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Abstract. A half-space over a distance space is a generalization of a half-space
in a vector space. An important advantage of a distance space over a metric
space is that the triangle inequality need not be satisfied, which makes our results
potentially very useful in practice. Given two points in a set, a half-space is defined
by them, as the set of all points closer to the first point than to the second. In
this paper we consider the problem of learning half-spaces in any finite distance
space, that is, any finite set equipped with a distance function. We make use of a
notion of ‘width’ of a half-space at a given point: this is defined as the difference
between the distances of the point to the two points that define the half-space.
We obtain probabilistic bounds on the generalization error when learning half-
spaces from samples. These bounds depend on the empirical error (the fraction of
sample points on which the half-space does not achieve a large width) and on the
VC-dimension of the effective class of half-spaces that have a large sample width.
Unlike some previous work on learning classification over metric spaces, the bound
does not involve the covering number of the space, and can therefore be tighter.

keywords: Large width learning, distance and metric spaces, half
spaces, pseudo rank, margin

1. Introduction

In [3], we obtained generalization error bounds for learning binary classifiers on a
finite metric space X using the class of all binary functions on X ; and [6] obtained
error bounds for multi-category classification on infinite metric spaces. In both pa-
pers, the bounds involved the covering number of the metric space, which in general
is not known or not easy to compute, though can be approximated numerically.
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In the current paper we consider learning binary classification on finite distance
spaces, that is, finite sets equipped with a distance function (often called ‘dissimi-
larity measure’ [10]) where the classifiers are “half-spaces”. An important advantage
of a distance space over a metric space is that the triangle inequality need not be
satisfied, which makes our results potentially very useful in practice. Our defini-
tion of distance function is quite loose in that it does not need to satisfy any of the
non-negativity, symmetry or reflexivity properties of a proper distance function [10].
We still call it a distance because, as far as we can expect in applying our learning
results, any useful space has at least the non-negativity property.

Since the distance space is not necessarily equipped with an inner product, by a
half-space we do not mean the usual linear half-space that is defined in a Euclidean
space, but, rather, a more general definition which is based on the distances to two
points in the space.

The standard large-margin results for learning large-margin classifiers [9, 1] by
thresholding real-valued functions have error bounds that depend on the covering
numbers of function classes. Interestingly, and in contrast, while we also threshold
real-valued functions (which we call ‘width’-functions), we are able here to provide
bounds that do not involve covering numbers, neither of the class of width functions
nor of the underlying distance space itself. Depending on some characteristics of the
distance space (which involve the positive components a matrix-based representa-
tion of the class of half spaces on a distance space) the upper bounds can be tighter
and hence more useful in practice.

There have been several works on large-margin learning over metric spaces. In
[12], the ubiquitous SVM approach is chosen and they embed the metric space
in a Banach or Hilbert space followed by learning linear classifiers on this space.
They provide upper bounds on the Rademacher averages, which can be used to
obtain generalization error bounds on learning [7]. The bounds involve the covering
number of the metric space. In [3], the problem of learning the class of all binary
classifiers over finite metric spaces is considered. The learning error bounds involve
covering numbers of the metric space. In [6, 4], multi-category classification over
metric spaces is considered and the error bounds also involve the covering number
of the metric space. Other work on learning over metric spaces includes [11] (see
also references within) which considers learning nearest-neighbor classifiers in semi-
metric spaces using compression schemes which involves bounds on packing numbers
by exponentials in the density-dimension of the space.
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In the current paper, we offer an alternative approach to learning ‘linear’ classifiers
on metric spaces. (In addition, the present paper addresses the more general setting
of a distance space.) In contrast to [12], which also deals with learning linear classi-
fiers on a metric space, we do not restrict to learning via SVM and, being focused on
learning half-spaces, we are able to take advantage of the simpler hypothesis space
(in comparison to that of [3]) and obtain an error-bound that does not involve a
covering number of the underlying metric space (as in [3]) or any special dimensions,
such as fat-shattering or doubling dimension of the space (as in [11]) that may be
hard to estimate. Instead we use a new characterization of the class of half spaces
on a distance space which is based on positive entries of a matrix that can be au-
tomatically computed directly from the distance space. Also, the fact that we deal
with a distance space, rather than a metric space, means that the triangle inequality
need not be satisfied. This and the fact that the error bound is computable directly
from these positive entries make our result widely applicable. Also, as mentioned
above, our use of the concept of distance is loose, so that, for instance, not only is it
the case that the triangle inequality need not be satisfied, but also none of the three
standard properties of a distance need to be satisfied either. From a theoretical
perspective, our analysis is less involved than in the above works. In particular, we
do not need to introduce any new dimensions or use covering (or packing) bounds.
Instead, we analyze the hypothesis-class complexity directly by elementary combina-
torics. Hence we believe that the paper can also serve as a reference point, useful for
the theorist, to compare other approaches for computing error bounds on abstract
spaces.

2. Setup

2.1. The classifiers. We consider a finite distance space X := {x1, . . . , xN} with
distance d, a function from X × X to R, and a binary set Y = {−1, 1} of possible
classifications of the points of the distance space. Let us assume that the distance
is normalized such that

diam (X ) := max
1≤i,j≤N

d(xi, xj) = 1.

A prototype p ∈ X is a point in the distance space that has an associated label σ ∈ Y .
We denote by p+, p− ∈ X , prototypes whose labels are 1 and −1, respectively. When
the label of a prototype is not explicitly mentioned, we write p.

Let

Π :=
{

[p+, 1], [p−,−1]
}
⊂ X × Y
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be a pair of two oppositely labeled prototypes (together with their labels). We
denote by hΠ a classifier which is defined as follows: given x ∈ X ,

hΠ(x) := hΠ,σ(x) =

{
1 if d(x, p+) < d(x, p−)

−1 otherwise.
(2.1)

For s ∈ Y , the set {x : hΠ(x) = s} is referred to as a half space since it generalizes the
special case of a half-space when the distance space is a vector space; for instance,
when the space is a vector space equipped with an inner product (such is commonly
considered in learning with Support Vector Machines), a half-space can be specified
not only based on two points as in (2.1) but also based on the inner product of a
parameter vector (the vector difference between these two points) and the point to
be classified.

2.2. Width and error bounds. We work in the framework of the popular ‘PAC’
model of computational learning theory (see [13, 8]). We denote by {(Xj, Yj)}mj=1

a random sample which consists of i.i.d. pairs (Xj, Yj) , Xj ∈ X , and Yj ∈ Y ,
1 ≤ j ≤ m, each distributed according to any fixed probability distribution PX,Y ,
which is not assumed to be known. We denote by

ξ = {(xj, yj)}mj=1

a realization of the random labeled sample. Learning is conducted on the basis of ξ.

In the PAC framework, a typical result would state that, for all δ ∈ (0, 1), with
probability at least 1 − δ, for all classifiers hΠ, the generalization error of hΠ is
bounded from above by the empirical classification error (based on the sample ξ)
plus some added deviation ε which decreases in m and δ.

