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Abstract—We introduce a new parallel algorithm that im-
plements the Large-Width (LW) learning algorithm [3]. The
LW algorithm is an instance-based learning procedure which
produces a multi-category classifier defined on any distance
space, with the property that the classifier has a large sample
width (which is similar to the notion of large margin learning).
Being instance-based, the LW algorithm spends a majority of
the time computing pairwise distances between examples (in-
stances). The parallel version introduced here takes advantage
of this fact and processes these computations in parallel. We
present pseudo-code and estimate the speedup factor relative
to the sequential LW algorithm.

Index Terms—Machine learning, classification, parallel algo-
rithm, big data

I. INTRODUCTION

With the ever growing amounts of data and the expanding
variety of domains on which machine learning is applied, the
ability of learning over non-Euclidean input spaces becomes
more important. This poses a challenge to existing machine
learning technology which relies primarily on algorithms
that need numerical training data which is structured into
predefined attributes that measure different features of data
instances. Often a problem domain is a space that can
be equipped with a dissimilarity or distance function in
which case it is referred to as a distance space. In contrast
to a metric, a distance function does not need to satisfy
the triangle inequality which makes it be applicable to a
richer variety of problem domains. There are many existing
distance functions [5] and new ones can be defined easily
for any kind of data, for instance, bioinformatic sequences,
graphs, images, etc..

The LW algorithm [3] learns multi-category classification
over a distance space. It produces a classifier which has a
large width on the training sample. The concept of width
was introduced by [2] and expanded in various settings
(see references in [3]). It is analogous to the ‘margin’
idea (see, for instance [1], [6]) and can be used to obtain
sample-dependent error bounds on learning classification.
While both width and margin functions represent a form of
confidence in classification, width functions are not based on
any real-valued function (in contrast to the notion of margin)
but instead are always based specifically on functions that
measure the distance between a point and some set of points
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that are labeled oppositely. Learning classification with large
width can yield tighter error bounds and therefore more
efficient learning (smaller sample sizes).

The current paper introduces a parallel version of the LW
algorithm.

II. OVERVIEW OF THE SEQUENTIAL LW ALGORITHM

Let the distance space be denoted X and let d(x, x′)
denote the distance between points x and x′. A labeled
sample, ξ = {zi}mi=1 with zi := (xi, yi), is a sequence of
points of X together with labels in a set Y = {1, . . . ,M}
(for some fixed integer M ). We call such a labeled point
z = (x, y) an example; and we denote by x(z) and y(z)
the x and y components of z. We will slightly abuse the
notation and for any two points, z, z′ in X × Y we also
write d(z, z′) to mean d(x(z), x(z′)). Denote by U an initial
set of unlabeled points in X which are to be classified. The
LW algorithm classifies this set incrementally. For positive
integer t, denote by Ut the set of unlabeled points at time
t, then this set decreases in size by one as time t increases
by one. Denote by Lt the set of points which have been
classified up to time t. We refer to any point in the set
ξ
⋃
Lt of labeled points or examples as a prototype. For

any example z define

NUNt(z) = argmin{p∈Lt∪ξ: y(p)6=y(z)}d(x(p), x(z)).

It is either a labeled point in Lt or a labeled example in ξ
which is closest to x(z) and whose label differs from y(z).
Let the NUN-ball centered at a labeled point z be the set
of all points p (not just labeled ones) such that d(z, p) ≤
d(z,NUN(z)). For an unlabeled point p and any k ∈ Y ,
define the vote-set Vk(p) ⊆ ξ to be the following subset of
the sample ξ:

Vk(p) := {z ∈ ξ : y(z) = k, d(p, z) < d(NUN(z), z)} .

This is the set of examples in ξ of category k whose
NUN-balls contain p. Given an unlabeled point x, the LW
algorithm classifies x with the label k such that the size of
the set Vk(x) > Vj(x) for all j 6= k. If there is no single
label that maximizes Vk(x) over k then the algorithm uses a
slightly different rule (see [3] for details). Once an unlabeled
point x is assigned a label, it becomes a prototype and is
used in the next iteration to classify another unlabeled point.
The algorithm continues in this manner until all unlabeled
points in U are assigned labels.

978-1-5386-6378-3/18/$31.00 ©2018 IEEE



2018 ICSEE International Conference on the Science of Electrical Engineering

The next section introduces a parallel version of the LW
algorithm which we denote by Algorithm LWP.

