
On the algorithmic complexity of static

structures

J. Ratsaby† and J. Chaskalovic‡

November 7, 2010

†Department of Electrical and Electronics Engineering, ‡Department of

Mathematics and Computer Science, Ariel University Center, Ariel 40700, IS-

RAEL and IJLRDA, University Pierre and Marie Curie - Paris VI, FRANCE

†ratsaby@ariel.ac.il, ‡jch@ariel.ac.il

Abstract

From the theory of algorithmic information introduced by Chaitin

[4] it is known that the more complex a system that is acting on a

random binary input sequence the more it can deform the stochastic

properties of the sequence. It is an open question as to whether such a

relationship exists in real complex systems, for instance, systems that

are governed by physical laws. The paper provides a first indication

that this is true for a system comprised of a static structure described

1

Ratsaby·Chaskalovic 2

by hyperbolic partial differential equations and is subjected to an ex-

ternal random input force. The system deforms the randomness of an

input force sequence in proportion to its algorithmic complexity. We

demonstrate this by numerical analysis of a one-dimensional vibrat-

ing elastic solid (the system) on which we apply a maximally-random

force sequence (input). The level of complexity of the system is con-

trolled via external parameters. The output response is the field of

displacements observed at several positions on the body. The algo-

rithmic complexity and stochasticity of the resulting output displace-

ment sequence is measured and compared against the complexity of

the system. The results show that the higher the system complexity

the more random-deficient the output sequence.

1 Introduction

Measuring the complexity of static structures has been traditionally a prob-

lem in the systems analysis literature. The world is full of dynamic complex

systems that consist of simple components but which yet have a complex

deterministic behavior. Examples of such systems are cellular automata,

ecosystems, social systems, sensor networks (consisting of many simple pro-

cessing units). A complex system is one whose static structure is intricate

and requires a long description. For dynamic systems the notion of com-

plexity is usually attributed to the high level of unpredictability of their

behavior. While a complex system does not necessarily have to be stochastic

Ratsaby·Chaskalovic 3

it still takes a considerable amount of analysis and computations to deter-

mine its behavior (the connection between randomness and complexity will

be discussed later). Many problems require the analysis of the complexity

of processes and systems, for instance, in control and manufacturing engi-

neering [3] one studies how complexity effects the tradeoff between hardware

cost (which rises as the system becomes more complicated) versus improved

system performance. The research field of complex systems studies different

measures to quantify the behavioral complexity of a system. In computer

science, the notion of computational complexity serves as a measure of how

difficult it is to compute a solution for a given problem. Computations take

time and complexity here means the time rate of growth to solve the prob-

lem. Yet another related kind of complexity measure (studied in theoretical

computer science) is the so-called algorithmic (or Kolmogorov) complexity

which measures how long a computer program (on some generic computa-

tional machine) needs to be in order that it produces a complete description

of an object. Interestingly, the theory says that if we consider as an object

a system that can process input information (available as a binary sequence

of high entropy) and produces as output another sequence then the amount

of randomness in the output sequence is inversely proportional to the algo-

rithmic complexity of the system.

While this has been traditionally studied in the context of Turing ma-

chines and randomness, it is unknown whether there is such a connection

between complexity and randomness for more general systems, for instance,

Ratsaby·Chaskalovic 4

those governed by physical laws. As an example of a real system, consider

the object to be a bridge. The bridge has some finite descriptive complexity

consisting of all the information contained in the engineering design docu-

ments. These documents can be put into a single computer file that can be

represented by a finite binary string z. This binary sequence has an algo-

rithmic complexity which is defined as the length of the shortest computer

program that can generate the sequence. This is defined as the Kolmogorov

complexity K(z) of the string z (see [6]). Now consider a random input

force sequence applied at one of the two ends of the bridge, for instance,

suppose there is a person jumping up and down sporadically on the bridge

at its entrance (position 0). Denote by x the binary sequence representing

this up/down symbols over some fixed time-interval [0, T]. Intuitively, being

that x is random makes its complexity K(x) maximal and hence close to

its actual length `(x) since there is no redundancy in the patterns of x that

can be used to compress it significantly below its length. Now consider an

observer which measures the displacements on the bridge at its other end

(position L). He records this over the time interval [0, T] and compares it to

a fixed threshold thereby producing a binary output sequence y consisting of

up/down symbols that represent the displacement of the bridge at position

L. This sequence has a finite algorithmic complexity K(y).

In this paper we show that for such a physical system, the system com-

plexity K(z), the output complexity K(y) and its level of randomness are all

related and there exist statistically significant correlations between them.

