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The PAC model of learning and its extension to real valued function classes provides
a well-accepted theoretical framework for representing the problem of learning a target
functiong(x) using a random sample{(xi , g(xi ))}mi=1. Based on the uniform strong law of
large numbers the PAC model establishes the sample complexity, i.e., the sample sizem
which is sufficient for accurately estimating the target function to within high confidence.
Often, in addition to a random sample, some form of prior knowledge is available about
the target. It is intuitive that increasing the amount of information should have the same
effect on the error as increasing the sample size. But quantitatively how does the rate of
error with respect to increasing information compare to the rate of error with increasing
sample size? To answer this we consider a new approach based on a combination of
information-based complexity of Traubet al. and Vapnik–Chervonenkis (VC) theory. In
contrast to VC-theory where function classes of finite pseudo-dimension are used only for
statistical-based estimation, we let such classes play a dual role of functional estimation
as well as approximation. This is captured in a newly introduced quantity,ρd(F), which
represents a nonlinear width of a function classF . We then extend the notion of the
nth minimal radius of information and define a quantityIn, d(F) which measures the
minimal approximation error of the worst-case targetg ∈ F by the family of function
classes having pseudo-dimensiond given partial information ong consisting of values
taken byn linear operators. The error rates are calculated which leads to a quantitative
notion of the value of partial information for the paradigm of learning from examples.
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1. INTRODUCTION

The problem of machine learning using randomly drawn examples has
received in recent years a significant amount of attention while serving as
the basis of research in what is known as the field of computational learning
theory. Valiant [35] introduced a learning model based on which many
interesting theoretical results pertaining to a variety of learning paradigms have
been established. The theory is based on the pioneering work of Vapnik and
Chervonenkis [36–38] on finite sample convergence rates of the uniform strong
law of large numbers (SLN) over classes of functions. In its basic form it
sets a framework known as the probably approximately correct (PAC) learning
model. In this model an abstract teacher provides the learner a finite number
m of i.i.d. examples{(xi , g(xi ))}mi=1 randomly drawn according to an unknown
underlying distributionP over X, whereg is the target function to be learnt to
some prespecified arbitrary accuracyε > 0 (with respect to theL1(P)-norm) and
confidence 1− δ, whereδ > 0. The learner has at his discretion a functional
class referred to as the hypothesis classfrom which he is to determine a
function ĥ, sample-dependent, which estimates the unknown targetg to within
the prespecified accuracy and confidence levels.

There have been numerous studies and applications of this learning framework
to different learning problems (Kearns and Vazirani [18], Hansonet al. [15]).
The two main variables of interest in this framework are the sample complexity
which is the sample size sufficient for guaranteeing the prespecified performance
and the computational complexity of the method used to produce the estimator
hypothesisĥ.

The bulk of the work in computational learning theory and, similarly, in the
classical field of pattern recognition, treats the scenario in which the learner
has accessonly to randomly drawn samples. It is often the case, however, that
some additional knowledge about the target is available through some form ofa
priori constraints on the target functiong. In many areas where machine learning
may be applied there is a source of information, sometimes referred to as an
oracle or an expert, which supplies random examples and even more complex
forms of partial information about the target. A few instances of such learning
problems include: (1)pattern classification. Credit card fraud detection where
a tree classifier (Devroyeet al. [12]) is built from a training sample consisting
of patterns of credit card usage in order to learn to detect transactions that are
potentially fraudulent. Partial information may be represented by an existing
tree which is based on human-expert knowledge. (2)prediction and financial
analysis. Financial forecasting and portfolio management where an artificial
neural network learns from time-series data and is given rule-based partial
knowledge translated into constraints on the weights of the neuron elements. (3)
control and optimization.Learning a control process for industrial manufacturing
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where partial information represents quantitative physical constraints on the
various machines and their operation.

For some specific learning problems the theory predicts that partial knowledge
is very significant, for instance, in statistical pattern classification or in
density estimation, having some knowledge about the underlying probability
distributions may crucially influence the complexity of the learning problem (cf.
Devroye [11]). If the distributions are known to be of a certain parametric form
an exponentially large savings in sample size may be obtained (cf. Ratsaby [28],
Ratsaby and Venkatesh [30, 31]). In general, partial information may appear
as knowledge about certain properties of the target function. In parametric-
based estimation or prediction problems, e.g., maximum likelihood estimation,
knowledge concerning the unknown target may appear in terms of a geometric
constraint on the Euclidean subset that contains the true unknown parameter. In
problems of pattern recognition and statistical regression estimation, often some
form of a criterion functional over the hypothesis space is defined. For instance,
in artificial neural networks, the widely used back-propagation algorithm (cf.
Ripley [32]) implements a least-squared-error criterion defined over a finite-
dimensional manifold spanned by ridge-functions of the formσ(aTx + b), where
σ(y) = 1/(1 +e−y). Here prior knowledge can take the form of a constraint added
on to the minimization of the criterion. In Section 3 we provide further examples
where partial information is used in practice.

It is intuitive that general forms of prior partial knowledge about the target and
random sample data are both useful. PAC provides the complexity of learning in
terms of the sample sizes that are sufficient to obtain accurate estimation ofg.
Our motive in this paper is to study the complexity of learning from examples
while being given prior partial information about the target. We seek the value
of partial information in the PAC learning paradigm. The approach taken here
is based on combining frameworks of two fields in computer science, the first
being information-based complexity (cf. Traubet al. [34]) which provides a
representation of partial information while the second, computational learning
theory, furnishes the framework for learning from random samples.

The remainder of this paper is organized as follows: In Section 2 we
briefly review the PAC learning model and Vapnik–Chervonenkis theory. In
Section 3 we provide motivation for the work. In Section 4 we introduce a new
approximation width which measures the degree of nonlinear approximation of a
functional class. It joins elementary concepts from Vapnik–Chervonenkis theory
and classical approximation theory. In Section 5 we briefly review some of
the definitions of information-based complexity and then introduce the minimal
information-errorIn,d( ). In Section 6 we combine the PAC learning error with
the minimal partial information error to obtain a unified upper bound on the error.
In Section 7 we compute this upper bound for the case of learning a Sobolev
target class. This yields a quantitative trade-off between partial information and
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sample size. We then compute a lower bound on the minimal partial information
error for the Sobolev class which yields an almost optimal information operator.
The Appendix includes the proofs of all theorems in the paper.

2. OVERVIEW OF THE PROBABLY APPROXIMATELY CORRECT
LEARNING MODEL

Valiant [35] introduced a new complexity-based model of learning from
examples and illustrated this model for problems of learning indicator functions
over the boolean cube {0, 1}n. The model is based on a probabilistic framework
which has become known as theprobably approximately correct, or PAC, model
of learning. Blumeret al. [6] extended this basic PAC model to learning indicator
functions of sets in Euclideann. Their methods are based on the pioneering
work of Vapnik and Chervonenkis [36] on finite sample convergence rates
of empirical probability estimates, independent of the underlying probability
distribution. Haussler [16] has further extended the PAC model to real and vector-
valued functions which is applicable to general statistical regression, density
estimation and classification learning problems. We start with a description of
the basic PAC model and some of the relevant results concerning the complexity
of learning.

A target class is a class of Borel measurable functions over a domain
X containing atarget function gwhich is to be learnt from asample zm =
{(xi , g(xi ))}mi=1 of m examples that are randomly drawn i.i.d. according toany
fixed probability distributionP onX. Define byS thesample spacefor which
is the set of all samples of sizem over all functions f ∈ for all m ≥ 1. Fix a
hypothesis class of functions onX which need not be equal nor contained in

. A learning algorithmφ: S → is a function that, given a large enough
randomly drawn sample of any target in, returns a Borel measurable function
h (a hypothesis) which is with high probability a good approximation of the
target functiong.

Associated with each hypothesish, is a nonnegativeerror valueL(h), which
measures its disagreement with the target functiong on a randomly drawn
example and anempirical error Lm(h), which measures the disagreement of
h with g averaged over the observedm examples. Note that the notation ofL(h)
andLm(h) leaves the dependence ong andP implicit.

For the special case of and being classes ofindicator functionsover sets
of X = n theerror of a hypothesish is defined to be the probability (according
to P) of its symmetric difference with the targetg; i.e.,

L(h) = P({x ∈ n: g(x) 6= h(x)}). (1)
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Correspondingly, theempirical error of h is defined as

Lm(h) = 1

m

m∑
i=1

1{g(xi )6=h(xi )}, (2)

where 1{ x ∈ A} stands for the indicator function of the setA. For real-valued
function classes and the error of a hypothesish is taken as the expec-
tation El(h, g) (with respect toP) of some positive real-valuedloss function
l(h, g), e.g., quadratic lossl(h, g) = (h(x) − g(x))2 in regression estimation,
or the log likelihood lossl(h, g) = ln(g(x)/h(x)) for density estimation. Simi-
larly, the empirical error now becomes the average loss over the sample, i.e.,
Lm(h) = (1/m)

∑m
i=1 l (h(xi ), g(xi )).

We now state a formal definition of a learning algorithm which is an extension
of a definition in Blumeret al. [6].

DEFINITION 1 (PAC-learning algorithm). Fix a target class, a hypothesis
class , a loss functionl (·, ·), and any probability distributionP on X. Denote
by Pm them-fold joint probability distribution onXm. A functionφ is a learning
algorithm for with respect toP with sample sizem ≡ m(ε, δ) if for all ε > 0,
0 < δ < 1, for any fixed targetg ∈ , with probability 1− δ, based on a randomly
drawn samplezm, the hypothesiŝh = φ(zm) has an errorL(ĥ) ≤ L(h∗) + ε,
whereh* is an optimal hypothesis; i.e.,L(h∗) = infh∈ L(h). Formally, this is
stated as:Pm(zm ∈ Xm: L(ĥ) > L(h∗)+ ε) ≤ δ.

The smallest sample sizem(ε, δ) such that there exists a learning algorithmφ
for with respect toall probability distributions is called thesample complexity
of φ or simply the sample complexity for learning by . If such aφ exists
then is said to be uniformly learnable by. We note that in the case of real-
valued function classes the sample complexity depends on the error function
through the particular loss function used.