III. ALGORITHM LWP

Let m and n denote the size of the sample ξ and the set
U of unlabeled points to be classified. Both m and n are
finite so we represent ξ and U as sets of natural numbers,
U := {1, . . . , n} and ξ := {n + 1, . . . , n + m}. Algorithm
LWP’s main part is Algorithm 1. It calls several procedures
which are listed as Procedure 1 – Procedure 12. We use the
terminology which is based on nVIDIA’s parallel computing
architecture which is based on blocks of executable threads.
The statement ‘Launch parallel blocks’ refers to an operation
which deploys several blocks of threads for execution. We
use a for-loop to assign each block to work on different
data. Some of the procedures are executed by a block which
launches its threads.

We write ‘Launch parallel threads’ to mean deploying
multiple threads to run on a single block. Here we do not
use a for-loop but instead write the code to be executed by
each thread, in parallel. We write ‘synchronize all threads’
for the operation to wait for all threads to terminate and we
write ‘synchronize all blocks’ to wait for all blocks to finish
execution.

Algorithm 1 performs parallel computations for the fol-
lowing: to compute all pairwise distances between examples
and unlabeled points (step 4), to compute the distance
d(z,NUN(z)) for every example z ∈ ξ (step 8), to compute
the size of all votesets of every unlabeled point (step 13), to
compute the size of the largest and second largest votesets
for every unlabeled point (step 16), to compare the size of
votesets of a single point that is to be classified (step 18),
and to adapt the NUN(z) for every example z ∈ ξ (step 21).
We write MAX to denote the largest number representable
in the computing platform.

Algorithm 1 LWP(U ,ξ)
Input: a set U of unlabeled points to be classified U =
{p1, p2, . . . , pn}, U [i] = pi ∈ {1, . . . , n}, 1 ≤ i ≤ n, a
set of labeled examples ξ = {z1, z2, . . . , zm}, zi = (xi, yi),
where xi ∈ {n+ 1, . . . , n+m}, yi ∈ {1, . . . ,M}, 1 ≤ i ≤
m.
// we also write y(zi) for yi.
Output: Classification labels for all points in U
Declare // global variables (common to all procedures)
• L := [l1, l2, . . . , ln], li ∈ {1, . . . ,M} where li is the

classification value assigned to point pi.
• r := [r1, r2, . . . , rn] is an indicator vector, ri = 1 if pi

is already classified otherwise ri = 0. The entries of r
are initialized to zero.

• D := [d[i, j]] is m × n matrix where d[i, j] is the
distance between example zi and point pj . Denote by
Di the ith row of D and by D(j) the jth column of D

• dNUN :=
[
dNUN1 , . . . , dNUNm

]
, where dNUNi is the

distance from zi to its closest prototype whose label
differs from y(zi).

• V := [v[i, j]] is an M × n matrix where v[k, p] holds
the size of Voteset Vk(p), k ∈ {1, . . . ,M}. Denote by
Vi the ith row of V and V (j) the jth column of V

• a := {a1, a2, . . . , an}, ai is size of largest Voteset of
point pi.

• b := {b1, b2, . . . , bn}, bi is size of the second largest
Voteset of point pi.

• u := {u1, u2, . . . , un}, ui ∈ {1, . . . ,M} is index (row
number of matrix V ) of the largest Voteset of point pi.

• v := {v1, v2, . . . , vn}, vi ∈ {1, . . . ,M} is index of the
second largest Voteset of point pi.

1: // Build distance matrix D
2: Launch parallel blocks Bq , 1 ≤ q ≤ m // one block per

example z ∈ ξ
3: for all 1 ≤ q ≤ m do
4: Dq := compDistFromEx(zq) // Block Bq exe-

cutes this procedure, Dq is 1× n vector
5: end for
6: synchronize all blocks Bq , 1 ≤ q ≤ m.
7: Launch parallel blocks Bq , 1 ≤ q ≤ m, // one block

per example z ∈ ξ
8: // Initialize vector of minimum distances
9: for all 1 ≤ q ≤ m do

10: dNUNq = initDnun(zq)
11: end for
12: synchronize all blocks Bq , 1 ≤ q ≤ m // Continued

below
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Continuation of Algorithm 1
11: for all 1 ≤ t ≤ n do
12: Launch parallel blocks Bq , 1 ≤ q ≤M // one block

per classification category value
13: for all 1 ≤ k ≤M do
14: Vk := compV(k) // Vk is 1× n vector
15: end for
16: synchronize all blocks Bq , 1 ≤ q ≤M .

// Find best point to classify
17: Launch single block B1, and execute the next call

on this block
18: {p∗, a, u, b, v} := findBestPoint() // p∗ is best

point in U
19: Launch single block B1, and execute the next call

on this block
20: Classify(p∗) // this sets lp∗ to some category value
21: Launch parallel Threads, Tq , 1 ≤ q ≤ m, // one

thread per example z ∈ ξ
22: updateDnun(zq, d(zq, p

∗), lp)
23: synchronize all threads Tq , 1 ≤ q ≤ m
24: t := t+ 1
25: end for // for t
26: return L // L contains the classification values of all

points in U

Next we state several procedures.

