
R

a

g

T

Journal of Computer and System Sciences 58, 183�192 (1999)

On the Learnability of

Joel R

Manna Network Technolo

an

Vitaly M

Department of Mathematics,

The probably approximately correct (PAC) model of learning and its
extension to real-valued function classes sets a rigorous framework
based upon which the complexity of learning a target from a function
class using a finite sample can be computed. There is one main restric-
tion, however, that the function class have a finite VC-dimension
or scale-sensitive pseudo-dimension. In this paper we present an
extension of the PAC framework with which rich function classes with
possibly infinite pseudo-dimension may be learned with a finite number
of examples and a finite amount of partial information. As an example
we consider learning a family of infinite dimensional Sobolev classes.
] 1999 Academic Press

Key Words: PAC learning; computational learning theory; informa-
tion-based complexity; VC-theory; approximation theory; partial
information.

1. INTRODUCTION

Valiant [31] and Blumer, Ehrenfeucht, Haussler and
Warmuth [8] introduced the probably approximately
correct (PAC) learning model. In its basic form, there is an
abstract teacher providing the learner a finite number of
examples of an unknown target function g(x) which is a set-
indicator function over some domain X. Based on a
sequence of examples [(x i , yi)]m

i=1 , xi # X, yi # Y, where
yi= g(xi), 1�i�m, and Y=[0, 1], which are randomly
drawn according to an unknown underlying distribution
over X, the aim is to learn or estimate the target to within
a prespecified arbitrary accuracy =>0 and confidence 1&$.

In this paper we adopt the extension of the PAC model to
real valued functions (cf. Haussler [13]). We assume an
unknown probability distribution P on X_Y, where
Y=R and the notation P is used for all joint, marginal and
conditional probability distributions. In the general case,
the target is defined as a deterministic function g(x)=
E(Y | X=x) and the data sample consists of [(xi , yi)]m

i=1 ,
yi are possibly noisy versions of g(xi), where (xi , yi),
1<i<m, are drawn i.i.d. according to P over X_Y. The
learner has a known hypothesis class H which does not
necessarily contain the target g. A loss function Lq(h)
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measures the expected dissimilarity between the random
variable Y and h(X ) and is defined as Lq(h)=(E |Y&
h(X)|q)1�q for any q�1, where expectation is taken with
respect to P. Based on the sample the empirical loss is
defined as L� q(h)=((1�m) �m

i=1 ( yi&h(xi))
q)1�q. The specific

noise-free case amounts to Y= g(X ), the loss being Lq(h)=
(E | g(X )&h(X)|q)1�q and the sample consists of (xi , g(xi)),
1�i�m. We will also denote Lq(h)=&h& g&Lq(P) which is
the Lq -norm with respect the probability distribution P.

We limit our results here to the noise-free case since
learning with noise amounts to adding a constant variance-
like term to the loss of any hypothesis, in particular, to the
one which minimizes the empirical loss. We will assume a
compact domain X and a probability distribution P on X

with a density function dP(x) bounded over X. This allows
a direct upper bound on the loss Lq(h) in terms of a constant
multiple of &g&h&Lq

, where the latter denotes the Lq norm
with respect to the uniform probability distribution over X.
When referring to the classical PAC learning model we
adhere to the following definition.

Definition 1 (PAC-Learnability). For arbitrary =>0,
0<$<1, a hypothesis class H is (=, $)-learnable (or PAC-
learnable) if for any target function g and any probability
distribution P on X there exists a learning algorithm which
can find based on a finite number m(=, $) of i.i.d. examples
[(xi , g(xi))]m

i=1 , xi # X, a hypothesis h� # H whose loss
satisfies

Lq(h� )�L*g, q+=

with probability greater than 1&$, where L*g, q=infh # H

&g&h&Lq(P) denotes the loss of an optimal hypothesis in H.
We call m(=, $) the sample complexity of learning H.

Remark. Note that if g # H then L*g, q=0. As in the
PAC-model we henceforth restrict our framework to algo-
rithms which learn by minimization of the empirical loss,
3 0022-0000�99 �30.00
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that is, h� is obtained by picking any hypothesis h in H

which has a minimal L� q(h).
The PAC-model applies to many learning problems, for

instance, to the classical problem of learning pattern
recognition, where the target function is a classifier and
is represented by a set-indicator function g(x)=1[x # Ag] ,
Ag /X. Here the loss of an indicator function hypothesis h
is taken as L1(h)=E |h(x)& g(x)| which equals the prob-
ability of the symmetric difference between the set Ah

and Ag . In learning regression the learner has access to
noisy examples [(xi , yi)]m

i=1 of the target g, where g(x)=
E(Y | X=x), yi= g(xi)+&i , and &i , 1�i�m, are inde-
pendent noise-random variables with zero mean. Here the
quadratic loss functional L2(h)=E |Y&h(X )|2 is used to
measure the discrepancy of h. For other classical learning
problems which can be modeled by the PAC framework see
Haussler [13].

The primary contribution of the PAC model to the theory
of pattern recognition and machine learning arises from
stating a condition under which PAC-learnability may be
attained, i.e, a guarantee that a target g can be learned to an
accuracy which is arbitrarily close to the optimal loss L*g, q ,
based on a finite sample. This guarantee depends on
whether the hypothesis class has a finite complexity which is
measured by the quantity called pseudo-dimension. Pollard
[22] and, later, Haussler [13] extended the well-known
Vapnik�Chervonenkis dimension to the real-valued func-
tion class case, calling it the pseudo-dimension, dimp (H),
of a class H. It is defined as follows: Let sgn( y) be defined
as 1 for y>0 and &1 for y�0. For a Euclidean vector
v # Rm denote by sgn(v)=[sgn(v1), ..., sgn(vm)].