Ratsaby·Chaskalovic 5

Ratsaby [8] introduced a quantitative definition of the information content

of a static structure (a solid) and explained its relationship to the stability

and symmetry of the solid. His model is based on concepts of the theory of

algorithmic information and randomness. He modeled a solid as a selection

rule of a finite algorithmic complexity which acts on an incoming random

sequence of particles in the surroundings. This selection mechanism is in-

trinsically connected to the solid’s complex non-linear structure (partly a

consequence of its internal atomic vibrations) and its intricate time-response

to external stimulus. As postulated in [8], a simple solid is one whose infor-

mation content is small. Its selection behavior is of low complexity since it

can be described by a more concise time-response model (shorter computer

program). The solid’s stability over time is explained in [8] by using the

stochastic property of the frequency stability of a random sequence. Accord-

ingly, the physical stability of the system (solid) is intrinsically and inversely

proportional to the ability of the solid to deform the input sequence and

make it less random, i.e., more random-deficient.

The current paper (which is the full version of an earlier paper [9])

presents first evidence that suggests that the model of [8] holds. We choose

to simulate a solid structure which consists of a one-dimensional vibrating

solid-beam to which we apply a random input force sequence and observe the

displacement of the beam at its other end for a finite interval of time. We

determine empirically the relationship between the algorithmic complexity

of the structure to the stochasticity of the output response.

Ratsaby·Chaskalovic 6

The paper is organized as follows: in section 2 we give a brief introduction

to the main concepts of the area of algorithmic complexity and randomness.

In section 3 we state concisely the aim of the paper. In section 4 we develop

the equations that describe the solid deformations and compute the numerical

equations needed to produce the computer simulation of the solid’s response

to external forces. In section 5 we state the experimental setup, results and

analysis. In section 6 we state the conclusions.

2 Background

In order to give the formal definition of Kolmogorov complexity we need to

mention a few basic definitions from the theory of computability [12]. Let N

denote the set of natural numbers. A function f of n variables defined on

Nn is total if for all x ∈ Nn, f(x) 6= ∞. A partial function f of n variables

defined on the extended natural numbers Nn
= (N∪ {∞})n has as an image

the set N. Partial means that there exist some input x ∈ Nn for which

f(x) = ∞. Unless otherwise stated we assume that any input variable x is

in Nn. A register machine (RM) [11] is a simple abstract computer which

serves as model for mathematical calculation (register machines coincide with

Turing machines and Church’s λ-definable functions [5]). It is specified by a

program P =< c0, c1, . . . , ch−1 > consisting of a finite sequence of commands

ci. The commands operate on registers R1, R2, . . ., each capable of storing

an arbitrary natural number. There are three possible commands: the clear

Ratsaby·Chaskalovic 7

command, "Ri ← 0", the increment command "Ri ← Ri + 1" and the

conditional jump command "Jump to k if Ri = Rj" which means go to

position k in the program and perform command ck. The following is an

example of a program which copies the value in register Ri into Rj:

c0 : Rj ← 0

c1 : Jump to 4 if Ri = Rj

c2 : Rj ← Rj + 1

c3 : Jump to 1 if R1 = R1

c4 :

Note that command c3 simply is an unconditional jump to command c1. An

RM-program P computes a (partial) function f(x1, x2, . . . , xn) by placing

in register R1, . . . , Rn the input values x1, . . . , xn and setting all other reg-

isters to 0. Then, execution starts with the first command c0. If P halts

then the final value of R1 contains the value f(x1, x2, . . . , xn) . If P fails to

halt then f(x1, . . . , xn) = ∞. If f is a partial function on n variables we

say that f is RM-computable if f is computed by some RM program. The

renowned Church-Turing thesis ([10]) claims that every algorithmically com-

putable function is RM-computable. Note that computability does not imply

the existence of an efficient algorithm or program to compute the function,

for instance, there may not always be a program that takes an amount of

time polynomial in the number of inputs n to complete the computation.

Ratsaby·Chaskalovic 8

The theory of recursive functions puts in a formal way the imprecise

notion of effective computations, i.e., computations that are RM-computable.

We briefly review a few needed basic definitions. An initial function is one

of the following three functions: the all-zero function Z(x) = 0 for all x, the

successor function S(x) = x+1, the projection function In,i(x1, . . . , xn) = xi.

A function f is partial recursive if it can be obtained from initial functions

g, h by finitely many applications of any of the following three operators:

(1) composition (f(x) = g(h(x))), (2) primitive recursion (f(x, 0) = g(x) or

f(x, y + 1) = h(x, y, f(x, y)) where we allow n = 0 so x could be missing

as an argument), (3) minimization (f(x) = argminy{g(x, y) = 0} where

argmin is also denoted by µ operator and it returns the least number b such

that g(x, b) = 0 or f(x) = ∞ if no such b exists). Note that the value

of the minimization operator may not exist in which case a program for it

will not halt; this means the function is partial recursive. It is known that

all computable functions are partial recursive and every partial recursive

function is computable. A partial recursive function whose value for any

input x is well-defined (not infinity) is called total recursive function. Let

us give a few examples. First, every one of the initial functions is a total

recursive function. Let us denote the predecessor function by pd(x) = x− 1

if x > 0 else 0. We can define f(x) = pd(x) by primitive recursion as follows:

first choose as the initial functions g(x) = Z(x), h(x, z) = I2,1(x, z) = x.

