Large width nearest prototype classification on general
distance spaces

Martin Anthony, Joel Ratsaby

Department of Mathematics, London School of Economics and Political Science, Houghton
Street, London WC2A2AE, U.K.

Department of Electrical and Electronics Engineering, Ariel Uniwversity of Samaria, ARIEL
40700, ISRAEL

Abstract

In this paper we consider the problem of learning nearest-prototype classifiers
in any finite distance space; that is, in any finite set equipped with a distance
function. An important advantage of a distance space over a metric space is that
the triangle inequality need not be satisfied, which makes our results potentially
very useful in practice. We consider a family of binary classifiers for learning
nearest-prototype classification on distance spaces, building on the concept of
large-width learning which we introduced and studied in earlier works. Nearest-
prototype is a more general version of the ubiquitous nearest-neighbor classifier:
a prototype may or may not be a sample point. One advantage in the approach
taken in this paper is that the error bounds depend on a ‘width’ parameter,
which can be sample-dependent and thereby yield a tighter bound.

1. Introduction

Learning Vector Quantization (LVQ) and its various extensions introduced by
Kohonen [22] are used successfully in many machine learning tools and applica-
tions. Learning pattern classification by LVQ is based on adapting a fixed set of
labeled prototypes in Euclidean space and using the resulting set of prototypes
in a nearest-prototype rule (winner-take-all) to classify any point in the input
space. As [21] mentions, LVQ fails if Euclidean representation is not well-suited
for the data; and there have been extensions of LVQ to try to allow different
metrics [21, 26] and take advantage of samples for which a more confident (or a
large margin) classification can be obtained. Generalization error bounds with
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dependence on this sample margin are stated in [21, 26] for learning over Eu-
clidean spaces and, as is usually the case for large-margin learning [1], the error
bounds are tighter than ones with no sample-margin dependence. The results
of such work are important as they explain why LVQ works well in practice in
Euclidean metric spaces.

There are learning domains in which it is difficult to formalize quantitative fea-
tures that are encoded as numerical variables which together constitute a vector
space (usually Euclidean) to discriminate between objects that belong to dif-
ferent classes [24]. Learning over such domains requires a qualitative approach
which tries to describe the structure of objects in a way that is similar to how
humans do, for instance, in terms of morphological elements of objects. Ob-
jects are then represented not by numerical vectors but by other means such
as strings of symbols which can be compared using a dissimilarity (or distance)
function. This approach is much more flexible than the one based on numerical
features since there are many existing distance functions [23] and new ones can
be defined easily for any kind of objects, for instance, bioinformatic sequences,
graphs, images, etc., and they do not have to satisfy the requirements of a met-
ric. However, most learning algorithms, in particular neural networks which
have been very succesfull recently, require a Euclidean, or more generally vector
spaces, that are represented by numerical features. Such problem domains are
potential applications of prototype-based learning over non-Euclidean, or more
generally, non-metric spaces.

In [10] we studied learning binary classification with nearest-prototype classi-
fiers over metric spaces and obtained sample-dependent error bounds. In the
current paper we consider learning binary classification on finite distance spaces;
that is, finite sets equipped with a distance function (often called ‘dissimilarity
measure’ [23]) where the classifiers (which we call nearest-prototype classifiers)
are generalizations of the well known nearest neighbor classifier [16]. An im-
portant advantage of a distance space over a metric space is that the triangle
inequality need not be satisfied, which makes our results potentially very useful
in practice. Our definition of distance function is quite loose in that it does not
need to satisfy any of the non-negativity, symmetry or reflexivity properties of
a proper distance function [23]. We still call it a distance because, as far as we
can expect in applying our learning results, any useful space has at least the
non-negativity property and so we will assume in the paper that the distance
function satisfies the non-negativity property.

We consider a family of binary classifiers for learning nearest-prototype clas-
sification on distance spaces, building on the concept of large-width learning
which was introduced in [3] and expanded in various classification settings [4—
12]. The advantage in this approach is that the error bounds depend on the
‘width’ parameter which can be sample-dependent and thereby yield a tighter
error bound. While both width and margin functions represent a form of confi-
dence in classification, width functions are not based on any real-valued function



(in contrast to the notion of margin) but instead are always based specifically on
functions that measure the distance between a point and some set of points that
are labeled oppositely. Analysis of learning with width functions is more effi-
cient because the underlying class of real-valued functions (which is discretized
in order to obtain the classifiers) is less rich than general-real valued classes that
are used in margin-learning. Thus learning classification with a class of width
functions yields tighter data-dependent bounds on the generalization error.

