const €(m, k*), cf.
Devroye et. al. [1996]. It is an open question whether in this case it is possible
to guarantee convergence of k,, or some variation of it to a finite limiting value.

4We will henceforth adopt the convention that a vector sequence ke — k*, a.s., means
that every component of k, converges to the corresponding component of £*, a.s.,
as m — o0.



The previous lemma bounds the loss of the SRM-selected classifier ¢*. As
suggested earlier, we wish to extend the SRM approach to do an additional
minimisation step by minimising the loss of ¢* with respect to the sample size
vector m. In this respect, the subsample proportions may be tuned to the
intrinsic Bayes complexity £* thereby yield an improved error rate for ¢*. This
is stated next:

Principle 1 Choose m to minimise the criterion e(m, k*) with respect to all m
such that Y, m; = m, the latter being the a priori total sample size allocated
for learning.

In general there may be other proposed criteria just as there are many cri-
teria for model selection based on minimisation of different upper bounds.
Note that if £* was known then an optimal sample size m* = [m},...,m},]
could be computed which yields a classifier ¢ with the best (lowest) deviation
const €(m*, k*) away from Bayes loss. The difficulty is that k* = [k},..., k}]
is usually unknown since it depends on the underlying unknown probability
densities f;(z), 1 <i < M. To overcome this we will minimise an estimate of

€(+, k*) rather than the criterion €(-, k*) itself.

5 The Extended SRM algorithm

In this section we extend the SRM learning algorithm to include a stochastic
gradient descent step. The idea is to interleave the standard minimisation
step of SRM with a new step which asymptotically minimises the penalised
empirical loss with respect to the sample size. As before, m(n) denotes a
sequence of sample-size vectors indexed by an integer n > 0 representing
discrete time. When referring to a particular i component of the vector m(n)
we write m;(n).

The algorithm initially starts with uniform sample size proportions m; =
my = --- = myy = const > 0, then at each time n > 1 it selects the classifier
¢ defined as

ér = argminémk:keﬁnHka Standard Minimization Step (3)

where F, = {k : En(énk) = min,_ g7y Zn(énr)} and for any ¢, which min-
+
imises Ly, (c) over all ¢ € G, we define the penalised empirical loss as

Ly (Cnk) = L) (Cni) + €(m(n), k) where Ly, stands for the empirical loss
based on the sample-size vector m(n) at time n.

The second minimisation step is done via a query rule which selects the par-



ticular pattern class from which to draw examples as one which minimises the
stochastic criterion €(-, k,) with respect to the sample size vector m(n). The
complexity k, of ¢ will be shown later to converge to k* hence (-, l%n) serves
as a consistent estimator of the criterion €(-, k*). We choose an adaptation
step which changes one component of m at a time, namely, it increases the
component my, . (») Which corresponds to the direction of maximum descent

of the criterion €(-, k,) at time n. This may be written as

m(n+1) =m(n) + Aej,.. New Minimization Step (4)

where the positive integer A denotes some fixed minimisation step-size and
for any integer i € {1,2,..., M}, e; denotes an M-dimensional elementary
vector with 1 in the " component and 0 elsewhere. Thus at time n the new
minimisation step produces a new value m(n + 1) which is used for drawing
additional examples according to specific sample sizes m;(n+1), 1 <i < M.

Learning Algorithm XSRM (Extended SRM)

Let: m;(0) = const > 0,1 <i< M.

Given: (a) M uniform-size samples {¢™(O}M where (™) = {(z;,4) ;”;EO),
and x; are drawn i.i.d. according to underlying class-conditional probabil-
ity densities f;(x). (b) A sequence of classes Gy, k € Z"Y, of well-defined
classifiers. (c) A constant minimisation step-size A > 0. (d) Known a priori
probabilities p;, 1 < j < M (for defining L,,).

Initialisation: (Time n = 0) Based on (™ 1 < i < M, determine
a set of candidate classifiers ¢y minimising the empirical loss L,,q) over
Gk, k € Z}, respectively. Determine ¢ according to (3) and denote its
complexity vector by ko.

Output: ¢.

Call Procedure NM: m(1) := NM(0).

Let n = 1.

While (still more available examples) Do:

1. Based on the sample (™™ determine the empirical minimisers Cn, for
each class Gi. Determine ¢ according to (3) and denote its complexity
vector by .

2. Output: ¢.

3. Call Procedure NM: m(n + 1) := NM(n).

4. n:=n+1.

