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In a recent paper, the authors introduced the notion of sample width for binary classifiers 
defined on the set of real numbers. It was shown that the performance of such classifiers 
could be quantified in terms of this sample width. This paper considers how to adapt the 
idea of sample width so that it can be applied in cases where the classifiers are multi-
category and are defined on some arbitrary metric space.
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1. Introduction

By a (multi-category) classifier on a set X , we mean a function mapping from X to [C] = {1, 2, . . . , C} where C ≥ 2 is 
the number of possible categories. Such a classifier indicates to which of the C different classes objects from X belong 
and, in supervised machine learning, it is arrived at on the basis of a sample, a set of objects from X together with their 
classifications in [C]. In [4], the notion of sample width for binary classifiers (C = 2) mapping from the real line X = R was 
introduced and in [5], this was generalized to finite metric spaces. In this paper, we consider how a similar approach might 
be taken to the situation in which C could be larger than 2, and in which the classifiers map not simply from the real line, 
but from some metric space (which would not generally have the linear structure of the real line). The results of this paper 
are applicable to machine learning, as has been shown recently in [7] for learning case-based inference.

The definition of sample width is given below, but it is possible to indicate the basic idea at this stage: we define sample 
width to be at least γ if the classifier achieves the correct classifications on the sample and, furthermore, for each sample 
point, the minimum distance to a point of the domain having a different classification is at least γ .

A key issue that arises in machine learning is that of generalization error: given that a classifier has been produced by 
some learning algorithm on the basis of a (random) sample of a certain size, how can we quantify the accuracy of that 
classifier, where by its accuracy we mean its likely performance in classifying objects from X correctly? In this paper, we 
seek answers to this question that involve not just the sample size, but the sample width.

2. Probabilistic modeling of learning

We work in a version of the popular ‘PAC’ framework of computational learning theory (see [16,9]). This model assumes 
that the sample s consists of an ordered set (xi, yi) of labeled examples, where xi ∈ X and yi ∈ Y = [C], and that each (xi, yi)
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in the training sample s has been generated randomly according to some fixed (but unknown) probability distribution P
on Z = X × Y . (This includes, as a special case, the situation in which each xi is drawn according to a fixed distribution 
on X and is then labeled deterministically by yi = t(xi) where t is some fixed function.) Thus, a sample s of length m can 
be thought of as being drawn randomly according to the product probability distribution Pm . An appropriate measure of 
how well h : X → Y would perform on further randomly drawn points is its error, erP (h), the probability that h(X) �= Y for 
random (X, Y).

Given a function h ∈ H , we can assess how well h fits a training sample through the sample error

ers(h) = 1

m
|{i : h(xi) �= yi}|.

This is simply the fraction of sample points not classified correctly by h. Much research in learning theory (see [9,16], for 
instance) focused on relating the error of a classifier to its sample error, obtaining bounds of the form: for all δ ∈ (0, 1), 
with probability at least 1 − δ, for all h belonging to some specified set of functions, erP (h) < ers(h) +ε(m, δ), where ε(m, δ)
(known as a generalization error bound) is decreasing in m and δ. Such results can be obtained using uniform convergence 
theorems from probability theory [17,13,10,17,9,16,2]. More recently, emphasis has been placed on ‘large-margin’ learning 
(see, for instance [15,2,1,14]) where the idea, in the two-category case, is that if a binary classifier can be thought of as a 
geometrical separator between points and if it achieves a ‘definitive’ separation between the points of different classes, then 
it is a good classifier, and it is possible that a better generalization error bound can be obtained. Margin-based results apply 
when the binary classifiers are derived from real-valued function by ‘thresholding’ (taking their sign). Margin analysis has 
been extended to multi-category classifiers in [11].

3. The width of a classifier

We now discuss the case where the underlying set of objects X forms a metric space. Let X be a set on which is defined 
a metric d : X × X → R. For a subset S of X , define the distance d(x, S) from x ∈ X to S as follows:

d (x, S) := inf
y∈S

d(x, y).

We define the diameter of X to be

diam(X) := sup
x,y∈X

d(x, y).

