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Abstract

Consider the pattern recognition problem of learning multi-category classification
from a labeled sample, for instance, the problem of learning character recognition
where a category corresponds to an alphanumeric letter. The classical theory of pat-
tern recognition assumes labeled examples appear according to the unknown under-
lying pattern-class conditional probability distributions where the pattern classes
are picked randomly according to their a priori probabilities. In this paper we pose
the following question: Can the learning accuracy be improved if labeled examples
are independently randomly drawn according to the underlying class conditional
probability distributions but the pattern classes are chosen not necessarily accord-
ing to their a priori probabilities ? We answer this in the affirmative by showing that
there exists a tuning of the subsample proportions which minimizes a loss criterion.
The tuning is relative to the intrinsic complexity of the Bayes-classifier. As this
complexity depends on the underlying probability distributions which are assumed
to be unknown, we provide an algorithm which learns the proportions in an on-line
manner utilizing sample querying which asymptotically minimizes the criterion. In
practice, this algorithm may be used to boost the performance of existing learning
classification algorithms by apportioning better subsample proportions.

Key words: Multicategory classification, On-line learning algorithm, Pattern
recognition, Structural Risk Minimization, Stochastic gradient descent learning

1 Statement of the Problem

The general problem of learning pattern classification has been studied exten-
sively in the literature of classical pattern recognition cf. Duda et. al. [2001],
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Fukunaga [1972], Vapnik [1982], Devroye et. al. [1996], under statistical deci-
sion theory and more recently in machine learning theory under the Probably
Approximately Correct (PAC) model of Valiant [1984], Blumer et. al. [1989].
In the classical framework the problem is posed as follows: We are given M dis-
tinct pattern classes each with a class conditional probability densities fi(x),
1 ≤ i ≤ M , x ∈ IRd, and a priori probabilities pi, 1 ≤ i ≤ M . The functions
fi(x), 1 ≤ i ≤ M , are assumed to be unknown while the pi are assumed to be
known or unknown depending on the particular setting. The learner observes
randomly drawn i.i.d. examples each consisting of a pair of a feature vector
x ∈ IRd and a label y ∈ {1, 2, . . . ,M}, which are obtained by first drawing y
from {1, . . . ,M} according to a discrete probability distribution {p1, . . . , pM}
and then drawing x according to the selected probability density fy(x).

Denoting by c(x) a classifier which represents a mapping c : IRd → {1, 2, . . . ,M}
then the misclassification error of c is defined as the probability of misclassi-
fication of a randomly drawn x with respect to the underlying mixture prob-
ability density function f(x) =

∑M
i=1 pifi(x). This misclassification error is

commonly represented as the expected 0/1-loss, or simply as the loss

L(c) = E1{c(x) 6=y(x)}

of c where expectation is taken with respect to f(x) and y(x) denotes the true
label (or class origin) of the feature vector x. Note, in general y(x) is a random
variable depending on x and only in the case of fi(x) having non-overlapping
probability 1 supports then y(x) is a deterministic function 1 .

The classical problem of pattern recognition is to learn, based on a finite
randomly drawn labeled sample, the optimal classifier known in the literature
as the Bayes classifier, which by definition has minimum loss.

The following notation will be used in the sequel: We write const to denote
absolute constants or constants which do not depend on other variables in the
mathematical expression. We denote by {(xj, yj)}m

j=1 an i.i.d. sample of labeled
examples where m denotes the total sample size, yj, 1 ≤ j ≤ m, are drawn
i.i.d. and taking the integer value ‘i’ with probability pi, 1 ≤ i ≤ M , while
the corresponding xj are drawn according to the class conditional probability
density fyj

(x). Denote by mi the number of examples having a y-value of ‘i’.
Denote by m = [m1, . . . ,mM ] the sample size vector and let ‖m‖ =

∑M
i=1 mi ≡

m. The notation argmink∈Ag(k) for a set A means the subset (of possibly more
than one element) whose elements have the minimum value of g over A. A
slight abuse of notation will be made by using it for countable sets where the

1According to the probabilistic data-generation model mentioned above, only regions
in probability 1 support of the mixture distribution f(x) have a well-defined class
membership.
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notation means the subset of elements k such that 2 g(k) = infk′g(k′).