End Do

|

Procedure New Minimisation (NM)
Input: Time n.

] e(m;(n).kn ;
o ]maz(n) = argmaXISjSM pjw

, where if more than one argmax
m;(n)

10



then choose any one.

e Obtain: A new i.i.d. examples from class j,u..(n). Denote them by ,.

e Update Sample: ("imeem) ) = (Mimaa) ™) | (,, while ¢ HD =
¢ for 1 <0 # Jimax(n) < M.

e Return Value: m(n)+ Ae;j, .. )

|

The algorithm alternates between the standard minimisation step (3) and the
new minimisation step (4) repetitively until exhausting the total sample size
m which for most generality is assumed to be unknown a priori.

While for any fized i € {1,2,..., M} the examples {(z;, @)};”;Y” accumulated

up until time n are all i.i.d. random variables, the total sample {(x;,y;) ;n:(?)
consists of dependent random variables since based on the new minimisation
the choice of the particular class-conditional probability distribution used to
draw examples at each time instant [ depends on the sample accumulated up
until time [ — 1. It turns out that this dependency does not alter the results
of Lemma 2. This follows from the proof of Lemma 2 and from the bound
of Lemma 1 which holds even if the sample is i.i.d. only when conditioned
on a pattern class since it is the weighted average of the individual bounds
corresponding to each of the pattern classes. Therefore together with the next

lemma this implies that Lemma 2 applies to Algorithm XSRM.
Lemma 3 Algorithm XSRM is a sequence-generating procedure.

The outline of the proof is deferred to Appendix C. Next, we state the main
theorem of the paper.

Theorem 1 Assume that the Bayes complezity k* is an unknown M -dimensional
vector of finite positive integers. Let the step size A =1 in Algorithm XSRM
resulting in a total sample size which increases with discrete time asm(n) = n.
Then the random sequence of classifiers ¢ produced by Algorithm XSRM is
such that the events L(¢;,) > const e(m(n), k) or |m(n)—m*(n)|[pr > 1 occur
infinitely often with probability O where m*(n) is the solution to the constrained
minimisation of e(m, k*) over all m of magnitude ||m|| = m(n).

Remark 1 In the limit of large n the bound const e(m(n), k*) is almost mini-
mum (the minimum being at m*(n)) with respect to all vectors m € Z1" of size
m(n). Note that this rate is achieved by Algorithm XSRM without the knowl-
edge of the intrinsic complexity k* of the Bayes classifier. Compare this for
instance to uniform querying where at each time n one queries for subsamples
of the same size % from every pattern class. This leads to a different (deter-
ministic) sequence m(n) = £[1,1,...,1]ln = An and in turn to a sequence of
classifiers ¢, whose loss L(¢,) < const e(An,k*), as n — oo, where here the
upper bound is not even asymptotically minimal. A similar argument holds

11



if the proportions are based on the a priori pattern class probabilities since
in general letting m; = p;m does not necessarily minimise the upper bound.
In Ratsaby [1998], empirical results show the inferiority of uniform sampling
compared to an online approach based on Algorithm XSRM.

6 Proving Theorem 1

The proof of Theorem 1 is based on Lemma 2 and on two additional lem-
mas, Lemma 4 and Lemma 5, which deal with the the convergent property
of the new minimisation step of Algorithm XSRM. The proof is outlined in
Appendix D. Our approach is to show that the adaptation step used in the
new minimisation step follows from the minimisation of the deterministic cri-
terion €(m, k*) with a known k*. Letting ¢, as well as n, denote discrete time
t =1,2,..., we adopt the notation m(t) for a deterministic sample size se-
quence governed by the deterministic criterion €(m, k*) where k* is taken to
be known. We write m(n) to denote the stochastic sequence governed by the
random criterion €(m, l%n) Thus ¢t or n distinguish between a deterministic
or stochastic sample sequence, m(t) or m(n), respectively. We start with the
following definition.

Definition 3 (Optimal trajectory) Let m(t) be any positive integer-valued
function of t which denotes the total sample size at time t. The optimal
trajectory is a set of vectors m*(t) € %ﬂ\f indezed by t € Z,, defined as

m*(t) = argmin{me%y:”m”:m(t)}e(m, k*).