In the current paper, we define a width function which measures the difference
between the distance from a test point z (to be classified) to its nearest negative
prototype and the distance to its nearest positive prototype. The classifier’s
decision is defined as the sign of this difference. The set of prototypes from
which these two nearest ones are obtained is very general in that it can be
any set of points in the distance space. In particular, it can be a subset of
the sample and can be determined via any algorithm. The error bounds that
we state in the current paper apply regardless of the algorithm that is used
to determine these prototypes. The fact that we deal with a distance space,
rather than a metric space, means that the triangle inequality need not be
satisfied. The error bound depends on quantities that can be evaluated directly
from a matrix which consists of the half-space functions over the distance space.
This matrix is a function of the distance matrix of the space and hence it can be
computed efficiently using massively parallel processing techniques, for instance,
as in [13, 14].

Also, as mentioned above, our use of the concept of distance is loose, so that,
for instance, not only that the triangle inequality need not be satisfied, but also
none of the three standard properties of a distance need to be satisfied either
(though, we do assume non-negativity in the current application).

2. Setup

2.1. Nearest-prototype classifiers

For a positive integer n, let [n] := {1,2,...,n}. We consider a finite set X' :=
{z1,...,2y} with a binary set J) = {—1,1} of possible classifications. Let d,
a ‘distance function’, be a function from X x X to R. Let us assume that d is
normalized such that

iam (X) := L) = 1.
diam (X)) 1§r517?§Nd(xz,xJ)

A prototype p; € X is a point in the distance space that has an associated label
o; € Y. We denote by
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a prototype with label o; = 1 and a prototype with label o; = —1, respectively.
When the label of a prototype is not explicitly mentioned we write p;. Given
a fixed integer n > 2, we consider learning the family of classifiers that are
defined by the nearest-neighbor rule defined by a set of n prototypes. We refer
to any such classifier by hg, and it is defined by an ordered set of prototypes
R = {p;}!_, and their corresponding label vector o7 := [o1,...,0,], 0; € Y,
1 <4 < n. The order of the set R can be defined based on any ordering of X
and it allows us to fix ¢ in advance and consider all classifiers obtained by all
ordered sets R. We define hr , to be a nearest-prototype classifier as follows:

let
Ny=Ni(0):={i€[n]:0;,=1}, N =N_(0):={i €[n]: 0, =—1}.

Then, given z,

hio (@) —1 if argmin, ;< d(z,p;) € N_ )
o\T) = -
o 1 otherwise.

Let us denote by £ a sample of m labeled examples

E={(X, YL, - (2)

In the current paper, a prototype p; may be any point in X’; in particular,
one that depends on the sample & directly or via some learning algorithm. For
instance, if (R,0) = &, then hr, is the well known nearest-neighbor classifier
[16]. If the labeled prototype set is only a subset of the sample, (R,o) C £, then
hr.s belongs to a family of the so-called ‘edited nearest-neighbor’ classifiers [19].
The prototype set (R,o) may not necessarily be a subset of the sample &, but
could be derived from it via some adaptive procedure such as the LVQ algorithm
[22], in which case hr , would be the LVQ classifier. In the current paper, any
such classifier is referred to as a nearest-prototype classifier and, as mentioned
above, is denoted by hg ..

2.2. Probabilistic modeling of learning

We work in the framework of the popular ‘PAC’ model of computational learning
theory (see [15, 29]). This model assumes that the labeled examples (X;,Y;) in
the training sample £ have been generated randomly according to some fixed
(but unknown) probability distribution P on Z = X x ). (This includes, as
a special case, the situation in which each X; is drawn according to a fixed
distribution on X and is then labeled deterministically by Y; = ¢(X;) where
t is some fixed function.) Thus, a sample (2) of length m can be regarded as
being drawn randomly according to the product probability distribution P™. In
general, suppose that H is a set of functions from X to {—1,1}. An appropriate
measure of how well h € H would perform on further randomly drawn points is



its error, erp(h), the probability that h(X) # Y for random (X,Y’) which can
be expressed as

erp(h) = P(h(X) £ Y) = P (Yh(X) < 0). (3)

Given any function h € H, we can measure how well h matches the training
sample through its sample error

ere(h) = —|{i+ h(X:) # Vi)

(the proportion of points in the sample incorrectly classified by h). Much clas-
sical work in learning theory (see [15, 29], for instance) related the error of a
classifier h to its sample error. A typical result would state that, for all 6 € (0,1),
with probability at least 1 — 6, for all h € H we have erp(h) < er¢(h) + €(m,9),
where €(m, d) (known as a generalization error bound) is decreasing in m and 0.
Such results can be derived using uniform convergence theorems from probabil-
ity theory [20, 25, 30], in which case e(m,d) would typically involve a quantity
known as the growth function of the set of classifiers [1, 15, 29, 30]. More re-
cently, emphasis has been placed on ‘learning with a large margin’. (See, for
instance [1, 2, 27, 28].) The rationale behind margin-based, or width-based gen-
eralization error bounds is that if a classifier has managed to achieve a ‘wide’
separation between the points of different classification, then this indicates that
it is a good classifier, and it is possible that a better generalization error bound
can be obtained. Margin-based results apply when the classifiers are derived
from real-valued function by ‘thresholding’ (taking their sign). A more direct
approach which does not require real-valued functions as a basis for classifica-
tion margin, uses the concept of width (introduced in [3]) and studied in various
settings in [4-12].

