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The PAC model of learning and its extension to real valued function classes provides
a well-accepted theoretical framework for representing the problem of learning a target
functiong(x) using a random sampléx;, g(x))}",. Based on the uniform strong law of
large numbers the PAC model establishes the sample complexity, i.e., the sampie size
which is sufficient for accurately estimating the target function to within high confidence.
Often, in addition to a random sample, some form of prior knowledge is available about
the target. It is intuitive that increasing the amount of information should have the same
effect on the error as increasing the sample size. But quantitatively how does the rate of
error with respect to increasing information compare to the rate of error with increasing
sample size? To answer this we consider a new approach based on a combination of
information-based complexity of Trawgt al. and Vapnik—Chervonenkis (VC) theory. In
contrast to VC-theory where function classes of finite pseudo-dimension are used only for
statistical-based estimation, we let such classes play a dual role of functional estimation
as well as approximation. This is captured in a newly introduced quapiity;), which
represents a nonlinear width of a function cléss We then extend the notion of the
nth minimal radius of information and define a quantitys(F) which measures the
minimal approximation error of the worst-case target F by the family of function
classes having pseudo-dimensidmiven partial information org consisting of values
taken byn linear operators. The error rates are calculated which leads to a quantitative
notion of the value of partial information for the paradigm of learning from examples.
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1. INTRODUCTION

The problem of machine learning using randomly drawn examples ha
received in recent years a significant amount of attention while serving a
the basis of research in what is known as the field of computational learnin
theory. Valiant [35] introduced a learning model based on which many
interesting theoretical results pertaining to a variety of learning paradigms hay
been established. The theory is based on the pioneering work of Vapnik ar
Chervonenkis [36—38] on finite sample convergence rates of the uniform stror
law of large numbers (SLN) over classes of functions. In its basic form it
sets a framework known as the probably approximately correct (PAC) learnin
model. In this model an abstract teacher provides the learner a finite numb
m of i.i.d. exampleg{(xi, g(x))}{", randomly drawn according to an unknown
underlying distributionP over X, whereg is the target function to be learnt to
some prespecified arbitrary accuracy 0 (with respect to thé ,(P)-norm) and
confidence 1- §, where§ > 0. The learner has at his discretion a functional
class referred to as the hypothesis clasfrom which he is to determine a
function h, sample-dependent, which estimates the unknown targetwithin
the prespecified accuracy and confidence levels.

There have been numerous studies and applications of this learning framewc

to different learning problems (Kearns and Vazirani [18], Hansbal. [15]).
The two main variables of interest in this framework are the sample complexit;
which is the sample size sufficient for guaranteeing the prespecified performan
and the computational complexity of the method used to produce the estimat
hypothesigh.

The bulk of the work in computational learning theory and, similarly, in the
classical field of pattern recognition, treats the scenario in which the learne
has accesenly to randomly drawn samples. It is often the case, however, tha
some additional knowledge about the target is available through some faam of
priori constraints on the target functignin many areas where machine learning
may be applied there is a source of information, sometimes referred to as
oracle or an expert, which supplies random examples and even more compl
forms of partial information about the target. A few instances of such learning
problems include: (1pattern classificationCredit card fraud detection where
a tree classifier (Devroyet al. [12]) is built from a training sample consisting
of patterns of credit card usage in order to learn to detect transactions that &
potentially fraudulent. Partial information may be represented by an existint
tree which is based on human-expert knowledge.pf2diction and financial
analysis. Financial forecasting and portfolio management where an artificial
neural network learns from time-series data and is given rule-based parti
knowledge translated into constraints on the weights of the neuron elements. {
control and optimizationLearning a control process for industrial manufacturing
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where partial information represents quantitative physical constraints on t
various machines and their operation.

For some specific learning problems the theory predicts that partial knowled
is very significant, for instance, in statistical pattern classification or ii
density estimation, having some knowledge about the underlying probabili
distributions may crucially influence the complexity of the learning problem (cf
Devroye [11]). If the distributions are known to be of a certain parametric forr
an exponentially large savings in sample size may be obtained (cf. Ratsaby [Z
Ratsaby and Venkatesh [30, 31]). In general, partial information may appe
as knowledge about certain properties of the target function. In parametr
based estimation or prediction problems, e.g., maximum likelihood estimatio
knowledge concerning the unknown target may appear in terms of a geome
constraint on the Euclidean subset that contains the true unknown parametel
problems of pattern recognition and statistical regression estimation, often so
form of a criterion functional over the hypothesis space is defined. For instanc
in artificial neural networks, the widely used back-propagation algorithm (c
Ripley [32]) implements a least-squared-error criterion defined over a finit
dimensional manifold spanned by ridge-functions of the fofa'x + b), where
o(y) = 1/(1 +e7). Here prior knowledge can take the form of a constraint adde
on to the minimization of the criterion. In Section 3 we provide further example
where partial information is used in practice.

It is intuitive that general forms of prior partial knowledge about the target an
random sample data are both useful. PAC provides the complexity of learning
terms of the sample sizes that are sufficient to obtain accurate estimatipn o
Our motive in this paper is to study the complexity of learning from example
while being given prior partial information about the target. We seek the valt
of partial information in the PAC learning paradigm. The approach taken he
is based on combining frameworks of two fields in computer science, the fir
being information-based complexity (cf. Tradh al. [34]) which provides a
representation of partial information while the second, computational learnir
theory, furnishes the framework for learning from random samples.

The remainder of this paper is organized as follows: In Section 2 w
briefly review the PAC learning model and Vapnik—Chervonenkis theory. |
Section 3 we provide motivation for the work. In Section 4 we introduce a ne
approximation width which measures the degree of nonlinear approximation o
functional class. It joins elementary concepts from Vapnik—Chervonenkis thec
and classical approximation theory. In Section 5 we briefly review some
the definitions of information-based complexity and then introduce the minim:
information-errorlp 4 (F). In Section 6 we combine the PAC learning error with
the minimal partial information error to obtain a unified upper bound on the errc
In Section 7 we compute this upper bound for the case of learning a Sobol
target class. This yields a quantitative trade-off between partial information a
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sample size. We then compute a lower bound on the minimal partial informatio
error for the Sobolev class which yields an almost optimal information operatol
The Appendix includes the proofs of all theorems in the paper.

2. OVERVIEW OF THE PROBABLY APPROXIMATELY CORRECT
LEARNING MODEL

Valiant [35] introduced a new complexity-based model of learning from
examples and illustrated this model for problems of learning indicator function:
over the boolean cube {0, 1} The model is based on a probabilistic framework
which has become known as thebably approximately correcor PAC, model
of learning. Blumeeet al. [6] extended this basic PAC model to learning indicator
functions of sets in EuclideaR". Their methods are based on the pioneering
work of Vapnik and Chervonenkis [36] on finite sample convergence rate
of empirical probability estimates, independent of the underlying probability
distribution. Haussler [16] has further extended the PAC model to real and vecto
valued functions which is applicable to general statistical regression, densi
estimation and classification learning problems. We start with a description ¢
the basic PAC model and some of the relevant results concerning the complexi
of learning.

A target classF is a class of Borel measurable functions over a domain
X containing atarget function gwhich is to be learnt from &ample 2' =
{(xi, g}, of mexamples that are randomly drawn i.i.d. accordinguy
fixed probability distributior on X. Define bySr thesample spacéor F which
is the set of all samples of size over all functionsf € F for all m> 1. Fix a
hypothesis clas${ of functions onX which need not be equal nor contained in
F. A learning algorithm¢: S — H is a function that, given a large enough
randomly drawn sample of any target/fy returns a Borel measurable function
h (a hypothesiys which is with high probability a good approximation of the
target functiong.

Associated with each hypothegisis a nonnegativerror value L(h), which
measures its disagreement with the target functjoon a randomly drawn
example and arempirical error L(h), which measures the disagreement of
h with g averaged over the observadexamples. Note that the notation lofh)
andL(h) leaves the dependence grand P implicit.

For the special case ¢f and being classes dhdicator functionsover sets
of X = R" theerror of a hypothesi$ is defined to be the probability (according
to P) of its symmetric difference with the targgt i.e.,

L(h) = P({x € R": g(x) # h(x)}). @)
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Correspondingly, thempirical error of h is defined as

1 m
Lin(h) = — > Ligos)#hox), (2
i=1

where %, 5 stands for the indicator function of the sat For real-valued
function classes* and H the error of a hypothesik is taken as the expec-
tation H(h, g) (with respect toP) of some positive real-valuelibss function
I(h, g), e.g., quadratic los§h, g) = (h(X) — g(x))? in regression estimation,
or the log likelihood losd(h, g) = In(g(X)/h(x)) for density estimation. Simi-
larly, the empirical error now becomes the average loss over the sample, i
Lm(h) = 1/m) 332, 1(h(xi), 904)).

We now state a formal definition of a learning algorithm which is an extensio
of a definition in Blumeret al. [6].