Definition 2 (Pseudo-dimension). Given a class H of
real-valued functions defined on X. The pseudo-dimension
of H, denoted as dimp (H), is defined as the largest integer
m such that there exists x1 , ..., xm # X and a vector v # Rm

such that the cardinality of the set of sign vectors satisfies
|[sgn[h(x1)+v1 , ..., h(xm)+vm] : h # H]|=2m. If m is
arbitrarily large then the dimp (H)=�.

The importance of this quantity arises from the fact that
a class H which has a finite pseudo-dimension is PAC-
learnable.

The PAC model comes short of guaranteeing in general
that a hypothesis h� with a loss arbitrarily close to zero can
be produced. It essentially ignores the value of the optimal
loss L*g, q and assumes it is either zero (as in the original
PAC work [8]), where the target is a member of the
hypothesis class, or that it is uncontrollable. In many
cases the first assumption is too artificial while the second
assumption is too strict, One way to decrease L*g, q is to use
a ``smarter'' learner, i.e., a hypothesis class Hd with a large
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pseudo-dimension d. Theoretically one could use an infinite-
pseudo-dimensional class and reduce L*g, q to zero; however,
in general, such a class will not be PAC-learnable, (Another
extension of the VC-dimension named the scale-sensitive
dimension, (cf. Alon, Ben-David, Cesa-Bianchi, and
Haussler [5]), which is a parameterized version of the
pseudo-dimension, guarantees necessary and sufficient
condition for PAC-learnability.)

Due to this it is common to use a nested structure of
finite-pseudo-dimensional hypothesis classes [Hd]�

d=1 and
then balance the trade-off between the learning accuracy
=(m, d ) and the optimal loss L*g, d, q , both of which depend,
but in opposite directions, on the pseudo-dimension d. Such
balancing leads to an optimal value d* or an optimally
complex hypothesis class. The theory of many statistical
estimation methods is based on this idea. Methods such
as Vapnik's structural risk minimization (Vapnik [32],
Shawe-Taylor, Bartlett, Williamson, and Anthony [28]),
regularization in statistical estimation (White [33], Lugosi
and Zeger [18], Grenander [12]), and model selection
(Barron [6], Lugosi and Nobel [17], Ratsaby, Meir, and
Maiorov [24]) all consider a learner with a potentially
infinite amount of resources which is optimally balanced
against the variability introduced by the finite sample.

When g is assumed to be a member of a known rich target
class F then a measure of the learner' s optimal learning
ability in the infinite sample limit (assuming for the moment
that the learner is limited to an hypothesis class Hd of
pseudo-dimension d ) is captured in the quantity supg # F

L*g, d, q which is usually referred to as the approximation
error of F by Hd. The larger d, the richer the class Hd, and
the lower the error supg # F L*g, d, q The classical field of
approximation theory (cf. Lorentz, Golitschek, and,
Makovoz [16], Pinkus [21]) has many established results
on the estimation of this error for numerous combinations
of target classes F and hypothesis classes Hd.

In this paper we consider another alternative for control-
ling L*g, d, q which is conceptually different from the one
above. Instead of enriching the learner by an infinite
pseudo-dimensional hypothesis class structure we consider
having a more helpful teacher. This is related to the notion
of active-learning which studies the complexity of learning
while possessing some knowledge about the target obtained
through means which are more general than classical
random sampling.

That partial information about a problem to be learnt is
important can often be seen in humans, as well as machine
learning. For instance, when learning using artificial neural
networks one form of useful partial information about the
target function is a good starting point in the error-surface
descent. Several experimental results which demonstrate
that partial knowledge helps include the work of Abu-
Mostafa [1�3] who refers to partial knowledge as hints
which are found to be useful, for instance, in financial
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prediction problems. Roscheisen, Hofmann, and Tresp
[27] consider ways of incorporating partial knowledge into
a system that learns by examples by resorting to a Bayesian
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model. A prior probability density over the target class is
defined and a portion of the training sample is artificially
generated using this prior knowledge. Towell and Shavlik
[29] show how rule-based prior knowledge can be incor-
porated into neural networks consisting of sigmoidal units.

As part of the motivation for the interest in a theoretical
learning framework which takes into account available
partial information, we now consider several instances of
learning problems with different types of partial informa-
tion. The first two examples are classical problems from the
field of pattern recognition.

Example 1 (Parametric classification). The setting
consists of two pattern classes with unknown class condi-
tional probability densities f1(x), f2(x) over X=Rl and a
priori probabilities p1 , p2 . The data sample consists of
labeled examples [(xi , yi)]m

i=1 , where yi is first drawn from
[1, 2], taking the value 1 with probability p1 , and xi is
drawn with respect to fyi

(x i), 1�i�m. The target g(x) is
the discriminate function corresponding to the Bayes
optimal classifier which classifies the region Rg=[x # X :
g(x)=ln( p1 f1(x)�p2 f2(x))�0] by ``1'' and the region
X"Rg by ``2.''

Assume that the target is contained in a parametric
hypothesis class Hd which is a d-dimensional linear space of
r-degree polynomials over X, i.e., Hd=[ha(x)=�i : &i&�r

ai x i1
1 } } } x il

l , a i # R], where for a nonnegative multiinteger
i # Z l

+ the norm &i&=� l
j=1 |ij |. Here d<� is the number

of vectors i whose norm is less than or equal to r. The
classifier corresponding to a hypothesis h is defined as label-
ing the region Rh=[x # X : h(x)�0] by ``1'' and the region
X"Rh by ``2.'' For the target, use the notation ga with
parameter a as it is contained in Hd. The loss of h is defined
as Ll (h)=&1Rg

&1Rh
&L1(P) , where 1Rh

is the indicator
function for the set Rh .

