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Abstract

The Vapnik-Chervonenkis (VC) dimension and the Sauer-Shelah lemma have found
applications in numerous areas including set theory, combinatorial geometry, graph the-
ory and statistical learning theory. Estimation of the complexity of discrete structures
associated with the search space of algorithms often amounts to estimating the car-
dinality of a simpler class which is effectively induced by some restrictive property of
the search. In this paper we study the complexity of Boolean-function classes of finite
VC-dimension which satisfy a local ‘smoothness’ property expressed as having long runs
of repeated values. As in Sauer’s lemma, a bound is obtained on the cardinality of such
classes.

Keywords: Boolean functions, VC-dimension, Poisson approximation

1 Introduction

Let [n] = {1, . . . , n} and denote by 2[n] the class of all 2n functions h : [n] → {0, 1}. Let H be
a class of functions and for a set A = {x1, . . . , xk} ⊆ [n] denote by h|A = [h(x1), . . . , h(xk)].

A class H is said to shatter A if
∣

∣{h|A : h ∈ H}
∣

∣ = 2k. The Vapnik-Chervonenkis dimension
of H, denoted as V C(H), is defined as the cardinality of the largest set shattered by H.
The following well known result obtained by [18, 19, 21] states an upper bound on the
cardinality of classes H of VC-dimension d.

Lemma 1 (Sauer’s Lemma) For any 1 ≤ d < n let

S(n, d) =

d
∑

k=0

(

n

k

)

.

Then
max

H⊂2[n]:VC(H)=d
|H| = S(n, d).

∗A short version of the paper appeared at the Second International Workshop on Boolean Functions,
Cryptography and Applications (BFCA’06)
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More generally, the lemma holds for classes of finite VC-dimension on infinite domains.
Aside of being an interesting combinatorial result in set theory (see Chapter 17 in [7]),
Lemma 1 has been been extended in various directions notably [1, 2, 10, 13] and found
applications in numerous fields such as combinatorial geometry [15], graph theory [4, 14],
empirical processes [16] and statistical learning theory [8, 20]. In such areas, the complexity
of analysis of algorithms on discrete structures, for instance, searching for best approx-
imation of Boolean functions, typically reduces to the complexity of a simpler structure
constrained by some ‘smoothness’ property which is induced by the search.

Consider Boolean functions h : [n] → {0, 1}. For x ∈ [n], y ∈ {0, 1} define by ωh(x, y)
the largest 0 ≤ a ≤ n such that h(z) = y for all x−a ≤ z ≤ x+a; if no such a exists then let
ωh(x, y) = −1. We call this the width of h at x with respect to y. Denote by Ξ = [n]×{0, 1}.
For a sample ζ = {(xi, yi)}

`
i=1 ∈ Ξ`, define by ωζ(h) = min1≤i≤` ωh(xi, yi) the width of h

with respect to ζ. For instance, Figure 1 displays a sample ζ = {(x1, y1), (x2, y2)} and two
functions h1, h2 which have a width of 3 with respect to ζ.

In [17] we studied classes of Boolean functions that have a large width on a given fixed
sample ζ. In this paper we study the complexity of classes of Boolean functions constrained
by the width as follows:

HN (`) = {h ∈ H : ∃ ζ ∈ Ξ`, ωζ(h) > N}, ` ≥ 1, N ≥ 0 (1)

where for brevity the dependence of HN on H is left implicit. We obtain a bound (in the
form of Lemma 1) for such classes.

The novelty of the paper is both in the results and in the bounding technique. Realizing
that Boolean functions on [n] can be represented both as finite binary sequences as well as
finite sets in [n] enables to use techniques from probability analysis and set-theory. The
remainder of the paper is organized as follows: in the next section we state the main result.
Section 3 contains the proof.