DEFINITION 1 (PAC-learning algorithm). Fix a target clags a hypothesis
class™, a loss functior (-, -), and any probability distributioP on X. Denote
by P™ the m-fold joint probability distribution orX™. A function ¢ is alearning
algorithmfor F with respect ta® with sample sizen = m(g, §) if for all € > 0,

0 < § < 1, for any fixed targeg € F, with probability 1- §, based on a randomly
drawn sample™, the hypothesi$ = ¢(z™) has an erroiL(h) < L(h*) +¢,
whereh” is an optimal hypothesis; i.eL,(h*) = infhez¢ L (h). Formally, this is
stated as:P™(z™ € X™: L(h) > L(h*) 4+ ¢) <.

The smallest sample siza(e, §) such that there exists a learning algoritim
for F with respect tall probability distributions is called theample complexity
of ¢ or simply the sample complexity for learning by H. If such a¢ exists
thenF is said to be uniformly learnable I#%. We note that in the case of real-
valued function classes the sample complexity depends on the error funct
through the particular loss function used.

Algorithms ¢ which output a hypothesié that minimizesL (h) over all
h € H are calledempirical risk minimization(ERM) algorithms (cf. Vapnik
[38]). The theory of uniform learnability for ERM algorithms forms the basis
for the majority of the works in the field of computational learning theory.
primarily for the reason that the sample complexity is directly related to
capacity quantity called th€apnik—Chervonenkis dimensioh F for the case
of an indicator function clasg, or to thepseudo-dimensiom case of a real-
valued function class-. These two quantities are defined and discussed belo
Essentially the theory says that if the capacityois finite thenF is uniformally
learnable. We note that there are some pedagogic instances of functional clas
even of infinite pseudo-dimension, for which any target function can be exact
learnt by asingle example of the formx, g(x)) (cf. Bartlettet al,, p. 299). For
such target classes the sample complexity of learning by ERM is significant
greater than one so ERM is not an efficient form of learning. Henceforth all tt
results are limited to ERM learning algorithms.
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We start with the following definition.

DerINITION 2 (Vapnik—Chervonenkis dimension). Given a cl&éf indi-
cator functions of sets i the Vapnik—Chervonenkis dimension #&f, denoted
as VQH), is defined as the largest integersuch that there exists a sample
XM = {x1, ..., Xm} of points inX such that the cardinality of the set of boolean
vectorsSim(H) = {[h(x1), ..., h(Xm)]: h € H} satisfies|Sim(H)| = 2M. If m
is arbitrarily large then the VC-dimension &f is infinite.

Remark. The quantity mayxm |Sim(H)|, where the maximum is taken over
all possiblem-samples, is called thgrowth functionof H.

ExampLE. Let H be the class of indicator functions of interval sets on
X = R. With a single pointx; O X we have|{[h(x1)]: h € H}| = 2. For two
points x4, X, 0 X we have|{[h(x1), h(x2)]: h € H}| = 4. Whenm = 3, for
any pointsx,, X,, X3 0 X we have|{[h(x1), h(x2), h(x3)]: h € H}| < 23 thus
VC(H) = 2.

The main interest in the VC-dimension quantity is due to the following result
on a uniform strong law of large numbers which is a variant of Theorem 6.7 ir
Vapnik [38].

LEMMA 1 (Uniform SLN for the indicator function class).Let g be any fixed
target indicator function and let{ be a class of indicator functions of sets in X
with VC(H) = d < oo. Let 2" = {(x;, 9(x))}i"; be a sample of size m > d
consisting of randomly drawn examples according to any fixed probability distri-
bution P on X. Let k(h) denote the empirical error for h based oft and g as
defined in(2). Then for arbitrary confidence paramet@r< § < 1, the deviation
between the empirical error and the true error uniformly o¢¢iis bounded as

\/d(ln(Zm/d) +1) +1n(9/6)

sup |[L(h) — Lm(h)| <4 p

heH
with probability 1 — 3.

Remark. The result actually holds more generally for a boolean randomr
variabley 00 Y = {0, 1} replacing the deterministic target functi@gx). In such
a case the sample consists of random pgixs, yi)}{", distributed according
to any fixed joint probability distributiof® over X x Y.

Thus a function class of finite VC-dimension possesses a certain statistic
smoothness property which permits simultaneous error estimation over g
hypotheses irf{ using the empirical error estimate. We note in passing tha
there is an interesting generalization (cf. Buescher and Kumar [7], Dewbye
al. [12]) of the empirical error estimate to other smooth estimators based o
the idea of empirical coverings which removes the condition of needing a finit
VC-dimension.
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As a direct consequence of Lemma 1 we obtain the necessary and suffici
conditions for a target clasg of indicator functions to be uniformly learnable
by a hypothesis clas¥. This is stated next and is a slight variation of Theoren
2.1 in Blumeret al. [6].

LEMMA 2 (Uniform learnability of indicator function class).Let 7 and H
be a target class and a hypothesis class, respectiveliynditator functionsof
sets in X. Ther# is uniformly learnable byH if and only if theVC(H) < oco.
Moreover, ifVC(H) = d, where d< oo, then for any0 < ¢, § < 1, the sample
complexity of an algorithng is bounded from above by(@/¢) log(1/4)), for
some absolute constant0.

We proceed now to the case of real-valued functions. The next definitic
which generalizes the VC-dimension is taken from Haussler [16] and is bas
on the work of Pollard [27]. Let sgg) be defined as 1 foy > 0 and-1 fory <
0. For a Euclidean vectar € R™ denote by sgfv) = [sgn(v1), ..., sgnvm)].

DerINITION 3 (Pseudo-dimension).  Given a cld$of real-valued functions
defined onX. The pseudo-dimension off, denoted as dig(*), is defined
as the largest integem such that there exist$xi, ..., xn} € X and a
vectorv € R™ such that the cardinality of the set of boolean vectors satisfie
{sgnh(x1) +v1, ..., h(Xm) +vm]: h € H}| = 2M. If mis arbitrarily large then
the dimp(H) = oo.

The next lemma appears as Theorem 4 in Haussler [16] and states that
the case of finite-dimensional vector spaces of functions the pseudo-dimens
equals its dimension.

LEMMA 3. Let.F be a d-dimensional vector space of functions from a set
into R. Thendimy(F) =d.

For several useful invariance properties of the pseudo-dimension cf. Polle
[27] and Haussler [16, Theorem 5].

The main interest in the pseudo-dimension arises from having the SLN hc
uniformly over a real-valued function class if it has a finite pseudo-dimensiol
In order to apply this to the PAC-framework we need a uniform SLN result nc
for the hypothesis clasa{ but for a class defined by = {I(h(x), y): h €
H, x € X, y € R} for some fixed loss functioh since an ERM-based algorithm
minimizes the empirical error, i.eL,iy(h), over H. While the theory presented
in this paper applies to general loss functions we restrict here to the absolu
lossI(h(x), g(xX)) = |h(X) — g(X)|. The next lemma is a variant of Theorem 7.3 of
Vapnik [38].

THEOREM 1. Let P be any probability distribution on X and let g F be
a fixed target function. Let be a class of functions from X ® which has a
pseudo-dimension & 1 and for any he H denote by Ih) = E|h(x) — g(X)|
and assume (h) < M for some absolute constant M 0. Let {(x;, g(xi))}im:l,
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x; € X, be an i.i.d. sample of size s 16(d + 1) log? 4(d + 1) drawn accord-
ing to P. Then for arbitrary0 < § < 1, simultaneously for every functionéh’,
the inequality

16(d + 1) log? 4(d + 1)(In(2m) + 1) + In(9/8)
m

IL(h) = Lm()] < 4M\/ ®3)

holds with probabilityl — 3.
The theorem is proved in Section A.1.

Remark. For uniform SLN results based on other loss functions see Theorer
8 of Haussler [16].

We may take twice the right-hand side of (3) to be bounded from above b
the simpler expression

2
- 5)Ecl\/d log? d Inmm+ln(1/6) @

for some absolute constant > 0. Being that an ERM algorithm picks a hypoth-
esish whose empirical error satisfidsy(h) = infhe, Lim(h) and by Definition
1, L(h*) = infhex L(D), it follows that
. . d, s
L(R) < Ln(hy + <080

2

<Lm(h) + 76('“’20" %)

<L(M") +e(m, d, 3). ®)

By (5) and according to Definition 1 it is immediate that ERM may be
considered as a PAC learning algorithm 6t Thus we have the following
lemma concerning thsufficientcondition for uniform learnability of a real-
valued function class.

LEMMA 4 (Uniform learnability of real-valued function class)Let 7 and
‘H be the target and hypothesis classes of real-valued functions, respective
and let P be any fixed probability distribution on X. Let the loss function
[(g(x), h(x)) = |g(X) — h(x)| and assume th) < M for all h € H, and
g € F, for some absolute constant M 0. If dimp(H) < oo then F is
uniformly learnable byH. Moreover, ifdimp(H) = d < oo then for any
€ > 0,0 < § < 1, the sample complexity of learning by H is bounded
from above bycM?2d In?(d)/e2)(In(dM/e) + In(1/8)), for some absolute con-
stant c> 0.

Remarks. As in the last remark above, this result can be extended to othe
loss functiong. In addition, Alonet al. [4] recently showed that a quantity called
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the scale-sensitive dimensiavhich is a generalization of the pseudo-dimension
determines th@ecessary and sufficienbndition for uniform learnability.