2.3. Width and error of a classifier

We define the width of hr , at a point z€ X as follows:

Whp, () 1= 1gig$§?¢h(x) d(@,ps) - 1giggl<iy?=h(z) d(@,pi). (4)
In words, the width of h at x is the difference between the distance to the nearest-
unlike-prototype of x and the distance to the nearest-prototype to x where unlike
means of a different sign than x. In [12] we consider binary classifiers that are
based on a pair of oppositely labeled prototypes and use this definition of width,
which, in this case, becomes simply d(x,p_) — d(x, p4).

The signed width (or margin) function corresponding to (4) is defined as

fRo(2) = frn, () = hRo(2) Wy, (7). (5)



Note that this definition means that for x equidistant from two oppositely la-
beled prototypes p, ¢ € R that are each the closest to = from all other proto-
types of the same label, the value of the margin fg () at this z is zero. This
definition is intuitive and actually makes the analysis simpler compared to an
alternative definition of width [7].

This definition of width is an application of a more general definition of width,
introduced in [4, 6], which takes the form f(x) = d(x,S_) —d(z, S ), where S_
and S, are any disjoint subsets of the input space that are labeled —1 and 1,
respectively. (In [7-9], a slightly different definition of width was used where
the union of the disjoint sets S_ and Sy equals the input space.)

In [10] we considered binary classifiers which are also based on prototypes where
the decision is not based on the nearest-prototype but is based on the combined
influence of several prototypes based on certain regions of influence. The present
notion of width was not explicitly utilized there.

For a positive margin parameter v > 0 and a training sample &, the empirical
(sample) v-margin error is defined as

PulY fo(X) <) = -

ZH(ijR,G(Xj) <7).

(Here, I(A) is the indicator function of the set, or event, A.)

Define the function

1 ifa>0
() =3 o<

For the purpose of bounding the generalization error it is convenient to express
the classification h(X) in terms of the signed width as follows,

hR,O'(X) = sgn (fR,U(X)) .

Therefore the generalization error erp(hpg,») can be bounded as follows

erp(hro) = P (hro(X) #Y) (6)
= P(Yfro(X) <0)+P(Y =1, fro(X) =0)
< P(Yfro(X)<0). (7)

Our aim is to show that the upper bound (7) on the generalization misclassifi-
cation error is not much greater than P, (Y fr,(X) < 7). Explicitly, we aim
for bounds of the form: for all 6 € (0,1), with probability at least 1 — ¢, for all
v € (0, diam(X)], we have

erp(hr,e) < Po(Y fro(X) <)+ e(m,~,9).



This will imply that if the learner finds a hypothesis which, for a large value of
v, has a small y-margin error, then that hypothesis is likely to have small error.

The advantage of working with the notion of width is that it is possible to have
such a uniform bound over a very large family of classifiers. For instance, in [7]
we obtained such bounds for learning the family of all possible binary classifiers
on any finite metric space and in [9] we did the same for multi-category classifiers
over infinite metric spaces. As mentioned above, in the current work, we consider
particular kinds of classifiers h i , that are defined on the nearest-prototype rule
based on a fixed number n of prototypes. Thus we expect that the bound that
we obtain is tighter than the one in [7], which holds for the family of all binary
classifiers.

To obtain a uniform bound, we are interested in showing that the probability of
the ‘bad event’ — namely, that there exists some value of v and some classifier
hRr,e such that the generalization error is not bounded from above by some small
deviation € from the empirical -margin error — is small. That is, we aim to
bound the following failure probability:

m

1
Py | (€ 37,30, 3R, P(Y [ro(X) <0) > — > I{Yifro(X;) <9} +e
J

) (8)

This can be expressed as follows:

1 m
PRy [ € 37 30, 3R, P(Y fro(X) > 0) < — S 1Y fro(X;) > v} —€
j=1

9)

Let us fix « for now, and deal with bounding the probability

PEy (462 30, 3R, PV fro(X) > 0) < = 3 Ty froleg) > ) ¢

j=1
(10)
3. Towards bounding the probability
3.1. Representing the bad event by related sets
Define the set Mg, C X x Y as follows,
MR,m'*/ = {<xay) : yfRﬂ'(x) > 7}
and let
M oo = {(2,1) : fRo(z) >} (11)



Mp ;= {2, 1) fro(2) < =7} (12)

Note that

MRoy = {MR,U,W ﬂ {(y) 1y = 1}} U {MR,(W m {(z,y) 1y = —1}}
= My, UMIE,UKY' (13)

We can write
P(YfR,o(X) > ) = P(MRﬂT,’Y)

and
1 m
- > Y fro(X;) > 7} = P (Maos),
j=1
where P, denotes the empirical measure based on a sample of length m. Thus
(9) is expressed as
PY'y ({§: Iy, 3o, 3R, P (MR,o0) < P (MR,o) — €}).