2 Main Result

For a function h : [n] → {0, 1} let the difference function be defined as

δh(x) =

{

1 if h(x − 1) = h(x)
0 otherwise

where we assume that any h satisfies h(0) = 0 (see Figure 2). Define

DH ≡ {δh : h ∈ H}, (2)

or for brevity we write D. It is easy to see that the class D is in one-to-one correspondence
with H. It will be convenient to view a function h : [n] → {0, 1} as a binary sequence x(n)

of n bits X1, . . . ,Xn, where Xi ∈ {0, 1}, 1 ≤ i ≤ n. Denote by a k-run any subsequence in
x(n) of k consecutive ones or consecutive zeros (the runs may be overlapping). For instance,
suppose k = 3 then in the sequence x(n) = 01111100011 there are four k-runs. Let ζ ∈ Ξ`

then for any h ∈ H with ωζ(h) > N , there exist ` runs of length 2(N +1)+1 (of consecutive
0’s or consecutive 1’s) in the corresponding sequence x(n). This implies that the sequence
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corresponding to the difference function δh ∈ D has at least ` runs of consecutive 1’s of
length 2(N + 1). Letting

DN (`) ≡ {δ ∈ D : ∃ ` 2(N + 1)-runs of 1’s } (3)

for ` ≥ 1, N ≥ 0, then clearly
|HN (`)| ≤ |DN (`)|, (4)

where HN (`) is defined in (1) and is based on the class H corresponding to D. Our approach
will be to bound from above the cardinality of the corresponding class DN (`). We denote
by

VC∆(H) ≡ VC(D),

the VC-dimension of the difference class D = {δh : h ∈ H} and use it to characterize the
complexity of H. It can be easily shown that VC(D) ≤ cVC(H) for some small positive
absolute constant c. Denote by (n)k ≡ n(n − 1) · · · (n − k + 1) with (n)k = 0 if k > n. Let
(a)+ = a if a ≥ 0 and (a)+ = 0 otherwise. The following is the main result of the paper.

Theorem 1 Let 1 ≤ d, ` ≤ n, N ≥ 0. Then

max
H⊂2[n],VC∆(H)=d

|HN (`)| ≤ b
(`,N)
d (n)

where HN is dependent on H by its definition (1),

b
(`,N)
d (n) ≡

d
∑

i=0

(

n

i

)

η(n, 2(N + 1), `, n − i) (5)

and

η(n, k, `, r) =

(

(r − k + 1)+
n − k

)`

eλ(γ−1)

+ (n − k + 1)
pk−1

q

(

2pk−1

q

(

p

q
+ k + 1

)

+ 1

)

+
(r)n/2

(n)n/2
, (6)

with p = r/n, q = 1−p, λ = (n−r+1)(r)k/(n)k and γ = 2(n−r)(n−k)(r−k+1)/((n/2+
1)(r − k)).

To understand this bound, first note that the form of b
(`,N)
d (n) in (5) is similar to S(n, d)

(of Lemma 1) with an additional factor of η. For any fixed value of n and ` the function

b
(`,N)
d (n) decreases at an exponential rate with respect to the width parameter value N . As

an example, Figure 3 displays b
(`,N)
d (n) versus S(n, d) for various values of N with d = n0.6,

` = 0.3n (on a logarithmic scale). We now proceed with the proof of the theorem.

3 Proof of Theorem 1

For clarity, we split the proof into several subsections. We start by considering a class which
is defined as

D̂N (`) ≡ {δ : [n] → {0, 1} : #ones(δ) ≥ n − d,∃ ` 2(N + 1)-runs of 1’s } (7)

where 1 ≤ d, ` ≤ n and N ≥ 0. We have the following result:
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Lemma 2 Let 1 ≤ d ≤ n. Let D be any class of Boolean functions on [n] with VC(D) = d
and consider DN (`) ⊂ D as defined in (3). Then |DN (`)| ≤ |D̂N (`)|.

Proof: Complement each δ in D to obtain a new class D where VC(D) = VC(D) = d.
There is a one-to-one correspondence between elements δ of DN (`) and elements of the
class DN (`) = {δ ∈ D : ∃ ` 2(N + 1)-runs of 0’s} and clearly VC(DN (`)) ≤ d. So it suffices
to show that |DN (`)| ≤ |D̂N (`)|. Let F be the set system corresponding to DN (`) which is
defined as follows

F = {Aδ : δ ∈ DN (`)}, Aδ = {x ∈ [n] : δ(x) = 1}.

Clearly, |F| = |DN (`)|. Fix a δ ∈ DN (`) and consider the complement set Ac
δ ≡ [n] \ Aδ.

Since δ, by definition, has at least ` 2(N +1)-runs of 0’s then Aδ has the following property
PN : there exist ` subsets Ej ⊆ Ac

δ, of consecutive elements ij , ij + 1, . . . , ij + 2N + 1 ∈ [n]
with |Ej | = 2(N + 1), 1 ≤ j ≤ `. Hence for every element A ∈ F , A satisfies PN and
this is denoted by A |= PN . Define GF (k) = max{|{A ∩ E : A ∈ F}| : E ⊆ [n], |E| = k}.
The corresponding notion of VC-dimension for a class F of sets is the the so-called trace
number [7, p.131] which is defined as tr(F) = max{m : GF (m) = 2m}. Clearly, tr(F) =
V C(DN (`)) ≤ d.