The problem is to (=, $)-learn the class Hd, i.e., output a
hypothesis h� # Hd such that L1(h� )�=, with probability
1&$ which implies that the probability of error of the
classifier based on h� is no more than = from the Bayes error.
(Note that the optimal loss L*g, 1=0 since the target g # Hd.)

Partial information: feature selection. An expert points
to interesting feature components xj , j # J, where J/
[1, 2, ..., l], which are the most significant as far as the
separability of the pattern classes is concerned. Denote by
I=[i=[i1 , ..., i l] # Z l

+ : &i&�r, _j � J, ij {0], let n=|I |
and I c denotes the complement of I, i.e. Ic=[i=[i1 , ..., il]
# Z l

+ : &i&�r, i j=0, j � J]. Effectively, the expert informa-
tion reduces the hypothesis class Hd to a subset Hd&n=
[ha(x)=� i : i # Ic aix i1

1 } } } x il
l , ai # R], of dimensionality, or

equivalently of pseudo-dimension, d&n, since the hypo-
thesis class is a vector space of functions (cf. Theorem 4 of
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Haussler [31). Thus, given such partial information the
learner knows that the Bayes optimal hypothesis ga is
contained in a smaller subset Hd&n of the hypothesis class
Hd. As such, the sample complexity of PAC-learning Hd&n

is smaller than that of learning Hd.

Note that partial information about ga can be expressed
as the value taken by a linear projection operator NI : Hd

� Rn, where for a function ha # Hd we have NI (ha)=
[ak1

, ak2
, ..., akn

], k j # I, 1� j�n, and the information
vector corresponding to the target is NI (ga)=[0, ..., 0].

If we denote by m(d, =) the sample complexity of learning
Hd then for information of size n (i.e., an information vector
of dimensionality n), the reduction in the sample complexity
is m(d, =)&m(d&n, =). This represents the number of
examples that information of size n is worth.

Example 2 (Nonparametric classification). The setting
consists of M unknown nonparametric class conditional
probability distributions fj (x) over X=Rl with their
corresponding known a priori class probabilities pj ,
1� j�M. Denote the mixture probability density dP(x)=
�M

i= j pj fj (x). The target is defined as the vector-valued
function g(x)=[ f1(x), ..., fM(x)]. The optimal Bayes
classifier is defined as: Classify an x by ``j*'' where
j*=argmax1� j�M[ p j fj (x)]. The sample consists of m i.i.d.
pairs [(xi , yi)]m

i=1 , where yi # [1, 2, ..., M] takes the value
j with probability pj , and xi is drawn according to
fyi

(x), 1�i�m. The learner has an hypothesis class H=
H1_ } } } _HM of vector-valued functions h(x)=
[h1(x), ..., hM(x)], where Hj , 1� j�M, have finite pseudo-
dimension.

The problem is to estimate each of the M probability
densities gj by hj , 1� j�M. The loss of a hypothesis h # H

is defined as Lq(h)=�M
i=1 pj &gj&hj&Lq(P) for any fixed

q�1, where & f &Lq(P)=(�X | f (x)|q dP(x))1�q. Stated in the
PAC-framework, the problem is to (=, $)-learn H, i.e., to
find an h� # H whose loss Lq(h� )�L*g, q+=, with probability
1&$, where L*g, q=infh # H &g&h&Lq(P) .

Partial information: feature extraction. The learner is
told which of the fewest k of the l feature components of x
are the most significant as far as classification is concerned.

Using classical discriminate analysis methods (cf.
Fukunaga [11], Duda and Hart [10]) such information
about the target g may be expressed in terms of the class
probabilities pj , the class conditional means +j=E(X | j)
and the class conditional covariance matrices E((X&+j)
(X&+j)

T | j), 1� j�M. This information is sufficient for
defining one of the standard criterion functionals which
relate the within-class and the between-class variability.
One may then compute the optimal linear discriminate
matrix A, of size k_l, which maps a feature vector x to a
lower dimensional y # Rk. The components of y are the k
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features which best preserve the pattern class separability in
the lowest possible k-dimensional feature space. Such infor-
mation can be represented by an n-dimensional vector of



linear functionals acting on g, i.e., N(g)=[[+j, s]M
j=1 , l

s=1 ,
[_ j

s, r]
M
j=1 , l

s�r=1] where +j, s=�X xs fj (x) dx, and _ j
s, r=

�X xsxr f j (x) dx. The dimensionality of the information
vector is n=(Ml�2)(l+3).

Example 3 (Nonparametric density estimation). The
setting consists of an underlying probability density func-
tion g(x)=dP(x) over X, which is the target to be learned.
The target is assumed to be a member of a rich non-
parametric probability density class F. The data sample
consists of unlabeled examples xi # X, 1�i�m, drawn
according to P(x). The hypothesis class Hd is a probability
density function class of pseudo-dimension d<�. The loss
is defined as L2(h)=&g&h&L2(P) . The problem is to (=, $)-
learn the class Hd, i.e., output a hypothesis h� # Hd such
that L2(h� )�L*g, 2+=, with probability 1&$, where L*g, 2=
infh # Hd &g&h&L2(P) .