Let €(y) be any function depending on 7, in a way to be specified later and
define the set E(y) C (X x V)™ as

E(y) :={¢: 303R, P (MRg,0,0) < P (Mpoy) —€(7)}- (14)

Then substituting e(vy) for € in (10) implies that (10) equals the probability
PYy (E(y)). It follows that (8) equals

Py U Eem]. (15)
~€(0,diam(X)]

Let L be an integer (to be specified in a section further below). For integer
0 <1< L+1,let v be adecreasing sequence such that the following conditions
hold:

1.L0<y<1
2. ’)/021, 7L+1:0~

Denote by
L
C:= Z’yl.
=1

While all the above quantities L, 7; and C' may depend on X', we keep this
dependence implicit in the notation.



Define I'; := (1, vi—1] for 1 <1 < L+ 1. Then (15) equals

L+1 L+1
Pey U UeMm | <> Pev | U ED |- (16)
=1 vely =1 ~yely

Define the set E; C (X x V)™ as
E, = {f : HJHR, P(MR’J,,”) < P, (MR,UKW) — 6(’}/171)}.

Henceforth, assume that €(+y) is a non-increasing function over each interval T';.

Proposition 1. For any v € T';, E(y) C E}.

Proof. Wehave Mg s0 2 Mg o,,; thus P (Mg s0) > P(Mp o). And Mp 5, 2

Mpg s~ since v; < . Therefore P,, (MRr,6~) < Pn (MR,6~,). For v < ,_1, by
the above assumption on €, €(y) > €(;—1). It follows that E(y) C Ej. O

The event that there exists ¢ and R such that P (Mge,) < Pn (Mpoqy) —
€(y;—1) holds, together with (13), implies that either of the following events
occurs: there exists o and R such that

P (M) < P (M) = eln1)/2

or there exists a o and R such that

P (M) < P (Mo, ) = €Cin) /2

o Ef = {¢: 303R, P (MF, ., ) < P (Mf,.,) —c(u-1)/2}  (17)
and

E = {§ JodR, P (Mg70m> < Py (Mlg,am) — 6(’}/1_1)/2}. (18)
Then

PRy (B) < PRy (B) + PRy (E)).

3.2. Bounding the probability in terms of the growth function

We now aim to bound from above the first probability Py, (EZJF) We briefly
first recall the definitions of growth function and VC-dimension [30]. Suppose
that C is a collection of subsets of a set Z. Let S be any (finite) subset of Z.



Then a dichotomy of S by C is a set of the form SN C where C € C. We denote
the number of dichotomies of S by C as #(C;S). Thus,

#(C;S)={SnC:Cecy.

Then the growth function of C is the function Il¢ : N — N defined as follows:
for m € N,
IIe(m) = max{#(C;S) : S C Z,|S| = m}.

The VC-dimension of C is (infinity, or) the largest value of m such that II¢(m) =
2™, (A set S of size m such that #(C; S) = 2™ is said to be shattered by C.)

Define the classes

R0, R,0,m

M= {M+ : aey”,RCX}, M, ;:{M— : o-ey",RCX}.
Denote by IT,+ (m) the growth function of the class M1 . By [30] (see also
l

Theorem 4.3 of [1]), it follows that
PRy (Bf) < Ay (2m)exp (—me®(y-1)/32)

and
PYy (B) < Ay - (2m) exp (—me*(y1-1)/32) .

1

Define G(m,~) to be an upper bound on In (HJ\/@ (2m)) and In (HM; (2m)),
to be specified later, such that choosing

(r) = \/ 2 (e +m (M) (19)

makes the inequality €(vy) > e(y;—1) hold for all v € I';, as required for Propo-
sition 1 and for the definition of €(7) in (14). Then substituting ;1 for 7 in
(19) and letting (19) be the choice for e(y;—1) in (17), it follows from Theo-
rems 3.7, 4.3 of [1] that both P (E;") and P(E;") are bounded from above by

10



~-16/2(C 4+ 1). From Proposition 1, it follows that (16) is bounded as follows:

L+1 L+1
Z Px'y U E(y)] < Z PYy (E1) (20)
=1 ~ver, =1
L+1 L+1
<

YRRy (BN +Y PRy (BD) (21
=1 =1
6 L+1
2 (2(C+ 1)) ;W—l
5 L+1
RN (; 7’”)
6 L
GRS (Z;%>
5 L
CEN (;71+1>

= 4 (22)

IA

In the next section, we derive a value of G(m,~) which bounds from above the
logarithm of the growth functions of M and M.