It is also worth noting that there have been several works related to tl
pseudo-dimension but which are used for mathematical analysis other tt
learning theory. As far as we are aware, Warren [39] was the earliest wl
considered a quantity called the number of connected components of a nonlin
manifold of real-valued functions, which closely resembles the growth functio
of Vapnik and Chervonenkis for set-indicator functions, see Definition 2. Usin
this he determined lower bounds on the degree of approximation by cert:
nonlinear manifolds. Maiorov [20] calculated this quantity and determined tk
degree of approximation for the nonlinear manifold of ridge functions whicl
include the manifold of functions represented by artificial neural network
with one hidden layer. Maiorov, Meir, and Ratsaby [21], extended his rest
to the degree of approximation measured by a probabilistid)fwidth with
respect to a uniform measure over the target class and determined finite san
complexity bounds for model selection using neural networks [29]. For mol
works concerning probabilistic widths of classes see Tietdd. [34], Maiorov
and Wasilkowski [22].

Throughout the remainder of the paper we will deal with learning real-value
functions while denoting explicitly a hypothesis cla&$' as one which has
dimp(Hd) = d. For any probability distributior® and target functiorg, the
error and empirical error of a hypothesisare defined by thé& ,(P)-metric as

m

1
L =EhC) =gl L) == 3 1h06) =gl (6)

i=1

respectively.
We discuss next some practical motivation for our work.

3. MOTIVATION FOR A THEORY OF LEARNING WITH
PARTIAL INFORMATION

It was mentioned in Section 1 that the notion of having partial knowledg
about a solution to a problem, or more specifically about a target function,
often encountered in practice. Starting from the most elementary instances
learning in humans it is almost always the case that a learner begins with so
partial information about the problem. For instance, in learning cancer diagnos
a teacher not only provides examples of pictures of healthy cells and benign ce
but also descriptive partial information such as “a benign cell has color bla
and elongated shape,” or “benign cells usually appear in clusters.” Similar
for machine learning it is intuitive that partial information must be useful
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While much of the classical theory of pattern recognition (Duda and Hart [13]
Fukunaga [14]) and the more recent theory of computational learning (Kearr
and Vazirani [18]) and neural networks (Ripley [32]) focus on learning from
randomnly drawn data, there has been an emergence of interest in nonclassi
forms of learning, some of which indicates that partial information in various
forms which depend on the specific application is useful in practice. This i
related to the substream knownadive learning where the learner participates
actively by various forms of querying to obtain information from the teacher. For
instance, the notion of selective sampling (cf. Cehal. [8]) permits the learner

to query for samples from domain-regions having high classification uncertainty
Cohn [9] uses methods based on the theory of optimal experiment design
select data in an on-line fashion with the aim of decreasing the variance of ¢
estimate. Abu-Mostafa [1-3] refers to partial informatiorhasts and considers
them for financial prediction problems. He shows that certain types of hint:
which reflect invariance properties of the target functiprior instance saying
thatg(x) = g(x'), at some pointx, X' in the domain, may be incorporated into
a learning error criterion.

In this paper we adopt the framework of information-based complexity (cf.
Traubet al. [34]) to represent partial information. In the framework whose basic
definitions are reviewed in Section 5, we limit to linear information comprised
of n linear functionalsL;(g), 1 < i < n, operating on the target functiam In
order to motivate the interest in partial information as being given by such
dimensional linear operators we give the following example of learning patter:
classification using a classical nonparametric discriminant analysis method (c
Fukunaga [14]).

The field of pattern recognition treats a wide range of practical problems wher
an accurate decision is to be made concerning a stochastic pattern which is
the form of a multidimensional vector of features of an underlying stochastic
information source, for instance, deciding which of a finite number of types o
stars corresponds to given image data taken by an exploratory spacecraft,
deciding which of the words in a finite dictionary correspond to given speecl
data which consist of spectral analysis information on a sound signal. Suc
problems have been classically modeled according to a statistical framewo
where the input data are stochastic and are represented as random variables \
a probability distribution over the data space. The most widely used criterion fo
learning pattern recognition (or classification) is the misclassification probability
on randomly chosen data which have not been seen during the training sta
of learning. In order to ensure an accurate decision it is necessary to minimi:
this criterion. The optimal decision rule is one which achieves the minimurnr
possible misclassification probability and has been classically referred to «
Baye’s decision rule.

We now consider an example of learning pattern recognition using random|
drawn examples, where partial information takes the form of feature extractior
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ExAMPLE (Learning pattern classification). The setting consistgl glattern
classes represented lnknown nonparametric class conditional probability
density functionsf(x|j) over X = R!' with known correpsonding priori
class probabilitieg;, 1 <j < M. It is well known that the optimal Bayes
classifier which has the minimal misclassification probability is defined &
follows: g(x) = argmax_;-m{p;j f (x|j)}, where argmax.,B; denotes any
element in A such thatB; = B;, | # i. Its misclassification probability is called
the Bayes error For instance, suppose thist = 2 and f(x/j), j = 1, 2, are
bothI-dimensional Gaussian probability density functions. Here the two patte
classes clearly overlap as their corresponding functiopgl) and f (x|2) have
an overlapping probability-1 support; thus the optimal Bayes misclassificatic
probability must be greater than zero. The Bayes classifier in this case is
indicator function over a seA = {x € R':q(x) > 0}, whereq(x) is a second
degree polynomial oveR'. We henceforth let théarget function, denoted by
g(x), be the Bayes classifier and note that it may not be unique.

Thetarget class? is defined as a rich class of classifiers each of which mar
Xto {1, ..., M}. The trainingsampleconsists ofm i.i.d. pairs{(xi, yi)}i",,
wherey; € {1, 2, ..., M} takes the valug with probability p;, andX; is
drawn according to the probability distribution correspondingf ta|y;), 1 < i
< m. The learner has hypothesislass™ of classifier functions mappinj to
{1, ..., M} which has a finite pseudo-dimensidn

Formally, thelearning problemis to approximateg by a hypothesish in
‘H. Theerror of h is defined ad_(h) = ||lh — g|lL,p), whereP is some fixed
probability distribution overY'. Stated in the PAC-framework, a target claSss
to be uniformly learned b¥t; i.e., for any fixed targeg) 0 F and any probability
distribution P on X, find anh € H which depends org and whose error
L(h) < L(h*) + € with probability 1- 8, whereL (h*) = infhex |9 — hllLy(p).

As partial information consider the ubiquitous method fdature extraction
which is described next. In the pattern classification paradigm it is often the ce
that, based on a given sampléx;, yi)}", which consists of feature vectors
x; € R, 1 <i < m, one obtains a hypothesis classifewhich incurs a large
misclassification probability. A natural remedy in such situations is to try t
improve the set of features by generating a new feature vgoto¥ = R¥, k <
I, which depends or, with the aim of finding a better representation for a patterr
which leads to larger separation between the different pattern-classes. This
turn leads to a simpler classifi§rwhich can now be better approximated by a
hypothesish* in the same clas#( of pseudo-dimensiod, the latter having not
been rich enough before for approximating the original taggefonsequently
with the same sample complexity one obtains via ERM a hypoth}aw&;ﬂch
estimatesj better and therefore having a misclassification probability closer t
the optimal Bayes misclassification probability.

Restricting to linear mapping&: X — Y, classical discriminant analysis
methods (cf. Fukunaga [14, Section 9.2]; Duda and Hart [13, Chap. 4]) calculz
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the optimal new feature vectgrby determining the best linear ma& which,
according to one of the widely used criteria, maximizes the pattern clas
separability. Such criteria are defined by the known class probabipfiethe
class conditional meangj = E(X]j), and the class conditional covariance
matricesCj = E((X — uj)(X — Mj)T|j), 1 <j £ M, where expectation
E(-|j) is taken with respect to thigh class conditional probability distribution
corresponding tof (x|j). In reality the empirical average over the sample is
used instead of taking expectation, since the underlying probability distribution
corresponding tof (x]j), 1 <j < M, are unknown. Theoretically, the quantities
uj Cj, may be viewed as partial indirect information about the target Baye:
classifierg. Such information can be represented bynasimensional vector of
linear functionals acting orf (x|j), 1<j <M, i.e, N([f(X|D), ..., f(XIM)])

= [, s1gosens 09 )}y ser g ] wherepj s = [y xs f (x|j) dx, andog =

fx xsXr f(x]j)dx, wherex,, X, 1<r, s<1, are elements of. The dimensionality

of the information vector i1 = (MI/2)(I + 3).

We have so far presented the theory for learning from examples and introduc
the importance of partial information from a practical perspective. Before we
proceed with a theoretical treatment of learning with partial information we
digress momentarily to introduce a new quant ity which is defined in the contex
of the mathematical field of approximation theory which plays an important par
in our learning framework.

4. A NEW NONLINEAR APPROXIMATION WIDTH

The large mathematical field of approximation theory is primarily involved
in problems of existence, uniqueness, and characterization of the best appre
imation to elements of a normed linear spa€eby various types of finite-
dimensional subspacés, of F (cf. Pinkus [25]). Approximation of an element
f € F is measured by the distance of the finite-dimensional subspac®e
f where distance is usually defined asgin#, || f — gll, where throughout this
discussion| - || is any well-defined norm oveF. The degree of approximation
of a subset (possibly a nonlinear manifolf) c F by F, is defined by the
distance betweeR and F, which is usually taken as sypg infge 7, | T — gl
The Kolmogorovn-width is the classical distance definition when one allows
the approximating sef,, to vary over all possible linear subspaces#flt is
defined aKn(F; F) = infx,c7 supscp infger, || f — gll. This definition leads
to the notion of the best approximating subspagei.e., the one whose distance
from F equalsK,(F; F).