A prototype p may be any point in X ; in particular, it could be one that depends
on the sample ξ directly or via some learning algorithm.

We define the width of hΠ at a point x∈ X as follows,

whΠ,σ
(x) := max

{
d
(
x, p+

)
, d
(
x, p−

)}
−min

{
d
(
x, p+

)
, d
(
x, p−

)}
. (2.2)

Since x is classified by hΠ according to the label of the closer of the two prototypes,
then the width of h at x is the difference between the distance to the nearest-
unlike-prototype of x (this is the farther prototype) and the distance to the nearest-
prototype to x. (Here, unlike means of a different classification by hΠ than x.)
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The corresponding signed width (or margin) function is defined as

fΠ(x) := fΠ,σ(x) = fhΠ
(x) = hΠ(x)whΠ

(x). (2.3)

Note that for x equidistant from two oppositely labeled prototypes p+, p− ∈ Π, the
value of the margin fΠ,σ(x) at this x is zero. This definition is intuitive. From (2.2)
and (2.3) it follows that

fΠ(x) = d(x, p−)− d(x, p+).

(This measure of signed width was introduced in [2].) Henceforth, let γ > 0 be a
width parameter and let Π ⊂ X be any set of two points in X .

In this paper we consider the problem of learning half-spaces on X that have a large
width on the sample ξ, or more generally, half-spaces that have a large width on a
high proportion of the sample points. We obtain a bound on the classification error
of such classifiers with dependence on this proportion and on the width parameter
value. Define the function

sgn(a) :=

{
1 if a > 0

−1 if a ≤ 0.

For the purpose of bounding the generalization error it is convenient to express the
classification hΠ(X) in terms of the signed width as follows,

hΠ(X) = sgn (fΠ(X)) .

Therefore the generalization error erP (hΠ) can be bounded as follows

erP (hΠ) = P (hΠ(X) 6= Y ) (2.4)

= P (Y fΠ(X) < 0) + P (Y = 1, fΠ(X) = 0)

≤ P (Y fΠ(X) ≤ 0) . (2.5)

In order to obtain an upper bound on the learning error we are interested in the
probability of the ‘bad event’ that there is some γ and some Π for which the gen-
eralization error of hΠ is larger than the empirical measure of that error by some
deviation ε. That is, we want to upper bound the following probability

Pm
X,Y

({
ξ : ∃γ, ∃Π, P (Y fΠ(X) ≤ 0) >

1

m

m∑
j=1

I {YjfΠ(Xj) ≤ γ}+ ε

})
. (2.6)

In the PAC framework, this probability is bounded by δ provided that we choose
ε to be a function of m, γ and δ. For simpler notation, we sometimes keep the
dependence of ε on these parameters implicit or express it in terms of one of these
parameters when deemed important in the context.
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This can be expressed as the following probability:

Pm
X,Y

({
ξ : ∃γ, ∃Π, P (Y fΠ(X) > 0) <

1

m

m∑
j=1

I {YjfΠ(Xj) > γ} − ε

})
. (2.7)

Let us fix γ for now, and deal with bounding the following probability:

Pm
X,Y

({
ξ : ∃Π, P (Y fΠ(X) > 0) <

1

m

m∑
j=1

I {yjfΠ(xj) > γ} − ε

})
. (2.8)

3. Representing the bad event using sets

3.1. Related sets. Define the set MΠ,γ ⊂ X × Y as follows,

MΠ,γ := {(x, y) : yfΠ(x) > γ}

and let

M+
Π,γ := {(x, 1) : fΠ(x) > γ} (3.1)

M−
Π,γ := {(x,−1) : fΠ(x) < −γ} . (3.2)

Note that

MΠ,γ =
{
MΠ,γ

⋂
{(x, y) : y = 1}

}⋃{
MΠ,γ

⋂
{(x, y) : y = −1}

}
= M+

Π,γ

⋃
M−

Π,γ. (3.3)

We can see that

P (Y fΠ(X) > γ) = P (MΠ,γ)

and
1

m

m∑
j=1

I {YjfΠ(Xj) > γ} = Pm (MΠ,γ)

where Pm denotes the empirical measure based on a random sample of cardinality
m drawn i.i.d. according to Pm. Thus (2.7) is expressed as,

Pm
X,Y ({ξ : ∃γ, ∃Π, P (MΠ,0) < Pm (MΠ,γ)− ε}) .
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Let ε = ε(γ) depend on γ (in a way to be specified later) and define the set E(γ) ⊆
(X × Y)m as

E(γ) := {ξ : ∃Π, P (MΠ,0) < Pm (MΠ,γ)− ε(γ)} . (3.4)

Then substituting ε(γ) for ε in (2.8) will mean that (2.8) equals the probability
Pm
X,Y (E(γ)). It follows that (2.6) will then be bounded from above by

Pm
X,Y

 ⋃
γ∈(0,diam(X )]

E(γ)

 . (3.5)

Let L be an integer (to be specified below). For integers 0 ≤ l ≤ L+ 1 , let ηl be a
decreasing sequence such that the following conditions hold:

(1) 0 ≤ ηl ≤ 1
(2) η0 = 1, ηL+1 = 0.

Let

C :=
L∑
l=1

ηl.

While all the above quantities L, ηl and C may depend on X , we keep this depen-
dence implicit in the notation.

Define Γl := (ηl, ηl−1] for 1 ≤ l ≤ L and ΓL+1 := [0, ηL] . Then (3.5) equals

Pm
X,Y

(
L+1⋃
l=1

⋃
γ∈Γl

E(γ)

)
≤

L+1∑
l=1

Pm
X,Y

(⋃
γ∈Γl

E(γ)

)
. (3.6)

Define the set El ⊆ (X × Y)m as

El := {ξ : ∃Π, P (MΠ,ηl) < Pm (MΠ,ηl)− ε(ηl−1)} .

Henceforth, assume that ε(γ) is a non-increasing function over each interval Γl.

Claim 1. For any γ ∈ Γl, E(γ) ⊆ El.

Proof. We have MΠ,0 ⊇MΠ,ηl thus P (MΠ,0) ≥ P (MΠ,ηl). Also, MΠ,ηl ⊇MΠ,γ since
ηl ≤ γ, and so Pm (MΠ,γ) ≤ Pm (MΠ,ηl). For γ ≤ ηl−1, by the above assumption on
ε, ε(γ) ≥ ε(ηl−1). It follows that E(γ) ⊆ El. �



LARGE-WIDTH BOUNDS FOR LEARNING HALF-SPACES ON DISTANCE SPACES 8

We therefore have that (3.6) is bounded from above as follows:

Pm
X,Y

(
L+1⋃
l=1

⋃
γ∈Γl

E(γ)

)
≤

L+1∑
l=1

Pm
X,Y

(⋃
γ∈Γl

E(γ)

)
≤

L+1∑
l=1

Pm
X,Y (El) .