Algorithms φ which output a hypothesiŝh that minimizesLm(h) over all
h ∈ are calledempirical risk minimization(ERM) algorithms (cf. Vapnik
[38]). The theory of uniform learnability for ERM algorithms forms the basis
for the majority of the works in the field of computational learning theory,
primarily for the reason that the sample complexity is directly related to a
capacity quantity called theVapnik–Chervonenkis dimensionof for the case
of an indicator function class , or to thepseudo-dimensionin case of a real-
valued function class . These two quantities are defined and discussed below.
Essentially the theory says that if the capacity ofis finite then is uniformally
learnable. We note that there are some pedagogic instances of functional classes,
even of infinite pseudo-dimension, for which any target function can be exactly
learnt by asingleexample of the form (x, g(x)) (cf. Bartlett et al., p. 299). For
such target classes the sample complexity of learning by ERM is significantly
greater than one so ERM is not an efficient form of learning. Henceforth all the
results are limited to ERM learning algorithms.
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We start with the following definition.

DEFINITION 2 (Vapnik–Chervonenkis dimension). Given a classof indi-
cator functions of sets inX the Vapnik–Chervonenkis dimension of, denoted
as VC( ), is defined as the largest integerm such that there exists a sample
xm = {x1, . . . , xm} of points inX such that the cardinality of the set of boolean
vectorsSxm( ) = {[h(x1), . . . , h(xm)]: h ∈ } satisfies|Sxm( )| = 2m. If m
is arbitrarily large then the VC-dimension of is infinite.

Remark. The quantity maxxm |Sxm( )|, where the maximum is taken over
all possiblem-samples, is called thegrowth functionof .

EXAMPLE. Let be the class of indicator functions of interval sets on
X = . With a single pointx1 ∈ X we have|{[h(x1)]: h ∈ }| = 2. For two
points x1, x2 ∈ X we have|{[h(x1), h(x2)]: h ∈ }| = 4. Whenm = 3, for
any pointsx1, x2, x3 ∈ X we have|{[h(x1), h(x2), h(x3)]: h ∈ }| < 23 thus
VC( ) = 2.

The main interest in the VC-dimension quantity is due to the following result
on a uniform strong law of large numbers which is a variant of Theorem 6.7 in
Vapnik [38].

LEMMA 1 (Uniform SLN for the indicator function class).Let g be any fixed
target indicator function and let be a class of indicator functions of sets in X
with VC( ) = d < ∞. Let zm = {(xi , g(xi ))}mi=1 be a sample of size m > d
consisting of randomly drawn examples according to any fixed probability distri-
bution P on X. Let Lm(h) denote the empirical error for h based on zm and g as
defined in(2). Then for arbitrary confidence parameter0< δ < 1, the deviation
between the empirical error and the true error uniformly overis bounded as

sup
h∈
|L(h)− Lm(h)| ≤ 4

√
d(ln(2m/d)+ 1)+ ln(9/δ)

m

with probability1− δ.
Remark. The result actually holds more generally for a boolean random

variabley ∈ Y = {0, 1} replacing the deterministic target functiong(x). In such
a case the sample consists of random pairs{(xi , yi )}mi=1 distributed according
to any fixed joint probability distributionP over X × Y.

Thus a function class of finite VC-dimension possesses a certain statistical
smoothness property which permits simultaneous error estimation over all
hypotheses in using the empirical error estimate. We note in passing that
there is an interesting generalization (cf. Buescher and Kumar [7], Devroyeet
al. [12]) of the empirical error estimate to other smooth estimators based on
the idea of empirical coverings which removes the condition of needing a finite
VC-dimension.
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As a direct consequence of Lemma 1 we obtain the necessary and sufficient
conditions for a target class of indicator functions to be uniformly learnable
by a hypothesis class . This is stated next and is a slight variation of Theorem
2.1 in Blumeret al. [6].

LEMMA 2 (Uniform learnability of indicator function class).Let and
be a target class and a hypothesis class, respectively, ofindicator functionsof
sets in X. Then is uniformly learnable by if and only if theVC( ) < ∞.
Moreover, ifVC( ) = d, where d<∞, then for any0< ε, δ < 1, the sample
complexity of an algorithmφ is bounded from above by c((d/ε) log(1/δ)), for
some absolute constant c> 0.

We proceed now to the case of real-valued functions. The next definition
which generalizes the VC-dimension is taken from Haussler [16] and is based
on the work of Pollard [27]. Let sgn(y) be defined as 1 fory > 0 and−1 for y ≤
0. For a Euclidean vectorv ∈ m denote by sgn(v) = [sgn(v1), . . . , sgn(vm)].

DEFINITION 3 (Pseudo-dimension). Given a classof real-valued functions
defined onX. The pseudo-dimension of , denoted as dimp( ), is defined
as the largest integerm such that there exists{x1, . . . , xm} ∈ X and a
vector v ∈ m such that the cardinality of the set of boolean vectors satisfies
|{sgn[h(x1)+v1, . . . , h(xm)+vm]: h ∈ }| = 2m. If m is arbitrarily large then
the dimp( ) = ∞.

The next lemma appears as Theorem 4 in Haussler [16] and states that for
the case of finite-dimensional vector spaces of functions the pseudo-dimension
equals its dimension.

LEMMA 3. Let be a d-dimensional vector space of functions from a set X
into . Thendimp( ) = d.

For several useful invariance properties of the pseudo-dimension cf. Pollard
[27] and Haussler [16, Theorem 5].

The main interest in the pseudo-dimension arises from having the SLN hold
uniformly over a real-valued function class if it has a finite pseudo-dimension.
In order to apply this to the PAC-framework we need a uniform SLN result not
for the hypothesis class but for a class defined by = {l (h(x), y): h ∈
, x ∈ X, y ∈ } for some fixed loss functionl, since an ERM-based algorithm

minimizes the empirical error, i.e.,Lm(h), over . While the theory presented
in this paper applies to general loss functions we restrict here to the absolute-
loss l(h(x), g(x)) = |h(x) − g(x)|. The next lemma is a variant of Theorem 7.3 of
Vapnik [38].

THEOREM 1. Let P be any probability distribution on X and let g∈ be
a fixed target function. Let be a class of functions from X to which has a
pseudo-dimension d≥ 1 and for any h∈ denote by L(h) = E|h(x) − g(x)|
and assume L(h) ≤ M for some absolute constant M> 0. Let {(xi , g(xi ))}mi=1,
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xi ∈ X, be an i.i.d. sample of size m> 16(d + 1) log2 4(d + 1) drawn accord-
ing to P. Then for arbitrary0< δ < 1, simultaneously for every function h∈ ,
the inequality

|L(h)− Lm(h)| ≤ 4M

√
16(d + 1) log2 4(d + 1)(ln(2m)+ 1)+ ln(9/δ)

m
(3)

holds with probability1− δ.
The theorem is proved in Section A.1.

Remark. For uniform SLN results based on other loss functions see Theorem
8 of Haussler [16].

We may take twice the right-hand side of (3) to be bounded from above by
the simpler expression

ε(m, d, δ) ≡ c1

√
d log2 d ln m+ ln(1/δ)

m
(4)

for some absolute constantc1 > 0. Being that an ERM algorithm picks a hypoth-
esisĥ whose empirical error satisfiesLm(ĥ) = infh∈ Lm(h) and by Definition
1, L(h∗) = infh∈ L(h), it follows that

L(ĥ) ≤ Lm(ĥ)+ ε(m, d, δ)

2

≤ Lm(h
∗)+ ε(m, d, δ)

2
≤ L(h∗)+ ε(m, d, δ). (5)

By (5) and according to Definition 1 it is immediate that ERM may be
considered as a PAC learning algorithm for. Thus we have the following
lemma concerning thesufficientcondition for uniform learnability of a real-
valued function class.

LEMMA 4 (Uniform learnability of real-valued function class).Let and
be the target and hypothesis classes of real-valued functions, respectively,

and let P be any fixed probability distribution on X. Let the loss function
l (g(x), h(x)) = |g(x) − h(x)| and assume L(h) ≤ M for all h ∈ , and
g ∈ , for some absolute constant M> 0. If dimp( ) < ∞ then is
uniformly learnable by . Moreover, if dimp( ) = d < ∞ then for any
ε > 0, 0 < δ < 1, the sample complexity of learning by is bounded
from above by(cM2d ln2(d)/ε2)(ln(d M/ε)+ ln(1/δ)), for some absolute con-
stant c> 0.

Remarks. As in the last remark above, this result can be extended to other
loss functionsl. In addition, Alonet al. [4] recently showed that a quantity called
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thescale-sensitive dimensionwhich is a generalization of the pseudo-dimension,
determines thenecessary and sufficientcondition for uniform learnability.

It is also worth noting that there have been several works related to the
pseudo-dimension but which are used for mathematical analysis other than
learning theory. As far as we are aware, Warren [39] was the earliest who
considered a quantity called the number of connected components of a nonlinear
manifold of real-valued functions, which closely resembles the growth function
of Vapnik and Chervonenkis for set-indicator functions, see Definition 2. Using
this he determined lower bounds on the degree of approximation by certain
nonlinear manifolds. Maiorov [20] calculated this quantity and determined the
degree of approximation for the nonlinear manifold of ridge functions which
include the manifold of functions represented by artificial neural networks
with one hidden layer. Maiorov, Meir, and Ratsaby [21], extended his result
to the degree of approximation measured by a probabilistic (n, δ)-width with
respect to a uniform measure over the target class and determined finite sample
complexity bounds for model selection using neural networks [29]. For more
works concerning probabilistic widths of classes see Traubet al. [34], Maiorov
and Wasilkowski [22].

Throughout the remainder of the paper we will deal with learning real-valued
functions while denoting explicitly a hypothesis classd as one which has
dimp(

d) = d. For any probability distributionP and target functiong, the
error and empirical error of a hypothesish are defined by theL1(P)-metric as

L(h) = E|h(x)− g(x)|, Lm(h) = 1

m

m∑
i=1

|h(xi )− g(xi )|, (6)

respectively.
We discuss next some practical motivation for our work.

