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Abstract  —  We introduce  a new parallel  algorithm LZMP for 
computing the Lempel-Ziv complexity of a string of characters 
from  a  finite  alphabet.  The  LZ-complexity  is  a  mathematical 
quantity  that  is  related  to  the  amount  of  non-redundant 
information that a string contains.  It has been recently shown to 
be useful in pattern recognition in measuring  the distance 
between various kinds of input patterns [1],[2]. 
  We implement the algorithm on a software parallel-computing 
platform (CUDA) which works with a Graphical Processing Unit 
(GPU) on a  TESLA K20c board.  The GPU  has 2,496 computing 
cores and 5G bytes of global memory. This platform enables high 
increase in computing performance.
  We exploit multiple places in the  sequential version of the code 
and  use  CUDA to  implement  these  code  sections  to  run  in 
parallel  on  the  GPU  cores.  For  example,  the  string 
XYZMXZXYZKR has a complexity of 7. The sequential version 
of the algorithm takes 27 time steps to compute this while the 
parallel version takes only 11 time steps. The advantage of the 
parallel  implementation over the sequential  one becomes more 
relevant as the string's length increases. 
  Our results show that for single strings of length up to 5k bytes 
there  is  no  significant  improvement  but  for  strings  of  length 
greater than 5k the speedup factor grows at a linear rate with 
respect  to  the  string  length.   When  we  compute   the  LZ-
complexity of multiple strings all of length 48k bytes in a parallel  
our results indicate that the speedup ratio is  approximately 100. 
This is advantageous for pattern recognition where the object to 
be recognized can be represented as a collection of substrings and 
LZ-complexity based distance ca be computed to each of them in 
parallel. We provide our  CUDA source code [7].
 

I. INTRODUCTION

The Lempel-Ziv complexity [3] of a finite string S is 
proportional to the minimal number of substrings  that are 
necessary to produce  S via a simple copy operation. For 
instance, the string S = ababcabcabcbaa can be constructed 
from the five substrings, a,b,abc,abcabcb,aa, and therefore its 
LZ-complexity equals 5. This complexity measure inspired the 
well-known universal compression algorithms of Lempel Ziv 
[5,6]. It has  recently been used in pattern recognition and 
classification through the introduction of a new string distance 
function [4]. This distance function has inspired a large 
number of  applications, especially in the field of biological-
sequence analysis. In [1,2] a new universal image distance 

(UID) was introduced which is based on the LZ-complexity.  
The sequential algorithm for computing the LZ-complexity is 

O n2  , where n is the length of the string. This means that 

computing the UID between typical-size images is impractical 
for most  real-time applications. Hence in this paper we 
introduce a parallel algorithm for computing the LZ-
complexity which has a  linear speedup  relative to the 
sequential algorithm, with respect to the number of cores. This 
makes computing the UID practical.

II. LZ-COMPLEXITY 

The definition of  LZ-complexity follows [3]: let S,Q and R 
be strings of characters that are defined over the alphabet  A. 
Denote by l(S) the length of S, and S(i) denotes the element of 
S. We denote by  S(i, j)  the sub string of  S  which consists of 
characters  of  S  between  position  i  and  j  (inclusive).  An 
extension R = SQ of S is reproducible from S (denoted as S → 
R) if there exists an integer p ≤ l(S) such that Q(k) = R(p+k−1) 
for k = 1, . . . , l(Q).

For example, aacgt → aacgtcgtcg with p = 3 and aacgt → 
aacgtac  with  p  = 2.  R  is obtained from  S  (the seed) by first 
copying all of S and then copying in a sequential manner l(Q) 

elements starting at the pth
location of S in order to obtain the 

Q part of R.
A string S is producible from its prefix S(1, j) (denoted S(1,  

j) ⇒ R), if S(1, j) → S(1, l(S) − 1). 
For example, aacgt ⇒ aacgtac and aacgt ⇒  aacgtacc both 

with pointers  p  = 2. The production adds an extra ’different’ 
character  at  the  end  of  the  copying  process  which  is  not 
permitted in a reproduction.

