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Abstract—We design and develop a data compression engine on a
single FPGA chip that is used as part of a text-classification application.
The implementation of the prediction by partial matching algorithm and
arithmetic coding data compression is totally in hardware without any
software code. Our design implements a dynamic data structure to store
the symbol frequency counts up to maximal order of 2. The computation
of the tag-interval that encodes the data sequence in arithmetic coding
is done in a parallel architecture that achieves a high speedup factor.
Even with a relatively slow 50 Mhz clock our hardware engine performs
more than 70 times faster than a software-based implementation in C
on a CPU running on a 3 Ghz clock.
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I. INTRODUCTION

Text or document classification is a problem studied in the area
of information retrieval [1], text-mining [2], pattern recognition
[3] and machine learning [4, 5]. In a typical scenario there is a
corpus of documents each labeled according to one of M different
categories, for instance, email messages in the PC’s in-box divided
into the categories *work’, *personal’, ‘research’, ’spam’. Given a new
document (for instance, a new incoming email message) the problem
is to classify it into one of the existing categories automatically
by the PC. A main challenge is to automatically learn to classify
accurately from a given training data which is typically noisy. For
instance, suppose a document is represented as a 'bag-of-words’
from some fixed dictionary with no reference to their specific order
in the document and no representation for grammatical rules. The
importance of a word in a document is represented by the TFIDF
formula [1]. The document’s context is represented according to
the relative word frequencies and the frequencies with respect to
the whole document corpus. As ubiquitous and common as it is in
practice, this simple representation can lead to classification errors.
For instance, if a document contains the word *war’ then it is more
likely to be in the category of ’military’ than in ’electronics’. But
there is still a non-zero chance that a document that contains the
word ‘war’ is in category ’electronics’. Hence the Bayes’ optimal
classification error is non-zero and this makes the problem of learning
to classify more challenging. The majority of research in this area
focuses on improving algorithms and representations such that the
accuracy of classification remains close to Bayes’ error. The more
we enrich documents’ representation by introducing features such
as words that are more relevant in the domain or finding ways of
coding the grammatical structure that appears in the written language
(available from knowledge of the specific domain of the problem) the
more likely that the classifier will achieve lower errors.

Recently there has been work in the direction of feature-free
representation. This means that no feature extraction is necessary
but rather a document is used in its original raw format (for instance,

the original file containing the text). The idea is based on the so-
called information-distance [6]. It is a distance function between
two entities x, y which measures their dissimilarity based on their
Kolmogorov complexity [7]. In its more practical version it is
called the Normalized Compression Distance (NCD) and is defined
as follows [8]: given two binary strings x and y which are not
necessarily of the same length, denote by zy their concatenation.
Let C(z) denote the length of the compressed string = using some
compression algorithm [9] such as Lempel-Ziv [10] or PPM [11].
The distance between x and y is defined as

NCD(:C,y) — C(xy) — min {C(l’%C(y)} D
max {C(z), C(y)}

The main advantage of using this distance is that it is parameter-
free and model-independent. It requires no prior domain knowledge.
One just needs to compress the two document files (viewed as
binary strings) = and y and their concatenation and then evaluate
their distance NC'D(z,y). There is no need for any kind of feature
extraction such as word-frequencies in a bag-of-words representation
or extracting grammatical features or semantic knowledge from
the documents corpus. A similar approach based on compression
has been shown to succeed in classification problems of a wide
spectrum of data types [12, 13, 14, 15, 16], for instance, media
content (music, video, voice), human sketches [12], image[14, 16],
genome categorization, remote sensing data [13], prediction of binary
sequences [15]. The computationally intensive part of evaluating this
distance is doing the compression. In general, running a compression
algorithm in software may take several seconds even on a state-of-the
art computer which for some real-time applications is unacceptable.
For the NCD one only needs to use a compressor and there is no
need for decompressing.