Procedure 1 dist(p, q)

// This procedure is executed by a thread
Input: p, q // each one can be a point in U or an example
in ξ
Output: distance between p and
q

1: return distance between p and q // the distance
function can be any non-negative function (need not be
Euclidean distance)

Procedure 2 compDistFromEx(z)
// This procedure is executed by a block
Input: z // an element of ξ. ξ and U is declared in
Algorithm 1
Output: array of numbers that are distances between
z and elements of U // length of array is size of
U

1: Declare: array S := [s1, . . . , sn]
2: Launch parallel threads of block, Tl, 1 ≤ l ≤ n // n

number of threads in block
3: sl := dist(z, U [l])
4: Synchronize all threads Tl, 1 ≤ l ≤ n
5: return S

Procedure 3 initDnun(z)
// This procedure is executed by a block. It is used only
initially when the only prototypes are the examples in ξ
Input: z // an element of ξ
Output: α // minimal distance between z and z′l, over
all 1 ≤ l ≤ m, where z′l ∈ ξ and y(z′l) 6=
y(z)

1: Declare: α, S := [sl]
m
l=1

2: Initialize: sl := MAX , 1 ≤ l ≤ m
3: Launch parallel threads Tl, 1 ≤ l ≤ m, in block
4: if y(z) 6= y(z′l) then
5: sl := dist(z, z′l)
6: end if
7: Synchronize all threads Tl, 1 ≤ l ≤ m
8: {α, i} := min(S) // min is described in Procedure 9
9: return α

Procedure 4 max(S, γ)

// This procedure is executed by a block
Input: S := [s1, . . . , sN ], γ
Output: {α, i} // α := max{sj : 1 ≤ j ≤ N, sj < γ}, i
is index of α in S
// Implement by parallel reduction algorithm (see [4])

Procedure 5 max2(S)
// This procedure is executed by a block
Input: S := [s1, . . . , sN ]
Output: {α, β, i, j} // α is largest entry of S, i is index
of largest entry, β is the second largest entry of S, j index
of second largest entry

1: {α, i} := max(S,MAX)
2: {β, j} := max(S, α)
3: return {α, β, i, j}

Procedure 6 updateDnun(z,α,k)
// This procedure is executed by a thread
Input: z, α, k // z is an element of ξ, α scalar, k ∈
{1, . . . ,M}

1: if dNUNz > α and y(z) 6= k then
2: dNUNz := α
3: end if
4: return
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Procedure 7 CompV(k)
// This procedure is executed by a block
Input: k // k ∈ {1, . . . ,M}
Output: S // S := [s1, . . . , sn], where si equals size of
Voteset Vk(pi), 1 ≤ i ≤ n

1: Declare: S := [s1, . . . , sn]
2: Launch parallel threads Tl, 1 ≤ l ≤ n in block
3: sl := 0 // Initialize counter

// only if pl is not yet classified (pl ∈ U )
4: if rl = 0 then
5: for all 1 ≤ j ≤ m do
6: if D

(l)
j < dNUNj then

7: if y(zj) = k then
8: sl := sl + 1
9: end if

10: end if
11: end for
12: end if
13: Synchronize all threads, Tl, 1 ≤ l ≤ n
14: return S

Procedure 8 min2(S,Υ)

// This procedure is executed by a block
Input: S := [s1, . . . , sm], Υ := [ν1, . . . , νM ] // M is
number of categories
Output: i // i ∈ {1, . . . ,M}, where i = y(z∗) and sz∗ =
min

{
sj : νy(zj) = 1, zj ∈ ξ, 1 ≤ j ≤ m

}
1: Declare: E := {e1, . . . , em} // E is array on which

we search for minimum
2: Launch parallel threads in block Tl, 1 ≤ l ≤ m
3: if νy(zl) = 1 then
4: // y(zl) is a relevant category
5: el := sl
6: else
7: el := MAX
8: end if
9: Synchronize all threads, Tl, 1 ≤ l ≤ m

10: {si, i} := min(E) // call Procedure 9, i is index of
minimum entry of S

11: // si is not used (only i)
12: return y(zi) // return the label of example zi

Procedure 9 min(S)
// This procedure is executed by a block
Input: S := [s1, . . . , sN ]
Output: {α, i} // α := min{sj : 1 ≤ j ≤ N}, i :=
argmin1≤j≤Nsj is index of entry with minimum value
// Implement by parallel reduction algorithm (see [4])

