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We introduce a construction of a uniform measure over a functional class Br

which is similar to a Besov class with smoothness index r. We then consider the
problem of approximating Br using a manifold Mn which consists of all linear
manifolds spanned by n ridge functions, i.e., Mn=[�n

i=1 gi(ai } x) : ai # Sd&1,
gi # L2([&1, 1])], x # Bd. It is proved that for some subset A/Br of probabilistic
measure 1&$, for all f # A the degree of approximation of Mn behaves asymptoti-
cally as 1�nr�(d&1). As a direct consequence the probabilistic (n, $ )-width for
nonlinear approximation denoted as dn, $ (Br, +, Mn), where + is a uniform measure
over Br, is similarly bounded. The lower bound holds also for the specific case of
approximation using a manifold of one hidden layer neural networks with n hidden
units. � 1999 Academic Press

1. INTRODUCTION

We consider the problem of approximating a functional class Br similar
to a Besov class using a manifold of ridge functions Mn=[�n

i=1 g i (ai } x) :
ai # S d&1, g i # L2([&1, 1])], defined on the unit ball Bd=[x # Rd : &x&2 :=
(�d

i=1 x2
i )1�2�1] in the space Rd. Here S d&1=[x # Bd : &x&2=1] is the
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unit sphere in Rd. The degree of approximation of f # Br by Mn in the
space L2 is defined by the expression

dist( f, Mn , L2)= inf
h # Mn

& f &h&L2
,

where & f &L2
denotes the L2 -norm of f on Bd.

Vostrecov and Kreines [27] and Lin and Pinkus [8, 9] studied issues of
fundamentality of ridge functions in functional spaces. The specific case in
which the ridge functions are sigmoidal, e.g., gi ( y)=_( y)=1�1+e&y,
1�i�n, and translations are permitted corresponds to a manifold Hn=
[�n

i=1 ci _(ai } x+bi) : ai # Rd, bi , ci # R], of one hidden layer neural networks
with n hidden units. There have been many investigations concerning the
approximation properties of Hn , e.g., Barron [1], Mhaskar [15], Girosi
et al. [4�6], DeVore et al. [2], Petrushev [19], and Maiorov and Meir
[13].

Recently a series of results was obtained for estimates of approximation
of functions by the ridge-manifold Mn in the two-dimensional case, d=2
(see Oskolkov [18], and Temlyakov [23]). In particular, Oskolkov
showed that for d=2 the orders of approximation of radial functions by
the ridge-manifold Mn and by the space of algebraic polynomials of degree
n coincide. In Maiorov [12], the asymptotic behavior of the distance

dist(W r, d
2 , Mn , L2) �� n&r�(d&1)

for the Sobolev class W r, d
2 , d�2, was obtained.

In this work we are interested in assessing how massive is the subset of
functions in Br such that for all functions in this subset a certain degree of
approximation holds. In order to formalize the statement that a high per-
centage of the functions in Br are approximated by Mn to a certain degree
we construct a uniform measure over Br. The volume of a subset A of the
unit ball in Rn which is equipped with a uniform probability measure is
proportional to the probability of A. Similarly if Br is equipped with the
uniform measure then a subset in Br of high probability is interpreted as
being massive in the sense of occupying almost all of Br.

To proceed we first construct a uniform measure + over Br. We then
calculate lower and upper bounds on the degree of approximation by Mn

which holds for all functions in some subset A/Br of probability 1&$.
Specifically we obtain a degree of approximation such that for some
A/Br, with +(A)�1&e&:(n) and :(n)=c0nd�(d&1), then for all f # A,
c1 �nr�(d&1)�dist( f, Mn , L2)�c2 �nr�(d&1), for some constants c0 , c1 , c2>0
depending on r and d, but not on n.
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In [12], upper and lower bounds on the distance

dist(W r, d
2 , Mn , L2)= sup

f # W2
r, d

dist( f, Mn , L2)

for a Sobolev class W r, d
2 were obtained. However, this type of result only

guarantees the existence of a function in W r, d
2 for which the lower bound

holds. That is, it is a ``worst case'' result. In this work we extend that result
by obtaining tight lower and upper bounds that hold for all functions in a
subset of large measure in Br.