4. Bounding the growth function

In this section we bound the growth functions of the classes ./\/li' and M~

4.1. Half-spaces of X

Define ind(p;) € [N] to be the index of a point x such that p; = x;pq(p,), that is,
ind(p;) is the index of a prototype with respect to the pre-determined ordering
of the distance space X. Clearly, each p; has a unique ind(p;) value.

For any 4, j € [N], define an affined half-space set as follows:
Wym =A{x: d(z,z;) —d(z,z;) >~}. (23)
Let the class of such sets be

Wv::{Wy’j): 1§z‘,jgN,j7éz}.

11



4.2. Matrix representation

Recall that X = {x1,...,zn}. Since a prototype may be any point in X then,
in general, for any pair of prototypes p, ¢ € X there is some 1 < i # j < N,
such that p = z;, ¢ = x;. Write Wo(p’q) = WO(W). Then Wé”) corresponds to
the positive elements of the following vector:

d(l‘l, Jij) — d(:lil, ZEZ)
@ ._ .
FY = : . (24)

d(xN, J)j) — d(mN,xi)

Note that taking the sign of a vector F j(i) yields a partition of X into two
parts, referred to as half-spaces. For a real vector v € RY define sgn(v) =
[sgn(vy),...,sgn(vy)]. Hence sgn(F;l)) corresponds to a half-space on X.

Fix any point ; € X and let the N x (N — 1) matrix F; be defined by

FO) — [Ff“, G ED RO .,F}V”] (25)
where the j** column is Fj(i), j#i,1<j<N.
Define the N x N(N — 1) matrix
Fo= [F(l),...,F(N)} . (26)
The binary matrix
sgn(F) := {sgn(F(l))7 e ,sgn(F(N))]

where ‘ _ _
sgn(F(’)) = [sgn(Fl(Z)), . ,Sgn(FI(\;))} ,

represents the class of all half-spaces on X.

4.8. Thresholding by ~

The set WO(W ) corresponds to some column of the matrix /. We now define a
more general matrix whose columns corresponds to the sets W'Sm ) defined in
(23), for any fixed v > 0. Bounding the VC dimension of this matrix means
that we obtain a bound on the VC dimension of the class W,. (By the VC-
dimension of a binary matrix, we mean that of the set system in which the
indicator functions of the sets correspond to the columns of a matrix, with a
1-entry denoting inclusion in the set.)

12



Forany 1 <i# j < N, a set WASW) corresponds to the positive elements of
the vector Fj(z) — 1 where 1 is an N x 1 vector of all ones. Denote by J an
N x N(N —1) matrix of all ones. For any vy > 0, let us consider the N x N(N—1)
matrix

Byi= F =] = [FV =1, P -] (27)

The matrix F, corresponds to the class W, of sets, where for column Fj(i) -1,

the positive elements of the vector correspond to the elements of the set Wﬁ” ),

The binary matrix sgn(F.,) corresponds to a class of ‘affined’ half-spaces on X
(the columns of sgn(F,)). We now choose the constant L of section 3 to be
the number of distinct positive entries of F, denoted as 0 < ar < ap_1 <
-+ < a1 < 1 where a; and ay, are the maximum and minimum positive entries
of F, respectively. For 1 < i < L, define the multiplicity of a;, denoted by
m;, 1 < i < L, as the number of times that a; appears in F. We refer to

Srp ={ay,as,...,ar} as the positive set of F and we set ar,+1 =0, ag = 1.
We henceforth choose for v; (defined in section 3) the value ~; := a; thus we
have

[y = (a,a1], 1 <1< L
and
FL—i-l = [O,G,L} .
From [12] (end of section 4) we have the following bound on the VC-dimension
of sgn(F,),
VO (sgn (Fy)) < w(v) (28)

where

w(y)i=wj_q,foryel, 1<I<L+1 (29)

is a non-increasing step function taking the constant value
w; = logy (A (1) + 1)

over the interval T'; and the A(v;) (defined further below in section 5) are based
on the multiplicity values m; of the positive entries a;. The value of 1 is 0 and
A(0) = 0 s0 wg = 0.

Let T' C X and denote by (F)|r the sub-matrix of F, restricted to the rows that
correspond to the elements of T'. Sauer’s Lemma (see for instance, Theorem 3.6
in [1]) implies that the number of distinct columns of sgn((F)|r), denoted by
’sgn((Fny)‘Tﬂ7 is bounded as follows:

(B < S @

=0

(i)™

13



Since F corresponds to the class W, then the number of dichotomies of the
class of sets WW, on 1" is bounded as follows

)

#ovm) < (30)
Because w(7y) is a step function over the intervals I';, then the right side of (30)
is also a step function over these intervals and it suffices to derive its values at
the interval boundaries a;. Note that a; € I'j41 so for v =a;, 1 <I < L+ 1,

pomimy < (<) -

Wi

For [ = 0, since wg = 0, we have #(W,,;T) = 1.