Linear partial information. A histogram density esti-
mate (cf, Devroye, Gyorfi, and Lugosi [9]) based on a
uniform partition ?n of X with equal-volume cells ci ,
1�i�n, of side s, i.e., of the type [k1 s, (k1+1) s)_ } } } _
[kls, (kl+1) s), for a multiinteger k # Z l

+ . The learner is
given partial information consisting of P(ci), 1�i�n. This
partial information can be represented by a linear operator
N : F � Rn taking the value N(g)=[P(c1), ..., P(cn)],
where P(ci)=�ci

g(x) dx is a linear functional of g.

In the previous example, a nonparametric histogram den-
sity estimator represented linear partial information about
the target probability density. In general, nonparametric
density estimation can be used in conjunction with
parametric estimation algorithms as a basis for learning
with partial information. Consider, for instance, the
problem of adaptive equalization in data communication.
Here the user's communication device is given only several
hundreds of milliseconds to learn the equalizer parameters
for the particular channel. It needs to relearn these param-
eters at the beginning of every communication session as
they depend on the channel which in turn depends on the
particular host computer's communication device, the con-
dition of the communication link, etc. Thus training needs
to be quick which restricts the algorithm to be of a
parametric estimation type. For supervised learning, a
parametric estimation method such as the least-mean-
square (LMS) algorithm which does gradient descent on a
quadratic loss surface is often used. The target to be learnt
corresponds to some parametric estimator of the optimal
equalizer. Partial information about a typical channel may
help the parametric training procedure in learning the
particular target equalizer corresponding to a specific
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session. Protocol handshaking between the devices on both
ends provides the supervised sample which is restricted to
be small due to the learning time limitation. In this problem,
partial information can be injected through running a non-
parametric density estimation algorithm in the background.
This long-term learning algorithm has access to a much
larger unsupervised random sample which is accumulated
over numerous communication sessions during the opera-
tional history of the user's device. The session-dependent
parametric learning algorithm can peek any time at the
current version of this nonparametric estimate (for instance,
a histogram estimate) and use it as partial information. This
means that the sample size and, hence the training time
needed by the parametric algorithm may be significantly
reduced.

The previous examples included finite dimensional
parametric target classes, as well as infinite dimensional
nonparametric target classes, while the hypothesis classes
were all of finite pseudo-dimension. This ensured that a
hypothesis h� with a loss close to the optimal may be learnt,
based on a finite sample. It is intuitive that increasing the
amount of partial information, as given in the various forms
above, should make the loss of h� be closer to zero (the
absolute optimal) regardless of the richness of the target
class F.

The focus of this paper is to show that partial information
allows extending the notion of PAC-learnability to target
classes which are richer than the ones considered by the
classical PAC framework, in particular, target classes
having infinite pseudo-dimension. With the framework
to be introduced in the next section, learnability is no
longer restricted to a hypothesis class H as in Defini-
tion 1 but holds for the actual target class F. A learner
of finite capacity (i.e., possessing a hypothesis class of finite
pseudo-dimension) is able to learn rich function classes
(of infinite pseudo-dimension) using a finite sample and a
finite amount of partial information. He may determine a
hypothesis h� with a loss Lq(h� ) arbitrarily close to zero
with arbitrarily high confidence. Based on this theoretical
framework it is possible to quantitatively compare the value
of partial information versus that of information contained
in the random sample.

2. THE FRAMEWORK

The branch of the field of computational complexity
known as information based complexity cf. Traub,
Wasilkowski, and Wozniakowski [30] deals with the
intrinsic difficulty of providing approximate solutions to
problems for which information is partial, noisy, or costly.
We borrow some of their definitions as applied to problems
of approximating a general target function class F. Let
Nn : F � Rn denote a general information operator. The
information Nn(g) consists of n real-valued measurements
taken on the target function g, or in general, any function
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f # F, i.e.,

Nn( f )=[Q1( f ), ..., Qn( f )],



H

where Qi ( ), 1�i�n, are functionals over F. We call n the
cardinality of information and sometimes omit n and write
N( f ). The variable y denotes an element in Nn(F). The sub-
set Fy=N &1

n ( y)/F denotes all functions f # F which
share the same information vector y, i.e.

Fy=[ f # F : Nn( f )= y].

We denote by N &1
n (Nn(g)) the solution set which may also

be written as [ f # F : Nn( f )=Nn(g)], which consists
of all indistinguishable functions f # F sharing the same
information vector as the target g.

Information about g is represented by a partition 6Nn
(F)

of F as

6Nn
(F)= .

y # Rn

Fy .

Denote the distance between two function classes A and B

by dist(A, B, Lq)=sup[a # A] inf[b # B] &a&b&Lq
for any

q�1.
Following the discussion in Section 1, we now present a

sequence of definitions of entities which are analogous to
those used in Definition 1, the main aim being to control the
optimal loss L*g, q in the PAC-learning setting to an extent
which it can be arbitrarily small, regardless of whether the
target class F has finite or infinite pseudo-dimension.

We start with the analog of an hypothesis class H which
we define as a family Gd=[Hd : dimp (Hd)=d] of all
hypothesis classes of pseudo-dimension d. We define a
target subset Fy # 6N(F) which is analogous to the fixed
target g in Definition 1. The loss Lq(h) of a hypothesis h has
the following analog:

Definition 3 (Loss of a class Hd). Fix a target subset
Fy /F. The loss of Hd is

Lq(H
d)=dist(Fy , Hd, Lq).

Remark. As was the case for the loss of a hypothesis
function whose notation depended implicitly on the target
g, here in the case of the loss of a class Hd we also suppress
the dependency on the target subset Fy .

The next definition is analogous to the optimal
hypothesis loss L*g, q for a fixed target g.