As a consequence, we obtain asymptotically tight lower and upper
bounds on the distance between Br and Mn measured by a probabilistic
(n, $ )-width which is defined as

dn, $ (Br, +, Mn)= inf

+(A)=1&$
A/Br

sup
f # A

dist( f, Mn , L2), (1)

where 0�$�1 and the infimum runs over all subsets A of Br with
probability +(A)=1&$. From the construction of the class Br one can see
that for any 0�$�1 there exists a subset A # Br such that +(A)=1&$.
Quantities similar to (1) were considered in [25, 11, 14] where + was taken
to be a Gaussian or Wiener measure and the approximation was linear.

From (1) the next inverse formulation follows

+[ f # Br : dist( f, Mn , L2)�dn, $]=$,

where dn, $=dn, $ (Br, +, Mn). Indeed, from (1) it follows that there exists
the subset A in Br such that +(A)=1&$ and

+[ f # Br : dist( f, Mn , L2)�dn, $]

=+[ f # Br : dist( f, Mn , L2)�sup
h # A

dist(h, Mn , L2)]

and hence

+[ f # Br : dist( f, Mn , L2)�dn, $]=+[Br "A]=1&+(A)=$.

The main contributions of this paper are threefold: (i) the construction
of a uniform measure over a functional class Br which is similar to a Besov
class. (ii) Proving a lower bound on the degree of approximation by ridge
functions which holds for all functions in some subset of Br of probability
measure 1&$ with respect to the uniform measure. (iii) Introducing a
probabilistic width dn, $ for nonlinear approximation and estimating
dn, $ (Br, +, Mn) for a uniform measure +.
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2. PRELIMINARIES

We begin by introducing some notation. For an integer m�1 let
Zm=[1, 2, ..., m]. Consider the ball of radius r in Rm denoted by Bm(r)=
[x # Rm : &x&2�r] and set Bm=Bm(1). For a vector z # Rm, sgn(z)=
(sgn(z1), ..., sgn(zm)), sgn(zi)=1 for zi�0, sgn(zi)=&1 for zi<0. We
denote by &v&l p

m or simply &v&p , p�1, the l m
p Euclidean norm of v # Rm. For

any Euclidean sets A and B in Rm we use a distance function dist(a, B, l m
p )

=infb # B &a&b& l p
m for any a # A, and dist(A, B, l m

p )=supa # A dist(a, B, l m
p ).

Define the space of functions

L2=L2(Bd )={ f : & f &L2
:=\|Bd

| f (x)|2 dx+
1�2

<�= .

We write �Bd f (x) dx where x=(x1 , ..., xd), and dx=dx1 } } } dxd .
The notation an

�� bn in this paper means that there exist constants
c1 , c2>0 which depend only on the smoothness parameter r of the class Br

and the dimensionality d of the domain Bd such that for every n�1,
c1�an �bn�c2 .

We define the class of functions Br using the classical means of
approximation, namely, algebraic polynomials. Consider the space Ps=
span[xk1

1 } } } xkd
d : |k|=k1+ } } } +kd�s], s=0, 1, ..., consisting of all

algebraic polynomials on Rd of total degree at most s. Let Ph
s =

span[xk1
1 } } } xkd

d : |k|=s] be the subspace of Ps consisting of homogeneous
polynomials of degree s. Set ms=dim Ph

s . It is known (cf. [22]) that ms=
( d+s&1

d&1 ) �� sd&1.
Let the set of polynomials Qs=[q l]ms

l=1 be a basis in Ph
s . The set of poly-

nomials ��
s=0 Qs is a complete system of functions in the space L2 . Using

the method of orthogonalization in L2 we can construct a complete
orthogonal system of polynomials in L2

P= .
�

s=0

[ ps, 1 , ..., ps, ms
],

such that the set Ph
s =[ ps, 1 , ..., ps, ms

] is a complete orthonormal system of
functions in the subspace Ph

s . Note in particular that in [12] we constructed
one specific orthonormal system of algebraic polynomials in L2 .

For any natural N we denote the set of multi-indexes

2N=[(s, l ) : s=2N+1, ..., 2N+1, l=1, ..., ms].
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Introduce the subspace 8N=span[ ps, l : (s, l ) # 2N]. Let Gr
N , r>0, be the

ball with radius 2&rN in the space 8N , that is,

Gr
N={ :

(s, l ) # 2N

cs, l ps, l # 8N : \ :
(s, l ) # 2N

|cs, l |
2+

1�2

�2&rN= .