3. MOTIVATION FOR A THEORY OF LEARNING WITH
PARTIAL INFORMATION

It was mentioned in Section 1 that the notion of having partial knowledge
about a solution to a problem, or more specifically about a target function, is
often encountered in practice. Starting from the most elementary instances of
learning in humans it is almost always the case that a learner begins with some
partial information about the problem. For instance, in learning cancer diagnosis,
a teacher not only provides examples of pictures of healthy cells and benign cells
but also descriptive partial information such as “a benign cell has color black
and elongated shape,” or “benign cells usually appear in clusters.” Similarly,
for machine learning it is intuitive that partial information must be useful.
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While much of the classical theory of pattern recognition (Duda and Hart [13],
Fukunaga [14]) and the more recent theory of computational learning (Kearns
and Vazirani [18]) and neural networks (Ripley [32]) focus on learning from
randomnly drawn data, there has been an emergence of interest in nonclassical
forms of learning, some of which indicates that partial information in various
forms which depend on the specific application is useful in practice. This is
related to the substream known asactive learning, where the learner participates
actively by various forms of querying to obtain information from the teacher. For
instance, the notion of selective sampling (cf. Cohnet al. [8]) permits the learner
to query for samples from domain-regions having high classification uncertainty.
Cohn [9] uses methods based on the theory of optimal experiment design to
select data in an on-line fashion with the aim of decreasing the variance of an
estimate. Abu-Mostafa [1–3] refers to partial information ashintsand considers
them for financial prediction problems. He shows that certain types of hints
which reflect invariance properties of the target functiong, for instance saying
that g(x) = g(x′), at some pointsx, x′ in the domain, may be incorporated into
a learning error criterion.

In this paper we adopt the framework of information-based complexity (cf.
Traubet al. [34]) to represent partial information. In the framework whose basic
definitions are reviewed in Section 5, we limit to linear information comprised
of n linear functionalsLi(g), 1 ≤ i ≤ n, operating on the target functiong. In
order to motivate the interest in partial information as being given by suchn-
dimensional linear operators we give the following example of learning pattern
classification using a classical nonparametric discriminant analysis method (cf.
Fukunaga [14]).

The field of pattern recognition treats a wide range of practical problems where
an accurate decision is to be made concerning a stochastic pattern which is in
the form of a multidimensional vector of features of an underlying stochastic
information source, for instance, deciding which of a finite number of types of
stars corresponds to given image data taken by an exploratory spacecraft, or
deciding which of the words in a finite dictionary correspond to given speech
data which consist of spectral analysis information on a sound signal. Such
problems have been classically modeled according to a statistical framework
where the input data are stochastic and are represented as random variables with
a probability distribution over the data space. The most widely used criterion for
learning pattern recognition (or classification) is the misclassification probability
on randomly chosen data which have not been seen during the training stage
of learning. In order to ensure an accurate decision it is necessary to minimize
this criterion. The optimal decision rule is one which achieves the minimum
possible misclassification probability and has been classically referred to as
Baye’s decision rule.

We now consider an example of learning pattern recognition using randomly
drawn examples, where partial information takes the form of feature extraction.
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EXAMPLE (Learning pattern classification). The setting consists ofM pattern
classes represented byunknown nonparametric class conditional probability
density functions f (x| j ) over X = l with known correpsondinga priori
class probabilitiespj, 1 ≤ j ≤ M. It is well known that the optimal Bayes
classifier which has the minimal misclassification probability is defined as
follows: g(x) = argmax1≤ j≤M {pj f (x| j )}, where argmaxj∈ABj denotes any
elementj in A such thatBj ≥ Bi, j ≠ i. Its misclassification probability is called
the Bayes error. For instance, suppose thatM = 2 and f (x/j ), j = 1, 2, are
both l-dimensional Gaussian probability density functions. Here the two pattern
classes clearly overlap as their corresponding functionsf (x|1) and f (x|2) have
an overlapping probability-1 support; thus the optimal Bayes misclassification
probability must be greater than zero. The Bayes classifier in this case is an
indicator function over a setA = {x ∈ l : q(x) > 0}, whereq(x) is a second
degree polynomial over l . We henceforth let thetarget function, denoted by
g(x), be the Bayes classifier and note that it may not be unique.

The target class is defined as a rich class of classifiers each of which maps
X to {1, . . . , M}. The trainingsampleconsists ofm i.i.d. pairs {(xi , yi )}mi=1,
where yi ∈ {1, 2, . . . , M} takes the valuej with probability pj, and xi is
drawn according to the probability distribution corresponding tof (x|yi ), 1 ≤ i
≤ m. The learner has ahypothesisclass of classifier functions mappingX to
{1, . . . , M} which has a finite pseudo-dimensiond.

Formally, the learning problemis to approximateg by a hypothesish in
. The error of h is defined asL(h) = ‖h − g‖L1(P), whereP is some fixed

probability distribution over . Stated in the PAC-framework, a target classis
to be uniformly learned by ; i.e., for any fixed targetg ∈ and any probability
distribution P on X, find an ĥ ∈ which depends ong and whose error
L(ĥ) ≤ L(h∗)+ ε with probability 1− δ, whereL(h∗) = infh∈ ‖g− h‖L1(P).

As partial information consider the ubiquitous method offeature extraction
which is described next. In the pattern classification paradigm it is often the case
that, based on a given sample{(xi , yi )}mi=1 which consists of feature vectors
xi ∈ l , 1 ≤ i ≤ m, one obtains a hypothesis classiferĥ which incurs a large
misclassification probability. A natural remedy in such situations is to try to
improve the set of features by generating a new feature vectory ∈ Y = k, k ≤
l, which depends onx, with the aim of finding a better representation for a pattern
which leads to larger separation between the different pattern-classes. This in
turn leads to a simpler classifierg̃ which can now be better approximated by a
hypothesish̃∗ in the same class of pseudo-dimensiond, the latter having not
been rich enough before for approximating the original targetg. Consequently
with the same sample complexity one obtains via ERM a hypothesisĥ which
estimatesg̃ better and therefore having a misclassification probability closer to
the optimal Bayes misclassification probability.

Restricting to linear mappingsA: X → Y, classical discriminant analysis
methods (cf. Fukunaga [14, Section 9.2]; Duda and Hart [13, Chap. 4]) calculate
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the optimal new feature vectory by determining the best linear mapA* which,
according to one of the widely used criteria, maximizes the pattern class
separability. Such criteria are defined by the known class probabilitiespj, the
class conditional meansµ j = E(X| j ), and the class conditional covariance
matrices Cj = E((X − µ j )(X − µ j )

T | j ), 1 ≤ j ≤ M, where expectation
E(·| j ) is taken with respect to thejth class conditional probability distribution
corresponding tof (x| j ). In reality the empirical average over the sample is
used instead of taking expectation, since the underlying probability distributions
corresponding tof (x| j ), 1 ≤ j ≤ M, are unknown. Theoretically, the quantities
µ j, Cj, may be viewed as partial indirect information about the target Bayes
classifierg. Such information can be represented by ann-dimensional vector of
linear functionals acting onf (x| j ), 1 ≤ j ≤ M, i.e., N([ f (x|1), . . . , f (x|M)])
= [{µ j, s}Mj=1,

l
s=1, {σ j

s, r }Mj=1,
l
s≤r=1 ], whereµ j, s =

∫
X xs f (x| j ) dx, andσ j

s, r =∫
X xsxr f (x| j ) dx, wherexr, xs, 1 ≤ r, s≤ l, are elements ofx. The dimensionality

of the information vector isn = (Ml/2)(l + 3).

We have so far presented the theory for learning from examples and introduced
the importance of partial information from a practical perspective. Before we
proceed with a theoretical treatment of learning with partial information we
digress momentarily to introduce a new quant ity which is defined in the context
of the mathematical field of approximation theory which plays an important part
in our learning framework.

4. A NEW NONLINEAR APPROXIMATION WIDTH

The large mathematical field of approximation theory is primarily involved
in problems of existence, uniqueness, and characterization of the best approx-
imation to elements of a normed linear spaceby various types of finite-
dimensional subspacesn of (cf. Pinkus [25]). Approximation of an element
f ∈ is measured by the distance of the finite-dimensional subspacen to
f where distance is usually defined as infg∈ n ‖ f − g‖, where throughout this
discussion‖ · ‖ is any well-defined norm over . The degree of approximation
of a subset (possibly a nonlinear manifold)F ⊂ by n is defined by the
distance betweenF and n which is usually taken as supf ∈F infg∈ n ‖ f − g‖.
The Kolmogorovn-width is the classical distance definition when one allows
the approximating set n to vary over all possible linear subspaces of. It is
defined asKn(F; ) = inf n⊂ supf ∈F infg∈ n ‖ f − g‖. This definition leads
to the notion of the best approximating subspacen, i.e., the one whose distance
from F equalsKn(F; ).

While linear approximation, e.g., using finite dimensional subspaces of
polynomials, is important and useful, there are many known spaceswhich
can be approximated better bynonlinearsubspaces, for instance, by the span of
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a neural-network basis = {h(x) = ∑n
i=1 ci σ(w

T
i x − bi ): wi ∈ l , ci , bi ∈

, 1≤ i ≤ n}, whereσ(y) = 1/(1+e−y). In this brief overview we will follow
the notation and definitions of Devore [10]. LetMn be a mapping from n into
the Banach space which associates eacha ∈ n the elementMn(a) ∈ .
Functions f ∈ are approximated by functions in the manifold n =
{Mn(a): a ∈ n}. The measure of approximation off by n is naturally defined
as the distance infa∈ n ‖ f − Mn(a)‖. As above, the degree of approximation
of a subsetF of by n is defined as supf ∈F infa∈ n ‖ f − Mn(a)‖.

In analogy to the Kolmogorovn-width, it would be tempting to define
the optimal approximation error ofF by manifolds of finite dimensionn as
inf n supf ∈F infa∈ n ‖ f −Mn(a)‖. However, as pointed out in [10], this width
is zero for all subsetsF in every separable class. To see this, consider the
following example which describes a space filling manifold: let{ fk}∞k=−∞ be
dense in and defineM1(a) = (a− k) fk+1+ (k+ 1− a) fk for k ≤ a ≤ k + 1.
The mappingM1: 1→ , is continuous with a corresponding one-dimensional
manifold 1 ⊂ satisfying supf ∈F infa∈ 1 ‖ f − M1(a)‖ = 0.

Thus this measure of width ofF is not natural. One possible alternative used
in approximation theory is to impose a smoothness constraint on the nonlinear
manifolds n that are allowed in the outermost infimum. However, this excludes
some interesting manifolds such as splines with free knots. A more useful
constraint is to limit the selection operatorr, which takes an elementf ∈ F
to n, to be continuous. Given such operatorr then the approximation off by a
manifold n is Mn(r ( f )). The distance between the setF and the manifold n

is then defined as supf ∈F ‖ f −Mn(r ( f ))‖. The continuousnonlinear n-width of
F is then defined asDn(F; ) = infr : cont., n supf ∈F ‖ f − Mn(r ( f ))‖, where
the infimum is taken over all continuous selection operatorsr and all manifolds

n. This width is considered by Alexandrov [33] and Devore [10] and is
determined for variousF and in [10].