We will denote by H the set of all possible functions h from X to [C].
The paper [4] introduced the notion of the width of a binary classifier at a point in the domain, in the case where the 

domain was the real line R. Consider a set of points {x1, x2, . . . , xm} from R, which, together with their true classifications 
yi ∈ {−1, 1}, yield a training sample

s = (
(x j, y j)

)m
j=1 = ((x1, y1), (x2, y2), . . . , (xm, ym)) .

We say that h :R → {−1, 1} achieves sample margin at least γ on s if h(xi) = yi for each i (so that h correctly classifies the 
sample) and, furthermore, h is constant on each of the intervals (xi −γ , xi +γ ). It was then possible to obtain generalization 
error bounds in terms of the sample width. In this paper we use an analogous notion of width to analyze multi-category 
classifiers defined on a metric space.

For each k between 1 and C , let us denote by Sh
k the sets corresponding to the function h : X → [C], defined as follows:

Sh
k := h−1(k) = {x ∈ X : h(x) = k} . (1)

We define the width wh(x) of h at a point x ∈ X as follows:

wh(x) := min
l �=h(x)

d(x, Sh
l ).

In other words, it is the distance from x to the set of points that are labeled differently from h(x). The term ‘width’ is 
appropriate since the functional value is just the geometric distance between x and the complement of Sh

h(x) .

Given h : X → [C], for each k between 1 and C , we define f h
k : X → R by

f h
k (x) = min

l �=k
d(x, Sh

l ) − d(x, Sh
k ),

and we define f h : X →R
C by setting the kth component function of f h to be f h

k : that is, ( f h)k = f h
k .

Note that if h(x) = k, then f h
k (x) ≥ 0 and f h

j (x) ≤ 0 for j �= k. The function f contains geometrical information encoding 
how ‘definitive’ the classification of a point is: if f h(x) is a large positive number, then the point x belongs to category k
k
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and is a large distance from differently classified points. We will regard h as being in error on (x, y) ∈ X × [C] if f h
y (x) is 

negative. Denoting by X, Y random variables on X and [C], respectively, with a joint probability function P , the error erP (h)

of h can then be expressed in terms of the function f h:

erP (h) = P
(

f h
Y (X) < 0

)
. (2)

We define the class F of functions as

F :=
{

f h(x) : h ∈ H
}

. (3)

Note that f h is a mapping from X to the bounded set [−diam(X), diam(X)]C ⊆ R
C . Henceforth, we will use γ > 0 to 

denote a width parameter whose value is in the range (0, diam(X)].
For a positive width parameter γ > 0 and a training sample s, the empirical (sample) γ -width error is defined as

Eγ
s (h) := Eγ

s ( f h) = 1

m

m∑
j=1

I

(
f h

y j
(x j) ≤ γ

)
. (4)

(Here, I(A) is the indicator function of the set, or event, A.) Note that

f h
y (x) ≤ γ ⇐⇒ min

l �=y
d(x, Sh

l ) − d(x, Sh
y) ≤ γ

⇐⇒ ∃l �= y such that d(x, Sh
l ) ≤ d(x, Sh

y) + γ .

So the empirical γ -width error on the sample is the proportion of points in the sample which are either misclassified by h
or which are classified correctly, but lie within distance γ of the set of points classified differently. (We recall that h(x) = y
implies d(x, Sh

y) = 0.) Our aim is to show that (with high probability) the generalization error erP (h) is not much greater 
than Eγ

s (h). (In particular, as a special case, we want to bound the generalization error given that Eγ
s (h) = 0.) This will 

imply that if the learner finds a hypothesis which, for a large value of γ , has a small γ -width error, then that hypothesis 
is likely to have small error. What this indicates, then, is that if a hypothesis has a large width on most points of a sample, 
then it will be likely to have small error.

4. Covering numbers

4.1. Covering numbers

A central idea in large-margin analysis is that of covering number and this will also prove useful here. We will discuss 
different types of covering numbers, so we introduce the idea in some generality to start with.