The proof proceeds as in the proof of Sauer’s lemma [3, Theorem 3.6] which is based
on the shifting method [see 7, Ch. 17, Theorem 1 & 4] [see also 10, 11, 12]. The idea is to
transform F into F0 which is an ideal family of sets E, i.e., if E ∈ F0 then S ∈ F0 for every
S ⊂ E, and such that |F| = |F0| ≤ |D̂N (`)|.

Start by defining the operator Tx on F which removes an element x ∈ [n] from every
set A ∈ F provided that this does not duplicate any existing set. It is defined as follows:

Tx(F) = {A \ {x} : A ∈ F} ∪ {A ∈ F : A \ {x} ∈ F}.

Consider now
F0 = T1(T2(· · ·Tn(F) · · · ))

and denote the corresponding function class by D0. Clearly, |D0| = |F0|.
Now, |F0| = |F| since the only time that the operator Tx changes an element A into

a different set A∗ = Tx(A) is when A∗ does not already exist in the class so no additional
element in the new class can be created.

It is also clear that for all x ∈ [n], Tx(F0) = F0 since for each E ∈ F0 there exists a G
that differs from it on exactly one element hence it is not possible to remove any element
x ∈ [n] from all sets without creating a duplicate. Applying this repeatedly implies that F0

is an ideal. Furthermore, since for all A ∈ F , A |= PN , then removing an element x from A
which is equivalent to adding it to Ac, still leaves A \ {x} |= PN . Hence for all E ∈ F0 we
have E |= PN .

Now, from Lemma 3 [7, p.133] we have GF0(k) ≤ GF (k), for all 1 ≤ k ≤ n. Hence,
since tr(F) ≤ d then tr(F0) ≤ d and since F0 is an ideal then it follows that for all E ∈ F0,
|E| ≤ d. Combined with the fact that for all E ∈ F0, E |= PN then it follows that the
corresponding function class D0 satisfies the following: for all δ ∈ D0, δ has at most d 1’s
and there exist ` 2(N + 1)-runs of 0’s. It follows that the class D0 = {1 − δ : δ ∈ D0},
whose cardinality equals that of D0, has every δ ∈ D0 with at least n − d 1’s and at least `

4



2(N + 1)-runs of 1’s. From the above, |DN (`)| = |DN (`)| = |F| = |F0| = |D0| = |D0| and
from (7) we have |D0| ≤ |D̂N (`)|. This proves the statement of the lemma. �

In order to prove Theorem 1 it suffices to show that |D̂N (`)| ≤ b
(`,N)
d (n). We proceed

to obtain a bound on |D̂N (`)|.

3.1 Fixing the number of ones

For a sequence x(n) let #runsk(x
(n)) denote the number of k-runs of consecutive 1’s in x(n).

Fix n and d and consider the set of sequences

D̂k,` = {x(n) : #runsk(x
(n)) ≥ `,#ones(x(n)) ≥ n − d}. (8)

We proceed to derive an upper bound on |D̂k,`|. For any 1 ≤ α ≤ n − k + 1, denote by

Wα =

α+k−1
∏

i=α

Xi.

Clearly, Wα equals 1 if and only if there is a k-run of 1′s starting at Xα. Denote by

D̂(r) = {x(n) : #ones(x(n)) = r} (9)

and let P be a uniform probability law on D̂(r) with

P(x(n)) =
1
(n

r

) , x(n) ∈ D̂(r). (10)

It is clear that under this law the random variables Wα, 1 ≤ α ≤ n− k + 1, are dependent.
The expected value of Wα is

EWα = P(Wα = 1)

= P (Xα = · · · = Xα+k−1 = 1) . (11)

The probability in (11) equals the number of sequences in D̂(r) which have Xα = · · · =
Xα+k−1 = 1, divided by |D̂(r)|. There are

(

n−k
r−k

)

such sequences hence the probability is

P (Xα = · · · = Xα+k−1 = 1) =

(n−k
r−k

)

(n
r

) , k ≤ r (12)

and the probability is zero otherwise. We have
(

n − k

r − k

)

/

(

n

r

)

=
(r)k
(n)k

≡ πk (13)

where (a)k denotes a(a − 1) · · · (a − (k − 1)).
The sum

#runsk(x
(n)) =

n−k+1
∑

α=1

Wα

may be approximated by a Poisson random variable Zλ with a mean of (n− k + 1)πk. The
Chen-Stein method [5] may be used to upper bound the approximation error. Unfortunately,
for our use, the bound does not decrease fast enough with respect to the run-length k.
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3.2 Compound Poisson

A more accurate approximation of #runsk(x
(n)) is by a compound Poisson random variable

[6, Section 3.1]. Let N denote the positive integers.