While linear approximation, e.g., using finite dimensional subspaces o
polynomials, is important and useful, there are many known spacesich
can be approximated better hpnlinearsubspaces, for instance, by the span of
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a neural-network basid{ = {h(x) = Zi”:l Cio(wiTX —b): wieR, g, be

R, 1 <i < n}, whereo (y) = 1/(1+¢€7Y). In this brief overview we will follow
the notation and definitions of Devore [10]. L, be a mapping fronR" into
the Banach spac& which associates each € R" the elementM,(a) € F.
Functions f € F are approximated by functions in the manifalth,, =
{Mp(a): a € R"}. The measure of approximation by M, is naturally defined
as the distance igfrn | f — Mp(a)||. As above, the degree of approximation
of a subsef¥ of F by My, is defined as sup.g infaern | T — Mp(@)].

In analogy to the Kolmogorow-width, it would be tempting to define
the optimal approximation error df by manifolds of finite dimensiom as
inf a1, SUPscp iNfacrn || T —Mn(@)||. However, as pointed out in [10], this width
is zero for all subset§ in every separable class. To see this, consider the
following example which describes a space filling manifold: {I&t};° __ be
dense inF and defineMi(a) = (@a— k) fyp1+(k+1—a)fy fork<a<k+ 1.
The mappingV1: Rt — F, is continuous with a corresponding one-dimensiona
manifold My C F satisfying sup.g inf,cg: || f — M1(a)|| = 0.

Thus this measure of width &f is not natural. One possible alternative used
in approximation theory is to impose a smoothness constraint on the nonline
manifoldsAM, that are allowed in the outermost infimum. However, this exclude
some interesting manifolds such as splines with free knots. A more use
constraint is to limit the selection operator which takes an elemeritC F
to R", to be continuous. Given such operatdhen the approximation dfby a
manifold My, is Mp(r (f)). The distance between the $eand the manifold\1,
is then defined as sypg || f —Mn(r (f))||. The continuousionlinear rwidth of
F is then defined a®n(F; F) = inf;:cont, M, SUPfcg || T — Mn(r (1)), where
the infimum is taken over all continuous selection operatasd all manifolds
Mp. This width is considered by Alexandrov [33] and Devore [10] and is
determined for variou§ and.F in [10].

The Alexandrov nonlinear width does not in general reflect the degree
approximation of the more natural selection operatarhich chooses the best
approximation for arfi 0 F as its closest element jiv, i.e., that whose distance
from f equals infct, | f — gll, the reason being that suchis not necessarily
continuous. In this paper we consider an interesting alternate definition for
nonlinear width of a function class which does not have this deficiency.

Based on the pseudo-dimension (Definition 3 in Section 2) we define tt
nonlinear width

pd(F) =inf sup inf | f —hj, @)
HY feF hend
where 19 runs over all classes (not necessarily #) having pseudo-
dimensiond.

Now the natural selection operator is used, namely, the one which apprc

imates f by an elementh(f), where|[f — h(f)|| = inf,ca | T — h|. The
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constraint of using finite pseudo-dimensional approximation manifolds allow:
dropping the smoothness constraint on the manitéfdand the continuity con-
straint on the selection operator. The wigthexpresses the ability of manifolds
to approximate according to their pseudo-dimensioas opposed to their di-
mensionality as in some of the classical widths.

The reason thatp, is interesting from a learning theoretic aspect is
that the constraint on the approximation manifdif involves the pseudo-
dimension dirrb(Hd) which was shown in Section 2 to have a direct effect on
uniform learnability, namely, a finite pseudo-dimension guarantees consiste
estimation. Thuspy involves two independent mathematical notions, namely,
the approximation ability and the statistical estimation ability-5f. As will be
shown in the next sections, joining both notions in one quantity enables us t
quantify the trade-off between information and sample complexity as applied t
the learning paradigm.

We halt the discussion abogt, and refer the interested reader to [23] where
we estimate it for a standard Sobolev clewé', 1<p g<oo.

5. THE MINIMAL PARTIAL INFORMATION ERROR

In this section we review some basic concepts in the field of information-
based complexity and then extend these to define a new quantity called tl
minimal partial information error which is later used in the learning framework.
Throughout this section|| - || denotes any function norm and the distance
between two function classesl and B is denoted as dig#l, B, Lq) =
SURyc 4 iNfoes la — bllL,, 9 > 1.

The following formulation of partial information is taken from Traeb al.
[34]. While we limit here to the case of approximating functiohse F we
note that the theory is suitable for problems of approximating general functional
S(f).

Let No: F — Np(F) € R" denote a general information operator. The
informationN,(g) consists ofhn measurements taken on the target functipor
in general, any functiorf € F; i.e.,

Nn(f) =[La(f), ..., Ln(D)]

whereL;, 1 <i < n, denote any functionals. We callthe cardinality of infor-
mation and we sometimes omitand write N(f). The variabley denotes an
element inNL(F). The subseNn‘l(y) C F denotes all functiond € F which
share the same information vectgri.e.,

Ny (y) = {f € F: Nn(f) = y}.

We denote byNn*l(Nn(g)) the solution setwhich may also be written as
{f € F: Nn(f) = Nn(g)}, which consists of all indistinguishable functions
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f € F having the same information vector as the tageGiveny € R", it is
assumed that a single element denotedyas N %(y) can be constructed.
In this model information effectively partitions the target cl&to infinitely
many subsetdN;1(y), y € R", each having aingle representativey, which
forms the apprOX|mat|on for anfl e N~1(y). Denote the radius ofl ~ l(y) by

r(N, y) = f. sup If—f (8)
f F feN-l(y)

and call it thelocal radius of information Naty. The global radius of informa-
tion N aty is defined as the local radius for a woysti.e.,

r(N)= sup r(N,y).
yeN(F)

This quantity measures the intrinsic uncertainty or error which is associated w
a fixed information operatdx. Note that in both of these definitions the depen-
dence onF is implicit.

Let A be a family of functionals and consider the family, which consists
of all informationN = [L1, ..., Li] of cardinalityk<nwithL; O A, 1<i <
n. Then

rin, A) = Nig{f\ r(N)

is called thenth minimal radius of informationin the family A and N =
[L], ..., L;] is called thenth optimal informationin the classA iff L € A
andr (N =r(n, A).

When A is the family of alllinear functionals therr(n, A) becomes a slight
generality of the well-known Gelfand-width of the clags whose classical
definition isd"(F) = infan supscznan Il T ll, where A" is any linear subspace
of codimensiom. In this paper we restrict to the family of linear functionals
and for notational simplicity we will henceforth take the information spac
Nn (F) =

As already mentioned in the definition ofN, y) there is a single element
gy € F not necessarily inN~ 1(y) which is selected as an approximator for
all functions f € N~1(y). Such a definition is useful for the problem of
information-based complexity since all that one is concerned with is to produ
ane-approximation based on information alone. In the PAC framework, howeve
a major significance is placed on providing an approximator to a tgrgdtich
is an element not necessarily of the target clasisut of some hypothesis class
H of finite pseudo dimension by which is uniformly learnable.

We therefore replace the single-representative of the suliséty) by a
whole approximation class of functi0ﬂ$?, of pseudo-dimensiod. Note that
now information alone does not “point” to a singteapproximation element,
but rather to a mamfold‘-ld possibly nonlinear, which foany f € N=1(y),
in particular the targed, contalns an elemett’, dependent o, such that the
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distance||g - h*| < €. Having a pseudo-dimensiahimplies that with a finite
random samplé(x;, g(xi))}i";, an ERM learning algorithm (after being shown
partial information and hence pointed to the cla@s) can determine a function

h € #9 whose distance frong is no farther thare from the distance between
h* andg with confidence 1- §. Thus based on units of information aboug
andm labeled example$§(x;, g(xi))}",, an elemenh can be found such that
llg — h|| < 2¢ with probability 1- 6.

The sample complexityn does not depend on the type of hypothesis class
but only on its pseudo-dimensiacsh Thus the above construction is true for
any hypothesis class (or manifold) of pseudo-dimengionHence we may
permit any hypothesis class of pseudo-dimensidrto play the role of the
approximation manifoIdH?, of the subsetN~1(y). This amounts to replacing
the infimum in the definition (8) of(N, y) by inf;,« and replacing| f — /|
by dist( f, H9) = infheya || T — h|l, yielding the quantityoq(N~1(y)) as a new
definition for a local “radius” and a new quantity 4(F) (to be defined later)
which replaces(n, A).