Suppose (A, d) is a (pseudo-)metric space and that α > 0. Then an α-cover of A (with respect to d) is a finite set C
(possibly a subset of A) such that, for every a ∈ A, there is some c ∈ C such that d(a, c) ≤ α. If such a cover exists, then the 
minimum cardinality of such a cover is the covering number N (A, α, d).

We are working with the set F of vector-valued functions from X to RC , as defined earlier. We define the sup-metric 
d∞ on F as follows: for f , g : X → R

C ,

d∞( f , g) = sup
x∈X

max
1≤k≤C

| fk(x) − gk(x)|,

where fk denotes the kth component function of f . (Note that each component function is bounded, so the metric is 
well-defined.)

We can bound the covering numbers N (F , α, d∞) of F (with respect to the sup-metric) in terms of the covering 
numbers of X with respect to its metric d. The result is as follows.

Theorem 4.1. For α ∈ (0, diam(X)],

N (F,α,d∞) ≤
(

9 diam(X)

α

)C Nα

,

where Nα =N (X, α/3, d).
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4.2. Smoothness of the function class

As a first step towards establishing this result, we prove that the functions in F satisfy a certain Lipschitz (or smooth-
ness) property. A similar property was proved for the case of a binary classifier on a finite metric space in [5]: this 
generalizes that result to the multi-category case, and deals with the case in which the underlying metric space may 
be infinite.

Proposition 4.2. For every f ∈F , and for all x, x′ ∈ X,

max
1≤k≤C

| fk(x) − fk(x′)| ≤ 2 d(x, x′). (5)

Proof. Let x, x′ ∈ X and fix k between 1 and C . We show that

| fk(x) − fk(x′)| ≤ 2 d(x, x′).

Recall that, since f ∈F , there is some h : X → [C] such that, for all x,

fk(x) = min
l �=k

d(x, Sh
l ) − d(x, Sh

k )

where, for each i, Sh
i = h−1(i). We have

| fk(x) − fk(x′)| =
∣∣∣∣min

l �=k
d(x, Sh

l ) − d(x, Sh
k ) − min

l �=k
d(x′, Sh

l ) + d(x′, Sh
k )

∣∣∣∣
≤

∣∣∣∣min
l �=k

d(x, Sh
l ) − min

l �=k
d(x′, Sh

l )

∣∣∣∣ +
∣∣∣d(x, Sh

k ) − d(x′, Sh
k )

∣∣∣
We consider in turn each of the two terms in this final expression. We start with the second, by showing that, for any set S , 
|d(x, S) − d(x′, S)| ≤ d(x, x′). From the fact that, for each s ∈ S , d(x, s) ≤ d(x, x′) + d(x′, s), it follows that

inf
s∈S

d(x, s) ≤ d(x, x′) + inf
s∈S

d(x′, s);

that is,

d(x, S) ≤ d(x, x′) + d(x′, S).

An analogous argument with x, x′ interchanged establishes

d(x′, S) ≤ d(x, x′) + d(x, S).

Next we show∣∣∣∣min
l �=k

d(x, Sh
l ) − min

l �=k
d(x′, Sh

l )

∣∣∣∣ ≤ d(x, x′).

Suppose that mink �=l d(x, Sh
l ) = d(x, Sh

p) and that mink �=l d(x′, Sh
l ) = d(x′, Sh

q). Then,

d(x, Sh
p) ≤ d(x, Sh

q) ≤ d(x, x′) + d(x′, Sh
q)

and

d(x′, Sh
q) ≤ d(x′, Sh

p) ≤ d(x, x′) + d(x, Sh
p).

It follows that |d(x, Sh
p) − d(x′, Sh

q)| ≤ d(x, x′). �
Next, we exploit this ‘smoothness’ to construct a cover for F .
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4.3. Covering F

Let the subset Cα ⊆ X be a minimal size α/3-cover for X with respect to the metric d. So, for every x ∈ X there is some 
x̂ ∈ Cα such that d(x, ̂x) ≤ α/3. Denote by Nα the cardinality of Cα .