The Alexandrov nonlinear width does not in general reflect the degree of
approximation of the more natural selection operatorr which chooses the best
approximation for anf ∈ F as its closest element in n, i.e., that whose distance
from f equals infg∈ n ‖ f − g‖, the reason being that suchr is not necessarily
continuous. In this paper we consider an interesting alternate definition for a
nonlinear width of a function class which does not have this deficiency.

Based on the pseudo-dimension (Definition 3 in Section 2) we define the
nonlinear width

ρd(F) ≡ inf
d

sup
f ∈F

inf
h∈ d

‖ f − h‖, (7)

where d runs over all classes (not necessarily in) having pseudo-
dimensiond.

Now the natural selection operator is used, namely, the one which approx-
imates f by an elementh( f ), where‖ f − h( f )‖ = infh∈ d ‖ f − h‖. The
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constraint of using finite pseudo-dimensional approximation manifolds allows
dropping the smoothness constraint on the manifoldd and the continuity con-
straint on the selection operator. The widthρd expresses the ability of manifolds
to approximate according to their pseudo-dimensiond as opposed to their di-
mensionality as in some of the classical widths.

The reason thatρd is interesting from a learning theoretic aspect is
that the constraint on the approximation manifoldd involves the pseudo-
dimension dimp(

d) which was shown in Section 2 to have a direct effect on
uniform learnability, namely, a finite pseudo-dimension guarantees consistent
estimation. Thusρd involves two independent mathematical notions, namely,
the approximation ability and the statistical estimation ability ofd. As will be
shown in the next sections, joining both notions in one quantity enables us to
quantify the trade-off between information and sample complexity as applied to
the learning paradigm.

We halt the discussion aboutρd and refer the interested reader to [23] where
we estimate it for a standard Sobolev classWr, l

p , 1 ≤ p, q ≤ ∞.

5. THE MINIMAL PARTIAL INFORMATION ERROR

In this section we review some basic concepts in the field of information-
based complexity and then extend these to define a new quantity called the
minimal partial information error which is later used in the learning framework.
Throughout this section,‖ · ‖ denotes any function norm and the distance
between two function classes and is denoted as dist( , , Lq) =
supa∈ infb∈ ‖a− b‖Lq , q ≥ 1.

The following formulation of partial information is taken from Traubet al.
[34]. While we limit here to the case of approximating functionsf ∈ we
note that the theory is suitable for problems of approximating general functionals
S( f ).

Let Nn: → Nn( ) ⊆ n denote a general information operator. The
informationNn(g) consists ofn measurements taken on the target functiong, or
in general, any functionf ∈ ; i.e.,

Nn( f ) = [L1( f ), . . . , Ln( f )]

whereLi, 1 ≤ i ≤ n, denote any functionals. We calln the cardinality of infor-
mation and we sometimes omitn and write N( f ). The variabley denotes an
element inNn( ). The subsetN−1

n (y) ⊂ denotes all functionsf ∈ which
share the same information vectory, i.e.,

N−1
n (y) = { f ∈ : Nn( f ) = y}.

We denote byN−1
n (Nn(g)) the solution setwhich may also be written as

{ f ∈ : Nn( f ) = Nn(g)}, which consists of all indistinguishable functions
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f ∈ having the same information vector as the targetg. Given y ∈ n, it is
assumed that a single element denoted asgy ∈ N−1

n (y) can be constructed.
In this model information effectively partitions the target classinto infinitely

many subsetsN−1
n (y), y ∈ n, each having asingle representativegy which

forms the approximation for anyf ∈ N−1(y). Denote the radius ofN−1(y) by

r (N, y) = inf
f ′∈

sup
f ∈N−1(y)

‖ f − f ′‖ (8)

and call it thelocal radius of information Nat y. Theglobal radius of informa-
tion N at y is defined as the local radius for a worsty, i.e.,

r (N) = sup
y∈N( )

r (N, y).

This quantity measures the intrinsic uncertainty or error which is associated with
a fixed information operatorN. Note that in both of these definitions the depen-
dence on is implicit.

Let � be a family of functionals and consider the family�n which consists
of all information N = [L1, . . . , Lk] of cardinality k ≤ n with Li ∈ �, 1 ≤ i ≤
n. Then

r (n, 3) = inf
N∈3n

r (N)

is called thenth minimal radius of informationin the family � and N∗n =
[L∗1, . . . , L∗n] is called thenth optimal informationin the class� iff L∗i ∈ 3
andr (N∗n ) = r (n, 3).

When� is the family of all linear functionals thenr(n, �) becomes a slight
generality of the well-known Gelfand-width of the class whose classical
definition is dn( ) = inf An supf ∈ ∩An ‖ f ‖, whereAn is any linear subspace
of codimensionn. In this paper we restrict to the family� of linear functionals
and for notational simplicity we will henceforth take the information space
Nn( ) = n.

As already mentioned in the definition ofr(N, y) there is a single element
gy ∈ not necessarily inN−1(y) which is selected as an approximator for
all functions f ∈ N−1(y). Such a definition is useful for the problem of
information-based complexity since all that one is concerned with is to produce
anε-approximation based on information alone. In the PAC framework, however,
a major significance is placed on providing an approximator to a targetg which
is an element not necessarily of the target classbut of some hypothesis class

of finite pseudo dimension by which is uniformly learnable.
We therefore replace the single-representative of the subsetN−1(y) by a

whole approximation class of functionsd
y of pseudo-dimensiond. Note that

now information alone does not “point” to a singleε-approximation element,
but rather to a manifold d

y, possibly nonlinear, which forany f ∈ N−1(y),
in particular the targetg, contains an elementh*, dependent ong, such that the
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distance‖g − h*‖ ≤ ε. Having a pseudo-dimensiond implies that with a finite
random sample{(xi , g(xi ))}mi=1, an ERM learning algorithm (after being shown
partial information and hence pointed to the classdy) can determine a function
ĥ ∈ d

y whose distance fromg is no farther thanε from the distance between
h* andg with confidence 1− δ. Thus based onn units of information aboutg
andm labeled examples{(xi , g(xi ))}mi=1, an element̂h can be found such that
‖g− ĥ‖ ≤ 2ε with probability 1− δ.

The sample complexitym does not depend on the type of hypothesis class
but only on its pseudo-dimensiond. Thus the above construction is true for
any hypothesis class (or manifold) of pseudo-dimensiond. Hence we may
permit any hypothesis class of pseudo-dimensiond to play the role of the
approximation manifold d

y of the subsetN−1(y). This amounts to replacing
the infimum in the definition (8) ofr(N, y) by inf d and replacing‖ f − f ′‖
by dist( f, d) = infh∈ d ‖ f − h‖, yielding the quantityρd(N−1(y)) as a new
definition for a local “radius” and a new quantityIn, d( ) (to be defined later)
which replacesr(n, �).

We next formalize these ideas through a sequence of definitions. We useρd(K,
Lq) to explicitly denote the normLq used in the definition of (7). We now define
three optimal quantities,N∗n , d

N∗n , and h*, all of which implicitly depend on
the unknown distributionP while h* depends also on the unknown targetg.

DEFINITION 4. Let the optimal linear information operatorN∗n of cardinality
n be one which minimizes the approximation error of the solution setN−1

n (y)
(in the worst case overy ∈ n) over all linear operatorsNn of cardinalityn and
manifolds of pseudo-dimensiond. Formally, it is defined as one which satisfies

sup
y∈ n

ρd(N
∗−1
n (y), L1(P)) = inf

Nn
sup
y∈ n

ρd(N
−1
n (y), L1(P)).

DEFINITION 5. For a fixed optimal linear information operatorN∗n of
cardinality n define the optimal hypothesis classd

y of pseudo-dimensiond
(which depends implicitly onN∗n through y) as one which minimizes the
approximation error of the solution setN∗−1

n (y) over all manifolds of pseudo-
dimensiond. Formally, it is defined as one which satisfies

dist(N∗−1
n (y), d

y, L1(P)) = ρd(N
∗−1
n (y), L1(P)).

DEFINITION 6. For a fixed targetg ∈ , optimal linear information operator
N∗n and optimal hypothesis classd

N∗n (g) define the optimal hypothesish∗ ∈
d
N∗n (g) to be any function which minimizes the error overdN∗n (g), namely,

L(h∗) = inf
h∈ d

N∗n (g)
L(h). (9)
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As mentioned earlier, the main motive of the paper is to compute the value
of partial information for learning in the PAC sense. We will assume that the
teacher has access to unlimited (linear) information which is represented by him
knowingthe optimal linear information operatorN∗n and optimal hypothesis class

d
y for every y ∈ n. Thus in this ideal setting providing partial information

amounts to pointing to the optimal hypothesis classdN∗n (g) which contains an
optimal hypothesish*. We again note that information alone does not point to
h* but it is the role of learning from examples to complete the process through
estimatingh* using a hypothesiŝh.

The error ofh* is important in its own right. It represents the minimal error
for learning a particular targetg given optimal information of cardinalityn. In
line with the notion of uniform learnability (see Section 2) we define a variant
of this optimal quantity which isindependentof the targetg and probability
distribution P; i.e., instead of a specific targetg ∈ , we consider the worst
target in and we use theL∞ norm for approximation. This yields the following
definition.

DEFINITION 7 (Minimal partial information error). For any target class
and any integersn, d ≥ 1, let

In,d( ) ≡ inf
Nn

sup
y∈ n

ρd(N
−1
n (y), L∞),

whereNn runs over all linear information operators.
In,d( ) represents the minimal error for learning the worst-case target in the

PAC sense (i.e., assuming an unknown underlying probability distribution) while
given optimal information of cardinalityn and using an optimal hypothesis class
of pseudo-dimensiond.

We proceed next to unify the theory of Section 2 with the concepts introduced
in the current section.

6. LEARNING FROM EXAMPLES WITH OPTIMAL
PARTIAL INFORMATION

In Section 2 we reviewed the notion of uniform learnability of a target class
by a hypothesis class d of pseudo-dimensiond < ∞. By minimizing an

empirical error based on the random sample, a learner obtains a hypothesisĥ
which provides a close approximation of the optimal hypothesish* to within ε
accuracy with confidence 1− δ.