Definition 1 Let M be a Poisson random variable with mean λ. Let Xi, 1 ≤ i ≤ M ,
be mutually independent random variables defined on N, independent of M and identically
distributed according to a probability distribution µ. Then the sum

∑M
i=1 Xi is distributed

according to a compound Poisson distribution CP (λ, µ).

The idea now is to represent #runsk(x
(n)) as a sum of a random number of clumps

where a clump starting at α has a consecutive run of at least k 1′s followed by a zero, for
instance, 000111110101111 has a clump of length 6 starting at the 4th bit.

In order to pick out the start of a clump at α we define

Yα =

{

(1 − Xα−1)Wα, α = 2, . . . , n − k + 1,
Wα, α = 1,

i.e., Yα indicates that a run of 1′s of length at least k starts at α where there is no need to
consider α > n − k + 1 since such a clump cannot exist there.

Define R as

R =
n−k+1
∑

α=1

Yα.

Hence R counts the number of such clumps. Its expected value is

ER =

(

(n − k)

(

n − k − 1

r − k

)

+

(

n − k

r − k

))

/

(

n

r

)

= πk (n − r + 1) . (14)

Since Yα are (dependent) Bernoulli with small P (Yα = 1) ≤ πk, with increasing n, if k and
r increase at a rate such that ER → λ then it easy to show using the Stein-Chen method
[see for instance 5] that R may be approximated by a Poisson random variable with mean
λ.

Next define

Yα,l =

{

(1 − Xα−1)Xα · · ·Xα+k+l−2(1 − Xα+k+l−1), 2 ≤ α ≤ n − k + 1
Xα · · ·Xα+k+l−2(1 − Xα+k+l−1), α = 1.

(15)

We may now express the number of k-runs as

#runsk(x
(n)) =

n−k+1
∑

α=1

∑

l≥1

lYα,l (16)

where the inner sum equals the size of a clump starting at α since every clump has only
one unique indicator Yα,l which equals 1 only when l is the size of the clump at α.
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3.3 Truncating the sum

We continue now to estimate the cardinality of the set D̂k,` defined in (8). Let

D̂
(r)
k,` ≡ {x(n) : #runsk(x

(n)) ≥ `,#ones(x(n)) = r} (17)

where D̂
(r)
k,` = ∅ if r < k + ` − 1. Then

|D̂k,`| =

n
∑

r=n−d

|D̂
(r)
k,` |.

Clearly, by (10), the cardinality of D̂
(r)
k,` can be expressed as

|D̂
(r)
k,`| =

(

n

r

)

P
(

#runsk(x
(n)) ≥ `

)

. (18)

Let us simplify and limit the range of the clump size detected by the indicators Yα,l to be
1 ≤ l ≤ n/2 − k − 1. The sum of (16) thus becomes a restricted sum which we denote by

W ∗ =
n−k+1
∑

α=1

n/2−k−1
∑

l=1

lYα,l (19)

and, writing the dependence on x(n) explicitly, we have

W ∗(x(n)) = #runsk(x
(n)) −

n−k+1
∑

α=1

n−k
∑

l=n/2−k

lYα,l.

For two random variables X,Y defined on a discrete space Ω, the total variation distance
between the probability distribution of X and Y is defined as

dist(X,Y ) = sup
A∈Ω

|PX(A) − PY (A)|

which for non-negative random variables X,Y with Ω = {0, 1, . . .} amounts to dist(X,Y ) =
1
2

∑∞
j=0 |PX(j) − PY (j)| . Denote by B = {x(n) ∈ D̂(r) : @ clump of size > n/2 − k − 1}.