Let

�α =
{
λi = iα : i = −

⌈
3 diam(X)

α

⌉
, . . . ,−1,0,1,2, . . . ,

⌈
3 diam(X)

α

⌉}
(6)

and define the class F̂ to be all functions f̂ : Cα → (�α)C . Then F̂ is of a finite size equal to |�α |C Nα . For any f̂ ∈ F̂ define 
the extension f̂ext : X → R

C of f̂ to the whole domain X as follows: given f̂ (which is well-defined on the points x̂i of the 
cover) then for every point x in the ball Bα/3(x̂i) =

{
x ∈ X : d(x, x̂i) ≤ α/3

}
, we let f̂ext(x) = f̂ (x̂i), for all x̂i ∈ Cα (where, 

if, for a point x there is more than one point x̂i such that x ∈ Bα/3(x̂i), we arbitrarily pick one of the points x̂i in order to 
assign the value of f̂ext(x)). There is a one-to-one correspondence between the functions f̂ and the functions f̂ext . Hence 
the set F̂ext =

{
f̂ext : f̂ ∈ F̂

}
is of cardinality equal to |�α |C Nα .

We claim that for any f ∈ F there exists an f̂ext such that d∞( f , f̂ext) ≤ α. To see this, first for every point x̂i ∈ Cα , 
consider f (x̂i) and find a corresponding element in �C

α , (call it f̂ (x̂i)) such that

max
1≤k≤C

|( f (x̂i))k − ( f̂ (x̂i))k| ≤ α/3. (7)

(That there exists such a value follows by design of �α .) By the above definition of extension, it follows that for all points 
x ∈ Bα/3(x̂i) we have f̂ext(x) = f̂ (x̂i). Now, from (5) we have for all f ∈F ,

max
1≤i≤k

sup
x∈Bα/3(x̂i)

|( f (x))k − ( f (x̂i))k| ≤ 2d(x, x̂i) ≤ 2α/3. (8)

Hence for any f ∈ F there exists a function f̂ ∈ F̂ with a corresponding f̂ext ∈ F̂ext such that, given an x ∈ X , there exists 
x̂i ∈ Cα such that, for each k between 1 and C , |( f (x))k − ( f̂ext(x))k| = |( f (x))k − ( f̂ext(x̂i))k|. The right hand side can be 
expressed as

|( f (x))k − ( f̂ext(x̂i))k| = |( f (x))k − ( f̂ (x̂i))k|
= |( f (x))k − ( f (x̂i))k + ( f (x̂i))k − ( f̂ (x̂i))k|
≤ |( f (x))k − ( f (x̂i))k| + |( f (x̂i))k − ( f̂ (x̂i))k|
≤ 2α/3 + α/3 (9)

= α,

where (9) follows from (7) and (8).
Hence the set F̂ext forms an α-covering of the class F in the sup-norm. Thus we have the following covering number 

bound.

N (F,α,d∞) ≤ |�α|C Nα =
(

2

⌈
3 diam(X)

α

⌉
+ 1

)C Nα

. (10)

Theorem 4.1 now follows because (for 0 < α ≤ diam(X))

2

⌈
3 diam(X)

α

⌉
+ 1 ≤ 2

(
3 diam(X)

α
+ 1

)
+ 1 = 6 diam(X)

α
+ 3 ≤ 9 diam(X)

α
.

5. Generalization error bounds

We present two results. The first bounds the generalization error in terms of a width parameter γ for which the γ -width 
error on the sample is zero; the second (more general but looser in that special case) bounds the error in terms of γ and 
the γ -width error on the sample (which could be non-zero).

Theorem 5.1. Suppose that X is a metric space of diameter diam(X). Suppose P is any probability measure on Z = X × [C]. Let δ ∈
(0, 1). Then, with probability at least 1 − δ, the following holds for s ∈ Zm: for any function h : X → [C], and for any γ ∈ (0, diam(X)], 
if Eγ

s (h) = 0, then

erP (h) ≤ 2

m

(
CN (X, γ /12,d) log2

(
36 diam(X)

γ

)
+ log2

(
4 diam(X)

δγ

))
.
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Theorem 5.2. Suppose that X is a metric space of diameter diam(X). Suppose P is any probability measure on Z = X × [C]. Let δ ∈
(0, 1). Then, with probability at least 1 − δ, the following holds for s ∈ Zm: for any function h : X → [C], and for any γ ∈ (0, diam(X)],

erP (h) ≤ Eγ
s (h) +

√
2

m

(
CN (X, γ /12,d) ln

(
36 diam(X)

γ

)
+ ln

(
4 diam(X)

γ δ

))
+ 1

m
.