The event that there exists Π such that P (MΠ,ηl) < Pm (MΠ,ηl)− ε(ηl−1), by (3.3),
implies that either of the following events occurs: there exists Π such that

P
(
M+

Π,ηl

)
< Pm

(
M+

Π,ηl

)
− ε(ηl−1)/2

or there exists a Π such that

P
(
M−

Π,ηl

)
< Pm

(
M−

Π,ηl

)
− ε(ηl−1)/2.

Let
E+
l :=

{
ξ : ∃Π, P

(
M+

Π,ηl

)
< Pm

(
M+

Π,ηl

)
− ε(ηl−1)/2

}
(3.7)

and
E−l :=

{
ξ : ∃Π, P

(
M−

Π,ηl

)
< Pm

(
M−

Π,ηl

)
− ε(ηl−1)/2

}
. (3.8)

Then
Pm
X,Y (El) ≤ Pm

X,Y

(
E+
l

)
+ Pm

X,Y

(
E−l
)
.

3.2. Bound on the probability. We now aim to bound from above the first prob-
ability Pm

X,Y

(
E+
l

)
.

We briefly first recall the definitions of growth function and VC-dimension [14].
Suppose that C is a collection of subsets of a set Z. Then the growth function of C
is the function ΠC : N→ N defined as follows: for m ∈ N,

ΠC(m) = max{ΠC(S) : S ⊆ Z, |S| = m},
where

ΠC(S) = |{C ∩ S : C ∈ C}|.
The VC-dimension of C is (infinity, or) the largest value of m such that ΠC(m) = 2m.
(A set S of size m such that ΠC(S) = 2m is said to be shattered by C.)

Using pairs Π of oppositely labeled prototypes, we define the following classes:

M+
ηl

:=
{
M+

Π,ηl
: Π ⊂ X × Y

}
, M−

ηl
:=
{
M−

Π,ηl
: Π ⊂ X × Y

}
.

We choose for ε(γ) in (3.4) the following expression,

ε(γ) :=

√
32

m

(
d(γ) ln

(
2em

d(γ)

)
+ ln

(
8(C + 1)

γδ

))
(3.9)
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where d(γ) is a function which is piecewise constant over the intervals Γl; that is, for
γ ∈ Γl, d(γ) = d(ηl−1) (where a specific d(γ) is chosen later). Hence the inequality
ε(γ) ≥ ε(ηl−1) holds for γ ∈ Γl, as required for Claim 1 and for the definition of ε(γ)
in (3.4).

Remark 2. We actually choose d such that, in addition to the above piecewise con-
stant property, d(ηl) is an upper bound on the VC-dimension ofM+

ηl
andM−

ηl
. That

is, at the points γ = ηl, 1 ≤ l ≤ L, d(ηl) bounds from above the VC dimension of
M+

ηl
and M−

ηl
.

Denote by ΠM+
ηl

(m) the growth function of the class M+
ηl

. From [8] (see also The-

orem 3.7 of [1]), for integer m ≥ d(ηl),

ΠM+
ηl

(m) ≤
(
em

d(ηl)

)d(ηl)

. (3.10)

By [14] (see also Theorem 4.3 of [1]), it follows that

Pm
X,Y

(
E+
l

)
≤ 4ΠM+

ηl
(2m) exp

(
−mε2/32

)
≤ 4

(
2em

d(ηl)

)d(ηl)

exp
(
−mε2/32

)
.

Substituting ηl−1 for γ in (3.9) and letting (3.9) be the choice for ε(ηl−1) in (3.7),
then from Theorems 3.7, 4.3 of [1], it follows that both P

(
E+
l

)
and P (E−l ) are

bounded from above by ηl−1δ/2(C + 1). Then from Claim 1, it follows that (3.6) is
bounded from above by
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L+1∑
l=1

Pm
X,Y (El) ≤

L+1∑
l=1

Pm
X,Y

(
E+
l

)
+

L+1∑
l=1

Pm
X,Y

(
E−l
)

(3.11)

≤ 2

(
δ

2(C + 1)

) L+1∑
l=1

ηl−1

=
δ

C + 1

(
L+1∑
l=1

ηl−1

)

=
δ

C + 1

(
L∑
l=0

ηl

)

=
δ

C + 1

(
L∑
l=1

ηl + 1

)
= δ. (3.12)

In the next section we choose d(γ).

4. Bounding the VC-dimension

In this section we bound the VC dimension of the class M+
γ and M−

γ . We first
introduce some additional notation.

4.1. Half-spaces of X and matrix representation. We bound the VC dimen-
sion of the class M+

γ of sets in X . For any z, z′ ∈ X , define the set

W (z,z′)
γ := {x : d(x, z′)− d(x, z) > γ} (4.1)

and let the class of such sets be defined as

Wγ :=
{
W (z,z′)
γ : z, z′ ∈ X , z 6= z′

}
.

For any pair Π of oppositely labeled prototypes p+, p− ∈ X we have

M+
Π,γ = W (p+,p−)

γ × {1} (4.2)

which follows from the fact that the statement (x, 1) ∈ M+
Π,γ means h(x) = 1, and

fΠ(x) = d(x, p−)− d(x, p+) > γ, and this means x ∈ W (p+,p−)
γ .
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We have

M−
Π,γ = W (p−,p+)

γ × {−1} (4.3)

because the statement (x,−1) ∈ M−
Π,γ means h(x) = −1, which means fΠ(x) =

− (d(x, p+)− d(x, p−)), and by definition of M−
Π,γ we have fΠ(x) < −γ, therefore

d(x, p+)−d(x, p−) > γ. This is precisely the definition of the set W
(p−,p+)
γ . It follows

that in order to indicate if (x,−1) ∈M−
Π,γ it suffices to indicate if x ∈ W (p−,p+)

γ .

From (4.2),(4.3) it follows that

M+
γ ⊆ Wγ × {1}, M−

γ ⊆ Wγ × {−1} (4.4)

and we aim to bound the VC-dimension ofWγ in order to bound the VC-dimension of
each ofM+

γ ,M−
γ . (This will work because (4.4) implies that V C(M+

γ ) ≤ V C(Wγ×
{1}) = V C(Wγ) and similarly for M−

γ .)

Recall that X = {x1, . . . , xN}. Since a prototype may be any point in X then, in
general, for any pair of prototypes p, q ∈ X there is some 1 ≤ i 6= j ≤ N , such that

p = xi, q = xj. We write W
(p,q)
0 as W

(i,j)
0 . Then W

(i,j)
0 corresponds to the positive

elements of the following vector:

f
(i)
j :=

 d(x1, xj)− d(x1, xi)
...

d(xN , xj)− d(xN , xi)

 . (4.5)

Note that taking the sign of a vector f
(i)
j yields a partition of X into two parts,

which, as mentioned above, is referred to as a half-space.

For a real vector v ∈ RN , let sgn(v) = [sgn(v1), . . . , sgn(vN)]T . Hence sgn(f
(i)
j )

corresponds to a half-space on X .