Then write f(0) = g(x), f(x + 1) = h(x, f(x)). Hence the function pd is

primitive recursive. As another example, denote by (x − y)+ = x − y if

Ratsaby·Chaskalovic 9

x ≥ y else 0. We show that the function f(x, y) = (x − y)+ is obtained

using primitive recursion based on the predecessor function pd as follows:

first, let g(x) = x, h(x, y, z) = pd(z). Thus we may write f(x, 0) = g(x) and

f(x, y + 1) = (x − (y + 1))+ = (x − y − 1)+ = h(x, y, (x − y)+) and hence

(x − y)+ is primitive recursive. It is known that every primitive recursive

function (i.e., one which is obtained from initial functions using only the first

two operators) is total recursive and is computable. But the converse is not

always true, i.e, not every computable function is primitive recursive since

some computable functions are not total. In fact, not every total computable

function (i.e., one whose program halts on every input) is primitive recursive.

Let us show an example of a computable function which is not total. First

let us define the function square(x) which returns the square of x and is

primitive recursive since it can be defined in terms of the primitive recursive

function mul(x, y) which returns the product of x and y. Now consider the

function squareroot(x) which computes the square root of a number x and

is defined as follows (we use pseudo-code):

squareroot(x){

initialize t← 0

while (square(t) 6= x) do {

t← t+ 1

}

return t

}

Ratsaby·Chaskalovic 10

Clearly, this program may not halt on all inputs x. In fact it only halts

whenever the input x is a perfect square. Hence the function squareroot(x)

is not total, but rather partial recursive.

Based on the unique-factorization theorem for natural numbers (see for in-

stance, [12]) which states that every number can be represented as a product

of prime numbers raised to some unique sequence of natural number expo-

nents, it is possible to represent any RM program P by a unique number

z. For any natural number z, denote by {z} the program P whose unique

number is z or the empty program if no such program exists. Denote by

{z}n(x) the function of n variables x = (x1, . . . , xn) defined by a program

whose unique number is z. We can now introduce the notion of a universal

function. A function Φn(z, x) = {z}n(x) is called universal since it codes

(indexes) every computable function of n variables x = (x1, x2, . . . , xn) as z

varies. The universal function Φn is partial recursive (and hence computable)

for n = 1, 2, A program computing the function Φn is called an inter-

preter. For instance, the function Φ1 is universal for the set of all computable

functions of one variable. Thus if we define φi(x) = Φ1(i, x) then φ0, φ1, . . .

is an enumeration of all partial computable functions of one variable. It is

known that there is no computable universal function for the set of all total

computable functions of one variable.

We now proceed to introduce the formal definition of Kolmogorov com-

plexity. Kolmogorov [6] proposed to measure the conditional complexity of a

finite object x given a finite object y by the length of the shortest program P

Ratsaby·Chaskalovic 11

which reconstructs x given y as input. In a formal context, an object is rep-

resented by a unique finite binary sequence which is in the set of all finite bi-

nary sequence B∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .} where ε denotes the empty

string. There is a correspondence between finite binary sequences and natu-

ral numbers. It is a one-to-one mapping from B∗ onto the natural numbers N

and is defined by: (ε, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . where

the first element of a pair is the binary sequence and the second element is the

corresponding natural number. Formally, a binary sequence a = (an . . . a1a0)

is represented by the natural number x = 2n+1− 1 +
∑n

i=0 ai2
i. We consider

both elements of a pair as the same object. With this mapping in place

it is clear that computable functions of one variable over N correspond to

computable functions over B∗.

Let y be a finite binary string with a corresponding natural number y′.

Consider a program {y′} that simulates an RM on a universal machine Φ,

i.e., Φ1(y′, p′) = {y′}1(p′) for any p′ ∈ N. Let x be any binary string and let

p be a program with a unique natural number p′ such that Φ1(y′, p′) = x.

We henceforth use the simpler notation and denote by Φ(y, p) ≡ Φ1(y′, p′)

where y and p are the finite binary strings that correspond to the natural

numbers y′ and p′. We can now state a formal definition of the Kolmogorov

complexity of an object x given object y:

KΦ(x|y) = min{`(p) : Φ(y, p) = x} (1)

Ratsaby·Chaskalovic 12

where `(P) is the length of the program p (note that there may be many pro-

grams that produce x given y and we are only interested in the minimal one).

In other words Φ is a universal partial recursive function acting as an inter-

preter (or description method) that can emulate any RM. The complexity of

x is taken with respect to this universal machine which when provided with

an input binary string y (that constitutes an index to a specific RM which is

represented by the unique natural number y′) and an input program p to run

on this RM it then outputs a binary sequence corresponding to the object x.

Thus the Kolmogorov complexity of x given y as defined in (1) is the length

of the shortest program that generates x based on Φ given y as input. Note

that when y equals the empty binary sequence, this gives the unconditional

Kolmogorov complexity K(x). The so-called Invariance Theorem states that

there is a Φ such that the complexity KΦ(x|y) is no more than a constant

away from the complexity based on any other universal partial recursive func-

tion Ψ, i.e., KΦ(x|y) ≤ KΨ(x|y) + constΨ where the constant is independent

of x and y. This implies that for any pair of universal functions Ψ and Ψ′

the following holds: |KΨ(x|y) − KΨ′(x|y)| ≤ constΨ,Ψ′ . Thus the notion of

Kolmogorov complexity is absolute in the sense that the choice of universal

machine only effects the complexity of x up to a constant independent of x.