4-4. Bounding the growth function of M{ and Mg

We bound the growth function of the class M . We first fix the prototype-label
vector o and let R run over all possible n-prototype sets. We denote by M*

o,a;
the corresponding class of sets ME, RcCX.

o,ap’

Proposition 2. For any fixed o € Y, for any subset S C X x {1}, the number
of dichotomies # (M], ;S) obtained by M, on S is bounded as follows:

o,a;

N4 (o)N—(o)

# (M0 8) < (#Wais ST)) :
where ST :={z € X : (z,1) € S}.

Proof. The number of dichotomies that the class Mt of sets M;{U’al gets

g,a;

on S is the same as the number of dichotomies that the class V), of sets
VPJ{’U’M ={z: (z,1) € MJJ{’UM} obtains on ST. Hence it suffices to find an

upper bound on # (Vj al;S*). Fix any set of prototypes R C X of cardinality
n. We have

VI%L,U,al = {!E : jErl{/'li,rEa) d(m7pj) - iEII{/lJirr(la) d(xmpz) > al}
- {:17 cJdie N+(O—)7Vj € N—(U)ad(xapj) - d(x7pi) > al}
- U () {z:d,p)) - da,p) > a}
)

1ENy (o) jJEN_(o

U ﬂ W (ind(p:),ind(p;))
a
i€EN4 (o) jJEN_(0o)

14



Define the N_(o)-fold intersection set

Az(‘R) — m Wélind(pi)yind(m))
JEN_ (o)

and the class of such sets by
AR = {AER) 1€ N+(c7)} .
From Theorem 13.5(iii) of [19] it follows that
#(AmS*) < (# (Whi5) 7

Now, let
BR = U AER)

€N (o)
and denote the class of all such Ny (o)-fold unions by
B:={Br:RCX}.

From Theorem 13.5(iv) of [19] it follows that
(557 < (b (A5:5) "

Hence we have N N
4 (B;S*) < (# (W*-S*)) —(o) +(o)_

ap?

Finally, we have

+ _
Vngyal = Br
and
+
Voau = B.

Combining all of the above we obtain

# (MG S) = # (VaasST)
=#(B;S™)
< (# (W+‘ S+))N—(U)N+(U) '

ap?

Denote the set of dichotomies of S by all sets Mg as

o,a;

Unoa(S) = {u (M g0,) * Mif g0y € M}

Letting o be unfixed, the number of dichotomies obtained by M satisfies
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{Uro.a(S): 0 €V, RCX, R =n}[=| | ] Unow(S): RCX,|R|=n}

oeyn
<> HUroa(S): RCX, R =n}|
oeyn
(32)
< Z (#(WaﬁSJr))NJr(U)Ni(J)
oeyn
(33)
n—1
B <n> (#Wa3 5) 7
k=1 k
(34)

where (33) follows from Proposition 2.

Remark 1. The expression 2" (#(W,,; S*))n(nil) is a simple yet trivial bound
on (33).

We now obtain a much tighter bound than the one in Remark 1.

Proposition 3. Define w by w := #(W,,;ST). Then the following bound

holds: .
X () < wto( ) .

k=1

Proof: We have that k(n — k) has a maximum at k = n/2 and therefore

2
k(n—k) <

(5) = (1)

2 ()t <y o

Furthermore, for all &,

Hence

16



From (34) and Proposition 3, it follows that for any S C X x {1} of cardinality
m7

Q) < e n
#0:8) < w0 ) (56)
We now consider the class M .

Proposition 4. For any fixed o0 € Y™, for any subset S C X x {—1}, the
number of dichotomies # (./\/l_ S) obtained by M on S is bounded from

o,a;’ og,a;

above by the right side of (36).

Proof. We follow the proof of Proposition 2, and instead of the class M;al and

a set Mj «, We consider the class M, and a set My . . By definition this
set equals

Mp o0, = {(xa —1) rjerjgi_rzn)d(%pj) - ierjrvlir(lﬂ)d(w,pi) < —az}

and can be written as

Mg 50 = {(x, -1): iEIJ{TIiI(lJ) d(z,p;) — jEIJ{’li_IzU) d(z,p;) > al} . (37)

Thus as in the proof of Proposition 2, the set My, . corresponds to aset Vi, .
which is defined as

Vioa = {x : ierl{flir(la) d(x,p;) — jeI]I\}ir%g) d(z,p;) > al}
{z:3j € N_(0),Vi € Ny(0),d(x,p;) —d(z,p;) > ar}
U ﬂ {z :d(x,p;) — d(z,pj) > a;}

JEN_(0) i€N4 (o)

— U m Wélind(zﬂj)’ind(m)).