Fix any point xi ∈ X and let the N × (N − 1) matrix Fi be defined by

F (i) =
[
f

(i)
1 , . . . , f

(i)
i−1, f

(i)
i+1, . . . , f

(i)
N

]
, (4.6)

with columns f
(i)
j , j 6= i, 1 ≤ j ≤ N .

Define the N ×N(N − 1) matrix

F :=
[
F (1), . . . , F (N)

]
. (4.7)

The binary matrix

sgn(F ) :=
[
sgn(F (1)), . . . , sgn(F (N))

]
,
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where

sgn(F (i)) :=
[
sgn(f

(i)
1 ), . . . , sgn(f

(i)
N )
]
,

represents the class of all half-spaces on X .

4.2. Thresholding by γ. The set W
(i,j)
0 corresponds to some column of the matrix

F . We now define a more general matrix whose columns correspond to the sets

W
(i,j)
γ defined in (4.1), for any fixed γ ≥ 0. Bounding the VC dimension of this

matrix means that we obtain a bound on the VC dimension of the class Wγ.

For any 1 ≤ i 6= j ≤ N , a set W
(i,j)
γ corresponds to the positive elements of the

vector f
(i)
j −γ1 where 1 is an N×1 vector of all ones. Denote by J an N×N(N−1)

matrix of all ones. For any γ > 0, let us consider the N ×N(N − 1) matrix

Fγ := F − γJ =
[
f

(1)
2 − γ1, . . . , f

(N)
N−1 − γ1

]
. (4.8)

The matrix Fγ corresponds to the class Wγ of sets, where for column f
(i)
j − γ1, the

positive elements of the vector correspond to the elements of the set W
(i,j)
γ .

The binary matrix sgn(Fγ) is a class of ‘affined’ half-spaces on X (the columns of
sgn(Fγ)). We aim to bound the VC-dimension of sgn(Fγ).

4.3. Pseudo-rank. Let A be an m×n matrix and define the set of columns of A to
be col(A). Define by the pseudo-rank of A, denoted by ρ(A), the number of distinct
sign-columns of the matrix sgn(A), that is,

ρ(A) := |{sgn (u) : u ∈ col (A)}| .
Let

κ := ρ(F ) = ρ(F0) ≤ N(N − 1). (4.9)

Consider the matrix Fγ. Clearly, we have the following:

Claim 3. For any 1 ≤ r ≤ κ, there exists some γ such that ρ(Fγ) ≥ r.

This holds since, at least at γ = 0, ρ(Fγ) ≥ κ ≥ r ≥ 1.

Remark 4. When γ > 1, ρ(Fγ) = 1 because all of the columns of sgn(Fγ) equal the
all-(−1) binary vector. Thus ρ(Fγ) starts at κ and eventually becomes 1; however, in
general the function ρ(Fγ) is not necessarily decreasing monotonically nor even non-
increasing, as, for instance, the matrix sgn(Fγ) can have a set of identical columns
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and when γ increases some of these columns may become distinct, which results in
a local increase of ρ(Fγ).

Also, the following trivial upper bound holds for every γ ≥ 0,

ρ(Fγ) ≤ κ ≤ N(N − 1). (4.10)

Define by the characteristic points of F the following γ values:

γr = sup {γ : ρ (Fγ) ≥ r, γ ∈ [0, 1]} , 1 ≤ r ≤ κ, (4.11)

where this definition is well-posed, since from Claim 3 it follows that the set over
which the supremum is taken is non-empty and bounded above.

The points γr characterize the matrix F since they express how a ‘perturbed’ ver-
sion of F behaves in terms of how many distinct binary vectors are in the ma-
trix sgn(Fγ). For r ≥ r′, we have {γ : ρ (Fγ) ≥ r} ⊆ {γ : ρ (Fγ) ≥ r′}, and hence
sup {γ : ρ (Fγ) ≥ r} ≤ sup {γ : ρ (Fγ) ≥ r′}. Therefore, it follows that the points
satisfy

γκ ≤ γκ−1 ≤ · · · ≤ γ1, (4.12)

and we refer to γi as the ith characteristic point of F .

Note that in (4.12) the inequalities are not necessarily strict because there may be
multiple columns with the same positive elements so that when γ reaches their value,
the sign of these columns is the same and therefore there are fewer distinct binary
vectors. The next example depicts this. Denote by ‘−’ any negative real value, and
let α > 2β > 0. Consider the matrix Fγ at γ = 0 to be

F0 :=


α α − −
− β − −
− − α α
− − − β

 .

At γ = β the matrix is

Fβ :=


(α− β) (α− β) − −
− 0 − −
− − (α− β) (α− β)
− − − 0

 ,
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so that

sgn(Fβ) :=


+ + − −
− − − −
− − + +
− − − −

 .

For any small 0 < ε < β the matrix Fβ−ε is as follows

Fβ−ε :=


(α− β + ε) (α− β + ε) − −

− ε − −
− − (α− β + ε) (α− β + ε)
− − − ε

 .

Hence sgn(Fβ) has two distinct binary vectors but the matrix limγ→β− sgn (Fγ) has
four distinct binary vectors. So at γ = β, ρ(Fγ) has a discontinuity: ρ(Fβ) = 2 and
limγ→β− ρ(Fγ) = 4, therefore γ4 = γ3 = β so indeed it is not the case that the strict
inequality γ4 < γ3 holds.

For our purposes, we define the VC-dimension of a {1,−1}-matrix to be that of the
set system in which the indicator functions of the sets correspond to the columns
of the matrix (with a 1 indicating membership). So, a set of m rows is shattered
when the sub-matrix induced by those rows has all {1,−1} vectors of length m as
columns.

Proposition 5. For every 0 ≤ γ ≤ 1, V C (sgn (Fγ)) ≤ log2 (ρ (Fγ)).

Proof. The number of distinct columns of the matrix sgn(Fγ) is, by definition, ρ(Fγ).
Let S be a set of rows of maximal size m that is shattered by sgn (Fγ). Then the
number of distinct columns of sgn (Fγ) must be at least 2m. This implies that
ρ(Fγ) ≥ 2m, that is, m ≤ log2 ρ(Fγ). So the largest set that can be shattered by
sgn (Fγ) is of size no larger than log2 ρ(Fγ). �

4.4. The matrix F ′γ. Denote by 0 < aL < aL−1 < · · · < a1 < 1 the set of L distinct
positive entries of F where a1 and aL are the maximum and minimum positive
entries of F which are less than 1 and greater than 0, respectively. For 1 ≤ i ≤ L,
define the multiplicity of ai, as the number of times that ai appears in F and denote
it by mi. Let

M :=
L∑
l=1

mi (4.13)

be the number of positive components of F .

We refer to SF = {a1, a2, . . . , aL} as the positive set of F .
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For 0 ≤ i ≤ N , let us denote by the ith shell of the binary N -dimensional cube
{−1, 1}N (N -cube) the set of all vertices that have i components that are 1.

We next define a few quantities, leaving the dependence on N implicit. For 1 ≤ j ≤
N denote by

cj :=

(
N

j

)
the number of vertices in the jth shell.