In [17] a parallel hardware architecture was designed specifically
for doing arithmetic coding compression in order to compute the
NCD. The results there indicate that there is a significant advantage
in computational time for evaluating this distance on a single FPGA
chip relative to doing it in software.

In the current paper we expand on [17] by adding another layer
of coding (on top of arithmetic coding) that is based on prediction
by partial matching (PPM). This method achieves among the best
compression rates on text-based data. It is based on parametric
estimation of the context-based conditional probability of appearance
of symbols. We describe it in the next section.

II. CONTEXT BASED COMPRESSION

In context-based compression [9] the idea is to code the probability
of the next symbol conditioned on the previously-seen values of



symbols in the text stream. The more skewed this conditional
probability, the higher the compression rate. The most common way
to represent this probability is to examine the history of the symbol
sequence and estimate the probability distribution of the next symbol
given a fixed number of previous symbols. This number is called the
context order and is typically fixed in advance. For instance, in the
word ’probability’ the first-order context for the letter a is b since it is
the single symbol before a. The second-order context for a is ob since
it is the two symbols preceding a. In general, as we increase the
order the probability of the occurence of a will become more skewed,
that is, further from the uniform probability. This in turn reduces the
number of bits required to encode a. Thus ideally one would like
to use as high order as possible for representing the probability of
occurence of a symbol. The disadvantage is in the amount of memory
needed since the number of possible contexts grows at an exponential
rate with respect to the order.

The PPM algorithm [9, 11] solves this exponential storage problem
by keeping only the counts of those contexts that actually appeared
in the data. This is a much smaller number than the number of
all possible contexts. PPM incrementally updates these counts as
it reads the text sequence that is to be compressed and acts in a
greedy manner, always trying to use the conditional probability for
a symbol with respect to the largest order context (the largest order
is fixed in advance). If the symbol to be encoded did not appear
in the data within a context of that size then the algorithm encodes
an ’escape’ symbol and attempts to use the next smaller context.
This process continues until either we find a context of some size
(greater than or equal to zero) within which the symbol appeared
or that the symbol did not appear in any context. In the latter, the
algorithm uses a uniform probability (1/M probability where M
is the number of possible symbols in the alphabet) and we refer
to it as context of order —1 (written Order_-1). Concerning the
encoding of the escape symbol, there are several implementations
of the algorithm. We choose the variant known as PPM-C which
means that the count assigned to the escape symbol is the number
of distinct symbols that have occured in that context (denoted by
define_bytes). The probability of a symbol is the normalized value of
its count. In the next section we describe arithmetic coding which is
used to encode each symbol based on its probability.

III. ARITHMETIC CODING

Arithmetic coding is a procedure which encodes a given sequence
of symbols, for instance a text document, as a binary sequence whose
length is shorter than the number of bits used in the original symbol
representation. The idea is to represent the symbol sequence by a
unique fraction which is denoted as fag (it is contained in the unit
interval [0, 1]). The binary representation of this fraction becomes
the binary codeword of the sequence. The cumulative probability
distribution (cdf) of the source of the symbol-sequence plays a
major role in coding. The basic version of the algorithm (which
we have implemented) uses just the zeroth-order cdf. Each symbol
is uniquely associated with a subinterval corresponding to one of
the discontinuous steps of the cdf. We start with the complete unit
interval which by definition contains the tag. When a new symbol
in the sequence is received, its unique interval is used to rescale the
current interval that contains the tag. In general, this procedure can
be described by a recursive algorithm for computing the lower and
upper boundaries of the tag interval at time n (the time when symbol
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where F(x,) denotes the value of the cdf at =, and F(z, — 1)
denotes its value at the symbol to its left (in the order of the alphabet).
As the text sequence becomes long the interval length decreases to a
very small fraction. To avoid the need for infinite precision there is a
scaling procedure which keeps the current interval at time n always at
a minimum size. Moreover, in an integer-precision implementation it
is necessary to estimate the cdf values by a fixed number of 2™
discrete levels. A finite table of cumulative counts are computed
based on the symbol-sequence and is used as an estimate of the
true cdf. A new pair of equations based on this discrete estimate
replaces (2) where now [ and u™ are m-bit binary words. An
incremental procedure exists for generating the binary encoding that
forms the compressed version of the original symbol-sequence. It
also does the scaling. This way at each time n, based on the to
most significant bits of 1™ and w™ one determines the output bit.
Repeating this incremental procedure from beginning to end produces
the full codeword for the input text.