Denote by Br, the set of all functions f # L2(Bd ) which can represented
as infinite sums of functions from Gr

N , namely

Br={ f : f = :
�

N=0

fN , fN # G r
N , N=0, 1, ...= .

It is not hard to see that the class Br is essentially equivalent to the class
H r, consisting of all functions f for which the best approximation by
algebraic polynomials of degree 2N satisfies the inequality

dist( f, P2N , L2)�2&rN (N=0, 1, ...).

From Jackson's Theorem (see [24]), it follows that the Sobolev class
W r, d

2 belongs to the class H r and hence also to the class cBr, for some con-
stant c. Observe also that the latter class (discussed also in [23]) is
analogous to the Besov class [26] which is defined using trigonometric
polynomials.

As an approximating function class we will use the following nonlinear
manifold

Mn={h(x)= :
n

l=1

hl (al } x) : al # S d&1, hl # L2([&1, 1])= (x # Bd ) (2)

which represents the union of all linear manifolds that are spanned by n
ridge functions from the space L2([&1, 1]) of square-integrable functions
on the segment [&1, 1].

3. UNIFORM MEASURE CONSTRUCTION

The construction of a uniform measure over a functional class is non-
trivial. For example, it is not possible to construct such a measure over a
Sobolev or Besov class. For this reason we consider the class Br which
permits such a construction.
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Let P=[ ps, l] be a complete system of orthonormal polynomials in L2 ,
as constructed in Section 2. Then we can express the class Br as

Br={ f # L2 : f (x)= :
�

N=0

:
(s, l ) # 2N

cs, l ps, l (x),

\ :
(s, l ) # 2N

|cs, l |
2+

1�2

�2&rN, for all N�0= . (3)

Consider the subspace 8N=span[ ps, l : (s, l ) # 2N]. We have that 8N is
orthogonal to 8N$ , for all N{N$, and Br is isomorphic to the set Dr of
inifinite sequences of finite dimensional vectors, i.e.,

Br&Dr := `
�

N=0

B |2N |(2&rN)

:=[c=(c0, ..., cN, ...) : cN # B |2N |(2&rN)], (4)

where cN :=(cs, l )(s, l ) # 2N
, and |2N | is the cardinality of 2N , N�0.

Note that the cardinality of 2N satisfies the asymptotic

|2N |= :
2N+1

s=2N+1

dim Ph
s = :

2N+1

s=2N+1

ms
�� :

2N+1

s=2N+1

sd&1 �� 2dN.

Let bn#B |2n |(2&rn) be the ball of radius 2&rn in R |2n |, and denote the
volume of bn by vol(bn). Let &n(dcn)=dcn�vol(bn) be the normed Lebesgue
measure on bn , &n(bn)=1, and

Dr
N= `

N

n=0

bn .

For c=(c0, ..., cN ) # Dr
N define the measure on Dr

N as

*N(dc)= `
N

n=0

&n(dcn).

Now, let B/Dr
N . We have

*N+1(B_bN+1)=|
B_bN+1

*N(dc) &N+1(dcN+1)

=
1

>N
n=0 vol(bn)

1
vol(bN+1) |

B_bN+1

dx dy

=
1

>N+1
n=0 vol(bn) |

B
|

bN+1

dy dx
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which equals vol (B)�>N
n=0 vol(bn)=*N(B). It follows from the Kolmogorov

Extension of Measure Theorem (see, for example, Shiryayev [21,
Theorem 3, and observation, p. 163]) that there exists a unique probability
measure * on Dr such that for every B/Dr

N

*((c0, ..., cN, ...) # Dr : (c0, ..., cN ) # B)=*N(B).

This uniform measure * on Dr induces a uniform measure + on Br, which
will now be used to establish our main result.

4. MAIN RESULTS

Let r>0 and an integer d�1 be given. Fix an integer n�1, and set
:(n)=c1 nd�(d&1), for some constant c1>0 depending only on r and d. Let
+ be the uniform measure over Br constructed in Section 3.