What we have in Theorem 5.2 is a high probability bound that takes the following form: for all h and for all γ ∈
(0, diam(X)],

erP (hS) ≤ Eγ
s (h) + ε(m, γ , δ),

where ε tends to 0 as m → ∞ and ε decreases as γ increases. The rationale for seeking such a bound is that there is likely 
to be a trade-off between width error on the sample and the value of ε: taking γ small so that the error term Eγ

s (h) is zero 
might entail a large value of ε; and, conversely, choosing γ large will make ε relatively small, but lead to a large sample 
error term. So, in principle, since the value γ is free to be chosen, one could optimize the choice of γ on the right-hand 
side of the bound to minimize it.

The bound of Theorem 5.2 compares well with the margin-based bound from [11]. It varies as 1/
√

m, while that of [11]

has an additional 
√

ln m factor. The dependence on C is, however, 
√

C whereas in [11] it is 
√

ln2 C . The bounds are not 
directly comparable because ours concerns width and that of [11] involves margin, but, for fixed C , it is notable that the 
m-dependence of our bound is better. The dependence of Theorem 5.2 on the width parameter γ is, in general, similar 
to the dependence of [11] on the margin parameter γ as both grow like 

√
N γ where Nγ is the covering number of the 

underlying real-valued discriminant function class. The advantage of the bound of Theorem 5.2 is that it is expressed in 
terms of the covering number of the actual metric space which, in some problems, such as when the metric space is finite 
[5], can be efficiently estimated.

Proof of Theorem 5.1. The proof uses techniques similar to those first used in [17,16,10,13] and in subsequent work ex-
tending those techniques to learning with real-valued functions, such as [12,3,1,8,6]. The first observation is that if

Q = {s ∈ Zm : ∃h ∈ H with Eγ
s (h) = 0, erP (h) ≥ ε}

and

T = {(s, s′) ∈ Zm × Zm : ∃h ∈ H with Eγ
s (h) = 0, E0

s′(h) ≥ ε/2},
then, for m ≥ 8/ε ,

Pm(Q ) ≤ 2 P 2m(T ).

This follows from the proof of Lemma 10.2 in [1]; instead of the γ -margin error event defined there as Y f (X) < γ based on 
any real-valued function f on X (the empirical γ -error of f is denoted by êrγs ( f )), the current paper considers the γ -width 
error event which is defined as f h

Y (X) < γ and is based on the specific real valued function, the width function, f h . In the 
proof of that lemma, substitute for f the width function f h , set the value of êrγr ( f h) = 0 and apply Chebyshev’s inequality 
to show that if erP ( f h) ≥ ε , then for m ≥ 8/ε , Pm(êrs( f h) ≥ ε/2) ≥ 1/2, for any h.

Let G be the permutation group (the ‘swapping group’) on the set {1, 2, . . . , 2m} generated by the transpositions (i, m + i)
for i = 1, 2, . . . , m. Then G acts on Z 2m by permuting the coordinates: for σ ∈ G ,

σ(z1, z2, . . . , z2m) = (zσ (1), . . . , zσ (2m)).

From the proof of Lemma 10.2 in [1], by invariance of P 2m under the action of G , we have

P 2m(T ) ≤ max{P(σ z ∈ T ) : z ∈ Z 2m},
where P denotes the probability over uniform choice of σ from G .