First let us solve the following constrained minimisation problem. Fix a to-
tal sample size m and minimise the error €(m, k*) under the constraint that
M m; = m. This amounts to minimising e(m, k*) + A(XX, m; — m) over
m and A. Denote the gradient by g(m,k*) = Ve(m, k*). Then the above is
equivalent to solving g(m,k*) + A[1,1,...,1] = 0 for m and A. The vector

__p1e(ma,kY)
2my )

valued function g(m, k*) may be approximated by g(m,k*) ~ |

e(ma,k e(mas,k; . .
—w,. . —M] where we used the approximation 1 — —1— ~ 1
mo 2mpg log m;

for 1 < i < M. We then obtain the set of equations 2\*m} = p;e(m], kf),
1 <i< M, and \* = % We are interested not in obtaining a solu-
tion for a fixed 7 but obtaining, using local gradient information, a sequence
of solutions for the sequence of minimization problems corresponding to an

increasing sequence of total sample-size values 7 (t).

Applying the New Minimization procedure of Algorithm XSRM to the de-
terministic criterion e(m, k*) we have an adaptation rule which modifies the
sample size vector m(t) at time t in the direction of steepest descent of
pj€(m;(t),k7)

@) which means we let
J

e(m, k*). This yields: j*(t) = argmax; ;<)
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My (t + 1) = my=y(t) + A while the remaining components of m(t) remain
unchanged, i.e., m;(t +1) = m;(t),Vj # j*(t). The next lemma states that
this rule achieves the desired result, namely, the deterministic sequence m(t)
converges to the optimal trajectory m*(t).

Lemma 4 For any initial point m(0) € RY, satisfying m;(0) > 3, for a
fized positive A, there exists some finite integer 0 < N’ < oo such that for all
discrete timet > N’ the trajectory m(t) corresponding to a repeated application
of the adaptation rule mj-(t +1) = my-(t) + A is no farther than A (in
the 1M-norm) from the optimal trajectory m*(t).

Outline of Proof: Recall that e(m,k*) = SM, pie(my, k) where e(my, k;) =

kilnm; 1 < j < M. The derivative % ~ —pze(ngik) Denote by z; =
m; mg mq
Ze(%mk), and note that % ~ —%%, 1 < ¢ < M. There is a one-to-one
corresf)ondence between the vector x and m thus we may refer to the optimal
trajectory also in z-space. Consider the set T'= {x = ¢[1,1,...,1] € Rf ic €

IR} and refer to 7" as the corresponding set in m-space. Define the Lyapunov
function V(z(t)) = V(t) = %W where for any vector z € RY,
Trmaz = MaAX << iy aNd Tpip = Miny<j<pr 5, and write Mynqq, M, for the
elements of m with the same index as X4z, Tmin, respectively. Denote by 1%
the derivative of V' with respect to t. Using standard analysis it can be shown
that if z ¢ T' then V(z) > 0 and V(z) < 0 while if z € T then V(z) = 0 and

V(z) = 0. This means that as long as m(t¢) is not on the optimal trajectory
then V() decreases. To show that the trajectory is an attractor V (¢) is shown

3
to decrease fast enough to zero using the fact that V(t) < const (%)5 Hence
as t — oo, the distance between m(t) and the set 7" dist(m(t),T7") — 0 where
dist(z, T') = infyer |2 — y[[; and M denotes the Euclidean vector norm. It is
then easy to show that for all large ¢, m(t) is farther from m*(¢) by no more
than A. O

We now show that the same adaptation rule may also be used in the setting
where £* is unknown. The next lemma states that even when £* is unknown,
it is possible, by using Algorithm XSRM, to generate a stochastic sequence
which asymptotically converges to the optimal m*(n) trajectory (again, the
use of n instead of ¢ just means we have a random sequence m(n) and not a
deterministic sequence m(t) as was investigated above).

Lemma 5 Fiz any A > 1 as a step size used by Algorithm XSRM. Given a
sample size vector sequence m(n), n — oo, generated by Algorithm XSRM,
assume that k, — k* almost surely. Let m*(n) be the optimal trajectory as in
Definition 3. Then the events |m(n) —m*(n)|l > A occur infinitely often
with probability 0.

