
Massively Parallel Computations

of the LZ-complexity of Strings

Alexander Belousov
Electrical and Electronics Engineering Department

Ariel University
Ariel, Israel

alex.blsv@gmail.com

Joel Ratsaby
Electrical and Electronics Engineering Department

Ariel University
Ariel, Israel

ratsaby@ariel.ac.il

Abstract — We introduce a new parallel algorithm LZMP for
computing the Lempel-Ziv complexity of a string of characters
from a finite alphabet. The LZ-complexity is a mathematical
quantity that is related to the amount of non-redundant
information that a string contains. It has been recently shown to
be useful in pattern recognition in measuring the distance
between various kinds of input patterns [1],[2].
 We implement the algorithm on a software parallel-computing
platform (CUDA) which works with a Graphical Processing Unit
(GPU) on a TESLA K20c board. The GPU has 2,496 computing
cores and 5G bytes of global memory. This platform enables high
increase in computing performance.
 We exploit multiple places in the sequential version of the code
and use CUDA to implement these code sections to run in
parallel on the GPU cores. For example, the string
XYZMXZXYZKR has a complexity of 7. The sequential version
of the algorithm takes 27 time steps to compute this while the
parallel version takes only 11 time steps. The advantage of the
parallel implementation over the sequential one becomes more
relevant as the string's length increases.
 Our results show that for single strings of length up to 5k bytes
there is no significant improvement but for strings of length
greater than 5k the speedup factor grows at a linear rate with
respect to the string length. When we compute the LZ-
complexity of multiple strings all of length 48k bytes in a parallel
our results indicate that the speedup ratio is approximately 100.
This is advantageous for pattern recognition where the object to
be recognized can be represented as a collection of substrings and
LZ-complexity based distance ca be computed to each of them in
parallel. We provide our CUDA source code [7].

I. INTRODUCTION

The Lempel-Ziv complexity [3] of a finite string S is
proportional to the minimal number of substrings that are
necessary to produce S via a simple copy operation. For
instance, the string S = ababcabcabcbaa can be constructed
from the five substrings, a,b,abc,abcabcb,aa, and therefore its
LZ-complexity equals 5. This complexity measure inspired the
well-known universal compression algorithms of Lempel Ziv
[5,6]. It has recently been used in pattern recognition and
classification through the introduction of a new string distance
function [4]. This distance function has inspired a large
number of applications, especially in the field of biological-
sequence analysis. In [1,2] a new universal image distance

(UID) was introduced which is based on the LZ-complexity.
The sequential algorithm for computing the LZ-complexity is

O n2  , where n is the length of the string. This means that

computing the UID between typical-size images is impractical
for most real-time applications. Hence in this paper we
introduce a parallel algorithm for computing the LZ-
complexity which has a linear speedup relative to the
sequential algorithm, with respect to the number of cores. This
makes computing the UID practical.

II. LZ-COMPLEXITY

The definition of LZ-complexity follows [3]: let S,Q and R
be strings of characters that are defined over the alphabet A.
Denote by l(S) the length of S, and S(i) denotes the element of
S. We denote by S(i, j) the sub string of S which consists of
characters of S between position i and j (inclusive). An
extension R = SQ of S is reproducible from S (denoted as S →
R) if there exists an integer p ≤ l(S) such that Q(k) = R(p+k−1)
for k = 1, . . . , l(Q).

For example, aacgt → aacgtcgtcg with p = 3 and aacgt →
aacgtac with p = 2. R is obtained from S (the seed) by first
copying all of S and then copying in a sequential manner l(Q)

elements starting at the pth
location of S in order to obtain the

Q part of R.
A string S is producible from its prefix S(1, j) (denoted S(1,

j) ⇒ R), if S(1, j) → S(1, l(S) − 1).
For example, aacgt ⇒ aacgtac and aacgt ⇒ aacgtacc both

with pointers p = 2. The production adds an extra ’different’
character at the end of the copying process which is not
permitted in a reproduction.