IV. SYSTEM IMPLEMENTATION

We developed a special-purpose system that acts as a high-speed
compression server. A client sends a file (or any character stream)
to the server who compresses the file and reports back the length
(number of bits) of the compressed encoding (Figure 1) . Figure 2
shows the system overview. The micro-controller (PicoBlaze) is used
only for transfer of the text stream from the ethernet interface into
the compressor and for reporting the compressed size in the end of
the compression. The computation of the NCD formula is done at the
client side based on the reported compressed length from the server.

A. PPMU

The compressor itself is programmed all in hardware in VHDL
with two main components: a PPM unit (PPMU) and an arithmetic
coding unit (ACU). The text sequence to be compressed consists
of consecutive bytes each an eight bit binary ASCII code which
are transfered to the card via an ethernet interface. The counts
of symbols are kept in data structures for each of the orders of
context where maximal order is 2. We denote them as Order 2,
Order_1, Order_0 and Order_-1. Order_-1 is the uniform distribution
(described above). Order_0 means that the probability function of a
symbol is unconditional. Order_1 means that it is conditioned on a
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single preceeding symbol and Order_2 means it is conditioned on
two preceding symbols. As an example, consider the following text
sequence bacabac then

Order0 Orderl Order2
(symbol,count) (symbol,context,count)| (symbol,context,count|

b,2 a, b,2 c,ba,2

a3 c,a,2 a,ac,1

c,2 b,a,l b,ca,l

a,ab,1

From (2) the cummulative probability F'(z) of a symbol z is
needed in order to compute the lower and upper boundaries of the tag
interval. Denote by n; the number of times that symbol ¢ occurs in a
sequence of length T'otalCount then for a symbol k we can express
F(k) = g Zle n;. Define by cumCount(k) = Zle n;
then (2) can be expressed in terms of these cummulative counts as

follows,

1™

TotalCount
KON \‘(u(n_l) —1Y 41 x cumCount(wn)J

v TotalCount

The value of cumCount(z, — 1) = cumCount(x,) — count(x,)
hence the only information needed by the ACU to compute the
interval for the n*" symbol z, in the sequence is cumCount(z,),
count(zy) and T'otalCount. All three values depend on the specific
context in which the symbol z,, was found to occur. For instance, in
Order_1, if the current symbol x,, follows the symbol z which did not
occur up until time n then for this context z the T'otalCount = 0.

According to the PPM algorithm we need only keep the counts
of symbols that occured in the text sequence. We keep these counts
in tables that are distributed in various memory units (internal and
external to the FPGA). We only store the count(k) of a symbol k
so in order to get cumCount(k) we sum all counts from the first
symbol (0)z up until symbol k. This way we do not need to store
the cumCounts. We store the T'otalC'ount in order to save time by
not needing to sum up all the counts each time a new symbol gets
encoded. Note that T'otalCount includes the count of the escape
symbol which as mentioned above is Defined_bytes.

For Order_0 we have a single counter that holds the T'otalCount.
For Order_1 we have 256 counters each holding the TotalCount

(=) \‘(u(”_l) — 1Y 1 1) x cumCount(z, — 1)

(3)
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Fig. 4. Order 1, TotalCount and Def Bytes (FPGA internal RAM)

that corresponds to one of the 256 possible contexts in order 1. These
256 counters are stored in a separate dedicated memory unit in order
to parallelize memory access. In Order_2, for each context we keep
the T'otalCount in a memory address in a hashtable entry that also
points to a linked list that contains symbols that have already occured
in the sequence in this particualr context. Since there are too many
possible contexts of order 2 we only keep those contexts that occured

in the sequence.
Let us describe the data structures used to store the counts for each
order. We start with the simplest order Order_-1.