Then, for x(n) randomly distributed according to (10), we have

dist(W ∗(x(n)),#runsk(x
(n))) = sup

A⊂N

∣

∣

∣P(W ∗(x(n)) ∈ A) − P(#runsk(x
(n)) ∈ A)

∣

∣

∣

= sup
A⊂N

∣

∣

∣

(

P(W ∗(x(n)) ∈ A|x(n) ∈ B) − P(#runsk(x
(n)) ∈ A|x(n) ∈ B)

)

P(x(n) ∈ B)

+
(

P(W ∗(x(n)) ∈ A|x(n) 6∈ B) − P(#runsk(x
(n)) ∈ A|x(n) 6∈ B)

)

P(x(n) 6∈ B)
∣

∣

∣

≤ sup
A⊂N

∣

∣

∣P(W ∗(x(n)) ∈ A|x(n) ∈ B) − P(#runsk(x
(n)) ∈ A|x(n) ∈ B)

∣

∣

∣P(x(n) ∈ B)

(20)

+ sup
A⊂N

∣

∣

∣P(W ∗(x(n)) ∈ A|x(n) 6∈ B) − P(#runsk(x
(n)) ∈ A|x(n) 6∈ B)

∣

∣

∣P(x(n) 6∈ B).

(21)
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For x(n) ∈ B, W ∗(x(n)) = #runsk(x
(n)) thus (20) equals zero. Now,

P(x(n) 6∈ B) = P(x(n) 6∈ B) ≤

(n−n/2
r−n/2

)

(n
r

) = πn/2

where πk is defined in (13) and a clump of size greater than n/2 − k − 1 has at least n/2
ones. So (21) is bounded from above by πn/2 and we have

dist(W ∗(x(n)),#runsk(x
(n))) ≤ πn/2. (22)

We may therefore continue and bound (18) from above as

|D̂
(r)
k,` | ≤

(

n

r

)

(

P
(

W ∗(x(n)) ≥ `
)

+ πn/2

)

. (23)

3.4 Stein-Chen bound

The following result is based on Stein’s method for Poisson process approximation [6, Section
2.1].

Lemma 3 [6, CPA PP] Let Γ be an index set. Let Iγ,l be an indicator of a clump of l
events which occurs at γ ∈ Γ , l ≥ 1. Let B(γ, l) ⊂ Γ × N be a set containing {γ} × N and
let

b1 =
∑

(γ,l)∈Γ×N

∑

(β,j)∈B(γ,l)

EIγ,lEIβ,j

b2 =
∑

(γ,l)∈Γ×N

∑

(β, j) ∈ B(γ, l)
(β, j) 6= (γ, l)

E (Iγ,lIβ,j) (24)

and
b3 =

∑

(γ,l)∈Γ×N

E
∣

∣E
(

Iγ,l − E
(

Iγ,l

∣

∣σ (Iβ,j; (β, j) 6∈ B(γ, l))
))∣

∣ (25)

where σ (Iβ,j; (β, j) 6∈ B(γ, l)) denotes the σ-field of events generated by the random variables
Iβ,j outside B(γ, l). Let

W =
∑

γ∈Γ

∑

l≥1

lIγ,l

and let
M =

∑

γ∈Γ

∑

l≥1

Iγ,l

be the total number of clumps. Let λ ≡ EM and define the probability distribution µ on N
as

µ(l) ≡ λ−1
∑

γ∈Γ

EIγ,l,

l ≥ 1. Then
dist(W,Zλ,µ) ≤ b1 + b2 + b3

where Zλ,µ is a Compound Poisson random variable distributed as CP (λ, µ).
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We now use this lemma by letting

Γ = {1, . . . , n − k + 1},

considering the variables Yα,l as the indicators Iγ,l, the total number of clumps R as M and
W ∗ as W . Thus from (14) we have

λ = ER = πk(n − r + 1). (26)

For 1 ≤ l ≤ r − k + 1 we have

∑

α

EYα,l = EY1,l +
n−k+1
∑

α=2

EYα,l

=

(

n−k−l
r−k−(l−1)

)

(n
r

) + (n − k)

(

n−k−l−1
r−k−(l−1)

)

(n
r

)

=

(

rk+l

nk+l

)(

n − r

r − k − l + 1

)

+
rk+l+1

nk+l+1

(n − k)(n − r)(n − r − 1)

(r − k − l + 1)(r − k − l)

(27)

and hence according to the lemma

µ(l) =
1

πk(n − r + 1)

n−k+1
∑

α=1

EYα,l

=
(n)k

(r)k(n − r + 1)

(

(r)k+l

(n)k+l

n − r

r − k − l + 1
+

(r)k+l+1

(n)k+l+1

(n − k)(n − r)(n − r − 1)

(r − k − l + 1)(r − k − l)

)

=

(

(r − k)l−1

(n − k)l−1

)

n − r

(n − r + 1)(n − k − (l − 1))

(

1 +
(n − r − 1)(n − k)

n − (k + l)

)

.