Suppose that prior to learning the learner obtains optimal informationN∗n (g)
aboutg. This effectively points the learner to a classdN∗n (g) which contains a
hypothesish* as defined in (9). The error ofh* is bounded from above as
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L(h∗) = inf
h∈ d

N∗n (g)
L(h) (10)

= inf
h∈ d

N∗n (g)
‖g− h‖L1(P) (11)

≤ sup
{ f ∈ : N∗n ( f )=N∗n (g)}

inf
h∈ d

N∗n (g)
‖ f − h‖L1(P) (12)

=dist
(
N∗−1

n (N∗n (g)), d
N∗n (g), L1(P)

)
. (13)

By Definition 5 this equalsρd(N∗−1
n (N∗n (g)), L1(P)) and is bounded from

above by

sup
y∈ n

ρd
(
N∗−1

n (y), L1(P)
)
.

The latter equals

inf
Nn

sup
y∈ n

ρd(N
−1
n (y), L1(P))

by Definition 4. This is bounded from above by infNn supy∈ n ρd(N−1
n (y), L∞)

which from Definition 7 isIn,d( ). Subsequently, the teacher providesm i.i.d.
examples{(xi , g(xi ))}mi=1 randomly drawn according to any probability distri-
bution P on X. Armed with prior knowledge and a random sample the learner
then minimizes the empirical errorLm(h) over all h ∈ d

N∗n (g), yielding an es-

timate ĥ of h*. We may break up the errorL(ĥ) into a learning error and a
minimal partial information errorcomponents

L(ĥ) =
(

L(ĥ)− L(h∗)
)
+ L(h∗)

≤
“ learning error”︷ ︸︸ ︷
ε(m, d, δ) +

“minimal partial information error”︷ ︸︸ ︷
In,d( ) , (14)

where the learning error, defined in (4), measures the extra error incurred by
using ĥ as opposed to the optimal hypothesish*.

The important difference from the PAC model can be seen in comparing the
upper bound of (14) with that of (5). The former depends not only on the sample
sizem and pseudo-dimensiond but also on the amountn of partial information.
To see howm, n, andd influence the performance, i.e., the error ofĥ, we will
next particularize to a specific target class.

7. SOBOLEV TARGET CLASS

The preceding theory is now applied to the problem of learning a target in
a Sobolev class = Wr, l∞ (M), for r, l ∈ +, M > 0, which is defined as all
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functions overX = [0, 1]l having all partial derivatives up to orderr bounded in
the L∞ norm byM. Formally, letk = [k1, . . . , kl ] ∈ l+, ‖k‖ = ∑l

i=1 ki , and
denote byDk f = (∂k1 + · · · + kl )/(∂xk1

1 . . . ∂xkl
l ) f , then

Wr, l∞ (M) = { f : sup
x∈[0,1]t

|Dk f (x)| ≤ M, ‖k‖ ≤ r }

which henceforth is referred to asWr, l∞ or . We now state the main results and
their implications.

THEOREM 2. Let = Wr, l∞ , n ≥ 1, d ≥ 1, be given integers and c2 > 0 a
constant independent of n and d. Then

In, d( ) ≤ c2

(n+ d)r/ l
.

The proof of the theorem is in Section A.2.

THEOREM 3. Let the target class = Wr, l∞ and g ∈ be the unknown
target function. Given an i.i.d. random sample{(xi , g(xi ))}mi=1 of size m drawn
according to any unknown distribution P on X. Given an optimal partial infor-
mation vector N∗n (g) consisting of n linear operations on g. For any d≥ 1, let

d
N∗n (g) be the optimal hypothesis class of pseudo-dimension d. Letĥ be the out-

put hypothesis obtained from running empirical error minimization overd
N∗n (g).

Then for an arbitrary0< δ < 1, the error ofĥ is bounded as

L(ĥ) ≤ c1

√
d log2 d ln m+ ln(1/δ)

m
+ c2

(n+ d)r/ l
, (15)

where c1, c2 > 0 are constants independent of m, n, and d.

The proof of Theorem 3 is based on Theorem 1 and Theorem 2, both of
which are proved in the Appendix.

We now discuss several dependences and trade-offs between the three
complexity variablesm, n, and d. First, for a fixed sample sizem and fixed
information cardinalityn there is an optimal class complexity

d∗ ≤ c3

({
rm

l
√

ln m

}2l/(l+2r )

− n

)
, (16)

which minimizes the upper bound on the error wherec3 > 0 is an absolute
constant. The complexityd is a free parameter in our learning setting and is
proportional to the degree in which the estimatorĥ fits the data while estimat-
ing the optimal hypothesish*. The result suggests that for a given sample size
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m and partial information cardinalityn, there is an optimal estimator (or model)
complexity d* which minimizes the error rate. Thus if a structure of hypothe-
sis classes{ d}∞d=1 is available in the learning problem, then based on fixedm
and n the best choice of a hypothesis class over which the learner should run
empirical error minimization is d∗ with d* as in (16).

The notion of having an optimal complexityd* is closely related to statistical
model selection (cf. Linhart and Zucchini [19], Devroyeet al. [12], Ratsaby
et al. [29]). For instance, in Vapnik’s structural risk minimization criterion
(SRM) [38] the trade-off is betweenm and d. For a fixedm, it is possible
to calculate the optimal complexityd* of a hypothesis class in a nested
class structure, 1 ⊂ 2 . . ., by minimizing an upper bound on the error
L(ĥ) ≤ Lm(ĥ) + ε(m, d, δ), over all d ≥ 1. The second termε(m, d, δ) is
commonly referred to as the penalty for data-overfitting which one wants to
balance against the empirical error. Similarly, in our result, the upper bound on
the learning error reflects the cost or penalty of overfitting the data—the larger
d, the higher the degree of data fit and the larger the penalty.

However, here, as opposed to SRM, the bound is independent of the random
sample and there is an extra parametern that affects howm and d trade off.
As seen from (16), for a fixed sample sizem it follows that the largern the
smallerd*. This is intuitive since the more partial information, the smaller the
solution setN−1

n (Nn(g)) and the lower the complexity of a hypothesis class
needed to approximate it. Consequently, the optimal estimatorĥ belongs to a
simpler hypothesis class and does not overfit the data as much.

We next compute the trade-off betweenn and m. Assumingd is fixed (not
necessarily at the optimal valued*) and fixing the total available information
and sample size,m + n, at some constant value while minimizing the upper
bound onL(ĥ) over m andn, we obtainm ≤ c5n(l+2r )/2l

√
ln n for a constant

c5 > 0 which depends polynomially only onl and r. We conclude that when
the dimensionalityl of X is smaller than twice the smoothness parameterr,
the sample sizem grows polynomially inn at a rate no larger thann(1+r )/ l ;
i.e., partial information about the targetg is worth approximately a polynomial
number of examples. Forl > 2r, n grows polynomially inm at a rate no larger
than m2/ln m; i.e., information obtained from examples is worth a polynomial
amount of partial information.

We have focused so far on dealing with the ideal learning scenario in which the
teacher has access to the optimal information operatorN∗n and optimal hypothesis
class d

N∗n . The use of such optimally efficient information was required from an
information theoretic point of view in order to calculate the trade-off between the
sample complexitym and information cardinalityn. But we have not specified
the form of such optimal information and hypothesis class.

In the next result we state a lower bound on the minimal partial information
error In, d( ) and subsequently show that there exists an operator and a
hypothesis class which almost achieve this lower bound.
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THEOREM 4. Let = Wr, l∞ and n≥ 20, d≥ 1 be given integers. Then

In,d( ) ≥ 1

(1280n ln n+ 128d ln d)r/ l
.

The proof is in Section A.3.
Our next result shows that there exists an operatorN̂n and alinear manifold
d
Nn

which together achieve the upper bound onIn,d stated in Theorem 2.
First we note several definitions and facts. For a multi-integerk ∈ l+ denote

by ‖k‖ = ∑l
i=1 ki . Let � j ⊂ [0, 1]l be an l-dimensional cube. Denote by

11 j (x) the indicator function of� j. Denote byαr, l the number of vectorsk
for which ‖k‖ ≤ r − 1, wherer is the smoothness parameter ofWr, l∞ . Let Rq

be a partition of the domainX = [0, 1]l which is uniform in every variable
xi, 1 ≤ i ≤ l, and consists of a total ofq identical cubes� j, 1 ≤ j ≤ q . Let
Sq, r = {pj (x) = ∑

k: ‖k‖≤r−1 akxk1
1 . . . xkl

l 11 j (x): 1 ≤ j ≤ q} be a linear
subspace of all piecewise polynomials of degree at mostr − 1 in the variables
xi, 1 ≤ i ≤ l, with a support being a cube� j, 1 ≤ j ≤ q. The dimension ofSq, r

equalsqαr, l . There exists a linear operatorTq, r : Wr, l∞ → Sq, r which maps an
f ∈ Wr, l∞ to an element ofSq, r .

THEOREM 5. Given integers n and d≥ 1, choose q such that the dimension
of Sq, r is qαr, l = n + d. Consider the target class = Wr, l∞ . Denote by
φ1, . . . , φn+d a basis in Sq, r . Then for any f ∈ Wr, l∞ , we have Tq, r ( f ) =∑n+d

i=1 Li ( f )φi (x) for some linear functionals Li, 1 ≤ i ≤ n + d. Define the
information operatorN̂n( f ) = [L1( f ), . . . , Ln( f )] and the approximating
class to be a linear subspace

Hd
y ≡ d

N̂n( f )
=
{

n∑
i=1

yiφi (x)+
n+d∑

i=n+1

ciφi (x): ci ∈
}
.

Then the specific combination of information operatorN̂n and hypothesis classes
{Hd

y }y∈ n achieve a partial information error which is bounded from above as

sup
y∈ n

sup
f ∈ ∩N̂−1

n (y)

inf
h∈Hd

y

‖ f − h‖L∞ ≤
c6

(n+ d)r/ l

for some constant c6 > 0 independent of n and d.