Denote by

bn :=
n∑
j=1

cj (4.14)

the number of vertices of the cube contained in the first n shells and we let b0 := 0

Let us define

`n :=
n∑
j=1

jcj, (4.15)

the total ’weight’ (number of 1-entries) in all of the vertices of the cube that are in
the first n shells.

For a positive integer m define

Q(m) := min {q ≥ 1 : `q ≥ m} . (4.16)

For instance, if m = 17, N = 4, then 1
(

4
1

)
+ 2
(

4
2

)
+ 1 = 17 so Q(17) = 3.

Let

∆ := m− `Q(m)−1,

and then define dme as the following ‘rounded’ value:

dme :=

{
m if Q(m) = 1 or ∆ mod Q(m) = 0

m+ (Q(m)−∆ mod Q(m)) otherwise.

So, dme is the smallest integer greater than or equal to m which is the total weight
(number of 1-entries) in a set of vertices of the cube, where that set is formed by
first populating the first shell, then the second, and so on. So, m 1-entries might
not be enough to form all the vertices of shells 1 to Q(m)−1 and then some vertices
in shell Q(m): an additional (at most Q(m) − 1) 1-entries might be necessary (to
‘complete’ a vertex in shell Q(m)).
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For instance (continuing the above example), since Q(17) = 3 ≥ 2 then d17e =
17+(3−1 mod 3) = 19, and indeed 19 1-entries are required in the vertices in shells
1 and 2, and in the first vertex of the 3rd shell.

Define integers Ri as follows:

R0 = 0,

Ri = dRi−1 +mie , 1 ≤ i ≤ L. (4.17)

Define the values αj, 1 ≤ j ≤ RL as follows: for 1 ≤ i ≤ L,

αj =ai, for all j ∈ {Ri−1 + 1, . . . , Ri} . (4.18)

We now construct a matrix F ′ with the same positive set, SF , as F ; that is, its
positive components are the αi values. F ′ is defined as follows:

F ′ :=



− − − ··· α`1 − − ··· α`2 − − ··· α`3

...
... − ··· −

...
...

... −
...

... α`2−1

...
... α`3−1

...
...

...
...

...
...

...
...

...
... −

...
... α`3−2

...
...

... −
...

...
...

...
...

...
...

...
... −

...
...

... αRL
...

...
...

...
...

...
...

... −
...

...
...

...
...

...
...

... ···
...

... − ···
... − α`2+6 ···

...
... ···

... α`K−1+K ··· αRL−1

...
... −

... − α`1+4

... α`2+3 −
...

...
...

...
...

... − α2

... α`1+2 −
... α`2+2 α`2+5

...
...

... α`K−1+2 αRL−K+1

− α1 − ··· − α`1+1 α`1+3 ··· − α`2+1 α`2+4 ··· −
...

... α`K−1+1 ···
...



where we write the symbol ‘−’ to indicate any arbitrarily chosen negative real value
and K = Q(RL) (where Q is as described above). Note that in defining F ′, any
fixed ordering of binary vectors, grouped according to increasing weight (shell) is
appropriate, and the highest shell (the Kth shell) may be only partially full.

Example. To illustrate with a small example, suppose that N = 4 and that the
positive set SF is a6 < a5 < a5 < a4 < a3 < a2 < a1, and that each ai has
multiplicity mi = 1, except for a6, which has multiplicity 3. Then we have:

R0 = 0, R1 = d1e = 1, R2 = d2e = 2, R3 = d3e = 3, R4 = d4e = 4,

R5 = d5e = 6, R6 = d6 + 3e = d9e = 10.
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The corresponding values of αi are therefore:

α1 = a1, α2 = a2, α3 = a3, α4 = a4,

α5 = α6 = a5,

α7 = α8 = α9 = α10 = a6.

A suitable F ′ is then 
− − − − a4 − − a6

− − − a3 − − a6 −
− − a2 − − a5 − −
− a1 − − − a5 a6 a6

 .

For positive integer m let us define

λ(m) := bQ(m)−1 +
dme − `Q(m)−1

Q(m)
(4.19)

and define λ(0) := 0. Note that dRie = Ri because Ri − `Q(Ri)−1 is an integer
multiple of Q(Ri) and hence for 1 ≤ i ≤ L, we have

λ(Ri) := bQ(Ri)−1 +
Ri − `Q(Ri)−1

Q(Ri)
. (4.20)

Then, for each i, λ(Ri) equals the number of columns of F ′ that are occupied by
entries α1, . . ., αRi . In the above example,

λ(R6) = λ(10) = b1 +
10− `1

2
= 4 +

10− 4

2
= 7.

Note that the choice of values (4.18) ensures that every column of F ′ consists of at
most a single value ai ∈ SF ′ for some 1 ≤ i ≤ L; that is, no column has a mix of
several different ai values.

Henceforth denote by κ′ the pseudo-rank of F ′ and let vi be the columns of F ′. Let
us evaluate the characteristic points γ′r of F ′, 1 ≤ r ≤ κ′. As in (4.12), they are
ordered from the lowest γ′κ′ to largest γ′1. We start with γ > 1 and in this case
ρ(F ′γ) = 1 since the matrix sgn(F ′1) consists of all-(−1) components. We begin to
decrease γ. As long as γ is larger than a1, ρ(F ′γ) = 1 but when γ < a1, λ(R1) new
binary vectors are formed, namely, the vectors sgn(v1), . . ., sgn(vλ(R1)), which differ
from the all-(−1) vector, and thus ρ(F ′γ) changes from a value of 1 to λ(R1)+1. The
characteristic points for r ∈ {2, . . . , λ(R1) + 1} are γ′r = a1 since a1 is the supremum
of all values γ such that ρ(F ′γ) ≥ r.
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As we continue to decrease γ and pass the value a2, we have λ(R2) − λ(R1) new
binary vectors that are formed, namely, the vectors sgn(vλ(R1)+2), . . ., sgn(vλ(R2)+1),
all of which differ from the previously-created vectors. So γ′r = a2, for

r ∈ {λ(R1) + 2, . . . , λ(R2) + 1} .
In general, when we pass γ = ak from above we have λ(Rk) − λ(Rk−1) new binary
vectors formed relative to when γ ≥ ak, so ρ jumps up by this amount. By definition,
κ′ equals the number of distinct binary columns of sgn (F ′). Hence

κ′ = λ (RL) + 1. (4.21)

We can express the characteristic points of F ′γ as follows: for all 1 ≤ k ≤ L,

γ′r = ak, for all r that satisfy: r ∈ {λ (Rk−1) + 2, . . . , λ (Rk) + 1} , (4.22)

where we define λ(R0) = 0. Note that, by construction of F ′, every ak is a charac-
teristic point and every characteristic point must be some ak. An ak could be the
characteristic point γ′r for a range of values of r as (4.22) indicates. Note also that
in (4.22) the largest value of r is κ′ and γ′κ′ = aL.