In order to appreciate this consider two programming languages LISP and

FORTRAN each with its corresponding interpreter which when given a string

y it produces a specific RM program (partial recursive function) from a given

input program p written in LISP or FORTRAN, respectively, that outputs

Ratsaby·Chaskalovic 13

x. Both language interpreters will output x and the invariance theorem says

that the shortest LISP program and the shortest FORTRAN program that

output x are approximately equal in length to within an additive constant

that does not depend on x.

We now proceed to discuss how complexity relates to randomness. Let

us extend the notation B∗ introduced above for the set of all finite binary

sequences and denote by Bn the set of all finite binary sequences of length

n. An admissible selection rule R [13] is a partial recursive function on

B∗ that picks certain bits from a binary sequence x. Let R(x) denote the

selected subsequence. ByK(R|n) we mean the length of the shortest program

computing the subsequence R(x) given n. Kolmogorov introduced a notion

of randomness deficiency δ(x|n) of a finite sequence x ∈ Bn where δ(x|n) =

n − K(x|n) and K(x|n) is the Kolmogorov complexity of x not accounting

for its length n, i.e., it is a measure of complexity of the information that

codes only the specific pattern of 0s and 1s in x without the bits that encode

the length of x (which is log n bits). Randomness deficiency measures the

opposite of chaoticity of a sequence. The more regular the sequence the less

complex (chaotic) and the higher its deficiency. An infinitely long binary

sequence is regarded random if it satisfies the principle of stability of the

frequency of 1s for any of its subsequences that are obtained by an admissible

selection rule [7?].

In [6] it was shown that the stochasticity of a finite binary sequence x

may be precisely expressed by the deviation of the frequency of ones from

Ratsaby·Chaskalovic 14

some 0 < p < 1, for any subsequence of x selected by an admissible selection

rule R of finite complexity K(R|n). The chaoticity of x is the opposite of its

randomness deficiency, i.e., it is large if its Kolmogorov complexity is close to

its length n. The works of [1, 2, 6, 13] relate this chaoticity to stochasticity.

In [1, 2] it is shown that chaoticity implies stochasticity. This can be seen

from the following relationship (withp = 1
2
):

∣∣∣∣ν(R(x))− 1

2

∣∣∣∣ ≤ c

√
δ(x|n) +K(R|n) + 2 logK(R|n)

`(R(x))
(2)

where for a binary sequence s, we denote by ν(s) = #(s)
`(s)

the frequency of 1s

in s where #(s) denotes the number of 1s in s, and `(R(x)) is the length of

the subsequence selected by R, c > 0 is some absolute constant. From this we

see that as the chaoticity of x grows (randomness deficiency decreases) the

stochasticity of the selected subsequence grows (bias from 1
2
decreases). The

information content of the selection rule, namely K(R|n), has a direct effect

on this relationship: the lower K(R|n) the stronger the stability (smaller

deviation of the frequency of 1s from 1
2
).

3 Aim of the paper

In this paper we provide first evidence that the basic notion of randomness

and its relationship to complexity (as discussed in the previous section) un-

derlie the behavior of physical systems. This supports the ideas introduced in

[8]. We focus on a system composed of a vibrating elastic solid (described by

Ratsaby·Chaskalovic 15

the classical equations of solid mechanics) and its interaction with a random

input force. We show that as a result of this interaction, the deformation of

the solid over time can be described as an output sequence whose stochastic

and algorithmic properties follow those of an output subsequence selected by

a selection rule of a finite complexity. Based on a large sample of computer-

generated simulations of such solids we provide statistically significant results

that show that the complexity of the system inversely affects the complexity

of the solid deformations (observed output) and its stochasticity agrees with

the theory (2). The next section describes the solid’s mechanical equations.

4 The solid’s equations

The solid consists of an elastic homogeneous and one-dimensional beam of

length L. Let us denote by x the position on the beam so that 0 ≤ x ≤ L and

by −→x the unit vector on the x-axis. Denote by −→f = f(x, t)−→x a force applied

at time t on position x in the direction of −→x . We define by−→u = u(x, t)−→x the

displacement at time t on x. The classical equation which describes the field

of displacements u at a specific position and time when a force f is applied

is as follows:

(
∂2u

∂t2
− E

ρ

∂2u

∂x2

)
(x, t) = f(x, t), (0 < x < L, t > 0), (3)

Ratsaby·Chaskalovic 16

where E is Young’s modulus (the ratio of stress to corresponding strain

when the beam behaves elastically), and ρ is the mass density. We impose

the following boundary conditions:

u(0, t) = u(L, t) = 0, ∀t > 0, (4)

i.e., the beam is fixed at its two ends so the only displacements is due to

internal elasticity stresses of the material. Let u0(x), u1(x) be two given

functions that satisfy u0(0) = u0(L) = 0. As initial conditions we set the

following,

u(x, 0) = u0(x), 0 < x < L, (5)
∂u

∂t
(x, 0) = u1(x), 0 < x < L. (6)

Equations (3-6) represent the model that describes the deformations of the

elastic solid. In order to simulate the response of the solid to external forces

we use the following numerical approximation. This is performed by intro-

ducing a regular mesh of the [0, L] interval with a constant step 4x such

that N + 2 equally spaced points are distributed on [0, L]. Specifically, we

have the following mesh: x0 = 0, xi = xi−1 +4x, 1 ≤ i ≤ N + 1, xN+1 = L

and 4x = L
N+1

.