Definition 4 (Optimal class-loss). For a fixed target
subset Fy /F and fixed positive integer d<�, define the
optimal class loss as
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L*y, d, q= inf
[Hd # Gd ]

Lq(Hd).
Definition 5 (Loss of a partition). For a fixed positive
integer d<�, a fixed information operator N, define the
loss of a partition 6N(F) as the loss of the worst subset in
the partition, i.e.,

Ld
q(6N)=sup

y
L*y, d, q .

Remark. We will also refer to Ld
q(6N) as the loss of the

information operator N.

Following the framework of information-based com-
plexity (cf Traub et. al, [30])), we henceforth limit to linear
information operators. A linear information operator N : F

� Rn is a linear mapping satisfying N(:f +;f $)=:N( f )+
;N( f $) for any f, f $ # F. The notion defined next is
analogous to the condition for (=, $)-learnability of H in
Definition 1.

Definition 6 ((d, =)-approximability). A target class F

is (d, =) -approximable if for any fixed integer d<�, for all
=>0, and for some n(=)<� there exists a linear informa-
tion operator N� n(=) such that the partition 6N� n

(F) has a
loss,

Ld
q(6N� n

)�=.

It may seem at first that Definition 6 reduces the com-
plexity or richness of the target class F. This is not the case
since F can still be rich with possibly an infinite pseudo-
dimension. It is a partition 6N� n

with large enough, but finite,
n which makes F be (d, =)-approximable with a finite d.

The next theorem follows directly from the above
definitions and from the fact that a class Hd of finite
pseudo-dimension d is PAC-learnable.

Theorem 1 (PAC-learnability of F). If a target class F

is (d, =)-approximable then for any fixed integer d>0, for
all accuracy =>0, and for confidence parameter 0<$<1,
there exists a continuous information operator N� n such that
for any target function g # F, based on partial information
N� n(g) of finite cardinality n(=) and on a finite i.i.d. sample
[(xi , g(xi))]m(=, $)

i=1 , an algorithm can determine an hypothesis
h� in some class H� d of pseudo-dimension d such that

Lq(h� )�=

with probability 1&$.

Remark. Compare the statement of the theorem to the
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classical PAC-model's guarantee of Lq(h� )�L*g, q+= (see
Definition 1). In Theorem 1, hypothesis h� has a loss which
is arbitrarily close to zero.



Thus while the classical notion of PAC-learnability
applies only to hypothesis classes H of finite pseudo-dimen-
sion, the new notion of PAC-learnability applies to any
general target class F as long as F is (d, =)-approximable.
The elegance comes from the fact that the basis for the infor-
mation-based simplification of F (into any subset Fy #
6N(F)), which allows a class of pseudo-dimension d to
approximate it arbitrarily well, is a finite amount of partial
information represented by a form general enough to fit
many types of learning settings. One can conceive other
means of simplification, for instance, decomposing F into
an infinite structure �d�1 H d of hypothesis classes of finite
pseudo-dimensions but here the notion of partial informa-
tion would have to be in terms of a teacher pointing to one
such class. This is too strong of a constraint on the type of
information that may be used. In contrast, by appealing to
the theory of information-based complexity, one obtains a
quantitative information representation which adheres to a
wide array of learning settings.

Note that in all the above definitions the variable d
appears as an arbitrary finite parameter. Depending on the
particular learning setting, the pseudo-dimension of the
hypothesis class is either fixed or allowed to vary as in the
case of a structure [Hd]�

d=1 . In either case only m and n
need to depend on = and $ while d is left as a variable whose
value may be further optimized.

Definition 6 states the existence of an information
operator N� based on which F can be (d, =)-approximable.
There may be many such operators. Is there a notion of an
optimal partial information operator? It may be defined as
follows.

Definition 7 (Optimal partition-loss). For a fixed
target class F, fixed positive integers n and d, define the
minimal partition-loss to be

In, d, q(F)=inf
Nn

Ld
q(6Nn

(F)),

where Nn runs over all linear information operators
Nn : F � Rn of cardinality n.

We will refer to In, d, q(F ) as the minimal information error
of the problem of PAC-learning F.

3. THE MINIMAL INFORMATION ERROR

For a target class F, the quantity In, d, q(F ) measures the
minimal approximation error of the worst-case element in
the target class given optimal partial information about it
expressed, as n linear operations and given that the
approximating class is of pseudo-dimension d.
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The importance of In, d, q arises from the following: First,
it permits finding or estimating the most efficient form of
partial information for learning, namely, that whose loss
equals or almost equals the information error In, d, q . For
this, one needs to obtain both upper and lower bounds on
In, d, q . The tighter the estimation the better the information
operator whose loss achieves the upper bound.

Second, In, d, q permits a quantitative measure for the
value of partial information for learning from examples. If
we denote by N*n the operator whose associated partition
has a loss Ld

q(6
n*
(F ))=In, d, q then by Definition 5 for

any g # F there exists an hypothesis class H*d
y and

an hypothesis h*y # H*d
y , both depending on y=

N*n(g), such that Lq(h*y)�In, d, q . Let 2#2(m, d, $)=
c1 - (d log2 d ln m+ln(1�$))�m, the right side being an
upper bound on the deviation between the empirical loss
L� q(h) and the loss Lq(h) uniformly over all h # H*d

y , which
holds for any fixed q�1 and follows from a uniform SLLN
result of Vapnik and Chervonenkis [32] (see Theorem 4 in
[25]) using the fact that dimp(H*d

y )=d<�. Then using
N* and H*d

y for the choice of N� and H� d, respectively in
Theorem 1 implies that for fixed n, d�1, for any target
g # F, an algorithm which minimizes the empirical loss
obtains an hypothesis h� with a loss,

Lq(h� )�L� q(h� )+
2
2

�L� q(h*y)+
2
2

�Lq(h*y)+2

�In, d, q+2(m, d, $). (1)

For any fixed d, fixing m+n at some constant value and
minimizing the upper bound with respect to m and n yields
the optimal m* and n*. The value of partial information in
terms of the number of training examples is reflected in the
rate in which m* grows with respect to n*.