(28)

3.5 Approximation error

By its definition (19), the sum W ∗ may be approximated as a compound Poisson random
variable. Applying Lemma 3 we obtain

P(W ∗(x(n)) ≥ `) ≤ P(Zλ,µ ≥ `) + ε(n, k, r) (29)

where Zλ,µ is a compound Poisson random variable with λ and µ as in (26) and (28),
respectively, and ε(n, k, r) = b1 + b2 + b3 as in Lemma 3. Let us now explicitly express
ε(n, k, r). Let

L = {1, 2, . . . , n/2 − k − 1} (30)

and
B(γ, l) = {(β, j) : j ∈ L, γ − k − j ≤ β ≤ γ + k + l}.

We have
b1 =

∑

γ∈Γ,l∈L

∑

(β,j)∈B(γ,l)

EYγ,lEYβ,j. (31)
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We have from (15),

EYα,l =



















( n−k−l
r−k−(l−1))

(n
r)

, α = 1

( n−k−l−1
r−k−(l−1))

(n
r)

, 2 ≤ α ≤ n − k + 1,

(32)

thus we may use as a bound on

EYα,l ≤ EY1,l, (33)

1 ≤ α ≤ n − k + 1.

Simplifying, we obtain

EY1,l =

( n−k−l
r−k−(l−1)

)

(n
r

)

=
rk+l−1

nk−l−1

(

n − r

n − k − (l − 1)

)

≤
rk+l−1

nk−l−1
= πk+l−1

≤ pk+l−1 (34)

where we used k + (l − 1) ≤ r, πk is defined in (13),

p ≡
r

n

and we will denote by

q ≡ 1 − p.

We thus have

∑

(β,j)∈B(γ,l)

EYβ,j =
∑

j∈L

γ+k+l
∑

β=γ−k−j

EYβ,j

≤ pk−1
∑

j∈L

γ+k+l
∑

β=γ−k−j

pj

= pk−1
∑

j∈L

(2k + j + l + 1)pj

≤ pk−1





∑

j≥0

jpj + (2k + l + 1)
∑

j≥0

pj





=
pk−1

q

(

p

q
+ 2k + l + 1

)

.
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Continuing from (31), we have

b1 =
∑

γ∈Γ,l∈L

EYγ,l

∑

(β,j)∈B(γ,l)

EYβ,j ≤
∑

γ∈Γ,l∈L

EYγ,l
pk−1

q

(

p

q
+ 2k + l + 1

)

≤ (n − k + 1)
p2(k−1)

q

∑

l≥0

(

p

q
+ 2k + l + 1

)

pl

≤ (n − k + 1)
p2(k−1)

q





(

p

q
+ 2k + 1

)

∑

l≥0

pl +
∑

l≥0

lpl





= 2(n − k + 1)
p2(k−1)

q2

(

p

q
+ k +

1

2

)

. (35)

Next, we bound b2. From (24) we have

b2 =
∑

(γ,l)∈Γ×N

∑

(β, j) ∈ B(γ, l)
(β, j) 6= (γ, l)

E (Yγ,lYβ,j) (36)

and considering the allowable range for (β, j) then only if β is at the leftmost point of
B(γ, l) then E (Yγ,lYβ,j) 6= 0. Hence

∑

(β, j) ∈ B(γ, l)
(β, j) 6= (γ, l)

E (Yγ,lYβ,j) =
∑

j∈L

P (Yγ,l = 1, Yγ−k−j,j = 1) . (37)

Denote by s = 2k + j + l. We have

P (Yγ,l = 1, Yγ−k−j,j = 1) ≤

( n−s
r−(s−2)

)

(n
r

)

=
rs−2

ns−2

(n − r)(n − (r + 1))

(n − (s − 2))(n − (s − 1))

≤
rs−2

ns−2
= πs−2

≤ ps−2

since s − 2 ≤ r. Hence the sum in (37) is bounded from above by

p2(k−1)+l
∑

j≥0

pj =
p2(k−1)+l

q

and therefore from (36)

b2 ≤ (n − k + 1)
p2(k−1)

q

∑

l≥0

pl

= (n − k + 1)
p2(k−1)

q2
. (38)