Similarly, if time t belongs to the interval [0, T], we introduce M + 1

discrete time points t0 = 0, tn = n4t, 1 ≤ n ≤ M , where 4t = T
M
. Let us

Ratsaby·Chaskalovic 17

introduce the approximation sequence ũ(j, n), 1 ≤ j ≤ N and 1 ≤ n ≤ M

such that ũ(j, n) ≈ u(xj, tn), where u is solution of (3-6).

Let us also denote by f̃(j, n) ≡ f(xj, tn). We consider the following finite

differences scheme to get an approximation of (3-6):

ũ(j, n+ 1) = 2ũ(j, n)− ũ(j, n− 1) + (4t)2f̃(j, n)

+

(
4t
4x

)2
E

ρ
[ũ(j + 1, n)− 2ũ(j, n) + ũ(j − 1, n)] , (7)

ũ(0, n) = ũ(N + 1, n) = 0, (8)

ũ(j, 0) = u0(xj), (9)

ũ(j, 1) = u0(xj) + (4t)u1(xj) (10)

provided that the following CFL stability condition on the solid’s

parameters is satisfied, √
E

ρ

4t
4x
≤ 1.

In the next section we describe the experimental setup and results

produced by (7-10).

5 Experimental results

We performed a series of experiments which consisted of several hundreds

simulation trials of the response of a vibrating solid (henceforth called a

Ratsaby·Chaskalovic 18

system) to an input force sequence. We used the numerical equations of

section 4 as the solid’s model. As a choice of parameters we took L = 20,

T = 70, E = 0.7, ρ = 0.4, N = 30, M = 200.

A system consists of a solid whose length is divided into 31 positions,

0, 1, . . . , 30. A force sequence f̃(15, n) is applied at position 15 while for all

remaining positions the applied force is of zero magnitude. The non-zero force

sequence f̃(15, n) makes the solid vibrate a priori hence we call the system

a vibrating solid. This force sequence consists of a series of ternary values

−1, 0,+1 scaled by a constant of 30. The length of the sequence is 200 and

the symbols are obtained sequentially by a repeated series of random draws

using the random variable F with the following probability distribution: let

0 < p ≤ 1, then F takes the value 0 with probability 1−p, the value +1 with

probability p
2
, and −1 with probability p

2
. The complexity of the sequence

is controlled by the choice of p. We used a different p for different trials

by randomly picking its value and using it as the parameter value p of the

distribution of the random variable F .

To the system we apply an input force sequence Ĩ(1, n) at position 1 con-

sisting of 200 randomly drawn binary values +1 and −1 each with probability

1/2 and scaled by a constant 10. Note that this input force is applied to a vi-

brating solid (as mentioned above). As the output of the system, we observe

the displacement sequences at five positions ũ(N − 5, n), . . ., ũ(N − 1, n),

1 ≤ n ≤ 200 and convert their values a from real to ternary V (a) using the

following rule: given a ∈ R then V (a) = +1, 0 and −1 if a > τ , |a| ≤ τ

Ratsaby·Chaskalovic 19

and a < −τ , respectively, with τ = 0.1. We then append these five ternary

sequences together to form a single ternary output sequence of length 1000

(henceforth this is called the output sequence). We also consider the subse-

quence of this output sequence which consists only of the values +1, −1, i.e.,

without the zeros (we call this the output subsequence).

As an estimate of the complexity K(x) of a sequence x we use a standard

compression algorithm (Gzip, which is a variation of the algorithm of [14]) to

compress x. The length of the resulting compressed version of x is used as an

approximation ofK(x). Henceforth, when we say system complexity we mean

the length of the compressed version of the sequence consisting of all applied

forces appended sequentially into one string with 31 · 200 = 6200 ternary

symbols (in our experiments, all but the f̃(15, n) force are just all-zeros hence

in this 6200-long string approximately only 200 bits contain information).

The output complexity is the length of the compressed version of the ternary

output sequence.

Let M denote the ratio of the compressed length divided by the un-

compressed length of the system and let O denote this ratio for the output

sequence. A largeM (or O) means that the compressed length is larger hence

the complexity of the system (or output sequence) is larger. We sometime

simply refer to M and O as the system and output complexity, respectively.

Figure 1 displays two sets of trials.