Any string S can be built using a production process where 

at its ith
step we have the production  S(1, hi−1 )  ⇒  S(1, hi ) 

where hi is the location of a character at the ith
step. (Note that 

S(1, 0) ⇒ S(1, 1)).
An m-step production process of S results in parsing of S in 

which H(S) = S(1, h1 ) ·S( h1 +1, h2  ) · · · S( hm−1 +1, 

hm )  is called the  history  of  S and H i (S ) (S) =  S( hi−1

+1, hi ) is called the ith
component of H(S). For example for S 

= aacgtacc we have H(S) = a · ac · g · t · acc as the history of 



S.  If  S(1, hi )  is  not  reproducible  from  S(1, hi−1 ),   then 

component H i (S )  is called exhaustive meaning that the 
copying process cannot be continued and the component 
should be halted with a single character innovation. A history is 
called exhaustive if each of its components (except maybe the 
last one) is exhaustive. Every string S has an unique exhaustive 
history  [3].  Let  us  denote  by cH (S) the  number  of 
components  in  a  history  of  S.  The  LZ  complexity  of  S  is 

c (S)=min {cH (S)}  where  the  minimum  is  over  all 

histories  of  S.   It  can  be  shown  that c (S) = cE (S )  

where  cE (S )  is  the  number  of  components  in  the 
exhaustive history of S.

III. GPU-BASED PARALLEL PROCESSING

Graphical  processing  unit  (GPU)  is  a  multi-processor 
electronic chip specialized for matrix and vector operations to 
do geometrical  operations in  3D graphics.  GPUs have been 
recently  gaining popularity also for non-graphical processing 
due  to  their  highly  parallel  computing  architecture.  This 
architecture  typically  consists  of  thousands  of  cores  that 
operate concurrently on several gigabytes of global  memory.
There are several software platforms that allow provide API 
for  main  languages  such  as  C  and  C++  and  enable 
programmers to produce code that runs on a GPU. We use the 
CUDA™  platform   is  freely  provided  by  the  nVIDIA 
corporation. We use a TESLA K20c GPU which delivers 3.5 
Tflops. Compared to our AMD 6-core Phenom II CPU which 
delivers only several Gflops.

IV. ALGORITHMS

We start by presenting the  pseudo-code of the sequential 
LZ-complexity  algorithm  and  then  introduce  the  parallel 
algorithm,  which  we  call  Lempel-Ziv-Massively-Parallel 
(LZMP) algorithm. Let us denote by T s(n)  the time that it 
takes  for  the  sequential  algorithm  to  compute  the  LZ-
compelxity  of  a  string  of  length  n,  in  the  worst  case. Let 
T (n , p)  be  the  time  it  takes  for  the  parallel  algorithm, 

running on p cores, to compute the LZ-complexity of the string 
of length n, in the worst case.

 Define  by  S p :=T s(n) /T (n , p) the  speedup  factor 
achieved  by  the  parallel  algorithm.  Algorithm  LZMP 
introduced below has a linear speedup factor with respect to p, 
that  is,  S p=p .  We  now  present  the  pseudo  code  of  the 
sequential algorithm and then the pseudo code of the parallel 
algorithm  (LZMP).  All  variables  in  small  caps  are  integer-
valued.  We  use  large-capital  letters  for  representing  sets, 
collection, and memory buffers.

A. Pseudo code of the sequential algorithm

1. Input: S  string of n  elements   
            S=〈 s1 , s2 , s3 ,... , sn〉

Initialize 
2. H history buffer
3. m history buffer length, Initialize m :=0

4. max variable for storing a greater counter of steps
5. d the  number  of   components  in  the  exhaustive 

history
 Initialize d , d :=0
// Scan S string from a beginning to end, let the 
// sequence find new substrings (components) and 
// add them to history buffer H .

6. while ( m<n )    
6.1. Initialize max :=0    
6.2. for( l=0  to m ) 

6.2.1. initialize variable i :=0
6.2.2. initialize variable k :=0     

// compare elements in history buffer with elements in S
string.     

6.2.3. while ( H [ l+k ] = S [m+i] )
k :=k+1
i :=i+1

if( l+k=m  or  m+i=n )
break;

end if;
6.2.4. end while;   

// check if history buffer is over and current is not
6.2.5. if( l+k=m  and m+i<n )

// Continue to scan and compare 
// elements in S string. 

initialize z :=m
while( S [ z ] = S [m+i] )

z :=z+1
i :=i+1

if( m+i=n )
break;

end if;
end while; 

             6.2.6. end if;

// check if i is greater than max . 
// If greater, put i value to max ,

if( i>max ) 
max :=i       

end if;
6.3. end for;
      //Append new substring to history buffer H
6.4.