Theorem 1.

+ { f # Br : dist( f, Mn , L2)�
c2

nr�(d&1)=�1&e&:(n)

for some constant c2>0 depending only on r and d.

Theorem 2. For all f # Br

dist( f, Mn , L2)�
c3

nr�(d&1) ,

where c3>0 is some constant depending only on r and d.

From Theorems 1 and 2 we have the following corollary which estimates
the probabilistic width defined in (1).

Corollary 1. Let 0�$<1&2e&:(n). Then

c2

nr�(d&1)�dn, $(Br, +, Mn)�
c3

nr�(d&1)

for some constants c2 , c3>0 depending only on r and d.

Indeed let 0�$<1&2e&:(n) be any number. Then for any set A/Br

with the measure +(A)=1&$ we have +(A)�2e&:(n). Therefore from

101APPROXIMATION OF FUNCTIONAL CLASSES



Theorem 1 it follows that there exists a function f # A such that
dist( f, Mn , L2)�c2n&r�(d&1). Hence

dn, $(Br, +, Mn)�dist( f, Mn , L2)�
c2

nr�(d&1) .

The upper bound in Corollary 1 follows directly from Theorem 2.
We note that Traub et al. [25] consider also the so called average case

setting which introduces the notion of an average distance with respect to
a measure over a functional space in our case defined for 0<p<� as

d avg
n (Br, +, Mn)p=\|f # Br

|dist( f, Mn , L2)| p +(df )+
1�p

.

The following corollary follows easily from Theorems 1 and 2.

Corollary 2. For any 0<p<�,

c2

nr�(d&1)�d avg
n (Br, +, Mn)p�

c3

nr�(d&1)

for some constants c2 , c3>0 depending only on r, d, and p.

We proceed to prove Theorem 1, first stating several auxiliary lemmas.
From the definition of the orthonormal system P=[ ps, l] it follows that an
h # Mn can be expressed as a sum ��

N=0 �(s, l ) # 2N
cs, l (h) ps, l (x) with the

coefficients, cs, l (h)=(h, ps, l)=�Bd h(x) ps, l (x) dx. Let N # Z+ be some
number, and I/2N be any subset. Consider the set of sign-valued vectors

1 I
n :=[(sgn(cs, l (h)) (s, l ) # I : h # Mn]. (5)

We will use the next lemma which follows from Lemma 3 of [12].

Lemma 1. Assume that N and n are such that |2N |=[c5 nd�(d&1)], for
some absolute constant c5>0. Then for any subset I/2N with |I |�|2N |�10
we have

|1 I
n|�2c4 |I |�2c6nd�(d&1)

,

where c4=0.23, and c6=c4c5.

The next lemma then follows.
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Lemma 2. Let |2N |=[c5nd�(d&1)], and let I/2N , |I |�|2N |�10. Intro-
duce the sets of sign-valued vectors E |I |=[&1, +1] |I |, and E� |I | =
[= # E |I | : dist(=, 1 I

n , l |I |
2 )�2 - |I |�3]. Then

|E� |I | |�2 |I |&2c7 |I |

for some absolute constant 0<c7<1.

Proof. Set k=|I |. From Lemma 1 it follows that the cardinality
|1 I

n |�2c4k. Fix any =* # Ek. Denote by

D=*={= # Ek : &=&=*&2
l

2
k�

4k
9 = .

Now |D=* | is independent of the specific choice of =* # E k. As such |D=* |=
|[= # Ek : &=&1

�
&2

l
2
k�4k�9]| where 1

�
=[1, ..., 1] # Ek. The latter equals

�i�k�9 ( k
i ) and is bounded from below by 2k&2c8k, c8=1&2(7�18)2

log2 e=0.55..., where we used an upper bound on the tails of the binomial
distribution (cf. [3]).

Set D� ==E k"D= . Then |D� =* |=|Ek "D=* |�2c8 k. We also have E� k :=
�=* # 1In

D=*=Ek "(�=* # 1 I
n

D� =*). It follows that

|E� k|�|Ek|& } .
=* # 1 I

n

D� =* }�|Ek|&|1 I
n | 2c8k�2k&2c4k2c8k.

Set c7=c4+c8=0.78... . Thus |E� k|�2k&2c7k, which proves the lemma.