1) Order_-1: Order -1 is used when the current symbol did not
appear up until the current symbol. The probability for encoding
the symbol is according to the uniform distribution. Since there
are 256 possible symbols this probability is 1/256. We represent
this by keeping a count of 1 for each symbol and a cummulative
count cumCount(k) = k, for each symbol k& € {0,...,255}.

— 1Since this information never changes there is no need to store it in

memory. Given a symbol z,, we pass to the ACU the following values
count(zn) = 1, cumCount(x,) = zn, and the TotalCount =
256.

2) Order_0: Order 0 is used when the symbol to be encoded
appeared at least once before in the sequence but occurs in a context
which has not appeared in the sequence in neither order 1 nor
2. In this case the probability of the symbol is read from a one
dimensional table with 256 entries where each entry is a 32 bit
number representing the count of a symbol as displayed in Figure
3. The count for the escape symbol is called Define_bytes which
holds the number of distinct symbols that appeared in the sequence.
Its inverse value is used as the probability of the escape symbol. The
TotalCount has 24 bits and holds the total number of symbols (not
just distinct) that appeared.

3) Order_I: In Order 1 there are 256 possible contexts so the
data structure is implemented as a two-dimensional table based on
2562 = 65536 cells each 16 bits wide for holding the count as shown
in Figure 5

Instead of using the internal block RAM we implement this table
in DDR RAM on the Xilinx Spartan-3AN board which has four
DDR banks. We use a Micron DDR 512Mb chip organized as
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32Mx16. The TotalCount (which is referred to also as Max_cum)
and Define_bytes (referred to also as Dif bytes) for each context are
stored in 256 cells in a separate RAM block internal to the FPGA
(Figure 4). Each of the 256 cells has 24 bits for the T'otalCount and
8 bits for the Define_bytes. We use bank# 1 for the table (Figure 5).
This combination of internal and external RAM allows concurrent
access to both memory modules and speeds up the Order 1 data
processing.

4) Order 2: The number of possible contexts in Order_2 is
2562 = 65536 and each such context can contain 256 symbol counts
hence reaching up to 16Mbyte which is more than available in the
internal RAM of the FPGA. To overcome this we use a dynamic
memory structure in the form of a linked list fully implemented
in VHDL. This way we only store counts of symbols that occured
and only for contexts that occured in the sequence. Hence the data
structure for Order_2 needs to reside in RAM external to the FPGA.
We devote two external banks, bank #2 and bank #3 of the DDR
RAM. Bank #2 implements a hash table with 256> cells each of
which contains an entry of 64 bits as shown in Figure 6. The address
of an entry in this table is obtained by mapping a key into an index.
The key consists of the concatenation of two symbols (the value of
the context). For instance, if the current symbol is ¢ and the last
two symbols are ab then the key is the 16 bit code 026162 (in hex)
which is the concatenation of the ASCII codes of a and b. We use
the following formula to obtain the index (hash) for a key which is
the concatenation of the ASCII codes of two symbols k and j,

PPMC_hash(k, j) := ((j < 8) + k) & 0z0000F FFF

where j < 8 means shift left the value of j by 8 bits. The first
element of an entry (Figure 6) is 32-bit address of the start of a
linked list (in Bank #3) that contains the symbol counts for that
context. The second celement is Max_CUM_PROB which is a 24-bit
value of the T'otalC'ount. The Dif Bytes is an 8-bit representing the
Define_bytes for this context.

Bank #3 holds the actual linked lists of the contexts that occured.
A linked list holds the symbol counts that occured in this context. It
may grow each time a new symbol arrives. In each cell of the linked
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Fig. 7. Order 2, a cell in the linked list (external RAM bank #3)
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Fig. 8. Order 2, combined data structure

list we store a symbol k (8-bit ASCII code) which occured in the
present context, its 16-bit count(k), and a 32-bit pointer to the next
symbol in this context as displayed in Figure 7. Allocation of space
is done in

Figure 8 shows the combined view of the two data structures of
Order_2.