Any string S can be built using a production process where

at its ith
step we have the production S(1, hi−1) ⇒ S(1, hi)

where hi is the location of a character at the ith
step. (Note that

S(1, 0) ⇒ S(1, 1)).
An m-step production process of S results in parsing of S in

which H(S) = S(1, h1) ·S(h1 +1, h2) · · · S(hm−1 +1,

hm) is called the history of S and H i (S) (S) = S(hi−1

+1, hi) is called the ith
component of H(S). For example for S

= aacgtacc we have H(S) = a · ac · g · t · acc as the history of

S. If S(1, hi) is not reproducible from S(1, hi−1), then

component H i (S) is called exhaustive meaning that the
copying process cannot be continued and the component
should be halted with a single character innovation. A history is
called exhaustive if each of its components (except maybe the
last one) is exhaustive. Every string S has an unique exhaustive
history [3]. Let us denote by cH (S) the number of
components in a history of S. The LZ complexity of S is

c (S)=min {cH (S)} where the minimum is over all

histories of S. It can be shown that c (S) = cE (S)

where cE (S) is the number of components in the
exhaustive history of S.

III. GPU-BASED PARALLEL PROCESSING

Graphical processing unit (GPU) is a multi-processor
electronic chip specialized for matrix and vector operations to
do geometrical operations in 3D graphics. GPUs have been
recently gaining popularity also for non-graphical processing
due to their highly parallel computing architecture. This
architecture typically consists of thousands of cores that
operate concurrently on several gigabytes of global memory.
There are several software platforms that allow provide API
for main languages such as C and C++ and enable
programmers to produce code that runs on a GPU. We use the
CUDA™ platform is freely provided by the nVIDIA
corporation. We use a TESLA K20c GPU which delivers 3.5
Tflops. Compared to our AMD 6-core Phenom II CPU which
delivers only several Gflops.

IV. ALGORITHMS

We start by presenting the pseudo-code of the sequential
LZ-complexity algorithm and then introduce the parallel
algorithm, which we call Lempel-Ziv-Massively-Parallel
(LZMP) algorithm. Let us denote by T s(n) the time that it
takes for the sequential algorithm to compute the LZ-
compelxity of a string of length n, in the worst case. Let
T (n , p) be the time it takes for the parallel algorithm,

running on p cores, to compute the LZ-complexity of the string
of length n, in the worst case.

 Define by S p :=T s(n) /T (n , p) the speedup factor
achieved by the parallel algorithm. Algorithm LZMP
introduced below has a linear speedup factor with respect to p,
that is, S p=p . We now present the pseudo code of the
sequential algorithm and then the pseudo code of the parallel
algorithm (LZMP). All variables in small caps are integer-
valued. We use large-capital letters for representing sets,
collection, and memory buffers.

A. Pseudo code of the sequential algorithm

1. Input: S string of n elements
 S=〈 s1 , s2 , s3 ,... , sn〉

Initialize
2. H history buffer
3. m history buffer length, Initialize m :=0

4. max variable for storing a greater counter of steps
5. d the number of components in the exhaustive

history
 Initialize d , d :=0
// Scan S string from a beginning to end, let the
// sequence find new substrings (components) and
// add them to history buffer H .

6. while (m<n)
6.1. Initialize max :=0
6.2. for(l=0 to m)

6.2.1. initialize variable i :=0
6.2.2. initialize variable k :=0

// compare elements in history buffer with elements in S
string.

6.2.3. while (H [l+k] = S [m+i])
k :=k+1
i :=i+1

if(l+k=m or m+i=n)
break;

end if;
6.2.4. end while;

// check if history buffer is over and current is not
6.2.5. if(l+k=m and m+i<n)

// Continue to scan and compare
// elements in S string.

initialize z :=m
while(S [z] = S [m+i])

z :=z+1
i :=i+1

if(m+i=n)
break;

end if;
end while;

 6.2.6. end if;

// check if i is greater than max .
// If greater, put i value to max ,

if(i>max)
max :=i

end if;
6.3. end for;
 //Append new substring to history buffer H
6.4.

H :=H+substring(S[m] , S [m+max+1])
6.5. d :=d+1
6.6. m :=m+max+1

7. end while;
8. Output: d The LZ-complexity of a S string.

We now compute the T s(n) of the sequential algorithm. We
consider the worst-case string, which is one where the
reproduction loops (6.2.3 – 6.2.6) do not occur. In this case

as we scan S from the left, for the character at position m
it takes m−1 attempts to reproduce the substring starting

at m , which takes ∑m=1

n

(m−1) units of time.

Therefore the total time for computing the LZ-compelxity of a

string of length n is (n /2)(n+1)−n=O (n2) .

We now introduce the parallel algorithm LZMP.