13



Outline of Proof: From Lemma 3 m(n) generated by Algorithm XSRM is an
increasing sample-size sequence. Therefore by Lemma 2 we have l%n — k*, a.s.,
as n — oco. This means that P(3n > N, |k, —k*| > €) = dx(€) where dy(¢) — 0
as N — oo. It follows that for all § > 0, there is a finite N (9, €) €Z, such that
with probability 1—4 for all n. > N (e, 8), k, = k*. It follows that with the same
probability for all n > N, the criterion e(m, l%n) = ¢(m, k*), uniformly over all
m € Z2", and hence the trajectory m(n) taken by Algorithm XSRM, governed

~

by the criterion €(-, k), equals the trajectory m(t), t € Z,, taken by minimis-
ing the deterministic criterion (-, k*). Moreover, this probability of 1 — 4 goes
to 1 as N — oo by the a.s. convergence of ke to k. By Lemma 4, there exists a
N’ < oo such that for all discrete time ¢ > N, [[m(t)—m*(¢)||pr < A. Let N” =

max{N, N'} then P (Eln > Nk, # k* or ‘m(t)|t:n - m*(t)|t:nHlM > A) =
1

Sxv where dyn — 0 as N” — oo. The latter means that the event k, £ k* or
|m(n) —m*(n)|| > A occurs infinitely often with probability 0. The state-

ment of the lemma then follows. O
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Appendix

Due to space limitation only the outline of the proofs is included. Complete
proofs are available in the full paper on-line?® .

A Outline of Proof of Lemma 1

For a class of boolean classifiers B, of VC-dimension r it is known (cf. Devroye
et. al. [1996] ch. 6, Vapnik [1982] Theorem 6.7) that a bound on the deviation
between the loss and the empirical loss uniformly over all classifiers b € B,

nm n 1
is supyep, |L(D) — Lin(b)| < const W with probability 1 — § where

m denotes the size of the random sample used for calculating empirical loss

Ly, (b). Choosing for instance 6,, = -5 implies that the bound const,/™2m

(with a different constant) does not hold infinitely often with probability 0.
We will refer to this as the uniform strong law of large numbers result and we
note that this was defined earlier as e(m, r).

This result is used together with an application of the union bound which re-
duces the probability P (supceck |L(c) — Li(c)| > e(m, k, 5’)) into XM, P(3c €
Ck, :|L(c) — Lim,(c)| > e(my, k;, ")) which is bounded from above by M¢'. The
first part of the lemma then follows since the class of well defined classifiers
Gy is contained in the class Cj. For the second part of the lemma, by the
premise consider any fixed complexity vector £ and any sequence-generating
procedure ¢ according to Definition 2. Define the following set of sample size
vector sequences: Ay = {m(n) : n > N,m(n) is generated by ¢}. As the
space is discrete, note that for any finite IV, the set Ay contains all possi-
ble paths except a finite number of length-N paths. The proof proceeds by
showing that the events E, = {sup.g, |L(c) — Lm(n)(c)’ > e(m(n), k,9) :
m(n) generated by ¢} occur infinitely often with probability 0. To show this,
we first choose for § to be §*, = ——2—— and then reduce the P(Im(n) €

max; << s m2
AN 8UD.cq, |L(c) — Lm(n)(c)) > €e(m(n), k, dy,,)) to Zj]\/ilzmj>T¢(N)mL?' Then

use the fact that m(n) € Ay implies there exists a point m such that min;<;<j m; >
Ty(N) where Ty(N) is increasing with N hence the set {m; : m; > T4(N)}

is strictly increasing, 1 < j < M, which implies that the above double sum
strictly decreases with increasing N. It then follows that limy_.., P(3Im(n) €

AN 1 Sup.eg, |L(c) — Lm(n)(c)’ > €e(m(n), k)) = 0 which implies the events E,
occur ¢.0. with probability 0. O

Shttp://www.cs.ucl.ac.uk/staff/J.Ratsaby/Publications/PDF/m-class.pdf
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B Outline of the Proof of Lemma 2

First we sketch the proof of the convergence of k— k*, where k* is some vector
of minimal norm over all vectors k for which L(cj) = 0. We henceforth denote
for a vector k € Z%, by ||k|ls = maxi<j<p |k;|. All convergence statements
are made with respect to the increasing sequence m(n). The indexing variable
n is sometimes left hidden for simpler notation.