Third, In, d, q must decrease with respect to d as for any
y # Rn the loss Lq(Hd)=dist(Fy , Hd, Lq) decreases while
2(m, d, $) increases with respect to increasing d. Hence, in
case the learner has an available hypothesis class structure
[H d

y]y # Rn, d # Z+
then there exists an optimal value d* which

minimizes the upper bound on Lq(h� ). This in turns implies
that, based on a finite amount of partial information and
a finite sample size, in choosing the hypothesis h� , one
should select a hypothesis class (or model) of optimal
complexity d*.

In the next section we apply the learning framework to
the problem of learning a Sobolev target class of the form

W r, l
p =[ f : &Dkf &Lp([0, 1]l)�1, k : k1+ } } } kl�r], p�1,

where Dkf =(�k1+ } } } +kl)�(�xk1
1 } } } �xkl

l ) f and & f &Lp[0, 1]l=
(�[0, 1]l | f | p)1�p). This family [W r, l

p ]p�1 corresponds to rich
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infinite dimensional classes with smoothness parameter r.
We estimate In, d, q(W r, l

p ) for general q satisfying 1�q�
p��.
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4. PAC-LEARNING A SOBOLEV TARGET CLASS

The general Sobolev class W r, l
p defined in the previous

section plays a principal role in the field of approximation
theory. The degree (or rate) of approximation of W r, l

p by
classes of finite pseudo-dimension has been recently studied
in Maiorov and Ratsaby [19]; see also [20]. The degree of
approximation of many other target classes can be derived
from these results using the well-known embedding charac-
teristics of Sobolev spaces (see, for instance, Adams [4]).

In this section we prove that W r, l
p which has an infinite

pseudo-dimension, is PAC-learnable in the sense of
Theorem 1. The proof is based on constructing a linear
operator N� n and a family of hypothesis classes [H� d

y]y # Rn

such that for any =>0, the class W r, l
p is (d, =�2)-approx-

imable based on a finite information cardinality n(=�2).
This is equivalent to saying that the loss Ld

q(6N� n
(W r, l

p ))�
=�2, for any =>0 which in turn implies that for any target
function g # W r, l

p , there is an hypothesis class H� d
y , depend-

ing on y=N� n(g), which contains an optimal hypothesis h*y
with an optimal loss L*g, d, q�=�2. As H� d

y is of pseudo-dimen-
sion d<�, it is PAC-learnable; hence by (1), for arbitrary
=>0 and 0<$<1, Lq(h� )&L*g, d, q�2 suph # H� d

y
|Lq(h)&

L� q(h)|=2(m, d, $) and is bounded from above by =�2, with
probability 1&$, provided that the randomly drawn i.i.d.
sample is of a large enough size m(=, $, d). It then follows
that for any g # W r, l

p there exists an hypothesis h� satisfying
Lq(h� )�= which may be determined, based on finite sample
size m and information cardinality n, thereby proving the
PAC-learnability of W r, l

p .
The dependence of = on m is already known from the

SLLN upper bound. We now estimate its dependence on n
by obtaining an upper bound on In, d, q(W r, l

p ). We also
obtain a lower bound on In, d, q(W r, l

p ) which reflects on the
goodness of the particular information operator used for the
upper bound.

Theorem 2 (Minimal information error of W r, l
p ). For

any 1�q�p�� and for n�c2>1, d�1, the minimal
information error for a Sobolev target class W r, l

p is bounded
as

c3

(d+n ln n)r�l�In, d, q(W r, l
p )�

c4

(n+d )r�l

for some constants c2 , c3 , c4>0 independent of n and d.

Proof. From the previous series of definitions we have

In, d, q (W r, l
p )=inf

Nn

sup
y # Rn

inf
Hd

sup
f # W p

r, l
& Nn

&1( y)

inf
h # Hd

& f&h&Lq
.
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To obtain an upper bound, it suffices to consider a
particular information operator N� n and a particular
hypothesis class H� d

y which may depend on y. The proof is
the same as that of Lemma 6 in [25] which treats only the
case of W r, l

� . For any y # Rn, we define H� d
y=[�n

i=1 y i ,i (x)
+�n+d

i=n+1 ai,i (x) : ai # R], where [,i]n+d
i=1 are piecewise

polynomials of degree at most r&1 over a uniform cubi
cal partition of the domain [0, 1]l. We let N� n( f )=
[b1( f ), ..., bn( f )], where bi , 1�i�n, are the coefficients of
the projection of f onto the linear subspace spanned by the
basis [,i]n

i=1 . Thus, for any target g # W r, l
p , if we let y=

N� n(g) then the optimal hypothesis h*y # H� d
y is �n+d

i=1 bi (g)
,i (x). Then using a result of Birman and Solomjak
[7, Theorem 3.3], concerning spline approximation which
states that supf # Wp

r, l & f&�n+d
i=1 bi (g) ,i (x)&Lq

�c4�(n+d)r�l

yields the upper bound on In, d, q(W r, l
p ).