Figure 4.1 shows an example of ρ(F ′γ) with its characteristic points. Note that the
graph is always non-increasing and piecewise constant, not just for this example,
because of the special form of the matrix F ′γ.

4.5. Relating F and F ′. The matrices F and F ′ have the same positive sets but
can have different pseudo-ranks.

Theorem 6. Suppose a matrix F with positive set SF is given, and construct a
matrix F ′ (using the elements of SF ) as described above. Then

ρ(Fγ) ≤ min
{
ρ(F ′γ), N(N − 1)

}
for every γ.

To prove Theorem 6, we first have the following preliminary result about binary
matrices. Here, by the weight of a column of a {−1, 1}-matrix, we mean the number
of 1 entries in the column and by the weight of the matrix we mean the total number
of 1 entries in the matrix.

Lemma 7. Let M be a positive integer and let r := λ(M) − bQ(M)−1. Let A∗(M)
be any matrix with the property that it solely contains all columns of weight 0, 1,
. . ., up to and including Q(M)− 1, and r columns of weight Q(M). Then, for any
{−1, 1}-matrix A of weight M , the number of distinct columns of A is no more than
the number of distinct columns of A∗(M).
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Figure 4.1. Example of pseudo-rank function for F ′γ with character-
istic points γ′r. At a point γ′r, the symbol • for ρ(F ′γ′r) indicates that

ρ(F ′γ′r) is well defined, and ◦ indicates that only the limit exists

lim
γ→γ′−r

ρ(F ′γ).

Proof. We describe an algorithm to produce A∗(M) given A, which is displayed in
Algorithm 1 and Procedures 2, 3, 4. Suppose A has N rows and, for 1 ≤ i ≤ N , let

Si = {x ∈ {−1, 1}N : wt(x) = i},
where wt(x) is the weight of x, the number of 1 entries. (We call Si the ith shell.)
We will describe an algorithmic procedure for successively making changes in the
matrix A in such a way that, at each step, the new matrix has the same weight and
at least as many distinct columns as the previous matrix. We show the procedure
ends with a matrix that has no more distinct columns than a matrix of type A∗(M).
The result will then follow.

The procedure starts with A0 = A and we will denote successive matrices by
A0, A1, . . . As. For each stage i, we define Di to be the (multi-)set of columns of
Ai of weight at least 1 which are duplicates of other columns, that is, for each col-
umn u ∈ Di there is exactly one v 6∈ Di such that u = v. We define Ei to be
the (multi-)set of columns of A where each column in Ei has a weight greater than
Q(M). The procedure works as follows, at stage i: if there is a {−1, 1}-vector x of
weight j < Q(M) which is not a column of Ai, then we create a new (additional)
column equal to x and (to maintain the number of 1s in the resulting matrix Ai+1)
we replace a total of j 1s by −1s in any vectors in Di \ Ei and also, if necessary,
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in any vectors in Ei. (We try to use the duplicate columns of weight no more than
Q(M) first.) We can think of this as ‘transferring’ 1 entries from these columns to
make the new one. This action potentially makes changes to columns in Di and
Ei, so these sets are updated accordingly to Di+1 and Ei+1. The number of distinct
columns in Ai+1 is not smaller than the number in Ai. This is because changing any
column in Di (which is already present elsewhere as a column) cannot decrease the
number of distinct columns, and changing any column in Ei will, at worst, create
a duplicate column: however, given that the new column x has been introduced
into Ai+1, the net effect would be (at worst) for the number of distinct columns to
remain the same.

Because Q(M) = max{q : M > `q−1}, there are enough 1 entries in the matrices
so that, eventually, all columns of weight less than Q(M) are present. Call As the
matrix that results once all such columns first appear. Any additional columns of
As will be either (i) duplicates of columns of any weight, or (ii) columns of weight
Q(M), or (iii) columns of weight greater than Q(M).

We can ‘transfer’ all the 1 entries of the columns of type (i) or (iii) to create new
columns of weight Q(M) and at most one duplicate of a column of weight less than
Q(M). The resulting matrix will have no more distinct columns than any matrix of
type A∗(M), and this implies the result. (We will not need to have any columns of
weight greater than Q(M) because M ≤ `Q(M).) �



LARGE-WIDTH BOUNDS FOR LEARNING HALF-SPACES ON DISTANCE SPACES 21

Algorithm 1 Produce A∗(M)

Input: Matrix A of N -dimensional binary columns with wt(A) = M
Output: Binary matrix A∗(M)

1: i := 0, A0 := A
2: while |{x : x ∈ Ai,wt(x) < Q(M)}| < bQ(M)−1 do
3: Di = getD(Ai)
4: Ei = getE(Ai)
5: s := 0 // current supply of 1s
6: if ∃x ∈ {−1, 1}N , x 6∈ Ai, wt(x) < Q(M) then
7: n := wt(x) // need n 1s
8: s := getOnes(Ai, Di \ Ei, n) // Ai may change
9: if s < n then

10: s := s+ getOnes(Ai, Ei, n− s) // Ai may change
11: // s now equals n
12: end if
13: construct a new N -dimensional column equal to x using s 1s
14: Ai+1 := Ai

⋃
{x} // add new column x to Ai

15: i := i+ 1
16: end if
17: end while
18: Denote Ai = {u(1), . . . , u(r)}
19: Di = getD(Ai)
20: Ei = getE(Ai)

21: while not
(
|Di| = 0 or

(
Di = {j} and wt(u(j)) < Q(M)

))
do

22: if ∃x ∈ {−1, 1}N , x 6∈ Ai, wt(x) = Q(M) then
23: n := wt(x) // need n 1s
24: s := getOnes(Ai, Di \ Ei, n) // Ai may change
25: if s < n then
26: s := s+ getOnes(Ai, Ei, n− s) // Ai may change
27: // s now equals n
28: end if
29: construct a new N -dimensional column equal to x using s 1s
30: Ai+1 := Ai

⋃
{x} // add new column x to Ai

31: i := i+ 1
32: end if
33: end while
34: return Ai
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Procedure 2 getD(V )

Input: List of N -dimensional binary vectors V = {v1, . . . , vr}
Output: List D of indices of duplicate vectors in V

1: D = ∅ // Initialize D to an empty list
2: S = ∅ // Initialize S to an empty set
3: for 1 ≤ i ≤ r do
4: if vi ∈ S then
5: add i to end of D
6: else
7: add vi to S
8: end if
9: end for

10: return D

Procedure 3 getE(V )

Input: List of N -dimensional binary vectors V = {v1, . . . , vr}
Output: E := {i : wt(vi) > Q(M)}

1: E = ∅ // Initialize E to an empty list
2: for 1 ≤ i ≤ r do
3: if wt(vi) > Q(M) then
4: add vi to end of E
5: end if
6: end for
7: return E
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Procedure 4 getOnes(V,B, n)

Input: List of N -dimensional binary vectors V = {v(1), . . . , v(r)}, list of integers
B = {ij : 1 ≤ ij ≤ r, 1 ≤ j ≤ l}, and integer n

Output: integer s = number of 1 converted to −1 in V

1: s:=0
2: for 1 ≤ j ≤ l do
3: for 1 ≤ k ≤ N do

4: if v
(ij)
k = 1 then

5: v
(ij)
k = −1

6: s := s+ 1
7: end if
8: if s=n then
9: goto 13

10: end if
11: end for
12: end for
13: return s
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We can then prove Theorem 6.