Procedure 10 chooseRandomPoint()
// This procedure is executed by a block.
Output: pk // pk is a randomly chosen point in U whose
rk = 0

1: Declare array E := {e1, . . . , en} and initialize it to
{−1, . . . ,−1}

2: Launch parallel threads Tl, 1 ≤ l ≤ n in block
3: if rl = 0 then
4: // only if point is not yet classified
5: el := random() // draw a random number in

range [0, 1]
6: end if
7: synchronize all threads, Tl, 1 ≤ l ≤ n
8: {α, i} := max(E,MAX) // i contains index of

maximum value
9: return i

Procedure 11 Classify(p)

// This procedure is executed by a block
Input: p // p is an entry of U
// This procedure sets lp to some value k ∈ {1, . . . ,M},
lp is an entry of L where L is defined in Algorithm
1, M is number of categories. The procedure uses ar-
rays a, b, u, v, r and matrix D, defined in Algorithm
1

1: Declare: w := {w1, . . . , wM} // entries of w are
binary indicators, wi = 1 indicates that vote-set Vi(p)
has size equal to the maximum value ap

2: Initialize: w := [0, . . . , 0]
3: if ap > bp then
4: // ap, bp are entries of a, b
5: k := up // up is entry of u
6: Goto 23
7: else
8: if ap = bp and ap > 0 and bp > 0 then
9: // next, search in column D(p) for minimal entry

whose row corresponds to z with y(z) = k, where
k satisfies v[k, p] = ap

10: Launch parallel threads in block Tl, 1 ≤ l ≤M
11: if v[l, p] = ap then
12: wl := 1
13: end if
14: // D(p) is m× 1 column of D
15: k := min2(D(p), w)
16: Goto 23
17: end if
18: else
19: w := [1, . . . , 1]
20: k := min2(D(p), w)
21: Goto 23
22: end if
23: rp := 1 // indicate that the point p is now classified
24: lp := k // and has a label k
25: return
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Procedure 12 findBestPoint()
// This procedure is executed by a block
Output:

1) q // a point in U
2) α // α := [α1, . . . , αn], αi is the size of largest

voteset of unlabeled point pi
3) Υ, // Υ := [υ1, . . . , υn], υi is index k∗(pi) of vote

set Vk∗(pi) of maximum size
4) β // β := [β1, . . . , βn], βi is the size of the second-

largest voteset of pi
5) Λ, // Λ := [λ1, . . . , λn]

n
i=1, λi is index of vote set

of second largest size
1: Declare: S := [s1, . . . , sn] // S is array that contains

the score of each unlabeled point
2: Launch parallel threads Tl, 1 ≤ l ≤ n, in block //

one thread per point in U
3: if rl = 1 then
4: // the point pl is already classified
5: αl := −1, sl := −1
6: Goto step 10
7: end if
8: {αl, βl, υl, λl} := max2(V (l)) // Obtain maximum

entry and second largest entry of column V (l)

9: sl := αl(αl − βl)
10: Synchronize all threads, Tl, 1 ≤ l ≤ n
11: {smax, q} := max(S,MAX)
12: if smax > 0 then
13: Goto 23
14: else
15: {αmax, q} := max(α,MAX)
16: if αmax > 0 then
17: Goto 23
18: else
19: q := ChooseRandomPoint()
20: Goto 23
21: end if
22: end if
23: return {q, α,Υ, β,Λ}

IV. SPEEDUP

Recall that n is the number of unlabeled points which are
to be classified. Let us assume that the number of parallel ex-
ecuting threads is always large enough to handle all the op-
erations which are to be performed in parallel (the ‘launch’
statements). While this assumption describes an ideal setup,
it is a reasonable approximation of a typical scenario since
standard GPU support execution of thousands of threads
in parallel (for instance, nVIDIA’s Tesla K20c). In this
case Algorithm LWP takes O (n(logM + logm)) time to
execute. The sequential Algorithm LW takes O(n2m). Thus
the speed up under this ideal setup is O (nm/(log(Mm))).
The factor nm is much larger than log(Mm) hence LWP
provides a very significant speedup relative to Algorithm
LW.

V. CONCLUSION

We introduce a parallel version of Algorithm LW [3]
which is an instance-based classification learning algorithm.
It learns over a space equipped with a distance function
which need not satisfy the metric axioms. This makes it
applicable to learning domains in which it is difficult to
formalize quantitative features that are encoded by vector
of numerical variables. Because the LW algorithm computes
distances between all pairs of data instances it is impractical
to apply it to large data sets. The parallel version intro-
duced here computes these efficiently by exploiting standard
parallel computing platforms and is therefore applicable
to learning problems with big data over general distance
spaces.
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