H :=H+substring(S[m ] , S [m+max+1])
6.5.  d :=d+1
6.6.  m :=m+max+1

7. end while;   
8. Output: d The LZ-complexity of a S string.   

We now compute the T s(n)  of the sequential algorithm. We 
consider the worst-case string, which is one where the 
reproduction loops (6.2.3 – 6.2.6)  do not  occur. In this case 



as we scan S from the left,  for the character at position m
it takes m−1  attempts  to reproduce the substring starting 

at m , which takes  ∑m=1

n

(m−1)   units of time. 

Therefore the total time for computing the LZ-compelxity of a 

string of length n is (n /2)(n+1)−n=O (n2) .

We now introduce the parallel algorithm LZMP.

B. Pseudo code of algorithm LZMP

1. Input: S  string of n  elements   
            S=〈 s1 , s2 , s3 ,... , sn〉
   Initialize 

2. H history buffer
3. m history buffer length, Initialize m :=0
4. T q Thread with ID = q
5. p total number of cores
6. SM shared memory variable for storing a greater

        counter of steps, shared memory visible for all threads.
7. d the  number  of   components  in  the  exhaustive 

history
 Initialize d , d :=0

// Scan S string from a beginning to end, let the 
// algorithm find new substrings (components) and 
// add them to history buffer H .

8. launch parallel Threads T q , 0≤ q < p
9. while ( m<n )    

9.1. Initialize SM :=0  
9.2. for( l=0  to ⌊m/ p⌋ ) 

// create new index j  that depends from
// Thread with ID = q  ( T q )

9.2.1. initialize variable j=q+l⋅p
9.2.2. if( j<m ) 

 initialize variable i j :=0   

 initialize variable k j := j
 initialize variable h j :=m− j

// Let each Thread scan and compare elements in 
// history buffer with elements in S string.  

9.2.2.1. while ( H [k j ] = S [m+i j] )

k j:=k j+1
i j :=i j+1
h j :=h j−1

if( h j=0  or  m+i j=n )
break;

end if;
9.2.2.2. end while;

// Check if history buffer is over and current is not
9.2.2.3. if( h j=0  and m+i j<n )

// Let each Thread continue to scan and compare 
// elements in S string. 

initialize z j :=m
while( S [ z j] = S [m+i j] )

z j :=z j+1
i j :=i j+1

if( m+i j=n )
break;

end if;
end while; 

9.2.2.4. end if;
// Let each Thread T j check if i j is greater than SM . 

// If greater, put i j value to SM ,

9.2.2.5. if( i j>SM ) 

SM :=i j       
9.2.2.6. end if;
9.2.3. end if;
9.3. end for;
9.4. Synchronize all Threads T q . 

9.5. if( T q=T 0 ) 

      //Append new substring to history buffer H

 H :=H+substring (S [m] , S [m+SM +1])
  d :=d+1
 m :=m+SM+1

9.6. end if;
9.7. Synchronize all Threads T q . 

10. end while;   
11. Output: d The LZ-complexity of a S string.   

We now compute the T (n , p) of the parallel algorithm.  The 
worst case string is one for which the reproduction step (which 
is implemented via the two inner while-loops) does not occur.
In this case it takes 

∑
i=1

p

1+∑
i=1+ p

2p

2+∑
i=1+2p

3p

3+...+∑
i=n− p

n

(n / p )
therefore the total time for computing the LZ-complexity of a 
string of length n is bounded from above by 

p∑i=1

⌈n / p⌉
i=(n /2)((n / p)+1) . Therefore the speed up is

T s(n)
T (n , p)

=
(n /2)(n+1)−n
(n /2)((n / p)+1)

= p ( n−1
n+ p )

which is approximately equal to p  if 

limn→∞ ( p /n)=0 .

V. ANALYSIS

We now analyze the functionality and compare between  the 
two algorithms presented in the previous section by 
considering an example  string XYZMXZXYZKR.    Table I 
shows the dry-run of the sequential algorithm. The left column 
represents the time units, the second column shows the 
progress in reading the characters of the string S. The bold-font 
character is at position m+i (see step 6.2.3 in section IV.A). 