In each trial of set (a) a random input force sequence was applied at

position 1 (as described above). In each trial of set (b) no input sequence

Ratsaby·Chaskalovic 20

0.025 0.03 0.035 0.04 0.045
0.15

0.19

0.23

0.26

0.3

M

O

0.03 0.035 0.04 0.045
0.1

0.15

0.2

0.25

0.3

M

O
Figure 1: Output’s complexity O versus the complexity M, (a) with random
force input, (b) with no input

was applied. As is seen, the resulting behavior is clearly different in each of

the two sets of trials. With an input present, as the complexity M increases

there appears to be a decreasing trend in the value of O and an increase in

the spread, i.e., the range of possible values of O. With no input, both O

and its spread of values are basically constant with respect to M .

In Figure 2 we plot the frequency of 1s in the output subsequence (this is

the number of 1s divided by the number of non-zero symbols in the output

sequence).

As can be seen, with an increase in the complexity there appears to be an

increase in the spread of possible frequency values. Before we further discuss

these results we proceed to perform the statistical tests.

Ratsaby·Chaskalovic 21

0.025 0.03 0.035 0.04 0.045
0.2

0.4

0.6

0.8

freq_pos_1

M

Figure 2: Output frequeny of 1s versus M

5.1 Analysis

In order to test the significance of these results we estimate the output com-

plexity O as a function of the complexity M . Denote by X and Y the

random variables corresponding to M and O, respectively. Let the underly-

ing conditional probability distribution function be P (Y |X) with marginals

P (X), P (Y). As a sample we use the set of trials of Figure 1(a), denoted by

S = {(xi, yi)}Ni=1 with cardinality N = 723, and do linear regression in order

to estimate Y with dependence on X. Figure 3 shows the resulting estimate,

Ŷ (X) = 0.341− 2.284X, (11)

surrounded by the 95% confidence limits for the regression line, i.e., the

actual regression line of the population falls within the limits defined by the

two curved dashed lines.

Ratsaby·Chaskalovic 22

Figure 3: Estimate for output complexity Y as a function of complexity X

The following summarizes the accuracy of this linear regression estimate:

R2 = .246187335 is the coefficient of determination which measures the re-

duction in total variation of Y due to X and is defined as R2 = 1−(SSR/SS)

with SSR =
∑

i

(
yi − Ŷ (xi)

)2

being the sum of squares of the residuals,

SS =
∑

i (yi − ȳ)2 the total variation and ȳ = 1
N

∑
i yi . The square root R is

the coefficient of correlation between the independent variable X and depen-

dent variable Y . The standard error SE = .015128505 where SE =
√

1
N
SSR.

Dividing SSR and SS by their degrees of freedom and taking their ratio

F = SS/SSR as an overall F test gives F (1, 724) = 236.4508 which amounts

to a p-value less than 0.000000. Thus with very high confidence the resid-

ual variance differs from the total variation hence the linear estimate Ŷ (X)

Ratsaby·Chaskalovic 23

explains well the variation of Y . The Durbin-Watson d value is 1.994 which

implies that the assumptions on the residuals being uncorrelated and nor-

mally distributed are met.

Next, from Figure 1(a) it is evident that as the complexity X increases

the spread of the output complexity Y increases. To quantify this assertion

let us represent this spread by the random variable

Z(X, Y) = Y − min
y:P (y|X)>0

y. (12)

As we have done above for Y we now estimate Z with dependence on X (the

model is shown only the value of X and asked to predict Z). We form the

following sample (based on S),

ζ = {(xi, zi)}Ni=1 , zi = yi − min
xj∈NN(xi,k)

yj (13)

where NN(x, k) denotes the set of k nearest sample point xj to x satisfying

xj ≤ x. Figure 4 shows the resulting estimate equation (based on k = 7),

Ẑ(X) = −0.028 + 1.35X

for the regression line. This verifies the increase in the value of Z (i.e., in

the spread of the output complexity Y) as the complexity X increases. The

following summarizes the accuracy of this regression estimate: R2 = .098,

the F -ratio is F (1, 724) = 79.548 with a p-level smaller than .000000. The

Ratsaby·Chaskalovic 24

standard error of the estimate is SE = .015413 with a Durbin-Watson d =

1.938. Thus the estimator Ẑ(X) accurately captures the variability of Z, i.e.,

the spread of output complexity Y .

Figure 4: Estimate of the spread in output complexity Z as a function of the
system’s complexity X

As mentioned above, Figure 1(b) shows that when no input is present the

behavior of the output complexity is almost unaffected by the system’s com-

plexity. To test this, we take the set of trials used in Figure 1(b) and study

the correlation between the output complexity Y and the system complexity

X. As shown in Figure 5 there is hardly any correlation between them and

the slope of the regression is almost zero.