B. Pseudo code of algorithm LZMP

1. Input: S string of n elements
 S=〈 s1 , s2 , s3 ,... , sn〉
 Initialize

2. H history buffer
3. m history buffer length, Initialize m :=0
4. T q Thread with ID = q
5. p total number of cores
6. SM shared memory variable for storing a greater

 counter of steps, shared memory visible for all threads.
7. d the number of components in the exhaustive

history
 Initialize d , d :=0

// Scan S string from a beginning to end, let the
// algorithm find new substrings (components) and
// add them to history buffer H .

8. launch parallel Threads T q , 0≤ q < p
9. while (m<n)

9.1. Initialize SM :=0
9.2. for(l=0 to ⌊m/ p⌋)

// create new index j that depends from
// Thread with ID = q (T q)

9.2.1. initialize variable j=q+l⋅p
9.2.2. if(j<m)

 initialize variable i j :=0

 initialize variable k j := j
 initialize variable h j :=m− j

// Let each Thread scan and compare elements in
// history buffer with elements in S string.

9.2.2.1. while (H [k j] = S [m+i j])

k j:=k j+1
i j :=i j+1
h j :=h j−1

if(h j=0 or m+i j=n)
break;

end if;
9.2.2.2. end while;

// Check if history buffer is over and current is not
9.2.2.3. if(h j=0 and m+i j<n)

// Let each Thread continue to scan and compare
// elements in S string.

initialize z j :=m
while(S [z j] = S [m+i j])

z j :=z j+1
i j :=i j+1

if(m+i j=n)
break;

end if;
end while;

9.2.2.4. end if;
// Let each Thread T j check if i j is greater than SM .

// If greater, put i j value to SM ,

9.2.2.5. if(i j>SM)

SM :=i j
9.2.2.6. end if;
9.2.3. end if;
9.3. end for;
9.4. Synchronize all Threads T q .

9.5. if(T q=T 0)

 //Append new substring to history buffer H

 H :=H+substring (S [m] , S [m+SM +1])
 d :=d+1
 m :=m+SM+1

9.6. end if;
9.7. Synchronize all Threads T q .

10. end while;
11. Output: d The LZ-complexity of a S string.

We now compute the T (n , p) of the parallel algorithm. The
worst case string is one for which the reproduction step (which
is implemented via the two inner while-loops) does not occur.
In this case it takes

∑
i=1

p

1+∑
i=1+ p

2p

2+∑
i=1+2p

3p

3+...+∑
i=n− p

n

(n / p)
therefore the total time for computing the LZ-complexity of a
string of length n is bounded from above by

p∑i=1

⌈n / p⌉
i=(n /2)((n / p)+1) . Therefore the speed up is

T s(n)
T (n , p)

=
(n /2)(n+1)−n
(n /2)((n / p)+1)

= p (n−1
n+ p)

which is approximately equal to p if

limn→∞ (p /n)=0 .

V. ANALYSIS

We now analyze the functionality and compare between the
two algorithms presented in the previous section by
considering an example string XYZMXZXYZKR. Table I
shows the dry-run of the sequential algorithm. The left column
represents the time units, the second column shows the
progress in reading the characters of the string S. The bold-font
character is at position m+i (see step 6.2.3 in section IV.A).

The third column shows the content of the history buffer. The
bold-font character is at position l+k (step 6.2.3). The sixth
column displays the process of finding the longest substring

(called candidate) that starts at mth
 position of S and ends

at (m+max)th
 character of S. Each candidate is produced

by a copying process, the l th
process starts at the

(l+k)th
 character of the history buffer. The column

contains the list of candidates that have been seen so far
separated by a comma. When there are no more candidates to
be considered, we add to the dictionary the one whose length is
maximal. The eighth column shows the value of max. The last
column displays the current value of the LZ-complexity of S
which is the number of components added to the dictionary up
to the current time. At time 27 the computation halts and the
LZ-complexity value of S is 7.

TABLE I. SEQUENTIAL COMPUTATION

TABLE II. LZMP COMPUTATION

Table II shows a dry-run of the parallel algorithm on the above
example. The middle columns display the activity of the p
threads that run in parallel. Each thread attempts to produce
one candidate substring that starts at position m in the string S.
Each thread has its own variable i which points to the current
position of the substring associated with the thread. The total
time needed for computing the LZ-complexity of S by LZMP
is 11, compared to the total time of 27 for the sequential
algorithm. As can be seen in this example, there are several
inactive threads due to the fact that the history is short. For a
longer string S, as the length of the history gets larger and
closer to the number of threads p, more threads become active.