The set I defined in Section 4 may be rewritten as ' = {k : L(¢,) = L(é*)}.
The cardinality of F' is finite since for all k having at least one component
k; larger than some constant implies L(¢,) > L(¢*) because e(m, k) will be
larger than L(¢*) which implies that the set of k for which L(&) < L(&*)
is finite. Now for any o > 0, define F, = {k : L(¢&;) < L(¢*) + a}. Re-
call that F* was defined in Section 4 as F* = {k : L(c;) = L* = 0}
and define F¥ = {k : L(c}) < L* 4+ a}, where the Bayes loss is L* = 0.
Recall that the chosen classifier ¢ has a complexity k = argmin, _ 5 ||k||oo-
By Assumption 1, there exists a k* = argming p.| k||~ all of whose com-

ponents are finite. The proof proceeds by first showing that F ¢ Flm ks

i.o. with probability 0. Then proving that k* € F and that for all m large
enough, k* = argmin,p k)HkHOO It then follows that ||k||e # [|k*]|co -0

(m,
with probability zero but where k does not necessarily equal k* and that
k— k*, (componentwise) a.s., m — oo (or equivalently, with n — oo as
the sequence m(n) is increasing) where k* = argming p. ||k|| is not necessar-
ily unique but all of whose components are finite. This proves the first part
of the lemma. The proof of the second part of the Lemma follows similarly
as the proof of Lemma 1. Start with P (Im(n) € Ay : L(&) > e(m(n), k"))
which after some manipulation is shown to be bounded from above by the sum
SIS P (3my > Ty(N) « L(éx,) > Lyjm, (é,) + €(my, k;)). Then make use

of the uniform strong law result (see first paragraph of Appendix A) and choose

a const such that e(m;, k;) = const,/%jmj > ﬁy/%ﬁ_mi). Using the upper

bound on the growth function cf. Vapnik [1982] Section 6.9, Devroye et. al.
[1996] Theorem 13.3, we have for some absolute constant & > 0, P(L(¢&,) >
Ljm,(Cr;)+ e(my, ky)) < Hmf%‘mjg(mﬁkf) which is bounded from above by
/{#6*3’% for k; > 1. The bound on the double sum then becomes 2x ij\il
Zﬂ;>T¢( N) # which is strictly decreasing with N as in the proof of Lemma
1. It follows that the events {L(¢&) > e¢(m(n),k*)} occur infinitely often with
probability 0. O
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C Outline of the Proof of Lemma 3

Note that for this proof we cannot use Lemma 1 or parts of Lemma 2 since they
are conditioned on having a sequence-generating procedure. Our approach here
relies on the characteristics of the SRM-selected complexity k, which is shown
to be bounded uniformly over n based on Assumption 1. It follows that by
the stochastic adaptation step of Algorithm XSRM the generated sample size
sequence m(n) is not only increasing but with a minimum rate of increase as in
Definition 2. This establishes that Algorithm XSRM is a sequence-generating
procedure. The proof starts by showing that for an increasing sequence m(n),
as in Definition 1, for all n there is some constant 0 < p < oo such that
[knlloo < p. It then follows that for all n, k, is bounded by a finite constant
independent of n. So for a sequence generated by the new minimisation proce-

dure in Algorithm XSRM, pjw are bounded by pjm, for some

! m, () ;)
finite k;, 1 < j < M, respectively. It can be shown by simple analysis of the
function €(m, k) that for a fixed k the ratio of 82627:13'2_”“" )/ Pelmiki) (onverges to a

J

Bm?

constant dependent on k; and k; with increasing m;, m;. Hence the adaptation
step which always increases one of the sub-samples yields increments of Am;
and Am; which are no farther apart than a constant multiple of each other
for all n, for any pair 1 < 4,5 < M. Hence for a sequence m(n) generated
by Algorithm XSRM the following is satisfied: it is increasing in the sense
of Definition 1, namely, for all N > 0 there exists a T,,(/N) such that for all
n > N every component m;(n) > Ty(N), 1 < j < M. Furthermore, its rate
of increase is bounded from below, namely, there exists a const > 0 such that
for all N, N’ > 0 satisfying T,(N') = T4(N) + 1, then [N’ — N| < const. It
follows that Algorithm XSRM is a sequence-generating procedure according
to Definition 2. O

D Outline of Proof of Theorem 1

The classifier ¢ is chosen according to (3) based on a sample of size vector
m(n) generated by Algorithm XSRM which is a sequence-generating procedure
(by Lemma 3). From Lemma 2, L(¢!) > const €(m(n), k*), i.0. with probabil-
ity 0 and since A = 1 then from Lemma 5 it follows that |[m(n)—m*(n)|a > 1

i.0. with probability 0 where m*(n) =argmin,,,.; | —mm €(m, £*). O
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