11



Next, we bound b3. Consider the inner expectation in (25) which may be written as

EYγ,l − E (Yγ,l|σγ,l)

where σγ,l = σ (Yβ,j; (β, j) 6∈ B(γ, l)) and we replaced Yγ,l instead of Iγ,l in the lemma.
It is clear in this application of the lemma that there exists a dependence of Yγ,l on the

set of random variables {Yβ,j : (β, j) 6∈ B(γ, l)}. For instance, let (β′, j′) be some point
outside B(γ, l) and consider the event A that Yβ′,j′ = 1. We have P(Yγ,l = 1) which from

(32) and (33) is no larger than
( n−k−l
r−k−(l−1)

)

/
(n

r

)

while P(Yγ,l = 1|A) is smaller since the event

A uses up (k + j − 1) 1′s thereby leaving fewer sequences x(n) that have Yγ,l(x
(n)) = 1. In

the worst case, all available r 1′s could be depleted by some event A ∈ σγ,l in which case
P(Yγ,l = 1|A) = 0. Thus we may bound b3 as

b3 =
∑

(γ,l)∈Γ×N

E |E (Yγ,l − E(Yγ,l|σγ,l))|

≤
∑

(γ,l)∈Γ×N

E |E (Yγ,l − 0)|

=
∑

(γ,l)∈Γ×N

EYγ,l

≤ (n − k + 1)pk−1
∑

l≥0

pl

≤ (n − k + 1)
pk−1

q
(39)

where we used (34). Combining (35), (38) and (39) then (29) becomes

P(W ∗(x(n)) ≥ `) ≤ P(Zλ,µ ≥ `) + ε(n, k, r)

≤ P(Zλ,µ ≥ `) + (n − k + 1)
pk−1

q

(

pk−1

q

(

2

(

p

q
+ k +

1

2

)

+ 1

)

+ 1

)

(40)

where p = (1 − q) = r/n. Next, we upper bound the probability P(Zλ,µ ≥ `).

3.6 Tail probability

We have the following bound on the tail probability of a compound Poisson random variable:

Lemma 4 Let λ be as defined in (26), m > 0. Let M be a Poisson random variable with
mean λ. Let Yi, 1 ≤ i ≤ M , be i.i.d. random variables taking positive integer values with a
probability distribution µ (defined in (28)). Then the tail probability of their sum is

P

(

M
∑

i=1

Yi ≥ m

)

≤

(

r − k + 1

n − k

)m

eλ(γ−1)

where γ = 2(n − r)(n − k)(r − k + 1)/((n/2 + 1)(r − k)).

12



Proof: We have

P

(

M
∑

i=1

Yi ≥ m

)

=

∞
∑

s=1

P

(

s
∑

i=1

Yi ≥ m
∣

∣

∣M = s

)

P(M = s) (41)

(note that if M = 0 then there is a zero probability that the sum is no less than m for
m > 0). We now obtain an upper bound on the tail probability of

P

(

s
∑

i=1

Yi ≥ m
∣

∣

∣M = s

)

, s ≥ 1

based on Cheronoff’s method [9]. From Markov’s inequality, for any t > 0, we have

P

(

s
∑

i=1

Yi ≥ m
∣

∣

∣
M = s

)

≤ e−mtEet
Ps

i=1 Yi

= e−mt
s
∏

i=1

EetYi

= e−mt
(

EetY1
)s

where the last step follows from the Yi, 1 ≤ i ≤ M , being i.i.d.. We have

EetY1 =
∑

l≥1

µ(l)etl. (42)

Dividing both numerator and denominator of (28) by (n − k) we obtain

(

(r − k)l−1

(n − k)l−1

)(

n − r − l/(n − k)

(n − k − l)(1 − (l − 1)/(n − k))

)(

n − r

n − r + 1

)

≤

(

(r − k)l−1

(n − k)l−1

)(

n − r − l/(n − k)

(n − k − l)(1 − (l − 1)/(n − k))

)

. (43)

From (30) we have l ≤ n/2−k−1 so the denominator of the second factor above is bounded
from below by

(n − k − (n/2 − k − 1))

(

1 −
n/2 − k − 1

n − k

)

≥ (n/2 + 1) (1 − 1/2)

hence we have

µ(l) ≤

(

(r − k)l−1

(n − k)l−1

)

2(n − r)

n/2 + 1
, 1 ≤ l ≤ r − k + 1.