JEN_(0) i€N4 (o)

From here the proof proceeds as the proof of Proposition 2, just swapping: the
indices ¢ with j, the sets N_ with N, and the sets ST with S~. O

4.5. Finalizing

In the previous section we derived an upper bound on the number of dichotomies

on any set of cardinality m obtained by M;al or Mg ,, in terms of the number
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of dichotomies by the classes W,,. For T' C X, let w(T) := #(W,,;T) and
define the growth function of W,, as

Wy, = max w(T).
T:|T|=m

From (36) and from the fact that w,, > 1, it follows that the growth function
I+ (m)of Mf, is bounded as follows,
O',O/l

g,a;

M, o) < i nf 1)) (%)

Using a standard bound for the central binomial coeflicient, we have

(i) < @2”

and so

From (31) we have

and therefore

n 2
In (T, (m) <In <wmf \/ :2">
n? em \ " 1 2n
—1 —_— In2+-In( —
T () ) e (2)

Sl () o ju(2)

From (29), we have w(a;) = w;. Therefore (39) equals

2 1
nwlln an +nln2+ =In 2—n
4 w; 2 T

We now define G(m, ) in section 3.2 as follows (— recall that G(m,~) bounds
the growth function evaluated at 2m): for any v € T'j41,

2 2 1 2
G(m,~) = n4Wl In (\(/3\/71) +nln2+ iln <:) .

IN

IN

Note that for all v € I';, G(m,~y) = G(m, a;—1) and the second term inside the
square root in (19) satisfies In(8(C + 1)/v6) > In(8(C 4 1)/a;_16), so it follows
that () > e(a;—1) and therefore the requirement on €(y) of section 3.2, namely,
that it is non-decreasing as -y decreases, is satisfied.
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5. Main result

To obtain the main result, we draw on some results and notations from [12].
We define a few quantities, leaving the dependence on N implicit.

Let us denote by the it" shell of the binary N-dimensional cube {—1,1}" (N-
cube) the set of all vertices that have ¢ components that are 1.

()

the number of vertices in the j*" shell.

Denote by

Denote by
bn =Y ¢ (40)
j=1

the number of vertices of the cube contained in the first n shells, and let by := 0

Let us define

b= jej, (41)
j=1

the total ‘weight’ (number of 1-entries) in all of the vertices of the cube that are
in the first n shells.

For a positive integer m define
Q(m) :=min{q: ¢, > m}. (42)
For instance, if m = 17, N = 4, then 1(‘11) + 2(‘21) +1=17s0 Q(17) = 3.
Let
A=m —Llgm)-1,

and then define [m] as the following ‘rounded’ value:

m] := {m if Qm)=1o0r A mod @(m)=0
. m+ (Q(m) — A mod Q(m)) otherwise.

So, [m] is the smallest integer greater than or equal to m which is the total
weight (number of 1-entries) in a set of vertices of the cube, where that set is
formed by first populating the first shell, then the second, and so on. So, m
1-entries might not be enough to form all the vertices of shells 1 to Q(m)—1 and
then some vertices in shell Q(m): an additional (at most Q(m) — 1) l-entries
might be necessary (to ‘complete’ a vertex in shell Q(m)).
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For instance (continuing the above example), since Q(17) = 3 > 2 then [17] =
174 (3 — 1 mod 3) = 19, and indeed 19 1-entries are required in the vertices in
shells 1 and 2, and in the first vertex of the 3" shell.

For positive integer m let us define

[m] — Lom)—1
Q(m)

and define A\(0) := 0. Define the numbers v; as follows (where m, is the multi-
plicity of a;, as earlier):

A(m) = bQ(m)fl + (43)

Vg = 0
V; = (1/7;_1 + ml] y 1 § 1 S L. (44)

Note that v;, 1 <14 < L, depend only on m; and hence can be evaluated directly
from the matrix F.

The following is the main result of the paper.

Theorem 1. Let N > 1 and n > 2 be fixed integers and X = {;vi}ilil be a
finite distance space with a distance function d(z;,z;), normalized such that
diam(X) = maxi<; j<n d(x;, ;) = 1. Let

d(zq,xj) — d(z1, z;)
Jj o : ’
dzn,z;) —d(zN, z;)
and ) . ; ' i
F(l) = [ 1(z), ey fi(i)lﬂ fi(-zi-)lv LR J(\;)}

and define the N x N(N — 1) matrix
F= {F(U,...,F(N)].

Let 0 =apy1 <ap <--- < ai <ag =1 be the values of the positive entries of F'
and let m; > 1 be the number of times that a; appears in F', 1 <[ < L. Define
T i=(a;,ai-1], 1 <1< L, Tpy1 :=[0,ar] and C := Elel a;. For 1 <[ <L, let
w; =logy (A (1) +1).