The proof of the lower bound follows next. Since W r, l
� /

W r, l
p for p�1 and since & f &L1

�& f &Lq
, q�1, then

In, d, q(W r, l
p )�In, d, 1(W r, l

� ). It then suffices to consider a sub-
set of W r, l

� and compute the minimal information error for
it. We construct this subset next. For y # R, let ,( y) be any
function in W r, 1

� which satisfies |,( y)|�1, ,( y)=0 for
y � [0, 1], ,(0)=,(1)=0, ,( 1

2)=1. Let m be a fixed
positive integer and m~ =m1�l. Let D=[0, 1, ..., m~ &1] l. For
x # Rl, @� =[i1 , i2 , ..., il] # D define the function , @� (x) :
> l

j=1 , ij
(x j), where for y # R, ,ij

( y)=,(m~ y&ij), 0�ij�
m~ &1, 1� j�d. Define the set of uniformly spaced m points
[x@� ] @� # D in [0, 1] l as x@� =(1�m~ )[i1+ 1

2 , i2+ 1
2 , ..., id+ 1

2].
Consider the function subclass

Fm={fa(x)=
1

mr�l :
@� # D

a@� , @� (x) : &a& lm
�

�1= ,

where &a&l m
�

=max@� # D a@� . We now prove that Fm /W r, l
� .

For a multiinteger : # Zl
+ , satisfying |:|=� l

i=1 : i�r,
denote by f (:) the partial derivative of order :. Denote by
x@� , j the j th component of x @� and let 2@� =[x # [0, 1] l:
x@� , j&

1
2�x j�x@� , j+

1
2 , 1� j�l]. We have

sup
x # [0, 1]l

| f (:)
a (x)|

=
1

mr�l sup
x # [0, 1]l } :

@� # D

a @� , (:)
@� (x)}

=
1

mr�l max
}� # D

sup
x # 2}�

} :
@� # D

a@� , (:)
@� (x)}

=
1

mr�l max
}� # D

sup
x # 2}�

|a}� , (:)
}� (x)|

=
1

mr�l max
}� # D

|a}� | sup
x # 2}�

|, (:)
}� (x)|

1 (: )
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=
mr�l max

}� # D
|a}� | sup

x # 2}�

|, 1 (m~ x1& j1)

_,(:2)(m~ x2& j2) } } } ,(:l )(m~ xl& jl)|



=
1

mr�l max
}�

|a}� | m~ r sup
x # [0, 1]l

|,(:)(x)|

� sup
x # [0, 1]l

|,(:)(x)|�1.

The last line follows, since by assumption, , # W r, 1
� . This

proves that fa # W r, l
� , for any fa # Fm .

We proceed with bounding In, d, 1(Fm) from below. First
we state and prove the following lemma. We will henceforth
denote by Em=[&1, +1]m.

Lemma 1. Let m�1, n�160 be integers satisfying
m�2100n ln n. For any subspace Qn/Rm of co-dimension n
there exists a subset V n/Em, of cardinality |Vn|�2#m such
that for every v # Vn, dist(v, Qn, lm

1 )�:m, where 1
2<#<1,

0<:<1 are absolute constants.

The proof of the lemma follows: The square of the lm
2 -

distance between any vertex v # Em and the subspace Qn is
the squared norm of the projection of v onto the n-dimen-
sional subspace Qn orthogonal to Qn. The latter is the sum
squared of the norm of the dot products of v with n ortho-
gonal vectors u i , 1�i�n, which span Qn . We estimate the
number of vertices in Em whose distance from Qn is no more
than : - m in the lm

2 . Draw uniformly a vertex v # Em by
picking its i th component, 1�i�m, from [&1, +1] with
probability 1

2 . Then we obtain P(v # Em: dist(v, Qn, lm
2 )>

: - m)��n
i=1 P( |(v, u i)| )>: - m�- n) which for :=0.047

is bounded from above by 2ne&m:2�4n by using a standard
application of Chebychev's inequality applied to a weighted
sum of i.i.d. Bernoulli random variables. Using the ine-
quality &a&l

2
m�- m &a&l

2
m for any a # Rm, it then follows

that, there are at least 2m(1&2(1�n)2100:2�4&1) vertices
in Em whose distance from Qn in the lm

1 -metric is less
than :m, given that m�2100n ln n. For n�160, 2m(1&
2(1�n)2100:2�4&1)�2#m for #=0.986, which proves the
lemma. K

Consider the subspace Fm & N &1
n (0) of co-dimension

n and denote by Qn its corresponding subspace of co-
dimension n in Rm. Define the set of functions Fm(Vn)=
[ fv # Fm : v # Vn], where Vn is as defined in Lemma 1. We
claim the following:

sup
fv # Fm(V n)

dist( fv , Hd, L1)

� sup
fa # Fm & Nn

&1(0)

dist( fa , H d, L1)+
c

mr�l

for an absolute constant c>0. The proof follows next. Let
v̂ # Vn be such that dist( f v̂ , Hd, L1)=supfv # Fm(Vn) dist
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( fv , Hd, L1). Let Bm
�=[a # Rm : &a& lm

�
�1]. Let â # Qn &

Bm
� be such that dist(v̂, â, L1)=dist(v̂, Qn & Bm

� , L1),
namely, â is the closest vector in Qn & Bm

� to v̂. We define the
augmented approximating class H d
0 to be Hd _ [0] which

amounts to adding the zero element. It is straightforward to
show that the pseudo-dimension of H d

0 is d. Then we have

sup
fv # Fm(V n)

dist( fv , H d
0 , L1)

=dist( f v̂ , H d
0 , L1)

=dist( f â+( f v̂& fâ), H d
0 , L1)

�dist( f â , H d
0)+dist( f v̂& f â , H d

0 , L1)