From Theorems 4 and 5 it follows thatN̂n and d
N̂n(g)

incur an error which to
within a logarithmic factor inn andd is close to the minimal partial information
error In,d( ). Thus they come close to being the optimal combinationN∗n and
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d
N∗n . Hence for learning a targetg in a Sobolev class using examples with partial

information, the operator̂Nn and the linear hypothesis classd
N̂n(g)

guarantee

an almost optimal performance; i.e., the upper bound on the errorL(ĥ) is almost
minimal, whereĥ is taken as the empirical error minimizer overd

N̂n(g)
.

An additional comment is due. The fact that alinear manifold d
N̂n(g)

achieves an almost optimal upper bound amongall possible manifolds of
pseudo-dimensiond is a consequence of the choice of the target classWr, l∞
and the normL∞ used for approximation. Suppose we consider, instead, another
classical Sobolev class defined for fixed 1≤ p ≤ 2 by Wr, l

p = { f : ‖Dk f ‖L p ≤
M, ‖k‖ ≤ r }. From classical results on the estimation of the Kolmogorov
width of Wr, l

p , denoted here asKd(W
r, l
p , L∞), it can be shown that when

using theL∞-norm for approximation the optimald-dimensional linear manifold
has a worst-case approximation error which is lower bounded byc7/dr/ l−1/p

for some constantc7 > 0 independent ofd. Whereas doing approximation by
linear combinations ofd piecewise polynomial-splines of degreer (but allowing
the spline basis to depend on the target function which implies nonlinear
approximation) leads to theρd-width satisfyingρd(W

r, l
p , L∞) ≤ c8(1/d)r/ l .

Thusρd(W
r, l
p , L∞) � Kd(W

r, l
p , L∞), wheread � bd meansad/bd → 0 as

d→∞. Thusρd is a genuinenonlinearwidth since there are target classes for
which it is less than the Kolmogorov linear width in a strong sense.

8. CONCLUSIONS

We introduced a theoretical framework for representing the problem of
learning a target functiong ∈ from examples by an empirical error
minimization algorithm with partial information. Having defined a new
information quantity In,d( ) leads to an upper bound on the error of the
estimatorĥ which depends on the sample sizem, the information cardinalityn,
and the pseudo-dimension of the approximating classd. For a specific Sobolev
target classWr, l∞ one immediate consequence is a clear trade-off betweenm and
n which suggests that the ratio between the smoothness parameterr and the
dimensionalityl of the domainX is crucial in determining which of the two
types of information, namely information obtained from examples versus partial
information obtained by a linear operator, is worth more. Roughly speaking,
partial information is worth polynomially more than information from examples
when l < 2r while the opposite holds whenl > 2r. Moreover, for the Sobolev
class we obtained an information operatorN̂n which yields an almost optimal
partial information error rate.
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APPENDIX: PROOFS OF RESULTS

In this section we prove lower and upper bounds onIn, d( ). The method
of proof for the lower bound (Theorem 1) is interesting in its own right as it
combines the well-known property of a finite pseudo-dimensional manifold for
the purpose of showing the existence of at least one bad target function which
the manifold does not approximate well enough. For proving the upper bound
(Theorem 2) we use the fact that a linear manifold of dimensiond has a pseudo-
dimensiond (Lemma 3 in Section 2) which allows us to linearly approximate.

We first introduce the notation. Let + denote the set of nonnegative
integers, and l+ denotes all l-dimensional vectors whose components are
in +. Unless otherwise mentioned it will be implicit that the domainX
= [0, 1]l and we writex for the vector [x1, . . . , xl ],

∫
f (x) dx represents∫

X f (x1, . . . , xl ) dx1 . . . dxl . The notation d represents any manifold with
dimp(

d) = d and for allh ∈ d, g ∈ , L(h) = E|h − g| ≤ M. For any vector
v ∈ m and functionf, we use the standard norms,‖v‖l m

p
≡ (

∑m
j=1 v

p
j )

1/p

and‖ f ‖L p ≡ (
∫

X | f (x)|p dx)1/p, respectively. When the dimensionality of the
vector is clear, we write‖v‖l p . We use the standard notation for a ballBm

p (r )
of radius r in m, where distance is measured in thel p-norm, 1 ≤ p ≤ ∞ (if
p = ∞ then Bm∞(1) is a cube of side 2). We define for anya ∈ A, dist(a, B,
l 2) ≡ inf b∈B ‖a− b‖l2. The distance between two Euclidean setsA, B ⊂ m is
defined as dist(A, B, l 2) ≡ supa∈A dist(a, B, l 2).

Sometimes we underline a symbol to explicitly indicate that it is a Euclidean
vector or a set of vectors. Forx ∈ the function sgn(x) is defined as sgn(x)
= 1 if x ≥ 0 and sgn(x) = −1 if x < 0. For a vectorx ∈ m, define
sgn(x) = [sgn(x1), . . . , sgn(xm)]. Let i ∈ {−1, 1}m. An orthant Qi in m

is an extension of the definition of a quadrant in2; namely, there are 2m

orthants in m and Qi = {x ∈ m: sgn(x) = i }.
We start with the proof of Theorem 1.

A.1. Proof of Theorem1

We follow Vapnik’s proof of Theorem 7.3 in [38], but where the complexity
measure of is the pseudo-dimension instead of his capacity measure defined
on page 189. It is given that dimp( d) = d. Let y ∈ and x ∈ X = [0, 1]l.
First, we have

CLAIM 1. The set of indicator functions

A ≡ {1{(x, y): |h(x)−y)|>β}: h ∈ , β ∈ +}
hasVC(A) ≤ 16(d + 1) log2 4(d + 1).

Proof of Claim 1. Define the class of functions

= {gh(x, y) = h(x)− y: h ∈ },
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where we will also refer toz≡ (x, y) ∈ l+1. Consider the corresponding set

B = {1{gh(z)>0}: h ∈ }
of indicator functions. It is easily seen that VC(B) = dimp( ) = d as we now
show: If VC(B) > d then there exists a set of points{zi }mi=1, wherezi ≡ (xi, yi),
1 ≤ i ≤ m, m > d, which is shattered byB. This implies that there exist pairs
{(xi , yi )}mi=1, such that the set of binary vectors

B̃ = {[sgn(h(x1)− y1), sgn(h(x2)− y2), . . . , sgn(h(xm)− ym)]: h ∈ }
equals {−1, 1}m. The latter implies that dimp( ) > d and leads to a contradic-
tion. For the other direction, suppose VC(B) < d then there does not exist a set
of pointszi ≡ (xi, yi), 1 ≤ i ≤ m, m = d, which can be shattered byB. This im-
plies there do not exist pairs{(xi , yi )}mi=1, such that the set of binary vectors
{[sgn(h(x1)− y1), sgn(h(x2)− y2), . . . , sgn(h(xm) − ym)]: h ∈ } equals {−
1, 1}m. This contradicts the fact that has a pseudo-dimensiond which proves
that VC(B) = d.

Next, denote bygh, β (x, y) ≡ gh(z)− β = h(x)− y− β and let

C = {1{gh, β (x, y)>0}: h ∈ , β ∈ +}.

CLAIM 2. The VC dimension of the set C is upper bounded by2(d +
1) log e(d + 1).

Proof of Claim 2. To see this, fix any sample{zi }mi=1 and any function
gh(z) ∈ . Consider the class of functions that are translates of this fixed
function gh, i.e., {gh − β: β ∈ +}, together with its corresponding class of
indicator functions,

Cgh ≡ {1{gh(z)−β>0}: β ∈ +},
whereh is fixed. We claim that the VC(Cgh) = 1 as is now shown. The di-
chotomies thatCgh picks on a sample{zi }mi=1 are precisely the set of dichotomies
on the points(zi , gh(zi )) ∈ l+2, 1 ≤ i ≤ m, that are picked by the class of
half-spaces of the formHβ = {(z, r ) ∈ l+2: r > β}, β ∈ . It is easy to see
that the VC-dimension of the class of such half spaces is 1. Thus, for any fixed
gh ∈ , VC(Cgh) = 1. Hence from Proposition A2.1(iii) of [6], the number of
dichotomies picked on{zi }mi=1 by Cgh is no more thanem, for m ≥ 1. There-
fore for anygh ∈ , no more thanem new dichotomies which differ from its
current dichotomy [sgn(gh(z1)), sgn(gh(z2)), . . . , sgn(gh(zm))], are produced
by adding arbitraryβ ∈ to gh. Now from the proof of Claim 1, VC(B) = d
≥ 1. Hence, from [6] it follows that for anym ≥ d the number of dichotomies
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picked by the classB on any sample{zi }mi=1 is at most (em/d)d. It follows that
for all m ≥ d + 1 the set of dichotomies

C̃ = {[sgn(gh(z1)−β), sgn(gh(z2)−β), . . . , sgn(gh(zm)−β)]: h ∈ , β ∈ },
picked byC on a sample{zi }mi=1 has cardinality no more than (em)(em/d)d ≤
(em)d+1. To find an upper bound on VC(C) we solve for the largestm for which
(em)d+1 ≤ 2m, and obtain VC(C) ≤ 2(d + 1) log e(d + 1) which proves Claim 2.

Continuing, consider the class

D = {1{gh,−β(x, y)<0}: h ∈ , β ∈ +}.

CLAIM 3. TheVC-dimension of D is upper bounded by2(d+1) log e(d+1).

Proof. The proof follows from the proof of Claim 2, except that now we
consider dichotomies on the set of points{(zi , −gh(zi ))}mi=1 picked by half
spacesHβ as above.

We now continue with the proof of Claim 1. For anyh ∈ , β ∈ +,

{(x, y): |h(x)−y| > β} = {(x, y): h(x)−y−β > 0}∪{(x, y): h(x)−y+β < 0},
and since both VC(B) and VC(D) are at most 2(d + 1) log e(d + 1) then by
Proposition A2.1(ii) of [6], for any sample{zi }mi=1 of sizem, wherem > 2(d +
1) log e(d + 1) the number of dichotomies picked on{zi }mi=1 by the class of in-
dicator functions

{1{{(x, y): h(x)−y−β>0}∪{(x, y): h(x)−y+β<0}}: h ∈ , β ∈ +} (17)

is no more thanm2(d+1) log e(d+1)m2(d+1) log e(d+1) = m4(d+1) log e(d+1) di-
chotomies. The class in (17) is precisely the classA. To find an upper bound on
VC(A) it suffices to solve for the largestm for which m4(d+1) log e(d+1) ≤ 2m.
Solving for m yields that VC(A) ≤ 16(d + 1) log2 4(d + 1) for all d ≥ 1, which
proves Claim 1.