We next formalize these ideas through a sequence of definitions. We,(lse
L) to explicitly denote the norrh, used in the definition of (7). We now define
three optimal quantitiesi\;;, H‘,j\l*, andh’, all of which implicitly depend on
the unknown distributior® while'h* depends also on the unknown target

DEFINITION 4. Let the optimal linear information operatbi} of cardinality
n be one which minimizes the approximation error of the solutionl\s;e’f(y)
(in the worst case ovey € R") over all linear operatorhl,, of cardinalityn and
manifolds of pseudo-dimensiah Formally, it is defined as one which satisfies

sup pa(NZ(y), L1(P)) = inf sup pa(N;(y), L1(P)).
yER” Nn yeRn

DEFINITION 5. For a fixed optimal linear information operatdd; of
cardinality n define the optimal hypothesis cla%f, of pseudo-dimensiomn
(which depends implicitly onN; throughy) as one which minimizes the
approximation error of the solution sﬁt,;**l(y) over all manifolds of pseudo-
dimensiond. Formally, it is defined as one which satisfies

dist(N~L(y), HY, L1(P)) = pa(N;~1(y), L1(P)).

DEFINITION 6. For a fixed target) € F, optimal linear information operator
N5 and optimal hypothesis claggd,  define the optimal hypothesis* e

h(9)
HY to be any function which minimizes the error ov’ldﬁl namely,

Ni (@) (@)’
L(h*) = inf  L(h). (9)

hend
HNF,‘(Q)
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As mentioned earlier, the main motive of the paper is to compute the vall
of partial information for learning in the PAC sense. We will assume that th
teacher has access to unlimited (linear) information which is represented by
knowingthe optimal linear information operatdl;; and optimal hypothesis class
Hd for everyy € R". Thus in this ideal setting providing partial information
amounts to pointing to the optimal hypothesis clas,% which contains an
optimal hypothesi$®. We again note that information alone does not point tc
h* but it is the role of learning from examples to complete the process throug
estimatingh™ using a hypothesi.

The error ofh® is important in its own right. It represents the minimal error
for learning a particular targeg given optimal information of cardinality. In
line with the notion of uniform learnability (see Section 2) we define a variar
of this optimal quantity which isndependenbf the targetg and probability
distribution P; i.e., instead of a specific targgt € .7, we consider the worst
target inF and we use the,, norm for approximation. This yields the following
definition.

DerFINITION 7 (Minimal partial information error). For any target clags
and any integers, d = 1, let

In,d(F) = Inf sup pd(Ny 1Y), Loo),
Nn yeR"

whereN,, runs over all linear information operators.

In,d(F) represents the minimal error for learning the worst-case target in t
PAC sense (i.e., assuming an unknown underlying probability distribution) whil
given optimal information of cardinality and using an optimal hypothesis class
of pseudo-dimensiod.

We proceed next to unify the theory of Section 2 with the concepts introduce
in the current section.

6. LEARNING FROM EXAMPLES WITH OPTIMAL
PARTIAL INFORMATION

In Section 2 we reviewed the notion of uniform learnability of a target clas
F by a hypothesis clas&® of pseudo-dimensionl < co. By minimizing an
empirical error based on the random sample, a learner obtains a hypdihes
which provides a close approximation of the optimal hypothbsi® within e
accuracy with confidence 4 4.

Suppose that prior to learning the learner obtains optimal informadipy)
aboutg. This effectively points the learner to a claﬁ% which contains a
hypothesish® as defined in (9). The error of is boundeg from above as
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L(h*y= inf L(h) (10)
eHd*
N7 (@

= infjlg—hllLyp) (11)
Hhio

< sup inf 1 f =il 12)

{feF:NF(H)=N7(9)} heHNﬁ(g)
=dist(N3 T (NF (@), Hi\g)» L1(P)). (13)

By Definition 5 this equalsod(N;:‘l(Nr’,‘(g)), L1(P)) and is bounded from
above by

sup pd(NZ(y), L1(P)).
yeR"

The latter equals

inf sup pa(N;(y), L1(P))

Nn yeRn
by Definition 4. This is bounded from above by ipfsup,cgn pd(NFH(Y), Loo)
which from Definition 7 isl, q(F). Subsequently, the teacher providas.i.d.
examples{(xi, g(xi))}{", randomly drawn according to any probability distri-
bution P on X. Armed with prior knowledge and a random sample the learner
then minimizes the empirical errar,(h) over allh e H‘,j\l;(g), yielding an es-

timate h of h". We may break up the errdr(h) into a learning error and a
minimal partial information errorcomponents

LAy = (L(ﬁ) - L(h*)) +L(h)
“learning errof  “minimal partial information errdr

—— ——
S G(m, dv 8) + |n,d(f) ) (14)

where the learning error, defined in (4), measures the extra error incurred t
usingh as opposed to the optimal hypothekis

The important difference from the PAC model can be seen in comparing th
upper bound of (14) with that of (5). The former depends not only on the sampl
sizem and pseudo-dimensiahbut also on the amoumt of partial information.
To see howm, n, andd influence the performance, i.e., the errorfpfwe will
next particularize to a specific target class.

7. SOBOLEV TARGET CLASS

The preceding theory is now applied to the problem of learning a target i
a Sobolev classF = W' (M), forr, | € Z,, M > 0, which is defined as all
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functions oveiX = [0, 1]' having all partial derivatives up to ordebounded in
the L., norm by M. Formally, letk = [ky, ..., k] € Z', k|| = Zli=1 ki, and
denote byDKf = (0% + .- + k) /(9 ... 8x|k')f, then

W (M) = {f: sup [D*F(x)| < M, [Ik]| <r}
xe[o, 1]t

which henceforth is referred to aw;;;' or F. We now state the main results and
their implications.

THEOREM 2. LetF = W&)', n> 1, d > 1, be given integers ancbc> 0 a
constant independent of n and d. Then

C

2
In,d(F) < W

The proof of the theorem is in Section A.2.

THEOREM 3. Let the target classF = Wé’o' and g € F be the unknown
target function. Given an i.i.d. random samgles, g(x))}{™, of size m drawn
according to any unknown distribution P on X. Given an optimal partial infor-
mation vector I§(g) consisting of n linear operations on g. For any>d 1, let
H?ﬂﬁi(g) be the optimal hypothesis class of pseudo-dimension ch betthe out-
put hypothesis obtained from running empirical error minimization d\i%&(g).

Then for an arbitrary0 < § < 1, the error ofh is bounded as

2
Lh) < cl\/d log® d In m+In(1/68) C2

m (n+ady/!” (15)

where @, ¢, > 0 are constants independent of m, n, and d.

The proof of Theorem 3 is based on Theorem 1 and Theorem 2, both
which are proved in the Appendix.

We now discuss several dependences and trade-offs between the tt
complexity variablesm, n, andd. First, for a fixed sample sizen and fixed
information cardinalityn there is an optimal class complexity

rm 12/0+20)
cooflge ")

which minimizes the upper bound on the error whege> 0 is an absolute
constant. The complexitd is a free parameter in our learning setting and is
proportional to the degree in which the estimalofits the data while estimat-
ing the optimal hypothesiB*. The result suggests that for a given sample size
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m and partial information cardinality, there is an optimal estimator (or model)
complexityd* which minimizes the error rate. Thus if a structure of hypothe-
sis classe$M9}3 , is available in the learning problem, then based on fixed
and n the best choice of a hypothesis class over which the learner should ru
empirical error minimization ig¢4" with d* as in (16).

The notion of having an optimal complexity is closely related to statistical
model selection (cf. Linhart and Zucchini [19], Devroge al. [12], Ratsaby
et al. [29]). For instance, in Vapnik’s structural risk minimization criterion
(SRM) [38] the trade-off is betweem and d. For a fixedm, it is possible
to calculate the optimal complexitd” of a hypothesis class in a nested
class structuret* ¢ H? ..., by minimizing an upper bound on the error
L(ﬁ) < Lm(ﬁ) + e(m, d, §), over alld = 1. The second terna(m, d, 8) is
commonly referred to as the penalty for data-overfitting which one wants t
balance against the empirical error. Similarly, in our result, the upper bound o
the learning error reflects the cost or penalty of overfitting the data—the large
d, the higher the degree of data fit and the larger the penalty.

However, here, as opposed to SRM, the bound is independent of the randc
sample and there is an extra parametghat affects howm and d trade off.

As seen from (16), for a fixed sample sigeit follows that the largem the
smallerd”. This is intuitive since the more partial information, the smaller the
solution setN;1(Nn(g)) and the lower the complexity of a hypothesis class
needed to approximate it. Consequently, the optimal estinfatoelongs to a
simpler hypothesis class and does not overfit the data as much.

We next compute the trade-off betwearand m. Assumingd is fixed (not
necessarily at the optimal valug) and fixing the total available information
and sample sizemn + n, at some constant value while minimizing the upper
bound onL (h) overm andn, we obtainm < csn+2)/2 /Inn for a constant
Cs > 0 which depends polynomially only dnandr. We conclude that when
the dimensionalityl of X is smaller than twice the smoothness parameter
the sample sizen grows polynomially inn at a rate no larger thanx"/!;

i.e., partial information about the targgtis worth approximately a polynomial
number of examples. Fdr> 2r, n grows polynomially inm at a rate no larger
thanm?In m; i.e., information obtained from examples is worth a polynomial
amount of partial information.

We have focused so far on dealing with the ideal learning scenario in which th
teacher has access to the optimal information opefdgfcand optimal hypothesis
cIassH?v The use of such optimally efficient information was required from an
information theoretic point of view in order to calculate the trade-off between the
sample complexityn and information cardinality. But we have not specified
the form of such optimal information and hypothesis class.