We already commented on the increasing spread of possible frequency

Ratsaby·Chaskalovic 25

Figure 5: The no-input scatter plot of output complexity Y versus system’s
complexity X

values of the output subsequence (Figure 2) as the system’s complexity in-

creases (with a random input sequence being applied). Denote by Y the

probability of having a +1 appear in the output subsequence and let X be

the system’s complexity. Let us define the following random variable

W (X) = max
y:P (y|X)>0

y − min
y:P (y|X)>0

y

to represent the spread in the possible values of the probability of +1. We

Ratsaby·Chaskalovic 26

form the following sample (based on S),

ζ ′ = {(xi, wi)}Ni=1 , wi = max
xj∈NN(xi,k)

yj − min
xj∈NN(xi,k)

yj (14)

with k = 7. Figure 6 shows (on the top scatter plot with red x symbols) the

frequency of 1s in the output subsequence versus the system complexity X.

The bottom plot (with blue 4) shows the sample ζ ′ with the w component

on the same vertical axis.

0.028 0.03 0.032 0.034 0.036 0.038 0.04 0.042 0.044 0.046
0

0.07

0.14

0.21

0.28

0.35

0.42

0.49

0.56

0.63

0.7

X

O
ut

pu
t F

re
q

P
os

 1

Figure 6: Scatter plot of frequency of 1s in the output subsequence (top
cluster of red xs). The corresponding sample ζ ′ used to estimate the spread
W as a function of the system’s complexity X (bottom plot of blue 4)

We estimate W based on ζ ′ first transforming the wi values to w2
i and

then doing linear regression to estimate W 2. Figure 7 shows the resulting

Ratsaby·Chaskalovic 27

estimate equation −0.023 + 1.083X for W 2. It follows that the estimate of

Figure 7: Estimate of the square of the spread W 2 of the output frequency
of 1s as a function of the system’s complexity X

W is

Ŵ (X) =
√

1.083X − 0.023. (15)

This verifies the increasing trend in the spread of values of the frequency

of 1s as the system’s complexity X increases. The following summarizes

the accuracy of this linear regression estimate: R2 = .135, the F -ratio is

F (1, 724) = 113.06 with a p-level smaller than .00000. The standard error of

the estimate is SE = .01037 and the Durbin-Watson d = 1.71.

Ratsaby·Chaskalovic 28

5.2 Some more details on the simulations

Several additional graphs showing additional details of the above experiments

are shown below. Figure 8 shows the observed system description rate M

(scatter plot in blue) and the entropy (the minimal expected number of bits

per character) used for the system description (red solid curve). They are

plotted versus the probability parameter p (in the range 0 < p ≤ 1) used

to generate the random force sequence at position 15 of the solid. It follows

from the procedure (described above) of generating the system’s vibrating

force that the entropy of the random variable F is H(p) = −(1− p) log(1−

p)−p log p
2
. As seen from Figure 8, in order to get a higher system complexity

one needs to draw a force sequence with a parameter p closer to 1/2. There

is some additional textual information (145 bytes) appended into each of

the files that contain the 6200-long ternary string that describes the system.

Since M is the ratio of the compressed to uncompressed versions (the actual

uncompressed length as reported by the operating system is 6377 bytes)

then to get the rate for the number of bits per character used to describe the

system (considering just the 145-byte textual information and the 200-byte

force sequence at position 15) we multiply M by 6377 · 8 and divide by 345.

The next series of figures show examples of the actual solid’s response

(displacement u is shown on the z-axis) over time (y-axis) along the positions

of the solid (x-axis). In all, the input sequence is maximally random with

probability 1/2 for +1, −1. The magnitude of the input force sequence is

10 and the magnitude of the system’s vibrating force sequence is 30. The

Ratsaby·Chaskalovic 29

0 0.5 1
0

1

2

4

5

6

7

p

H
(p

)

M
(p

)

Figure 8: Entropy H (red) v.s. observed system complexity M (blue) as a
function of parameter p which represents the probability of having a non-zero
(i.e. ±1) symbol in the system’s vibrating force sequence (applied at position
15)

two force sequences are superimposed on the same 3D-plot that displays the

displacement response. The output sequence is taken as the concatenation of

the string obtained from the displacement at the last five positions (appearing

on the plot to be closest to the reader). Figure 9 shows the response to a

system of high complexity. Figure 10 shows a trial without a system force.

This represents a low-complexity system. Figure 11 is the response of a

system of a mid-level complexity. Figures 12 and 13 show the response when

no input force is applied.

Ratsaby·Chaskalovic 30

Example of a complex System force (M=0.043)

Mtrx

Figure 9: Response to a random input force sequence (applied at position
0). System’s vibrating force (at position 15) is of high complexity. Output
is seen to be of low complexity.

6 Conclusions

Based on these results, it is clear that when a random input sequence is

applied to the vibrating solid (system) the observed output sequence is not

simply a result of the random vibrating force sequence which is part of the

system (applied at position 15) but is a direct consequence of the interaction

of the system with an external random input force–when no input is present

Ratsaby·Chaskalovic 31

Example of no System force (M=0.03)

Mtrx

Figure 10: Response to a random input force sequence (applied at position
0). System has no vibrating force applied hence is of minimal complexity.
The output is seen to be of high complexity.

no significant correlation exists between the system and output complexities.