VI. EXPERIMENTS AND RESULTS

The computing platform consists of a 2.8GHz AMD
Phenom©II X6 1055T Processor with number of cores n = 6
and the operating system is Ubuntu 12.04 LTS. Note that the
sequential algorithm runs on a single core of this processor,
that is, our speedup results are with respect to the time that it
takes the sequential algorithm to run on a single core. The GPU
hardware is a Tesla K20C board with a single GK110 GPU
from NVIDIA. This GPU is based on the Keppler architecture
(with compute capabilities of 3.5). The CUDA is release 6.0.
We conducted two experiments, the first aims at estimating the
speedup of algorithm LZMP on the task of computing the LZ-
complexity of a single random string of ASCII characters of
length n and varied the value of n in the range of

1k≤n≤1000k . The number of threads per block is
1,024 and we use a single block for the computation. In the
second experiment we constructed M random character strings,
where 1≤M ≤140 , each string of length 48k. We
assigned each string to a distinct block of the GPU and
allocated 1,024 threads per block of the GPU. Note that the
size of the shared memory on each block is 48k hence each of
the strings occupies maximum shared memory on its
corresponding block. Using this setup we estimated the
speedup factor of computation of the LZ-complexity for all of
these M strings in parallel. Figure 1 displays the result for
experiment 1. We see the speedup factor as a function of the
string size n.

Fig. 1

Note that the speedup keeps increasing with n. In the interval
of 1≤n≤5k the speedup is less than 1 hence making
the parallel implementation unuseful for string lengths that are
shorter than 5k. In order to appreciate the speedup, let us
compare the absolute running times for n=1000K : the
CPU time is 38.4 hours and the GPU only 6 minutes. Figure 2
displays the result of experiment 2. As can be seen, the
speedup factor increases non-linearly and converges to
approximately 100. For instance, to compute the LZ-
complexity for 140 strings of length 48k each, the CPU
requires 17.9 minutes while it takes the GPU only 10 seconds.

Fig. 2

VII. CONCLUSIONS

We introduced a parallel algorithm, LZMP, for computing the
LZ-complexity of a string of characters. The algorithm has a
theoretical speedup factor S p= p where p is the number
of cores. We tested the algorithm on two problems, one of
computing the LZ-complexity of a string of length n, for

1k≤n≤1000k bytes and the second is of computing
the LZ-complexity of many strings each of length 48k bytes.
For the first problem the results indicate that there is
approximately a linear speedup with respect to n, and in the
second problem, we see a maximal speedup of about 100 with
respect to the number of strings. With this speedup, it becomes
viable to do pattern recognition that use distance-measures
that are based on the LZ-complexity such as in [2,3].

VIII.ACKNOWLEDGMENT

We acknowledge the support of the nVIDIA corporation in
providing the necessary GPU hardware.

REFERENCES

[1] U. Chester, J. Ratsaby. Universal distance measure for images, Proc. of
the 27th IEEE Convention of Electrical and Electronics Engineers in
Israel (IEEEI'12), pp. 1-4, Eilat, Israel, Nov. 14-17, 2012.

[2] U. Chester, J. Ratsaby. Image classification and clustering using a
universal distance measure, in N. Brisaboa, O. Pedreira, and P. Zezula
(Eds.), Proc. of the 6th Int'l conf. on Similarity Search and Applications
(SISAP 2013), Springer LNCS 8199, pp. 59-72, La Coruna, Spain, Oct.
2-4, 2013.

[3] A. Lempel, J. Ziv, On the Complexity of Finite Sequences, IEEE
Transactions on Information Theory,, vol.22, no.1, pp.75-81, 1976.

[4] K. Sayood and H. H. Otu. A new sequence distance measure for
phylogenetic tree construction. Bioinformatics, 19(16):2122–2130,
2003.

[5] J. Ziv, A. Lempel, (1977) A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23, 337–343.

[6] J. Ziv, A. Lempel, (1978) Compression of indiviual sequences via
variable-rate coding. IEEE Transactions on Information Theory, 24,
530–536.

[7] CUDA source code of LZMP,
http://www.ariel.ac.il/sites/ratsaby/Code/LZMP.zip

http://www.ariel.ac.il/sites/ratsaby/Code/LZMP.zip

	I. Introduction
	II. LZ-complexity
	III. GPU-based parallel processing
	IV. Algorithms
	A. Pseudo code of the sequential algorithm
	B. Pseudo code of algorithm LZMP

	V. Analysis
	VI. Experiments and results
	VII. Conclusions
	VIII. Acknowledgment