In the next result we state a lower bound on the minimal partial informatior
error I 4(F) and subsequently show that there exists an operator and
hypothesis class which almost achieve this lower bound.
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THEOREM 4. LetF = Wég,' and n= 20, d= 1 be given integers. Then

1
| F) > .
n.d) = e+ 128 In d)7/

The proof is in Section A.3.

Our next result shows that there exists an operBkpand alinear manifold
Hd which together achieve the upper boundlgry stated in Theorem 2.

Flrst we note several definitions and facts. For a multi- mtégerZ' denote
by k|| = Z, ki. Let A; O [0, 1]' be anl-dimensional cube. Denote by
1a;(X) the |nd|cat0r functlon ofA Denote bya,,| the number of vector&
for which | k]| £ r - 1, wherer is the smoothness parameter\t\urgoI Let R,
be a partition of the domaiX = [0, 1]' which is uniform in every varlable
X;, 1 <i <1, and consists of a total af |dent|cal cubesA, 1<j<q. Let
Sr =P = Xk Il <r — 1akx1 . xI In; (%) 1 < ] < g} be a linear
subspace of all piecewise polynom|als of degree at mostl in the variables
X, 1< <1, with a support being a cubs;, 1 <j < g. The dimension of5;
equalsqocr I. There exists a linear operat@g rr WL . &, r Which maps an
f ¢ WY to an element oy r.

THEOREM 5. Given integers n and & 1, choose g such that the dimension
of §,r is gur,; = n 4+ d. Consider the target clas§ = WL | Denote by

@1, ..., ¢nyd @ basis in §;. Then for any fe Wgo', we have §((f) =
Z”*d L ()i (x) for some linear functionals .1 < i < n + d. Define the
information operatoan(f) = [L1(f), ..., Ln(f)] and the approximating

class to be a linear subspace

n+d
_H?wf) Zy.¢|(x)+ Y Gdix):G GR}.

i=n+1

Then the specific combination of information operatrand hypothesis classes
{H)‘,’}yeﬁn achieve a partial information error which is bounded from above as

Cs

sup sup mf If—hiL, < W

YeR" fcrniL(y) heHy

for some constantsc> 0 independent of n and d.

From Theorems 4 and 5 it follows that, ande incur an error which to
within a logarithmic factor im andd is close to the minimal partial information
error I, ¢(F). Thus they come close to being the optimal combinatignand
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H‘,{j*. Hence for learning a targgtin a Sobolev class using examples with partial
n A
information, the operatoN, and the linear hypothesis cla%t% @ guarantee
n

an almost optimal performance; i.e., the upper bound on the Ettoris almost

minimal, whereh is taken as the empirical error minimizer ov’)d% @
n

An additional comment is due. The fact thatliaear manifold H?q
achieves an almost optimal upper bound amatig possible manifoIJsgof
pseudo-dimensionl is a consequence of the choice of the target claé$
and the norni, used for approximation. Suppose we consider, instead, anothe
classical Sobolev class defined for fixec&kp < 2 by W[)" = {f: ||D"f|||_p <
M, Ikl < r}. From classical results on the estimation of the Kolmogorov
width of W[)", denoted here aKd(W[)", Lso), it can be shown that when
using thel ,-norm for approximation the optimaldimensional linear manifold
has a worst-case approximation error which is lower bounded;jpg/'~1/P
for some constant, > 0 independent ofl. Whereas doing approximation by
linear combinations ofl piecewise polynomial-splines of degreébut allowing
the spline basis to depend on the target function which implies nonlinea
approximation) leads to thp,-width satisfyingpd(W,';,", Loo) < 08(1/d)r/'.
Thus,od(W,r;", Leo) < Kd(W[)", Loo), Whereag « by meansag/bg — 0 as
d — oo. Thuspq is a genuinenonlinearwidth since there are target classes for
which it is less than the Kolmogorov linear width in a strong sense.

8. CONCLUSIONS

We introduced a theoretical framework for representing the problem o
learning a target functiory € JF from examples by an empirical error
minimization algorithm with partial information. Having defined a new
information quantity I, ¢(F) leads to an upper bound on the error of the
estimatorh which depends on the sample sizethe information cardinality,
and the pseudo-dimension of the approximating clé$s For a specific Sobolev
target classNé*o' one immediate consequence is a clear trade-off betweaind
n which suggests that the ratio between the smoothness paramaiet the
dimensionalityl of the domainX is crucial in determining which of the two
types of information, namely information obtained from examples versus partic
information obtained by a linear operator, is worth more. Roughly speaking
partial information is worth polynomially more than information from examples
when| < 2r while the opposite holds when> 2r. Moreover, for the Sobolev
class we obtained an information operatds which yields an almost optimal
partial information error rate.
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APPENDIX: PROOFS OF RESULTS

In this section we prove lower and upper boundslgry(F). The method
of proof for the lower bound (Theorem 1) is interesting in its own right as i
combines the well-known property of a finite pseudo-dimensional manifold fc
the purpose of showing the existence of at least one bad target function wh
the manifold does not approximate well enough. For proving the upper bou
(Theorem 2) we use the fact that a linear manifold of dimendibas a pseudo-
dimensiond (Lemma 3 in Section 2) which allows us to linearly approximate

We first introduce the notation. LeZ, denote the set of nonnegative
integers, andZ'+ denotes alll-dimensional vectors whose components are
in Z. Unless otherwise mentioned it will be implicit that the domadn
= [0, 1]' and we writex for the vector ki, ..., ], f f(x) dx represents
fx f(X1, ..., x)dxq ... dx. The notationHd represents any manifold with
dimp(H%) = d and for allh € 9, g € F, L(h) = EJh - g| < M. For any vector
v € R™ and functionf, we use the standard norm|$v|||gw = (Z?lejp)l/p
and | flL, = (fy | T (0P dx)¥/P, respectively. When the dimensionality of the
vector is clear, we writdjv||i,. We use the standard notation for a bE[P(r)
of radiusr in R™, where distance is measured in thenorm, 1< p < oo (if
p = oo then BR}(1) is a cube of side 2). We define for aayll A, dist@, B,

I,) =infy,og ll@a — bll1,. The distance between two Euclidean satsB c R™ is
defined as disf, B, |,) = sup, dist@a B, |,).

Sometimes we underline a symbol to explicitly indicate that it is a Euclidea
vector or a set of vectors. For € R the function sgr) is defined as sgwy
=1if x=0 and sgf) = -1 if x < 0. For a vectorx € R™, define
sgn(x) = [sgn(xa), ..., sgnxm)]. Let i € {—1, 1}™. An orthant Q in R™
is an extension of the definition of a quadrantR3; namely, there are ™
orthants inR™ and Q; = {x € R™ sgn(x) =i}.

We start with the proof of Theorem 1.

A.1. Proof of Theoreni

We follow Vapnik’s proof of Theorem 7.3 in [38], but where the complexity
measure ofi{ is the pseudo-dimension instead of his capacity measure defin
on page 189. It is given that di,{,tﬂ-ld) =d. Lety e Randx O X = [0, 1]
First, we have

CLAaM 1. The set of indicator functions
A= {Lx, y: hoo-y) =g h € H, B € Ry}
hasVC(A) < 16(d + 1) log? 4(d + 1).

Proof of Claim 1. Define the class of functions

G={oh(X, y) =h(Xx) —y:heH]
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where we will also refer t@ = (x, y) € R'*1. Consider the corresponding set

B = {Lig@>0: h € H)

of indicator functions. It is easily seen that V&) = dimp(H) =d as we now
show: If VC(B) > d then there exists a set of poirg }"_;, wherez; = (x;, ),
1<i<m m>d, which is shattered by. This implies that there exist pairs
{(xi, ¥i)}",, such that the set of binary vectors

B = {[sgn(h(x1) — y1), sgnh(xz) — ¥2), ..., Sgnh(Xm) — Ym)]: h € M}

equals {1, 1}™ The latter implies that dig() > d and leads to a contradic-
tion. For the other direction, suppose \B}(< d then there does not exist a set
of pointsz = (x;, y;), 1 < i <m, m=d, which can be shattered W This im-
plies there do not exist paifgx;, yi)}",, such that the set of binary vectors
{[sgn(h(x1) — y1), sgn(h(x2) — y2), ..., sgnh(Xm) — Ym)]: h € H} equals {
1, 1}™ This contradicts the fact tha’( has a pseudo-dimensiawhich proves
that VC@B) = d

Next, denote bygh g(X, ¥) = gh(2) — 8 = h(x) —y — g and let

C = {1{gh./3(x~, y)>0}. h (S H, ﬁ € R+}.

CLAaM 2. The VC dimension of the set C is upper bounded 2@ +
1) log e(d + 1).