Let us denote the rational

α ≡
r − k

n − k

and with

αl ≡
(r − k)l−1

(n − k)l−1

13



we therefore have

µ(l) ≤ αl
2(n − r)

n/2 + 1
.

We may therefore bound the expectation in (42) as

EetY1 =
∑

1≤l≤r−k+1

µ(l)etl

≤
2(n − r)

n/2 + 1

∑

1≤l≤r−k+1

αle
tl

and we have the simple bound

αl ≤ αl−1

so therefore

Eetl ≤
2(n − r)

(n/2 + 1)α

∑

1≤l≤r−k+1

αletl ≤
2(n − r)

(n/2 + 1)α

1

(1 − αet)

provided that αet < 1. Choosing t = ln((n − k)/(r − k + 1)) we obtain

P

(

s
∑

i=1

Yi ≥ m
∣

∣

∣M = s

)

≤ e−mt

(

2(n − r)

(n/2 + 1)α

)s( 1

(1 − αet)

)s

=

(

r − k + 1

n − k

)m(2(n − r)(n − k)(r − k + 1)

(n/2 + 1)(r − k)

)s

=

(

r − k + 1

n − k

)m

γs.

Now, since M is Poisson distributed with mean λ (denoted by Pλ(s)) then the right side
of (41) is bounded from above by

(

r − k + 1

n − k

)m ∞
∑

s=1

Pλ(s)γs ≤

(

r − k + 1

n − k

)m

eλ(γ−1)
∞
∑

s=1

e−λγ(λγ)s

s!

≤

(

r − k + 1

n − k

)m

eλ(γ−1).

�

By Lemma 4 it follows that the tail probability for Zλ,µ in (29) satisfies

P(Zλ,µ ≥ `) ≤

(

r − k + 1

n − k

)`

eλ(γ−1) (44)

with γ and λ as defined in Lemma 4.
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3.7 Combining

From (23), (40) and (44) it follows that as a bound on |D̂
(r)
k,` | (defined in (17)) we have

|D̂
(r)
k,` | ≤

(

n

r

)

η(n, k, `, r) (45)

where η(n, k, `, r) is defined in (6). Hence the set D̂k,` defined in (8) has cardinality

|D̂k,`| ≤
n
∑

r=n−d

(

n

r

)

η(n, k, `, r)

=

d
∑

i=0

(

n

i

)

η(n, k, `, n − i). (46)

The set D̂k,` (defined in (8)) with k = 2(N + 1), is equivalent to the class D̂N (`) defined in
(7). Thus

|D̂N (`)| ≤
d
∑

i=0

(

n

i

)

η(n, 2(N + 1), `, n − i) ≡ b
(`,N)
d (n). (47)

Together with (4) and Lemma 2 it follows that for any H with VC∆(H) = d, the corre-
sponding class (see (1)) satisfies

|HN (`)| ≤ b
(`,N)
d (n)

which completes the proof of Theorem 1.

4 Conclusion

The width of a Boolean function at x is defined as the degree to which it is smooth, i.e.,
constant around x. The paper extends the classical Sauer’s lemma to classes of Boolean
functions which are wide around a sample. An upper bound on the cardinality of any such
class is obtained by counting binary sequences with long-runs using the Stein-Chen method
of approximation. The result indicates that the cardinality decreases at an exponential rate
with respect to the width parameter. The novelty of the paper is both in the results and
in the bounding technique where Boolean functions on [n] are represented both as finite
binary sequences and as finite sets in [n]. This enables the use of techniques from probability
analysis and set-theory.
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[15] Jànos Pach and Pankaj K. Agarwal. Combinatorial Geometry. Wiley-Interscience
Series, 1995.

[16] D. Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.

[17] J. Ratsaby. A constrained version of Sauer’s lemma. In Algorithms, Trees Combi-
natorics and Probabilities, volume III of Mathematics and Computer Science, pages
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Appendix
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Figure 1: ωζ(h1) = ωζ(h2) = 3
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δ
h

0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1
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Figure 2: h and the corresponding δh
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Figure 3: b
(`,N)
d (n) for N = 0.39n, 0.36n, 0.33n, 0.29n, [x, +, �, ◦ traces] v.s. S(n, d), [♦ trace]
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