Let F = { f h : h ∈ H} be the set of vector-valued functions derived from H as before, and let F̂ be a minimal γ /2-cover 
of F in the d∞-metric. Theorem 4.1 tells us that the size of F̂ is no more than(

18 diam(X)

γ

)C N

,

where N =N (X, γ /6, d).
The next part of the argument is similar to that of Theorem 2.2 in [6], which follows earlier ‘symmetrization’ proofs. We 

omit most of the details. It can be shown that, for any z,
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P(σ z ∈ T ) ≤
∑
f̂ ∈F̂

P(σ z ∈ T ( f̂ )) ≤ |F̂ |2−εm/2,

where, for f̂ ∈ F̂ ,

T ( f̂ ) := {(s, s′) ∈ Zm × Zm : Eγ /2
s ( f̂ ) = 0, Eγ /2

s′ ( f̂ ) ≥ ε/2}.
So,

Pm(Q ) ≤ 2 P 2m(T ) ≤ 2 |F̂ |2−εm/2 ≤ 2

(
18 diam(X)

γ

)C N

,

where N =N (X, γ /6, d). This is at most δ when

ε = 2

m

(
C N log2

(
18 diam(X)

γ

)
+ log2

(
2

δ

))
.

Next, we use this to obtain a result in which γ is not prescribed in advance. For α1, α2, δ ∈ (0, 1), let E(α1, α2, δ) be the 
set of z ∈ Zm for which there exists some h ∈H with Eα2

z (h) = 0 and erP (h) ≥ ε1(m, α1, δ), where

ε1(m,α1, δ) = 2

m

(
CN (X,α1/6,d) log2

(
18 diam(X)

α1

)
+ log2

(
2

δ

))
.

Then the result just obtained tells us that Pm(E(α, α, δ)) ≤ δ. It is also clear that if α1 ≤ α ≤ α2 and δ1 ≤ δ, then 
E(α1, α2, δ1) ⊆ E(α, α, δ). Let D denote diam(X). Then, following an argument from [8],

E (γ /2, γ , δγ /2D) ⊆ E

(
D

2l+1
,

D

2l+1
,

δ

2l+1

)
,

for all γ satisfying

D

2l+1
≤ γ ≤ D

2l
,

and therefore

Pm

⎛
⎝ ⋃

γ ∈(0,D]
E (γ /2, γ , δγ /2D)

⎞
⎠

= Pm

⎛
⎝ ∞⋃

l=0

⋃
D/2l+1≤γ ≤D/2l

E

(
D

2l+1
,

D

2l+1
,

δ

2l+1

)⎞
⎠

≤
∞∑

l=0

Pm
(

E

(
D

2l+1
,

D

2l+1
,

δ

2l+1

))

≤ δ

∞∑
l=0

(1/2l)

≤ δ

In other words, with probability at least 1 − δ, for all γ ∈ (0, diam(X)]], we have that if h ∈ H satisfies Eγ
s (h) = 0, then 

erP (h) < ε2(m, γ , δ), where

ε2(m, γ , δ) = 2

m

(
CN (X, γ /12,d) log2

(
36 diam(X)

γ

)
+ log2

(
4 diam(X)

δγ

))
.

Note that γ now need not be prescribed in advance. �
Proof of Theorem 5.2. Guermeur [11] has developed a framework in which to analyze multi-category classification, and we 
can apply one of his results to obtain the bound of Theorem 5.2, a generalization error bound applicable to the case in 
which the γ -width sample error is not zero. In that framework, there is a set G of functions from X into RC , and a typical 
g ∈ G is represented by its component functions gk for k = 1 to C . Each g ∈ G satisfies the constraint

C∑
gk(x) = 0, ∀x ∈ X .
k=1



1230 M. Anthony, J. Ratsaby / Journal of Computer and System Sciences 82 (2016) 1223–1231
The risk R(g) of g ∈ G , when the underlying probability measure on X × Y is P , is defined to be the P -probability that for 
(X, Y) ∈ X × [C], we have gY(X) ≤ maxk �=Y gk(X). For g ∈ G , 	g is defined to be the function X →R

C given by

(	g)k(x) = 1

2

(
gk(x) − max

l �=k
gl(x)

)
, 1 ≤ k ≤ C .

We define the class of such functions by

	G := {	g : g ∈ G} . (11)

Given a sample s ∈ (X × [C])m , let

Rγ ,s(g) = 1

m

m∑
i=1

I
{
	g yi (xi) < γ

}
.