Proof of Claim 2. To see this, fix any sampléz}™, and any function
on(2) € G. Consider the class of functions that are translates of this fixec
function g, i.e., {gh — B: B € Ry}, together with its corresponding class of
indicator functions,

Can = {Ligh@-p>01: B € Ry},

whereh is fixed. We claim that the V(Z:gh) = 1 as is now shown. The di-
chotomies tha€y, picks on a sampléz }" ; are precisely the set of dichotomies
on the points(z, gnh(z)) € R'*2, 1 <i < m, that are picked by the class of
half-spaces of the forng = {(z, r) € R'"*2:r > B}, B € R. It is easy to see
that the VC-dimension of the class of such half spaces is 1. Thus, for any fixe
Oh € G, VC(Cg,) = 1. Hence from Proposition A2.1(iii) of [6], the number of
dichotomies picked orjz " ; by Cg, is no more tharem for m = 1. There-
fore for anygn € G, no more tharem new dichotomies which differ from its
current dichotomy [sgfUh(z1)), SQNOn(z2)), ..., SONgn(zm))], are produced
by adding arbitraryg € R to g, Now from the proof of Claim 1, V&) = d

= 1. Hence, from [6] it follows that for anyn = d the number of dichotomies
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picked by the clas8 on any sampldz}", is at most emd)d. It follows that
for all m>d + 1 the set of dichotomies

C = {[sgn(gn(z1)—B), SINGh(Z2)—B), ... , SYNGh(zm)—B)]: h € H, B € R},

picked byC on a samplgz}", has cardinality no more tharerf)(emd)d <

(em ¥, To find an upper bound on VCJ we solve for the largesh for which

(em®1 < 2™ and obtain VOC) < 2(d + 1) log &(d + 1) which proves Claim 2.
Continuing, consider the class

D= {1{gh,—ﬁ(X, y)<0}- he H, ﬂ (S R+}.

CLAaM 3. TheVC-dimension of D is upper bounded &¢d +1) log e(d+1).

Proof. The proof follows from the proof of Claim 2, except that now we
consider dichotomies on the set of poirfig, —gn(z))}", picked by half
spacesH, as above.

We now continue with the proof of Claim 1. For ahye H, 8 € R,

{(X, ¥): Ih(xX)=y| > B} = {(X, ¥): h(X)—y—B > OJU{(X, ¥): h(xX)—y+pB < 0},

and since both V&) and VCP) are at most 2{ + 1) log e(d + 1) then by
Proposition A2.1(ii) of [6], for any sampléz; }", of sizem, wherem > 2(d +
1) log e(d + 1) the number of dichotomies plcked ¢n}", by the class of in-
dicator functions

{1{{(x, y):h(x)—y—B>0)U{(X, y): h(x)—y+B<0}} - he™H, B e R+} (17)

is no more thanmz(d“) log e(d+1)m2(d+1) loge(d+1) _ m4(d+1) log e(d+1) di-
chotomies. The class in (17) is precisely the clas3o find an upper bound on
VC(A) it suffices to solve for the largesn for which m*(d+D loged+1) — om
Solving for m yields that VCA) < 16(d + 1) log? 4(d + 1) for all d = 1, which
proves Claim 1.

It only remains to follow Vapnik's proof of Theorem 7.3 in [38], where, in-
stead of using a class of indicator functions of the f@iqy, y). hx)—y)2-p: N €
HY, B € Ry}, we use our seh and the fact that V@) < 16(d + 1) log? 4(d
+ 1) = d' to imply that the growth function oA is bounded by 15%/d'!. The
statement of the theorem then follows from Vapnik’'s prooll

A.2. Proof of Theorem 2

To establish an upper bound dp, 4(F) it suffices to choose a particular
information operatoN, and a particular manifold¢d since
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In,d(F) =Iinf sup |nf sup inf || f —hilL, (18)
Nn' yeNp(F) H feFNNTL(y) hed
< sup sup inf ||f —hlL,. (19)

yeRn(F) feFnlyiey) hed

We next describe the particular choice7sf followed by the choice ofNj,.

We will take 79 to be a linear manifoIcH)‘,j of dimensiond which from
Haussler [16] has a pseudo-dimensidnwherey shows the dependence of
the manifold on the information vectgt Specifically, IetHf,j be the space of
piecewise polynomial functions,

n+d
ZM¢.(X)+ Y Gei0:G eR
i=1 i=n+1

wheren, d are any given positive integers and the functign&) may also be
indexed by a vector index,[K] and written¢y; . They are defined as

i k(X)) = x'l‘l xlkl 1p;(X) = xklAj (x),

where the set of mutually disjoint cubés of equal volumes/| forms a par-
tition of X = [0, 1], 14;(x) denotes the indicator function for the s&f, and
k=1ki, ..., k] e Z' satrsfres|k| ZI ki <r —1, wherer is the smooth-
ness parameter in the definition of the target claéss W' ' The volume Al
of every cubej,; is chosen such that the total numigeof basis functionsyj i
equalsn + d; i.e., g = (1/|ADar,1 = n+d, whereo; | is the number of vec-
torsk € Z'. whose k| <1 - 1.
Define the linear operatdea; f as

Paf= > bk

k:|k|<r—1

= Z b[j,k]XklAj (X)

k:|k|<r—1

and where the coefficientj, x; which depend orfi are obtained by solving the
following set of equations for the coefficienits; k;:

ka( Z byj, k,]x)dx_f xkf(x)dx
Aj . Aj

KK |<r —1
V[j,kl,1<j<aq, kl<r—-1 (20)
There are a total ofjor,; = n + d such coefficients. Reindex these co-

efficients and their associated basis functions by an integer scalar and |
b(f) =[bi(f), ..., bhirq(f)] be the coefficient vector. We have a polynomial
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a
Pro) =Y Pa; f(x)

= Z byj, k]XklAj (X)
[ K
n+d

=Y bi(f)ei (0,

i=1

whereb;(f) is the coefficient of théth term. Define the information operator

Nn(f) = [bi(f), ..., bn(f)].

Continuing from (19) we have

sup sup inf || f —hjlL, (22)
yeRn(F) fernfyiey) heHy
n n-+d
< sup  sup |- widi0— Y bi(haio| (22
yeRn(F) feFnNz (y) i=1 i=n+1 Lo
n+d
=sup| f—) bi(Heix| (23)
feF =1

Loo

the last equality follows since for alf € F N N Ly, Nn(f) = [b1(f), .
bn(f)] = y. Now from Birman and Solomjak [5, Lemma 3.1] for evelrye Wr

I = Pa FllLooaj) < Col A7 Fllyge

for a constantc,, independent of, and in our case|| f |, nlap = = SURcq,
[ f®(x)| < M for all k, [k| < r. Hence,

n+d
(B SLTEXE I (0 ol AT CNE (e
=1 Lo 1<j=<q ki |k|<r—-1 Leo
= max sup | f (x) — Z byj. kX (25)
j XEA|
= max sup | f(x) — PAJ- f ()] (26)
I xeA;
<colAl/'M (27)
ar |
—Cig— 28
O+ ay/! 29
C11 (29)

T (ntay/
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for positive constantsg, ¢4, andc,; independent ofi andd. Hence, continuing
from (23) we have

n+d

f=> " a(Hgix

i=1

C11

P
- r/l
L (n+d)

sup
feF

which proves the theorem.ll

A.3. Proof of Theorem 4

We first state several auxiliary lemmas. The following lemma is a consequenc
of Chebychev’s inequality applied to a weighted sum of i.i.d. random variables
see, for instance, Petrov [24].

LEMMA 5. For 1 < i < m, let the independent random variablesbe
binomial on {-1, +1} with probability% and let g be constants such that

>i",a? =1 Then
P (

We now state a lemma concerning a lower bound on the distance

m
Zaixi

i=1

> e\/ﬁ> < 26~ Me/4,

dist BT (1) N L", HY, 1)

between the intersection of a cuB (1) and any fixed subspace of codimen-
sionn to any manifold®® = {(h = [h(x), ..., h(xm)]: h € H9} in R™.

LEMMA 6. Given integers m> max{32m In n, 32d In d}, n > 20, and
d > 1. Given a set of point§xs, ..., Xm}, where x € X, 1 <i <m. Given a
cube B} (1) = [—-1, 1]™ and a subspace 'Lof codimension n, both iR™, and
a manifold®9 c R™ defined agh = [h(x1) ... h(xm)]: h € K9}, where®9 is
a class of functions with a pseudo-dimension d. Then

dist BT (1) N L", HY, 1) > /m/4.

Proof. Define byV = {-1, 1}™ the set of vertices of the cube-], 1]™
Clearly V. c BQ(1). The subspac&" in R™ is an - n)-dimensional
subspace denoted &g, . We first sketch the major steps in the proof. Begin
by showing that there exists a vertex € V which is c,,/m-close toL
. but is c;s/m-far from R for some absolute constantss; > c;, > O.
Denoting byy" the point inL,,, which is closest tov" it then follows that
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dist(y*, HY, 1) > c13./M— c12./m. The proof is completed after showing that
there exists & € BT (1) N Lm_n which is close enough tg".
First we show that there are exponentially many vertices which are close

L Fix any such subspads,, . We havelLm—n = {x: w]x =0, ..., wlx =
0}. For any vertexw OV, we have

disf(v, Lm—n, I2) = [PLv[%, (30)
whereL , denotes the subspace which is orthogonél g, Now letus, ..., un

be an orthonormal basis &f,. Then the right-hand side of (30) becomes simply

n
P2 =) (v, up)l?.
i=1
We use a probabilistic argument to calculate the number of vertices that «
C,/m-close toL .