It only remains to follow Vapnik’s proof of Theorem 7.3 in [38], where, in-
stead of using a class of indicator functions of the form{1{(x, y): (h(x)−y)2>β}: h ∈

d, β ∈ +}, we use our setA and the fact that VC(A) ≤ 16(d + 1) log2 4(d
+ 1) ≡ d′ to imply that the growth function ofA is bounded by 1.5md′/d′!. The
statement of the theorem then follows from Vapnik’s proof.

A.2. Proof of Theorem 2

To establish an upper bound onIn, d( ) it suffices to choose a particular
information operatorN̂n and a particular manifold̂ d since
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In, d( ) = inf
Nn

sup
y∈Nn( )

inf
d

sup
f ∈ ∩N−1

n (y)

inf
h∈ d

‖ f − h‖L∞ (18)

≤ sup
y∈N̂n( )

sup
f ∈ ∩N̂−1

n (y)

inf
h∈ ˆ d

‖ f − h‖L∞ . (19)

We next describe the particular choice ofˆ d followed by the choice ofN̂n.
We will take ˆ d to be a linear manifoldHd

y of dimensiond which from
Haussler [16] has a pseudo-dimensiond, where y shows the dependence of
the manifold on the information vectory. Specifically, letHd

y be the space of
piecewise polynomial functions,

Hd
y ≡

{
n∑

i=1

yiφi (x)+
n+d∑

i=n+1

ciφi (x): ci ∈
}
,

wheren, d are any given positive integers and the functionsφ i(x) may also be
indexed by a vector index [j, k] and writtenφ[ j, k] . They are defined as

φ[ j, k](x) ≡ xk1
1 . . . xkl

l 11 j (x) = xk11 j (x),

where the set of mutually disjoint cubes� j of equal volumes |�| forms a par-
tition of X = [0, 1]l, 11 j (x) denotes the indicator function for the set� j, and
k = [k1, . . . , kl ] ∈ l+ satisfies|k| ≡∑l

i=1 ki ≤ r − 1, wherer is the smooth-
ness parameter in the definition of the target class= Wr, l∞ . The volume |�|
of every cube� j is chosen such that the total numberq of basis functionsφ[ j , k]
equalsn + d; i.e., q ≡ (1/|1|)αr, l = n+ d, whereαr, l is the number of vec-
tors k ∈ l+ whose |k| ≤ r − 1.

Define the linear operatorP1 j f as

P1 j f =
∑

k: |k|≤r−1

b[ j , k]φ[ j, k]

=
∑

k: |k|≤r−1

b[ j , k]x
k11 j (x)

and where the coefficientsb[ j , k] which depend onf are obtained by solving the
following set of equations for the coefficientsb[ j, k] :∫

1 j

xk

 ∑
k′: |k′|≤r−1

b[ j , k′]x
k′
dx =

∫
1 j

xk f (x) dx

∀[ j, k], 1≤ j ≤ q, |k| ≤ r − 1. (20)

There are a total ofqαr, l = n + d such coefficients. Reindex these co-
efficients and their associated basis functions by an integer scalar and let
b( f ) = [b1( f ), . . . , bn+d( f )] be the coefficient vector. We have a polynomial
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pf (x) =
q∑

j=1

P1 j f (x)

=
∑
[ j , k]

b[ j , k]x
k11 j (x)

=
n+d∑
i=1

bi ( f )φi (x),

wherebi( f ) is the coefficient of theith term. Define the information operator

N̂n( f ) ≡ [b1( f ), . . . , bn( f )].

Continuing from (19) we have

sup
y∈N̂n( )

sup
f ∈ ∩N̂−1

n (y)

inf
h∈Hd

y

‖ f − h‖L∞ (21)

≤ sup
y∈N̂n( )

sup
f ∈ ∩N̂−1

n (y)

∥∥∥∥∥ f −
n∑

i=1

yiφi (x)−
n+d∑

i=n+1

bi ( f )φi (x)

∥∥∥∥∥
L∞

(22)

= sup
f ∈

∥∥∥∥∥ f −
n+d∑
i=1

bi ( f )φi (x)

∥∥∥∥∥
L∞

; (23)

the last equality follows since for allf ∈ ∩ N̂−1
n (y), N̂n( f ) = [b1( f ), . . . ,

bn( f )] = y. Now from Birman and Solomjak [5, Lemma 3.1] for everyf ∈ Wr, l∞

‖ f − P1 j f ‖L∞(1 j ) ≤ c9|1|r/ l ‖ f ‖Wr, l∞ (1 j )

for a constantc9, independent ofj, and in our case,‖ f ‖Wr, l∞ (1 j )
≡ supx∈1 j

| f (k)(x)| ≤ M for all k, |k| ≤ r. Hence,∥∥∥∥∥ f −
n+d∑
i=1

bi ( f )φi (x)

∥∥∥∥∥
L∞

=
∥∥∥∥∥∥ f −

∑
1≤ j≤q

∑
k: |k|≤r−1

b[ j, k]x
k11 j (x)

∥∥∥∥∥∥
L∞

(24)

= max
j

sup
x∈1 j

∣∣∣∣∣ f (x)−
∑

k

b[ j, k]x
k

∣∣∣∣∣ (25)

= max
j

sup
x∈1 j

| f (x)− P1 j f (x)| (26)

≤ c9|1|r/ l M (27)

= c10
αr, l

(n+ d)r/ l
(28)

= c11

(n+ d)r/ l
(29)
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for positive constantsc9, c10, andc11 independent ofn andd. Hence, continuing
from (23) we have

sup
f ∈

∥∥∥∥∥ f −
n+d∑
i=1

ci ( f )φi (x)

∥∥∥∥∥
L∞

≤ c11

(n+ d)r/ l

which proves the theorem.

A.3. Proof of Theorem 4

We first state several auxiliary lemmas. The following lemma is a consequence
of Chebychev’s inequality applied to a weighted sum of i.i.d. random variables;
see, for instance, Petrov [24].

LEMMA 5. For 1 ≤ i ≤ m, let the independent random variables xi be
binomial on {−1, +1} with probability 1

2 and let ai be constants such that∑m
i=1 a2

i = 1. Then

P

(∣∣∣∣∣
m∑

i=1

ai xi

∣∣∣∣∣ > ε√m

)
≤ 2e−mε2/4.

We now state a lemma concerning a lower bound on the distance

dist(Bm∞(1) ∩ Ln, d, l2)

between the intersection of a cubeBm∞(1) and any fixed subspace of codimen-
sion n to any manifold d ≡ {h = [h(x1), . . . , h(xm)]: h ∈ d} in m.

LEMMA 6. Given integers m> max{320n ln n, 32d ln d}, n ≥ 20, and
d ≥ 1. Given a set of points{x1, . . . , xm}, where xi ∈ X, 1 ≤ i ≤ m. Given a
cube Bm∞(1) = [−1, 1]m and a subspace Ln of codimension n, both inm, and
a manifold d ⊂ m defined as{h = [h(x1) . . . h(xm)]: h ∈ d}, where d is
a class of functions with a pseudo-dimension d. Then

dist(Bm∞(1) ∩ Ln, d, l2) ≥
√

m/4.

Proof. Define by V ≡ { −1, 1}m the set of vertices of the cube [−1, 1]m.
Clearly V ⊂ Bm∞(1). The subspaceLn in m is an (m − n)-dimensional
subspace denoted asLm−n. We first sketch the major steps in the proof. Begin
by showing that there exists a vertexv∗ ∈ V which is c12

√
m-close toLm−

n but is c13

√
m-far from d for some absolute constantsc13 > c12 > 0.

Denoting byy* the point in Lm−n which is closest tov* it then follows that
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dist(y∗, d, l2) ≥ c13
√

m− c12
√

m. The proof is completed after showing that
there exists ây ∈ Bm∞(1) ∩ Lm−n which is close enough toy*.

First we show that there are exponentially many vertices which are close to
Lm−n. Fix any such subspaceLm−n. We haveLm−n = {x: wT

1 x = 0, . . . , wT
n x =

0}. For any vertexv ∈ V, we have

dist2(v, Lm−n, l2) = |PLnv|2, (30)

whereLn denotes the subspace which is orthogonal toLm−n. Now letu1, . . . , un

be an orthonormal basis ofLn. Then the right-hand side of (30) becomes simply

|PLnv|2 =
n∑

i=1

|(v, ui )|2.

We use a probabilistic argument to calculate the number of vertices that are
c12

√
m-close toLm−n.

Draw uniformly a vertexv from V, i.e., pick its ith elements from {−1, +1}
with probability 1

2, and repeat this for all 1≤ i ≤ m independently. Clearly,
the number of vertices whose distance fromLm−n is greater thanc12

√
m equals

P({v ∈ V : dist(v, Lm−n, l2) > c12
√

m })2m, whereP is the uniform distribution
over V. We can therefore upper bound this number by finding an upper bound
on the probabilityP({v ∈ V : dist(v, Lm−n, l2) > c12

√
m }). We have

P({v ∈ V : dist(v, Lm−n, l2) > c12
√

m }) (31)

= P({v ∈ V : dist2(v, Lm−n, l2) > (c12
√

m )2}) (32)

= P

(
n∑

i=1

|(v, ui )|2 > (c12
√

m )2
)

(33)

≤
n∑

i=1

P
(
|(v, ui )|2 > (c12

√
m )2

n

)
(34)

=
n∑

i=1

P
(
|(v, ui )| > c12

√
m√

n

)
(35)

≤ 2ne−mc212/4n, (36)

where (36) follows from Lemma 5. Asc12 > 0 is arbitrary we may choosec12 =
1
8. (This particular choice is used further below.) Choosem ≥ 320n ln n. Then

2ne−mc2
12/4n ≤ 2ne−320n ln n/256n = 2ne−80 ln n/64 = 2

(
1

n

)1/4

.