Definition 1. Let Bm denote the unit ball in Rm. For any set A/Bm

denote the volume of A as vol(A). The uniform measure over the ball
denoted by & is defined such that for every A/Bm, &(A)=vol(A)�vol(Bm).

Denote by

A :={x # Bm : |xk |>
3

8 - m
, for at least

m

10
coordinates k= .

We will use the following lemma.

Lemma 3. For any m�1

&(A)�1&3e&c9m

for some absolute constant c9>0.
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Proof. We aim at finding a lower bound on &(A) by first expressing the
measure of the set A under the uniform measure over Bm as the measure
of another set under the Gaussian measure over Rm. Introduce the
auxiliary set in Rm

A� ={x # Rm : |xk |>
3

4 - m
&x&2 , for at least

m

10
coordinates k= .

Denote by Bm(:, ;) :=Bm(;)"Bm(:). We have

&(A)�&(Bm( 1
2 , 1) & A� )�&(A� & Bm)&( 1

2)m. (6)

Let /A(x) denote the indicator function of the set A. Switching to polar
coordinates we have, since x # A� implies ax # A� for all a{0

&(A� & Bm)=
1

vol(Bm) |
Bm

/A� (x) dx

=
1

vol(Bm) |
1

0
rm&1 dr |

Sm&1
/A� (s) ds (s # S m&1), (7)

where ds is the Lebesgue measure on Sm&1. Assume that m is even (for m
odd the proof is analogous). The volume of the unit ball vol(Bm)=
?m�2�(m�2)!. It is known (cf. [17]) that ��

0 xm&1e&x2 dx= 1
21(m�2). Hence

it follows that

1
vol(Bm) |

1

0
rm&1 dr=?&m�2 |

�

0
rm&1e&r2 dr.

Therefore using once more polar coordinates we obtain from (7)

&(A� & Bm)=?&m�2 |
�

0
rm&1e&r2 dr |

S m&1
/A� (s) ds

=?&m�2 |
Rm

/A� (x) e&|x|2 dx. (8)

Define a Gaussian measure over Rm as #(G)=?&m�2 �G e&|x|2 dx, G/Rm.
From (8) it is seen that &(A� & Bm)=#(A� ). Let

D={x # Rm : |xk|�
3
2

, for at least
m
10

coordinates k= .

Then it follows that

&(A� & Bm)=#(A� )�#(A� & Bm(2 - m))�#(D & Bm(2 - m)),
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and therefore

&(A� & Bm)�#(D)+#(Bm(2 - m))&#(D _ Bm(2 - m))

�#(D)+#(Bm(2 - m))&1. (9)

Let I/Zm=[1, 2, ..., m]. Consider the subset in D

DI=[x # D : |xi |�
3
2 for all i # I, |x i |<

3
2 for all i # Zm"I].

We have

#(D)= :
I/Zm

#(DI)= :
m

l=1

:
I/Zm , |I | =l

#(DI)� :
m

l=m�10

:
I/Zm , |I |=l

#(DI).

For |I |=l

#(DI)=p l(1&p)m&l,

where

1

- ? |
|t|�3�2

e&t2 dt=0.134#p.

Hence from the definition of the Gaussian measure # it follows that

#(D)� :
m

l=m�10
\m

l + pl(1&p)m&l>1&e&c10m (10)

for some 0<c10<1 where we used a bound on the tail of the binomial
distribution [3].

We now estimate #(Bm(2 - m)). We will show that

#(Bm(2 - m))�1&e&c11m (11)

for some absolute constant c11>0.
Indeed using polar coordinates we have

#(Bm(2 - m))=?&m�2 |
Bm(2 - m)

e&|x|2 dx

=1&?&m�2 |
Rm "Bm(2 - m)

e&|x|2 dx

=1&?&m�2 d(S d&1) |
�

2 - m
rm&1e&r2 dr,
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where d(Sd&1) is the Lebesgue measure of the sphere S d&1. Using the sub-
stitution r=- mt�2, and the estimate ��

8 tk&1e&kt dr�(1�7k) e&8k8k+1�2,
k�1 (see [10, p. 471, form. (6.5)]), we obtain

|
�

2 - m
rm&1e&r2 dr= 1

2 (m�2)m�2 |
�

8
tm�2&1e&(m�2) t dt� 1

2 (m�2)m�2 e&c$11m,

where c$11=4& 3
2 ln 2. Since d(S d&1)=vol(Bm)�m=?m�2�m1(m�2) �� ?m�2

_em�2�(m(m�2)m�2
- 2?m), then

#(Bm(2 - m))�1&?&m�2 d(Sd&1) 1
2 (m�2)m�2 e&c$11 m�1&e&c11m,

where c11= 3
2(1&ln 2).