5) Updating counts: In the previous sections we described the data
structures that hold the statistics of symbols. In addition to supplying
the ACU with these counts for encoding a symbol using (3) one
neds to update them each time a new symbol is read in the text
sequence. Everything described here is done using special-purpose
state-machines programmed in VHDL. For Order_-1 no updates are
done. For Order_0 the updating is simple and entails incrementing
by one the count of the current symbol and incrementing by one the
TotalCount. For Order_1, we locate the count of the current symbol
that corresponds to the current context and increment it by one. We
also increment TotalCount and update Def bytes in the entry of
the table (Figure IV-A3) that corresponds to the current context of
order 1. For every order, when any of the symbol counts of the
current context reaches half the maximal value, we renormalize all
the symbol counts in this context by dividing them by 2. If a symbo
count has a value of 1 we do not divide it by 2. This enables us to
maintain count statistics for (and hence compress) texts of arbitrarily
large length.

The operation on Order_2 is somewhat more involved. Given the
current symbol we first locate the current context by finding its entry
(Figure 6) in the hashtable and obtain the 32-bit address of the start
of the corresponding list. We then scan the list, comparing the symbol
in each entry (Figure 7) to the current symbol. If we find a match
then we read the symbol count and encode the symbol in the ACU.
Otherwise we read the 32-bit address pointer (located to the right of
the entry) of the next entry in the list and repeat the comparison on
the next entry. If we reached the end of the list (indicated by a pointer
value of 0) then we encode an escape symbol. The cumCount of a
symbol is also computed by summing all the symbol counts as we
read the entries in the list. If we did not the current symbol then
after encoding an escape we append a new element to the list for
this symbol with a count initialized to 1 and a pointer (to the next
entry) initialized to 0. We update the Defined_bytes and TotalCount



counts in the hashtable (Figure 6).

B. ACU

The ACU operates according to the arithmetic coding algorithm
described in Section III. It is based on the following components:

o ARITH_CODING - state machine which controls the add and
subtract modules, computes the 1) and ™ in (3), counts the
number of bits of the encoding of the text sequence and controls
a multiplexer that selects to obtain the count statistics from one
of the three order components (Order_0, Order_1, Order_2)

o DIVIDER - Two components, each performs integer division
and produces the quotient and remainder.

o« MULTIPLIER - Two components, each performs integer multi-
plication and produces porduct.

The time needed to complete an operation by the DIVIDER and
MULTIPLIER is proportional to the number of bits of the operands.
Having two dividers and two multipliers means that the calculation
of 1™ and u(™ are executed in parallel.

V. CONCLUSION

We implemented in VHDL an FPGA-based data compressor that
uses the PPM algorithm with arithmetic coding. It is implemented
on a single FPGA chip on an inexpensive evaluation board (Xilinx
Sparatan 3A) with a 50 Mhz clock. The board has an ethernet
interface and acts as a server on a local area network that gets a
file, compresses it and returns the number of bits of the compressed
encoding. Using this server a client can do text classification by
computing the NCD measure on pairs of files.

The advantage of implementing this in hardware versus software
on a PC is that we can tailor the hardware architecture to the specific
algorithmic requirements and make it more efficient than a general
purpose CPU. Our compressor executes the algorithmic stages in
parallel. The PPM unit updates multiple data structures, some of
which are dynamically and incrementally allocated, that keep the
symbol count statistics. The arithmetic coding unit employs multiple
components that compute the boundary of the tag interval in parallel.
Based on our performance tests, the compressor is more than 70 times
faster than a C based software implementation running on a 3Ghz
PC. One direction to extend the work is to add a pipeline in order to
process multiple sequential symbols and encode them simultaneously.
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