�dist( f â , H d
0)+& f v̂& f â&L1

� sup
fa # Fm & Nn

&1(0)

dist( fa , H d, L1)+& f v̂& fâ&L1

where for the second inequality we used dist( f v̂& fâ ,
H d

0 , L1)�dist( f v̂& fâ , 0, L1)=& f v̂& fâ &L1
. We have

& f v̂& fâ&L1

=
1

mr�l |
[0, 1]d } :

@� # D

(â@� &v̂@� ) ,@� (x)} dx

=\ 1
mr�l |

2 } `
d

j=1

,(m~ xj)} dx+ :
@� # D

|â@� &v̂@� |

=
1

mr�l+1 \|
1

0
|,( y)| dy+

d

&â&v̂&l
1
m

=
1

mr�l+1 &â&v̂&l1
m . (2)

Let a* be the closest vector in Qn to v̂. Then by the triangle
inequality we have &v̂&â&�&v̂&a*&+&a*&â&, the first
term on the right being dist(v̂, Qn, lm

1 ) which by Lemma 1 is
bounded from above by :m, provided that we henceforth
choose m�2100n ln n. The second term on the right can be
shown by a geometric argument to be bounded from above
by :$m for some absolute constant :$>0. We may now
bound (2) from above by c5 �mr�l for some absolute constant
c5>0, which proves the above claim, We may now continue
bounding In, d, 1(Fm) from below as follows:

In, d, 1(Fm)=inf
Nn

sup
y # Rn

inf
Hd

sup
f # Fm & Nn

&1( y)

inf
h # Hd

& f&h&L1

�inf
Nn

inf
H

d
0

sup
f # Fm & Nn

&1(0)

inf
h # H

d
0

& f&h&L1

�inf
Nn

inf
H

d
0

sup
fv # Fm(Vn)

dist( fv , H d
0 , L1)&

c5

mr�l . (3)

We now make use of a proof of Theorem 2 in [20] which
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establishes that for any subset K/Em of cardinality
|K|�2c6m for some absolute constant c6>0, there exists a
subset G/K such that for every u, v # G, u{v, we have



H

&u&v&l
1
m>2;m, ; a positive absolute constant, and |G|=

2c7m, where c7>0 a constant which depends only on # and
;. We apply this result by substituting the set Vn for K and
denoting the resulting 2;m-separated subset as Gn. Thus (3)
is now bounded from below by

inf
Nn

inf
H

d
0

sup
fv # Fm(Gn)

dist( fv , H d
0 , L1)&

c5

mr�l . (4)

In the proof of Theorem 1 in [19], it is shown that for a
class Fm(Gn), for any H d, supf # Fm(gn) dist( f, H d, L1)�
c8 �mr�l, provided m=c9d for some absolute constant c9>0.
We may therefore lower bound (4) by c10 �mr�l for some
absolute constant c10>0. Satisfying the above two con-
straints on m we substitute for m=c11(n ln n+d ) which
then proves the theorem. K

Let us now apply Theorem 1 for PAC-learning the class
W r, l

p . As mentioned in Section 2, based on In, d, q , one may
determine an upper bound on the loss of the hypothesis h�
obtained by PAC-learning the target class. Doing that
yields

Lq(h� )�In, d, q+2(m, d, $)

�
c4

(n+d )r�l+c1 �d log2 d ln m+ln(1�$)
m

for some constants c1 , c4>0 not depending on n, d, and m.
It is clear from this expression that W r, l

p is PAC-learnable;
i.e., for any =>0, 1�d<�, one can find finite m and n such
that the loss L(h� )�=. Interestingly enough for a fixed
sample size m and fixed information cardinality n there is an
optimal complexity

d*�c12 \{ rm

l - ln m=
2l�(l+2r)

&n+ , (5)

which minimizes the upper bound on the loss. Thus if a
structure of hypothesis classes [Hd]�

d=1 is available to
the learner then the best choice for a hypothesis class on
which the learner should run empirical loss minimization
is H d*.

Let us compute how n and m trade-off. Fixing d and m+n
at some constant values and then minimizing the upper
bound on Lq(h� ) over m and n yields m* and n*. When l<2r
we find that m* grows polynomially in n* at a rate no larger
than n*(1+r�l); i.e. roughly speaking, partial information
about the target g is worth a polynomial number of exam-
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ples. For l>2r, n* grows polynomially in m* at a rate no
larger than m*2�ln m*; i.e., information obtained from exam-
ples is worth a polynomial amount of partial information.
The lower and upper bounds on In, d, q(W r, l
p ) stated in

Theorem 2 are tight up to a logarithm factor in n; hence it
follows that partial information based on the particular
information operator N� n and family of hypothesis classes
[H� d

h]y # Rn almost achieves the loss of the optimal informa-
tion operator. Hence, for the classes W r, l

p , p�1, informa-
tion based on a linear projection onto a linear hypothesis
class H� d

y , as the one used in the proof of the upper bound
on In, d, q(W r, l

p ), is close to being optimal.

5. CONCLUSION

We introduced a theoretical framework which extends
the PAC model of learning to a scenario where a learner has
general partial information about the target function, in
addition to randomly drawn labeled examples. The frame-
work extends PAC learnability to rich target classes with
possibly infinite pseudo-dimension where now, in addition
to a finite random sample, a finite amount of information is
needed. For a family of Sobolev classes W r, l

p , p�1, it
is found that the value of partial information, as compared
to the sample size, depends on the ration of the smoothness
parameter r and the dimensionality of the domain l. More-
over, information based on a linear projection operator
onto a linear hypothesis class in determined to be almost
optimal as it achieves (up to a logarithm factor in n) the
lower bound on the error of the best linear information
operator for W r, l

p .
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