Proof of Theorem 6.

Proof. When γ > 1, sgn(Fγ) and sgn(F ′γ) both have weight 0. As γ is decreased,
the 1 entries in sgn(Fγ) will be in positions occupied in F by a1, . . . ak for some k.
The positive entries of F ′ are, by construction, the same as the positive entries of
F , albeit with possibly different multiplicities mi, and so the 1 entries in sgn(F ′γ)

will also be in positions occupied in F ′ by a1, . . . ak. Let Mk :=
∑k

i=1mi then Mk is
the number of 1 entries, and hence it is the weight of the matrix Aγ := sgn(Fγ).

By Lemma 7, the number of distinct columns of Aγ, namely ρ(Fγ), is no more than
that of any matrix of the type A∗(Mk) described in the Lemma and this number
equals 1+bQ(Mk)−1+r = λ(Mk)+1. By construction, the number of distinct columns
of the matrix sgn(F ′γ), namely ρ(F ′γ), is the sum of the number of columns with a
weight at least one (4.20) plus the all-(-1) column, which in total equals λ(Rk) + 1.
We have

Mk = m1 +m2 + · · ·+mk ≤ dm1e+m2 + · · ·+mk

≤ ddm1e+m2e+m3 + · · ·+mk

≤ d· · · dddm1e+m2e+m3e+ · · ·+mke
= Rk

and therefore, from (4.19), it follows that λ(Mk) ≤ λ(Rk). Combining all of the
above, we have

ρ(Fγ) ≤ λ(Mk) + 1 ≤ λ(Rk) + 1 = ρ(F ′γ)

and combining with (4.10) completes the proof. �

The next lemma states a bound on the VC-dimension of sgn(Fal), 1 ≤ l ≤ L.

Lemma 8. Let 1 ≤ l ≤ L,

V C (sgn (Fal)) ≤ min {log2 (λ (Rl) + 1) , log2(N(N − 1))} .
Remark 9. The second entry above, log2(N(N − 1)), is the trivial bound on the
VC-dimension of Fal since it is independent of al.

Proof. From (4.22) it follows that if r = λ (Rl) + 1 then γ′r = al and thus ρ
(
F ′al
)

=

λ (Rl) + 1. From Theorem 6 it follows that ρ (Fal) ≤ min{ρ
(
F ′al
)
, N(N − 1)}. We

apply Proposition 5 to obtain

V C (sgn (Fal)) ≤ log2 (ρ (Fal)) .
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It follows that

V C (sgn (Fal)) ≤ log2 (ρ (Fal))

≤ min
{

log2

(
ρ
(
F ′al
))
, log2(N(N − 1))

}
= min {log2 (λ (Rl) + 1) , log2(N(N − 1))}

from which the stated claim follows. �

For 0 ≤ l ≤ L, let

τl := log2 (λ (Rl) + 1)

where τ0 = 0 because R0 = 0.

We henceforth choose for ηl (as defined in section 3) the value ηl := al. Thus
Γl := (al, al−1] for 1 ≤ l ≤ L and ΓL+1 = [0, aL]. We choose for d(γ) of section 3.2
the following step function, for 1 ≤ l ≤ L,

d(γ) := min {τl−1, log2(N(N − 1))} , for all γ ∈ Γl, 1 ≤ l ≤ L+ 1

where we note that this interval does not contain the discontinuity point al. At
γ = al, d(al) = τl. Thus d is a non-increasing step function with discontinuity
points al, 1 ≤ l ≤ L.

It follows from Lemma 8 that for 1 ≤ l ≤ L,

V C(sgn (Fal)) ≤ d(al)

and, d(γ) = d(al−1) for γ ∈ Γl, as required (see section 3).

As mentioned in section 3.2, the columns of the matrix Fγ correspond to the sets

W
(i,j)
γ defined in (4.1). Hence an upper bound on the VC-dimension of sgn(Fγ) is

also an upper bound on the VC dimension of the class Wγ, and hence

V C(Wal) ≤ d(al).

From (4.4), it follows that

V C(M+
al

) ≤ d(al), V C(M−
al

) ≤ d(al)

which is what we need, as mentioned in Remark 2.
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5. Main result

5.1. The main theorem. The following is the main result of the paper.

Theorem 10. Let N ≥ 1 and let X = {xi}Ni=1 be a finite distance space with a
distance d(xi, xj), normalized such that diam(X ) = max1≤i,j≤N d(xi, xj) = 1. Let

f
(i)
j :=

 d(x1, xj)− d(x1, xi)
...

d(xN , xj)− d(xN , xi)

 ,

F (i) =
[
f

(i)
1 , . . . , f

(i)
i−1, f

(i)
i+1, . . . , f

(i)
N

]
and define the N ×N(N − 1) matrix F by

F :=
[
F (1), . . . , F (N)

]
.

Let 0 = aL+1 < aL < · · · < a1 < a0 = 1 be the values of the positive entries of F
and let ml ≥ 1 be the number of times that al appears in F , 1 ≤ l ≤ L. Define
Γl := (al, al−1], 1 ≤ l ≤ L, ΓL+1 := [0, aL] and C :=

∑L
l=1 al. On the interval [0, 1],

define the non-increasing step function

d(γ) :=

{
min {log2 (λ (Rl−1) + 1) , log2(N(N − 1))} , γ ∈ Γl, 2 ≤ l ≤ L+ 1,

0, γ ∈ Γ1 := (a1, 1]

(5.1)
where the Ri are as defined in (4.17). Let Pm := Pm

XY be a probability measure over
X ×Y. For any 0 < δ ≤ 1 , with Pm-probability at least 1− δ the following holds for
a sample ξ := {(xi, yi)}mi=1 ⊆ (X × Y)m: for all γ ∈ (0, 1], and for any half-space
hΠ,

P (Y fΠ(X) ≤ 0) ≤ 1

m

m∑
j=1

I {YjfΠ(Xj) ≤ γ}+ ε, (5.2)

where

ε :=

√
32

m

(
d(γ) ln

(
2em

d(γ)

)
+ ln

(
8(C + 1)

γδ

))
. (5.3)
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5.2. Discussion of the main theorem.

Remark 11. We first note that, ignoring the ln(1/d) and ln(1/γδ) terms, the bound

ε of the theorem is O
(√

(d(γ) ln(m))/m
)

.