Let Y = {—1,1} and let (R,0) C (X x V)", R := {p;},—, denote any set of
n prototypes p; with Ny (o) of them that are labeled by 1 and N_(o) that are
labeled by —1. Let hr, be a nearest-prototype binary classifier, given by

1 if argmin, <, d(z,p;) € N4(o
hR,(,(x):{ gminy <<, d(x, pi) € N (0) (45)

—1 otherwise
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and define its signed width function fr, as

o(r)= min d(z,p;) — min d(x,p;).
Trolz)= min d(z.p;) = min d(zpi)

Let P™ := PY, be a probability measure over (X x Y)". For any 0 < § < 1,
with P™-probability at least 1 — § the following holds for an i.i.d. sample
& :={(X;,Y;)}", C (X x Y)™ drawn according to P™ :

e for any set of n labeled prototypes (R,o) C (X x Y)", where (R, o) may
depend on the sample £ (and in particular, may be a subset of &)

e for all v > 0,

PV fro(X) 0) < S T1{Y; o (X)) S9) +elm,0)  (46)
=1

where fory € T4, 0 <1< L,

2
e(m,v,9) := 52 (now In zem +nln2+lln n +In 8(C+1)
m 4 wj 2 T ’75

where

wy :=logy (A (1) +1).

The size N of the distance space does not enter the bound of Theorem 1 but
because the value of w; and C' depend on the distance space through the positive
entries of the matrix F' then these quantities may grow with N (depending on
the distance space X). The value of w; decreases as [ := [(7) decreases (because
the intervals T'; are situated more to the right as I decreases). Thus w; decreases
as a step function over the intervals I'; as  increases such that the larger the
value of 7, the lower the interval index [ and the lower the value of w;. Thus
the upper bound (47) decreases as 7y increases (assuming that the change in w;

dominates the change in the In % term). To get a feel for the rate of decrease

of w; with respect to v, see example on p. 23 of [12].

Since 7 is a parameter that may be chosen after the random sample is drawn,
it can depend on the sample, which makes the bound data-dependent.

5.1. Comparison with other results

Theorem 1 states an upper bound on the generalization error for learning on

any finite distance space decreases with respect to m like O <, / "21’“’”) Let

m

us compare this rate to other works.
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If the distance space is X = R? and if the prototype set R is a subset of the
sample then Theorem 19.6 of [19] gives the following error bound for learning
nearest-neighbor classifiers that are based on R:

e:o(ﬁ (M;w—mnmﬂﬂn(;)))

which is also O (, / "2]“‘1””> , but in contrast to Theorem 1 is not data-dependent,

which in general makes it looser.

In [17], Theorem 1 presents an error bound for learning LVQ on R? which has

a dependence on the sample margin of the following form O <, / “;f), where

2
a = min (d +1, (5) ) and p bounds the magnitude of each sample point,

0 < v < 3 is the sample margin (which is defined similar to the width (4)).

They claim that this bound is independent of the dimension d, presumably
2

because if (%) is smaller than d + 1 then the d 4+ 1 factor disappears from
the bound. Their proof is not included; however, it appears to be a direct
application of fat-shattering error bounds, see for instance, Theorem 4.18 of
[18] which bounds the generalization error of learning linear classifiers and has

2
the same dependence on the margin parameter, namely, O (%) . These bounds

are based on a bound on the log of the -covering number by O(d,) and a bound

2
on the fat-shattering number for linear classifiers d, < (%) . In comparison,

the bound of Theorem 1 also depends on  but in a non-direct way through w;
(as discussed above, I = I(y)). Depending on the distance space’s positive set
Sr, w; may decrease even faster than ’y%

Although we assume that the distance space is finite of cardinality IV, the bound
(47) may or may not grow with N and this depends on the matrix F. In
comparison to the above works, in (47) there is an implicit complexity quantity
which enters through w; and is defined as A(y;). This is an upper bound on
the pseudo-rank of the perturbed matrix F, denoted by Fy , (see [12]), which
is the number of distinct columns of a matrix sgn(F,,) and may depend on N
(depending on the definition of the distance space).

6. Conclusions

We use the concept of width to learn a family of classifiers based on the nearest-
prototype decision rule over an arbitrary finite distance spaces (a significantly
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more general and perhaps more applicable setting than that of metric spaces).
In this setting a classifier is represented by a set of n prototypes, that can be
any labeled points in the distance space, and even a subset of the sample. We
obtain an upper bound on the generalization error of any such nearest-prototype
classifier. Using 7 as the width parameter, the error bound depends on the -
empirical error and holds uniformly over the family of such classifiers. Ignoring

the dependence on 7, the bound is O (« / ”2177’;””> . The dependence on =y is more

subtle because it enters through a complexity quantity A(;) which bounds from
above the pseudo-rank of a -perturbed version of a matrix that represents all
half spaces in the distance space.
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