Draw uniformly a vertexo from V, i.e., pick itsith elements from {1, +1}
with probability % and repeat this for all ¥ i £ m independently. Clearly,
the number of vertices whose distance framg, is greater thart,,/m equals
P({v € V:dist(v, Lin_n, l2) > c12,/m})2™, whereP is the uniform distribution
overV. We can therefore upper bound this number by finding an upper boul
on the probabilityP({v € V: dist(v, Lm—_n, l2) > c12/m}). We have

P({v € V: dist(v, Lm_n, |2) > ci2v/m}) (31)
= P({v € V: disf(v, Lmn. l2) > (ciov/m)?}) (32)
n
=P (Z (v, u)? > (clzﬁ>2) (33)
i=1
n 2
<Yp <|(v, up)? > @) (34)
i=1
n
C12,/M
:;P(KU, up)l > T ) (35)
< 2ne MGo/4n. (36)

where (36) follows from Lemma 5. As;, > 0 is arbitrary we may choosg, =
%. (This particular choice is used further below.) Choase 320n In n. Then

1/4
2ne MGo/4N < ong320nInn/256 _ o 80 Inn/64 _ 5 (%) / '

Hence, the number of verticas V such that digty, Lin_n, |2) < c12/mMm
is at least
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1\ /4
2m (1 -2 (—) ) (37)
n
under the constraint thai > 320n In n.
Consider the manifold{® c R™ defined as

= (h=[h(x1) ... h(xm)]: h € HY},

where 19 is the class of functions with pseudo -dich For a vectorh let
sgnh) = [sgnh(x1) ... sgnh(xm)]. Then sinced = dim (Hd) and from
Sauer’s lemma (cf. Haussler, [16, Lemma 3]) it follows tl{mgr(h) h e 1Y
has cardinality

d

> (k) = (5" @

k=0

This clearly implies that the manifold/¢ intersectsq,, < (emd)? orthants.
Every vertex corresponds to a unique orthant. DenoteAby- {Q.}qm1 and
B = {v.}I ", the orthants which are intersected by the manifold and their cor:
responding vertices, respectively.

Denote byC the set of vertices [ V such that for eaclw O C there exists
somev; € B such that|v; — v||1 < 2Kk; i.e., v andv; differ on at mostk vector
elements. We also have

emd & /m
ICl = (F) Z<| )
i=0

To simplify this expression we may chooke= m/4 and, using a bound on the
tails of the binomial distribution (see, for example, Hoeffding [17]), the number
of vertices inC may be bounded from above bgnid)? 2Me ™8,

From (37) the number of vertices O V that have the property
dist(v, Lm_n, l2) < ci2/mis at least 2(1 - 2(1h)¥4). Even if all the vertices
in C have this property we are still left with at least

(o)) e (voa) ) e
—om <1 _2 <%>1/4 - (%n)d e—m/S) (39)

vertices which are not i€ and which satisfy this property. For ati = 64d In
d, (emd)de ™8 < ™16 Thus (39) is lower bounded by
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1\ /4
2m 1_2<H> —e 16}

Taking m = max{32 In n, 64d In d} then (1 - 2(1n)¥* - ™19 is greater
than 1 for alln = 20; thus, the total expression is larger than 1rfar 20. Thus
there exists at least one vertex which is notGrand which satisfies the prop-
erty above. Moreover, for any such vertexd C and for any pointz on the
manifold ¢ the |, Euclidean distance

m
m
2 2 2
lz—vllf, = E |z —vi|“>k-1 =7
i=1

Thus we have proved that there is at least one vertexd V such that
dist(v*, Lm_n, l2) < c12o/m and that distv*, HY, 1p) > /m/2. The constant
c13 mentioned earlier is;.

Finally, we wish to show that there exists a poifntin the intersection
B2 (1) N Lm—n between the cube of side 2 and the linear sphge, such
that disty, ﬂd, l2) > c144/m for somec,, > 0. For this we first show that
there is ay” in the intersectiorBY'(,/m) N Ly_n of the ball of radius,/m and
the subspace ., such that disty*, HY, 1) > c144/M. Consider the point on
L, Closest to the vertex*. Clearly, [[v* — y*[I, < ci2¢/m. Moreover,y" is
simply the projection ofv* on L,,_,. As L., goes through the origin and as
v* € BJ'(/m) it follows thaty” must be contained iBBJ'(,/m) N Lm_n (but
not necessarily irBT (1)). By a geometric argument one can show that ther
exists a poiny € BT (1) N Lm_n Which is no farther thae,,,/m from y". Also,
we have for anyz € 19

19—zl > v =zl = I1y* = o™, = 1Y = Y*lli,:

thus,
inf Iy —2zlli, > inf_[[v* = zli, = Iy = o™, = 1Y = Y*li,
zeHd zeHd
Jm
> > T Ci24/M — C124/M
VAL
- 4

by the previous choice af;, = :—é.
We have proved that there exists a pointe BJ2(1) N Lym—_n such that
inf,_pa 1Y — zl, > «/m/4. Finally, we therefore conclude that

. M

sup inf ly =2z, > —;
d 2 4

yeBR (DNLm_n 2€H
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~[5

dist(B™ (1) N Lm_n, HY, 12) >

COROLLARY 1. For the same setting as in LemrBathe distance measured
in the l,,-norm is lower bounded as

dist(BT. (1) N L", HY, 1) > 2.

Proof. For any vectorsa, b € R™, if ||a — b|||22 > m/16 then at least one

componentd; - b;|? > & which implies thatja — bjj,, > . W

We now prove Theorem 4.

Proof. We have

inf sup inf sup inf |[f —h|L (40)
Np yeRN Hd }'ﬁN*l(y) hemd

>infinf sup inf ||f —h|_, (42)
Np 7d FNAN-L(0) herd

>infinf  sup inf - max | f(xj) —h(xj)l, (42)

Np 7d FNAN-L(0) herd 1<j<m

where the set ofn points x; uniformly partition the domainX and we may
use an integer vector to index a point &8s = [Xg j;, ..., X, j], wWhere
i j = ji/mY' +12mY/ 0<jsm -1 1<i<l.

We now define a subséy, C F = Wég,' such that the set of vectors

{f=[fx), ..., fxm]: f € Fm}
maps onto the cub@T (1/m/")y = [—1/m'/!, 1/m'/'|™. For this, fix any
function ¢ € W&;l(M) with support on [0, 1] which satisfieg(0) = ¢(1) =

0,and¢(3) =1.Letm =m", E={0, 1, ..., m' —1}', ¢i, (y) = p(m'y—ij),
O<ijsm-1,1<j<1, and

B (X) = ¢iy (X) ... @i (%) = d(M'X1 —iDP(Mx2 —i2) ... p(M'x —i).

We define

1
Fn= 1 fa0) = T Z agi(x):a e[-1,1]¢.
icE
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We will sometimes index the elements by a scalar integer and write for tt

vectora = [ay, ..., am]. First it is shown that for any € [-1, 1], f4 €
W |(M) For this it suffices to upper bound sp|p‘a°’)(x)| by M, for « =
[a1, ..., ], aj € Z4, leloq =r. We have

sup [fi9x)| =
xe[0, 1] & m

sup Z ¢ (x)

r/l
x€[0, 1] icE

max sup | > ai¢*’ (x)

r/I
m leE XEA i icE

= 7 T Sup lay0]” 00|

= L maxjaj| supi$@ )|
mr/l lEE J— XEAJ’ J_

max|aj| sup |6V (M'x — j1)g“?

mr/l XEAJ

x (M'xz2 — j2) ... ¢V (m'x — jp)]
1 s ()
= —— max|aj|m su X)
m/t g il Xe[O,Fi]' ol
< sup (9@ < M;
xe[o, 1]

the last line follows since by assumptigne W (M).
By a similar argument it may be shown that

[fallL, = sup [fa(¥)| = ! max|aj| = ! lal, =1f_I
allbee = xe[O,I?l]' 2 -~/ IeE Foomh s o = gl
where we used the fact that

1
fa(x)) = ,/. D adx)=—ra.
icE

Continuing from (42) we will drop the subscriptand just writef for any func-
tion in F,,. Using a scalar indekfor the pointsx; we have

inf inf sup inf - max f(xj) —h(xj)| (43)
Np #d feFNN-1(0) herd 1<j<m
> inf |nf sup inf - max |f(xj) —h(xj)| (44)
Np #d feFmNN—1(0) herd 1<j<m
=inf inf sup inf | f —hlli, (45)

Nn M9 § e (1/mr/1nLn heHd



542 RATSABY AND MAIOROV

whereL" is a subspace iRR™ of codimensionn and we used the fact that the
set of vectors

{f: f e FnnN"10)}

1
=1 feo=—5 Y 8¢, Li(f)=0, ..., La(f)=0,ae[-1, 1"

leE
P a wla=0 Ta=0,aeBMQ)
= 1fif=—rawa=0.., wa=0acBg
1
— pm n
_Boo<mr/|)ﬂL,

where by definition

Using Corollary 1 and continuing from (45)

. . H 1
inf inf sup inf If —hli, >—.
Nn d feBT (1/m/HnLn heHd — am'/

We may substituten = 3200 In n + 32d In d and still satisfy the conditions
of Lemma 6 and Corollary 1. Thus we conclude that

1
inf sup inf s inf ||f —h > .
IN” yelEIRp“ IHd ]:le{Fl)(y) hleHd | I = 432 In n+32d In d)r/!
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