The third column shows the content of the history buffer. The 
bold-font character is at position l+k  (step  6.2.3). The sixth 
column displays the process of  finding the longest substring 

(called candidate) that starts at mth
 position of S and ends 

at (m+max)th
 character of S. Each candidate is produced 

by a copying process, the l th
process  starts  at the 

( l+k )th
 character of the history buffer. The column 

contains the list of candidates that have been seen so far 
separated by a comma. When there are no more candidates to 
be considered, we add to the dictionary the one whose length is 
maximal. The eighth column shows the value of max. The last 
column displays the current value of the LZ-complexity of S
which is the number of components added to the dictionary up 
to the current time. At time 27 the computation halts and the 
LZ-complexity value of S is 7.

TABLE I. SEQUENTIAL COMPUTATION

TABLE II.   LZMP COMPUTATION



Table II shows a dry-run of the parallel algorithm on the above 
example.  The  middle  columns  display  the  activity  of  the  p 
threads that  run in parallel. Each thread attempts to produce 
one candidate substring that starts at position m in the string S. 
Each thread has its own variable i  which points to the current 
position of the  substring associated with the thread.  The total 
time needed for computing the LZ-complexity of S   by LZMP 
is  11,  compared  to  the  total  time  of  27  for  the  sequential 
algorithm.  As can be seen in this example,  there are several 
inactive threads due to the fact that the history is short. For a 
longer string  S,   as the length of the history gets larger and 
closer to the number of threads p, more threads become  active. 

VI. EXPERIMENTS AND RESULTS

The  computing  platform  consists  of  a  2.8GHz  AMD 
Phenom©II X6 1055T Processor with number of cores n = 6 
and the operating system is Ubuntu 12.04 LTS. Note that the 
sequential  algorithm runs on a single core  of this processor, 
that is, our speedup results are with respect to the time that it 
takes the sequential algorithm to run on a single core. The GPU 
hardware  is a Tesla K20C board with a single GK110 GPU 
from NVIDIA. This GPU is based on the Keppler architecture 
(with compute capabilities of 3.5). The CUDA is release 6.0.
We conducted two experiments, the first aims at estimating the 
speedup of algorithm LZMP on the task of computing the LZ-
complexity of a single random string of ASCII characters of 
length  n  and  varied  the  value  of  n  in  the  range  of 

1k≤n≤1000k .  The  number  of  threads  per  block  is 
1,024 and we use a single block for the computation.  In the 
second experiment we constructed M random character strings, 
where  1≤M ≤140 ,  each  string  of  length   48k.  We 
assigned  each  string  to  a  distinct  block  of  the  GPU  and 
allocated 1,024 threads per block of the GPU. Note that the 
size of the shared memory on each block is 48k hence each of 
the  strings  occupies   maximum  shared  memory  on  its 
corresponding  block.  Using  this  setup  we  estimated  the 
speedup factor of computation of the LZ-complexity for all of 
these  M strings in  parallel.   Figure 1 displays the result  for 
experiment 1. We see the speedup factor as a function of the 
string size n.

Fig. 1

Note that the speedup keeps increasing with n.  In the interval 
of 1≤n≤5k    the speedup  is less than 1  hence making 
the parallel implementation unuseful for string lengths that are 
shorter than 5k.  In order to appreciate the speedup, let   us 
compare the absolute running times for  n=1000K :  the 
CPU time is 38.4 hours and the GPU only 6 minutes. Figure 2 
displays  the  result  of  experiment  2.  As  can  be  seen,  the 
speedup  factor  increases  non-linearly  and  converges  to 
approximately  100.  For  instance,  to  compute  the  LZ-
complexity  for  140  strings  of  length  48k  each,  the  CPU 
requires 17.9 minutes while it takes the GPU only 10 seconds.

Fig. 2

VII. CONCLUSIONS

We introduced a parallel algorithm, LZMP, for computing the 
LZ-complexity of a string of characters. The algorithm has a 
theoretical speedup factor  S p= p where  p is the number 
of  cores.  We tested the algorithm on two problems,  one  of 
computing  the  LZ-complexity  of  a  string  of  length  n,  for 

1k≤n≤1000k bytes  and  the  second  is  of  computing 
the LZ-complexity of many strings each of length 48k bytes. 
For  the  first  problem  the  results  indicate  that  there  is 
approximately a linear speedup with respect to  n,  and in the 
second problem, we see a maximal speedup of about 100 with 
respect to the number of strings. With this speedup, it becomes 
viable  to do pattern recognition that  use distance-measures 
that are based on the LZ-complexity such as in [2,3].
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