Hence, the number of verticesv ∈ V such that dist(v, Lm−n, l2) ≤ c12
√

m
is at least
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2m

(
1− 2

(
1

n

)1/4
)

(37)

under the constraint thatm ≥ 320n ln n.
Consider the manifold d ⊂ m defined as

d ≡ {h = [h(x1) . . . h(xm)]: h ∈ d},

where d is the class of functions with pseudo-dimd. For a vectorh let
sgn(h) = [sgnh(x1) . . . sgnh(xm)]. Then sinced = dimp(

d) and from
Sauer’s lemma (cf. Haussler, [16, Lemma 3]) it follows that{sgn(h): h ∈ d}
has cardinality

d∑
k=0

(
m

k

)
≤
(em

d

)d
. (38)

This clearly implies that the manifold d intersectsqm ≤ (em/d)d orthants.
Every vertex corresponds to a unique orthant. Denote byA = {Qi }qm

i=1 and
B = {vi }qm

i=1, the orthants which are intersected by the manifold and their cor-
responding vertices, respectively.

Denote byC the set of verticesv ∈ V such that for eachv ∈ C there exists
somevi ∈ B such that‖vi − v‖1 ≤ 2k; i.e., v andvi differ on at mostk vector
elements. We also have

|C| ≤
(em

d

)d k∑
i=0

(
m

i

)
.

To simplify this expression we may choosek = m/4 and, using a bound on the
tails of the binomial distribution (see, for example, Hoeffding [17]), the number
of vertices inC may be bounded from above by (em/d)d 2me−m/8.

From (37) the number of verticesv ∈ V that have the property
dist(v, Lm−n, l2) ≤ c12

√
m is at least 2m(1 − 2(1/n)1/4). Even if all the vertices

in C have this property we are still left with at least

2m

(
1− 2

(
1

n

)1/4
)
− |C| ≥ 2m

(
1− 2

(
1

n

)1/4
)
−
(em

d

)d
2me−m/8

=2m

(
1− 2

(
1

n

)1/4

−
(em

d

)d
e−m/8

)
(39)

vertices which are not inC and which satisfy this property. For allm ≥ 64d ln
d, (em/d)de−m/8 ≤ e−m/16. Thus (39) is lower bounded by
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2m

(
1− 2

(
1

n

)1/4

− e−m/16

)
.

Taking m ≥ max{320n ln n, 64d ln d} then (1 − 2(1/n)1/4 − e−m/16) is greater
than 1 for alln ≥ 20; thus, the total expression is larger than 1 forn ≥ 20. Thus
there exists at least one vertex which is not inC and which satisfies the prop-
erty above. Moreover, for any such vertexv ∉ C and for any pointz on the
manifold d the l 2 Euclidean distance

‖z− v‖2l2 =
m∑

i=1

|zi − vi |2 > k · 12 = m

4
.

Thus we have proved that there is at least one vertexv∗ ∈ V such that
dist(v∗, Lm−n, l2) ≤ c12

√
m and that dist(v∗, d, l2) ≥ √m/2. The constant

c13 mentioned earlier is12.
Finally, we wish to show that there exists a pointŷ in the intersection

Bm∞(1) ∩ Lm−n between the cube of side 2 and the linear spaceLm−n such
that dist(ŷ, d, l2) ≥ c14

√
m for somec14 > 0. For this we first show that

there is ay* in the intersectionBm
2 (
√

m )∩ Lm−n of the ball of radius
√

m and
the subspaceLm−n such that dist(y∗, d, l2) ≥ c14

√
m. Consider the point on

Lm−n closest to the vertexv∗. Clearly, ‖v∗ − y∗‖l2 ≤ c12
√

m. Moreover,y* is
simply the projection ofv∗ on Lm−n. As Lm−n goes through the origin and as
v∗ ∈ Bm

2 (
√

m ) it follows that y* must be contained inBm
2 (
√

m ) ∩ Lm−n (but
not necessarily inBm∞(1)). By a geometric argument one can show that there
exists a point̂y ∈ Bm∞(1)∩ Lm−n which is no farther thanc12

√
m from y*. Also,

we have for anyz ∈ d

‖ŷ− z‖l2 ≥ ‖v∗ − z‖l2 − ‖y∗ − v∗‖l2 − ‖ŷ− y∗‖l2;
thus,

inf
z∈ d

‖ŷ− z‖l2 ≥ inf
z∈ d

‖v∗ − z‖l2 − ‖y∗ − v∗‖l2 − ‖ŷ− y∗‖l2

≥
√

m

2
− c12

√
m− c12

√
m

≥
√

m

4

by the previous choice ofc12 = 1
8.

We have proved that there exists a pointŷ ∈ Bm∞(1) ∩ Lm−n such that
infz∈ d ‖ŷ− z‖l2 ≥

√
m/4. Finally, we therefore conclude that

sup
y∈Bm∞(1)∩Lm−n

inf
z∈ d

‖y− z‖l2 ≥
√

m

4
;
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i.e.,

dist(Bm∞(1) ∩ Lm−n,
d, l2) ≥

√
m

4
.

COROLLARY 1. For the same setting as in Lemma6, the distance measured
in the l∞-norm is lower bounded as

dist(Bm∞(1) ∩ Ln, d, l∞) ≥ 1
4.

Proof. For any vectorsa, b ∈ m, if ‖a − b‖2l2 ≥ m/16 then at least one
component |aj − bj|

2 ≥ 1
16 which implies that‖a− b‖l∞ ≥ 1

4.

We now prove Theorem 4.

Proof. We have

inf
Nn

sup
y∈ n

inf
d

sup
∩N−1(y)

inf
h∈ d

‖ f − h‖L∞ (40)

≥ inf
Nn

inf
d

sup
∩N−1(0)

inf
h∈ d

‖ f − h‖L∞ (41)

≥ inf
Nn

inf
d

sup
∩N−1(0)

inf
h∈ d

max
1≤ j≤m

| f (x j )− h(x j )|, (42)

where the set ofm points xj uniformly partition the domainX and we may
use an integer vector to index a point asx j = [x1, j1, . . . , xl , jl ], where

xi , ji = ji /m1/ l + 1/2m1/ l , 0 ≤ j i ≤ m1/l − 1; 1 ≤ i ≤ l.
We now define a subsetFm ⊂ ≡ Wr, l∞ such that the set of vectors

{ f = [ f (x1), . . . , f (xm)]: f ∈ Fm}

maps onto the cubeBm∞(1/mr/ l ) = [−1/mr/ l , 1/mr/ l ]m. For this, fix any
function φ ∈ Wr, 1∞ (M) with support on [0, 1] which satisfiesφ(0) = φ(1) =
0, andφ

(1
2

)
= 1. Letm′ = m1/l, E = {0, 1, . . . , m′ −1}l , φi j (y) ≡ φ(m′y− i j ),

0 ≤ i j ≤ m′ − 1, 1 ≤ j ≤ 1, and

φi (x) ≡ φi1(x1) . . . φi l (xl ) = φ(m′x1− i1)φ(m
′x2− i2) . . . φ(m

′xl − i l ).

We define

Fm ≡
 fa(x) = 1

mr/ l

∑
i∈E

aiφi (x): ai ∈ [−1, 1]

 .
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We will sometimes index the elements by a scalar integer and write for the
vector a ≡ [a1, . . . , am]. First it is shown that for anya ∈ [−1, 1]m, fa ∈
Wr, l∞ (M). For this it suffices to upper bound supx | f (α)a (x)| by M, for α =
[α1, . . . , αl ], αi ∈ +,

∑l
i=1 αi = r . We have

sup
x∈[0,1]l

| f (α)a (x)| = 1

mr/ l
sup

x∈[0,1]l

∣∣∣∣∣∣
m∑

i∈E

aiφ
(α)
i (x)

∣∣∣∣∣∣
= 1

mr/ l max
j∈E

sup
x∈1 j

∣∣∣∣∣∣
∑
i∈E

aiφ
(α)
i (x)

∣∣∣∣∣∣
= 1

mr/ l
max
j∈E

sup
x∈1 j

|ajφ
(α)
j (x)|

= 1

mr/ l
max
j∈E
|aj | sup

x∈1 j

|φ(α)j (x)|

= 1

mr/ l
max
j∈E
|aj | sup

x∈1 j

|φ(α1)(m′x1− j1)φ
(α2)

× (m′x2− j2) . . . φ
(α1)(m′xl − jl )|

= 1

mr/ l
max

j
|aj |m′r sup

x∈[0,1]l
|φ(α)(x)|

≤ sup
x∈[0,1]l

|φ(α)(x)| ≤ M;

the last line follows since by assumptionφ ∈ Wr, l∞ (M).
By a similar argument it may be shown that

‖ fa‖L∞ = sup
x∈[0,1]l

| fa(x)| = 1

mr/ l
max
j∈E
|aj | = 1

mr/ l
‖a‖l∞ = ‖ f

a
‖l∞ ,

where we used the fact that

fa(x j ) = 1

mr/ l

∑
i∈E

aiφi (x j ) = 1

mr/ l
aj .

Continuing from (42) we will drop the subscripta and just writef for any func-
tion in Fm. Using a scalar indexj for the pointsxj we have

inf
Nn

inf
d

sup
f ∈ ∩N−1(0)

inf
h∈ d

max
1≤ j≤m

f (x j )− h(x j )| (43)

≥ inf
Nn

inf
d

sup
f ∈Fm∩N−1(0)

inf
h∈ d

max
1≤ j≤m

| f (x j )− h(x j )| (44)

= inf
Nn

inf
d

sup
f ∈Bm∞(1/mr/ l )∩Ln

inf
h∈Hd

‖ f − h‖l∞ , (45)
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whereLn is a subspace in m of codimensionn and we used the fact that the
set of vectors

{ f : f ∈ Fm ∩ N−1(0)}

=
 f : f (x) = 1

mr/ l

∑
j∈E

ajφ j (x), L1( f ) = 0, . . . , Ln( f ) = 0, a ∈ [−1, 1]m


=
{

f : f = 1

mr/ l
a, wT

1 a = 0, . . . , wT
n a = 0, a ∈ Bm∞(1)

}
= Bm∞

(
1

mr/ l

)
∩ Ln,

where by definition

wi = [Li (φ1), . . . , Li (φm)], 1≤ i ≤ n.

Using Corollary 1 and continuing from (45)

inf
Nn

inf
d

sup
f ∈Bm∞(1/mr/ l )∩Ln

inf
h∈Hd

‖ f − h‖l∞ ≥
1

4mr/ l
.

We may substitutem = 320n ln n + 32d ln d and still satisfy the conditions
of Lemma 6 and Corollary 1. Thus we conclude that

inf
Nn

sup
y∈ n

inf
d

sup
∩N−1(y)

inf
h∈ d

‖ f − h‖L∞ ≥
1

4(320n ln n+ 32d ln d)r/ l
.
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