The strong negative correlation between these two complexities (11) suggests

that the system deforms the input randomness and produces a less complex

output sequence. This agrees with the model introduced in [8] which says

that a solid effectively acts as a selection rule picking bits from the input

sequence to produce a less random output. This is evident in the significant

decrease in the output complexity (Figure 3) and increase in its spread of

values (Figure 4) indicating that the possibility of producing a less-complex

Ratsaby·Chaskalovic 32

Example of a medium complexity System force (M=0.035)

Mtrx

Figure 11: Response to a random input force sequence (applied at position 0).
System’s vibrating force (at position 15) has a mid-level complexity. Output
is seen to be of lower complexity than the example in Figure 10.

output sequence increases as the system’s complexity rises.

The selected subsequence consists of ±1 with zeroes deleted. Being less

chaotic, its stochastic level decreases. This is evident in the increase in the

square of the spread of values of the frequency of 1’s (Figure 7). The higher

the system complexity, the higher the spread, i.e., the larger the bias from 1/2,

the more the chance that the output sequence be less chaotic and random.

If we divide the compressed length of the system by the length of the output

Ratsaby·Chaskalovic 33

Example of a complex System force (M=0.042): No Input

Mtrx

Figure 12: The no-input response to a system’s force (at position 15) of high
complexity.

(binary) subsequence and denote it by X ′ then re-estimate W 2 based on X ′

we obtain the following estimate for W ,

Ŵ (X ′) =
√
−0.03 + 0.173X ′. (16)

The R2 = .0924, SE = .0106, F (1, 724) = 73.725 and the p-level less

than 0.00000. The Durbin-Watson d = 1.66. This estimate of the spread

agrees with the rate predicted by the theory (2). To see this, let x be

Ratsaby·Chaskalovic 34

Example of a simple System force (M=0.031): No Input

Mtrx

Figure 13: The no-input response to a system’s force (at position 15) of low
complexity.

the input sequence, let the system be the selection rule R with a system

complexity K(R|n), let R(x) be the output subsequence (consisting only of

binary values ±1), let ν(R(x)) be the frequency of 1s in this subsequence

and take the deficiency of randomness δ(x|n) of the input sequence to be

zero (since the input sequence is maximally random). Then the theoretical

rate of the maximal possible deviation (spread) between ν(R(x)) and 1/2 is

O(
√
K(R|n)/`(R(x))). This is the same rate in which the estimate of spread

W grows with respect to the X ′ in (16).

To summarize, the results above imply that a system based on classical

Ratsaby·Chaskalovic 35

equations of mechanics that consists of a vibrating solid subjected to ex-

ternal random input-force acts like an algorithmic selection rule of a finite

complexity. It produces an output sequence whose stochastic and chaotic

properties are effected by the system’s complexity as predicted by the theory

of algorithmic randomness.

References

[1] A. E. Asarin. Some properties of Kolmogorov δ random finite sequences.

SIAM Theory of Probability and its Applications, 32:507–508, 1987.

[2] A. E. Asarin. On some properties of finite objects random in an algo-

rithmic sense. Soviet Mathematics Doklady, 36(1):109–112, 1988.

[3] Deshmukh A.V., Talavage J., and Barash M. Complexity in manufac-

turing systems, part 1: Analysis of static complexity. IIE Transactions,

30(7):645–655, 1998.

[4] G. J. Chaitin. Algorithmic information theory. IBM journal of research

and development, 21:350–359, 1977.

[5] A. Church. A set of postulates for the foundation of logic. Annals of

Mathematics, 33:346–366, 1932.

[6] A. N. Kolmogorov. Three approaches to the quantitative definition of

information. Problems of Information Transmission, 1:1–17, 1965.

Ratsaby·Chaskalovic 36

[7] A. N. Kolmogorov. On tables of random numbers. Theoretical Computer

Science, 207(2):387–395, 1998.

[8] J. Ratsaby. An algorithmic complexity interpretation of Lin’s third law

of information theory. Entropy, 10(1):6–14, 2008.

[9] J. Ratsaby and I. Chaskalovic. Random patterns and complexity in

static structures. In D.A. Karras et. al. (Eds.),Proc. Int’l Conf. on

Artificial Intelligence and Pattern Recognition (AIPR’09), pages 255–

261. ISRST, 2009.

[10] Kleene S.C. Introduction to Metamathematics. North-Holland, Amster-

dam, 1952.

[11] J. C. Shepherdson and H. E. Sturgis. Computability of recursive func-

tions. Journal of the Association of Computing Machinery, 10:217–255,

1963.

[12] M. Sipser. Introduction to the Theory of Computation. Course Technol-

ogy, 1997.

[13] V. V. Vyugin. Algorithmic complexity and stochastic properties of finite

binary sequences. The Computer Journal, 42:294–317, 1999.

[14] J. Ziv and A. Lempel. A universal algorithm for sequential data com-

pression. IEEE Transactions on Information Theory, 23(3):337–343,

1977.

	Introduction
	Background
	Aim of the paper
	The solid's equations
	Experimental results
	Analysis
	Some more details on the simulations

	Conclusions