Let us assess how large d(γ) is and specifically how it depends on the main param-
eters N and γ. To start with, consider the second term on the right of (4.20). This
second term gives the number of columns in the (Q(Ri))

th shell that appear in F ′

and are formed from the entries α1, α2, . . . αRi . We now make a rough estimate and
say that this number is no more than the number of vertices in the (Q(Ri))

th shell
of the N -cube, which is

(
N

Q(Ri)

)
(depending on the value of Ri, this number may

be much smaller and even close to zero). Adding this to the first term of (4.20) it
follows that λ(Ri) ≤ bQ(Ri). Hence

λ(Ri) + 1 ≤
Q(Ri)∑
j=1

(
N

j

)
+ 1

=

Q(Ri)∑
j=0

(
N

j

)
.

Bounding log2(N(N − 1)) from above by 2 log2N it follows that the expression for
d(γ) is bounded as follows,

d(γ) ≤ min

log2

Q(Rl−1)∑
j=0

(
N

j

) , 2 log2N

 (5.4)

for γ ∈ Γl, 2 ≤ l ≤ L+ 1. For l such that Q(Rl−1) > 2, and for all N ≥ 4, the right
side of (5.4) is 2 log2N (because N2 <

∑3
j=0

(
N
j

)
) and hence it does not depend on

l nor on γ. Let us denote by

l∗ := max {l ≥ 1 : Q(Rl−1) ≤ 2} .

The interesting set of values for γ (where the bound on d(γ) is influenced by γ) is

the set
⋃l∗

l=1 Γl. If γ is too small, that is, it falls outside this set, then d(γ) becomes
the trivial upper bound on the VC-dimension of the class of half-spaces. The higher
the multiplicity values mi of ai, the smaller the value of l∗ because it takes fewer
positive values ai to end up with enough 1 entries to fill the first and second shells.
This means that γ needs to be larger in order to make the bound (5.4) smaller than

the trivial value of 2 log2N (also, the set
⋃l∗

l=1 Γl becomes smaller).
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The rough estimate used above makes γ appear to have a limited effect on d(γ), in
that its value is limited to either 0, log2(1 +N), log2(1 +N +

(
N
2

)
) or 2 log2N . But,

to be more exact (without using this simple estimate) d(γ) can actually take any
value in the set {0, 1, log2 3, 4, log2 5, . . . , 2 log2N} and therefore γ has a ’smoother’
effect on the bound.

There is not much more that can be said in general for d(γ) so let us consider an
example of a specific distance space X .

Example 12. Let X be a distance space whose corresponding matrix F has positive
entries 0 < aL < aL−1 · · · < a1 < 1 with multiplicity values mj = 1, for 1 ≤ j ≤ L.
In this case the matrix F ′ is simple, in that column number l contains entries that
only take the value al, 1 ≤ l ≤ L. Define the shell index as a function of column
index l by Q̃(l). It equals

Q̃(l) := j if bj−1 < l ≤ bj

where bj is defined in (4.14). Consider the variable Q(Rl−1) in (5.4). By definition,
Rl is the highest index j of αj such that αj = al. From above, for this example,
the only column that has entries al is the lth column. Thus αRl−1

must be in the
(l − 1)th column. Hence we have

Q(Rl−1) = Q̃(l − 1). (5.5)

Let us write Q(γ) for Q as a function of γ. Any γ ∈ Γl maps to Q(Rl−1) in the
bound (5.4). Thus we have

Q(γ) : =
L+1∑
l=1

Q(Rl−1)I {γ ∈ Γl}

which, with (5.5), implies that

Q(γ) =
L+1∑
l=1

Q̃(l − 1)I {γ ∈ Γl} .

Q(γ) is a non-increasing step function with breaks at points γ = abn where abn is a de-

creasing subsequence of the sequence {al}Ll=1, 1 ≤ n ≤ Q(RL), where Q(RL) is the in-
dex of the highest shell that is either ‘full’ or ‘partially full’ by the columns of sgn(F ′).
Note that Q(γ) starts at a maximum value of Q(RL) when γ ∈ [0, abQ(RL)−1+1],

then decreases to Q(RL) − 1 for γ ∈ (abQ(RL)−1+1, abQ(RL)−2+1], and so forth, un-

til it eventually decreases down to zero when γ ∈ (a1, 1]. Now, as mentioned

above, the interesting set of values for γ is
⋃l∗

l=1 Γl. By definition, Γl∗ = (al∗ , al∗−1]

so, for this example, we have l∗ = b2 + 1 =
(
N
2

)
+ N + 1. As long as γ falls
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in the interval
⋃l∗

l=1 Γl = (al∗ , 1] then Q(γ) ≤ 2 and the bound (5.4) is non-

trivial for all N ≥ 4, that is, log2

(∑Q(γ)
j=0

(
N
j

))
< 2 log2N . The smaller the((

N
2

)
+N + 1

)th
positive value a(N2 )+N+1, the larger the range of values of γ that

yield a non-trivial bound. Thus in this particular example, for N ≥ 4, for all

γ ∈ (a(N2 )+N+1, 1], d(γ) ≤ log2

(∑Q(γ)
j=0

(
N
j

))
and the bound is smaller than the

trivial bound of 2 log2N . �

If a distance space X is Rn, then learning the class of half-spaces amounts to learning
the class of linear functions on Rn which, when thresholded, yield half-space classi-

fiers. The bound on the error in this case is O

(√
log2m
mγ2

)
(see [9]), and is useful for

learning with Support Vector Machines (linear machines on the feature-space).

Let us compare this rate with that of Theorem 10. The dependence on m is approx-
imately the same (within a logm factor). Comparing the dependence on γ is more

subtle since in the Euclidean case it is O( 1
γ
) while in Theorem 10 it is O(

√
d(γ)) and

d(γ) decreases with γ with steps that depend on the positive set SF of the distance
space. In the above example, these steps are at abn , 1 ≤ n ≤ Q(RL), but in general,
if there are multiplicity values mi that are larger than 1 then d(γ) can decrease with
γ faster, albeit the range of γ that has an effect on the bound is smaller.

As is the case of the Euclidean space, Theorem 10 shows that for a general distance
space, the learning bound is independent of any kind of ‘metric dimension’ or richness
quantity such as a covering number of the space (in the case of Rn this quantity is
the dimension n). The only factor in the bound (5.3) (via the bound (5.4) on d(γ)),
that resembles a complexity of the space is log2(N) which comes from the trivial
bound on the number of columns of F . However, as mentioned above, this log2(N)
factor only enters the bound if γ is outside the interesting range. Thus Theorem
10 almost maintains the “dimension-independence” that large-margin learning error
bounds are known to offer.

6. Conclusions

We have studied error bounds for classifiers that are generalizations of half-spaces
to arbitrary finite distance spaces (a significantly more general and perhaps more
applicable setting than that of a metric space) and have obtained bounds that
depend on a notion of ‘sample width’. We have shown that from the positive points
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ai of a matrix F associated with a finite distance space, we can directly characterize
the influence of the width parameter on the error bound for learning half-spaces.

For further work, we think that it should be possible to remove the finiteness as-
sumption on the distance space and to carry out the analysis without a matrix
representation (since the notion of pseudo-rank holds also for an infinite class of
functions, in the same manner as the growth-function is well-defined for infinite
classes of functions).
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