Then a result following from [11] is (in the above notation) as follows:
Let δ ∈ (0, 1) and suppose P is a probability measure on Z = X × [C]. With Pm-probability at least 1 − δ, s ∈ Zm will be 

such that we have the following: (for any fixed d > 0) for all γ ∈ (0, d] and for all g ∈ G ,

R(g) ≤ Rγ ,s(g) +
√

2

m

(
lnN (	G, γ /4,d∞) + ln

(
2d

γ δ

))
+ 1

m
.

(In fact, the result from [11] involves empirical covering numbers rather than d∞-covering numbers. The latter are at least 
as large as the empirical covering numbers, but we use these because we have bounded them earlier in this paper.)

We can (as in [6]) formulate our problem in Guermeur’s framework and involve the functions f h from earlier. For each 
function h : X → [C], let

gh : X →R
C

be given by

gh
k (x) = 1

C

C∑
i=1

d(x, Sh
i ) − d(x, Sh

k ),

where, as before, Sh
j = h−1( j). Let

G = {gh : h ∈ H}
be the set of all such g and take 	G as in (11). Then these functions satisfy the constraint that their coordinate functions 
sum to the zero function, since

C∑
k=1

gh
k (x) =

C∑
k=1

1

C

C∑
i=1

d(x, Sh
i ) −

C∑
k=1

d(x, Sh
k ) =

C∑
k=1

d(x, Sh
k) −

C∑
k=1

d(x, Sh
k ) = 0.

Furthermore, for each k,

	gh
k (x) = 1

2

(
gh

k (x) − max
l �=k

gh
l (x)

)

= 1

2

(
1

C

C∑
i=1

d(x, Sh
i ) − d(x, Sh

k ) − max
l �=k

(
1

C

C∑
i=1

d(x, Sh
i ) − d(x, Sh

l )

))
,

which is easily seen to be

1

2

(
min
l �=k

d(x, Sh
l ) − d(x, Sh

k )

)
= 1

2
f h
k (x).

From the definition of gh , the event that gh
Y(X) ≤ maxk �=Y gh

k (X) (the probability of which is, by definition, R(gh)) is equiva-
lent to the event that

1

C

C∑
i=1

d(X, Sh
i ) − d(X, Sh

Y) ≤ max
k �=Y

(
1

C

C∑
i=1

d(X, Sh
i ) − d(X, Sh

k )

)
,

which is equivalent to mink �=Y d(X, Sh) ≤ d(X, Sh ). It can therefore be seen that R(gh) = erP (h). Similarly, Rγ ,s(gh) = E2γ
s (h).
k Y
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Noting that 	G = (1/2)F , so that an α/2 cover of F will provide an α/4 cover of 	G , we can therefore apply Guer-
meur’s result to see that with probability at least 1 − δ, for all h and for all γ ∈ (0, diam(X)],

erP (h) ≤ E2γ
s (h) +

√
2

m

(
lnN (F, γ /2,d∞) + ln

(
2 diam(X)

γ δ

))
+ 1

m

= Eγ
s (h) +

√
2

m

(
lnN (F, γ /4,d∞) + ln

(
4 diam(X)

γ δ

))
+ 1

m

≤ Eγ
s (h) +

√
2

m

(
CN (X, γ /12,d) ln

(
36 diam(X)

γ

)
+ ln

(
4 diam(X)

γ δ

))
+ 1

m
. �

6. Conclusions

This paper generalizes considerably the initial notion of sample width introduced in [4], where the focus was on binary-
valued functions defined on the real line. It also extends results from [5], in which binary classification on a finite metric 
space was studied. (The focus there was on a finite domain so that the covering numbers, and hence generalization error 
bounds, could be bounded by certain graph-theoretical parameters associated with the underlying metric space.) This paper 
provides generalization error bounds for any multi-category classifiers on a metric space, and the bounds involve both the 
covering numbers of the underlying metric space and the extent to which a classifier achieves a large sample width on the 
training sample. The results of this paper are directly applicable to machine learning, as for instance, to learning case base 
inference [7].
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