Using (6), (9), (10), and (11) we obtain that

&(A)�1&e&c10m&e&c11m&2&m�1&3e&c9m,

for absolute constant c9=min[c10 , c11 , ln 2]. K

We now proceed with finding a lower bound on the measure stated in
Theorem 1.

4.1. Proof of Theorem 1

The proof of Theorem 1 is based on the following observation. Let
m=|2N |. In the space Rm, consider the set E m=[&1, +1]m endowed
with a uniform discrete measure :, and let 1 2N

n be the subset in E m defined
in (5). From Lemma 2 it follows that the measure of elements in Em which
are ``badly'' approximated by the manifold 1 2N

n , i.e., the : measure of set
G=[= # E m : dist(=, 1 2N

n , l m
2 )�2 - m�3] satisfies the inequality

:(G )�1&2&cm

for c>0. This implies that almost all elements from Em, in the sense of the
induced probabilistic measure over Em, are ``badly'' approximated by 1 2N

n .
The statement of the theorem follows upon making use of the isomorphism
(4).

We proceed with the detailed proof. Let N*>0 be some integer which
will be taken later to be sufficiently large. Since

dist( f, Mn , L2)2= inf
h # Mn

:
�

N=0

:
(s, l ) # 2N

|cs, l ( f )&cs, l (h)|2

� inf
h # Mn

:
(s, l ) # 2N*

|cs, l ( f )&cs, l (h)| 2,
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then for an arbitrary =>0

+[ f # Br : dist( f, Mn , L2)>=]

�+ { f # Br : inf
h # Mn

:
(s, l ) # 2N *

|cs, l ( f )&cs, l (h)|2>=2= . (12)

Let m, N* and n be such that m=|2N* |=c5 nd�(d&1). To any h # Mn there
corresponds a vector h� # Rm defined as

h� =(cs, l (h)) (s, l ) # 2N *
. (13)

Denote by

M� n=[h� =(h� 1 , ..., h� m) # Rm : h # Mn].

Due to the isomorphism statement of (4) the approximation problem is
now reduced to approximation in an m-dimensional Euclidean space.

Let ==2rN*�4 in (12). We have

7 :=+ { f # Br : inf
h # Mn

:
k # 2N *

|ck( f )&ck(h)|2>=2=
=& { y # Bm : inf

h� # M� n

:
m

i=1

| yi&h� i |
2> 1

4= .

Let I�Zm . Define the set

QI={x # Bm : |xi |�
3

8 - m
, for all i # I, |xi |�

3

8 - m
for all i # Zm"I= .

From the definition of QI we have � I # Zm
QI=Bm. Thus

7= :
I # Zm

& { y # QI : inf
h� # M� n

:
m

i=1

| yi&h� i |
2> 1

4= .

For all I/Zm , |I |�m�10, and y # QI we have

:
m

i=1

| yi&h� i |
2� :

i # I

| yi&h� i |
2�

9
64m

:
i # I }

yi

| yi |
&

h� i

| yi | }
2

.
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Denote by =i ( y)=yi �| yi |=sgn( y i). Then using the fact that for any a # R
and $ # [&1, +1] the inequality |$&a|� 1

2 |$&sgn(a)| holds we have

:
m

i=1

| yi&h� i |
2�

9
256m

:
i # I

|=i ( y)&sgn(h� i)| 2.

We then have for b=64�9

7� :
I # Zm : |I| �m�10

& {y # QI : inf
h� # M� n

:
i # I

|=i ( y)&sgn(h� i)|2>bm=
= :

9m�10

j=0

:
I # Zm : |I | =m�10+ j

& { y # QI : inf
h� # M� n

:
i # I

|=i ( y)&sgn(h� i )|2>bm= .

For I # Zm let E |I |=[&1, +1] |I |. Define

1 |I |
n =[(sgn(h� i)) i # I : h # Mn].

Denote by &y&l
2
|I |=(�i # I | yi |

2)1�2. Let

E� |I |=[= # E |I | : min
$ # 1 n

|I |
&=&$&2

l
2
|I |�bm] . (14)

For any ==(=i) i # I # E |I | define the set

QI, ==[ y # QI : sgn( yi)==i , for all i # I].

Then continuing from above we have

7� :
9m�10

j=0

:
I # Zm: |I | =m�10+ j

&[ y # QI : min
$ # 1 n

|I |
&=( y)&$&2

l
2
|I |>bm]

= :
9m�10

j=0

:
I # Zm: |I | =m�10+ j

:
= # E |I |

&[ y # QI, = : min
$ # 1 n

|I |
&=( y)&$&2

l2
|I |>bm]

and since E� |I |/E |I | then

7� :
9m�10

j=0

:
I # Zm : |I |=m�10+ j

:
= # E� |I |

&[ y # QI, = : min
$ # 1 n

|I |
&=( y)&$&2

l
2
|I |>bm

Now from (14) for all = # E� |I | the condition min$ # 1 I &=&$&2
l

2
|I |>bm is

satisfied. We therefore have

7� :
9m�10

j=0

:
I # Zm : |I |=m�10+ j

:
= # E� |I |

&[ y # QI, =].
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Note that &( y # QI, =) does not depend on =. Denote by aI :=&[ y # QI, =].
Thus the latter becomes

:
9m�10

j=0

:
I # Zm : |I | =m�10+ j

:
= # E� |I |

aI= :
9m�10

j=0

:
I # Zm : |I | =m�10+ j

aI |E� |I | |.

From Lemma 2 it follows that for I such that |I |=m�10+ j the cardinality
|E� |I | |�2m�10+ j&2c7(m�10+ j) for some constant 0<c7<1. We therefore have

7� :
9m�10

j=0

:
I # Zm : |I |=m�10+ j

aI 2m�10+ j(1&2&(1&c7)(m�10+ j))

�(1&2&(1&c7) m�10) :
9m�10

j=0

:
I # Zm : |I |=m�10+ j

aI 2m�10+ j.

Since aI2m�10+ j=|E |I | | aI=&(QI) then

7�(1&2&(1&c7) m�10)

_& { y # Bm : | yk |>
3

8 - m
, for at least

m

10
coordinates k= .

Using Lemma 3 we have

7�(1&2&(1&c7) m�10)(1&3e&c9m)�1&e&c12m

for some absolute constants c9 , c12>0. Finally, from before, m=2dN* and
\=2&rN* then \ �� m&r�d. Also, the condition of Lemma 1 has
m=c5nd�(d&1) thus \=c13 �nr�(d&1) and therefore

+ { f # Br : dist( f, Mn , L2)>
c13

4nr�(d&1)=�1&e&:(n),

where :(n)=c5c11nd�(d&1). This completes the proof of Theorem 1. K

4.2. Proof of Theorem 2

Let Ps and Ph
s be as defined in Section 2. Choose n such that

n=dim(Ph
s ). Then from Proposition 2 of [12] it follows that Ps/Mn . Let

N$ be the integer such that 2N$&1�s�2N$. Considering the definition of Br

we have for all f # Br, f (x)=��
N=0 � (s, l ) # 2N

cs, l ps, l (x) and

dist( f, Mn , L2)2�dist( f, Ps , L2)2�" :
N�N$

:
(s, l) # 2N

cs, l ps, l"
2

L2

.
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Therefore from the Parseval equality and the definition of class Br we
obtain

dist( f, Mn , L2)2� :
N�N$

" :
(s, l ) # 2N

cs, l ps, l"
2

L2

� :
N�N$

2&2rN�c142&2rN$=c14s&2r,

for some constant c14>0. It is known (cf. [22]) that dim(Ph
s )=

( d+s&1
d&1 ) �� sd&1. Since n �� sd&1 then s �� n1�(d&1). Thus

dist( f, Mn , L2)�c15 n&r�(d&1),

which proves the theorem.
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