2 Learning Classification from Empirical Data

It is convenient to express the loss L(c) in terms of the class-conditional losses
Li(c)

L(c) =
M∑
i=1

piLi(c)

where Li(c) = Ei1{c(x) 6=i}, and Ei is the expectation with respect to the density
fi(x). We may define the empirical counterparts of the loss and conditional
loss as

Lm(c) =
M∑
i=1

piLi,mi
(c) (1)

where

Li,mi
(c) =

1

mi

∑
j:yj=i

1{c(xj) 6=i}.

A classifier c may be represented by different types of classifiers, for instance,
a neural network, a labeled nearest-neighbor partition, linear discriminants
and others. Usually in practice one is restricted to a single type of model, say
nearest neighbor classifiers, in which case it is convenient (cf. Vapnik [1982],
Devroye et. al. [1996]) to consider the family of classifiers as a nested structure
of subclasses each of a fixed complexity k ∈ ZZ +. For instance, if we consider
the space C of all nearest neighbor classifiers in IRd then k denotes the number
of prototypes used in the classifier. The complexity of C is clearly infinite
since it contains also classifiers with infinite number of prototypes. We leave
the notion of complexity of a class of multi-category classifiers general and
postpone its precise definition for later sections. The space C may be defined
as the union of classes Ck of classifiers having a total number k of prototypes.

Each finite complexity class Ck contains an optimal classifier c∗k which mini-
mizes the loss L(c) and is written as c∗k = argminc∈Ck

L(c). The best performing
classifier in C denoted as c∗ is defined as c∗ = argmin1≤k≤∞L(c∗k). Denoting

2In that case, technically, if there does not exists a k in A such that g(k) = infk′ g(k′)
then we can always find an arbitrarily close approximating elements kn, i.e., ∀ε > 0
∃N(ε) such that for n > N(ε) we have |g(kn)− infk′ g(k′)| < ε.
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by k∗ the minimal complexity of a class which contains c∗, then depending on
the problem and on the type of classifiers used, k∗ may even be infinite as in
the case when the Bayes classifier is not contained in C. We will refer to k∗

also as the intrinsic complexity of the Bayes classifier.

Similarly, denote by ĉk the empirically-best classifier in Ck, i.e., ĉk =argminc∈Ck

Lm(c). We are going to assume that Ck is sufficiently rich such that for large
enough k we can find a classifier which is consistent with the whole sample,
i.e., has a zero empirical loss.

However the true loss L(ĉk) does not necessarily decrease with k. This is a
consequence of the well known bias v.s. variance tradeoff in statistics (see
e.g. Kendall & Stuart [1994], Geman et. al. [1992], Meir [1994]) which in
our context implies a tradeoff between learning accuracy (which is inversely
proportional to the classifier class complexity k) and optimal loss L(c∗k), cf.
Barron [1994], Lugosi & Zeger [1996]Ratsaby et. al. [1996].

2.1 Model Selection Criterion

The primary aim of learning should be to select a classifier ĉk which does not
necessarily achieve a zero empirical loss but one which generalizes well from the
finite training sample, i.e., has a minimal true loss L(ĉk). The latter depends
on the unknown underlying pattern-class conditional probability distributions
hence it is necessary to base the selection on some type of estimate of the true
loss.

The area in statistics known as model selection, see for instance Linhart &
Zucchini [1986], suggests numerous loss-estimates, also known as criteria for
model selection, which include estimates based on leave-one-out cross valida-
tion, jackknife and bootstrap estimates, asymptotic upper bounds on maxi-
mum likelihood estimates (e.g., the Akaike Information Criterion) and others.
Non-asymptotic upper bounds which hold uniformly over classes of estimators
have been introduced by Vapnik & Chervonenkis [1981], and have since been
used as a criterion for model selection known as Structural Risk Minimization
(SRM), see Vapnik [1982], Devroye et. al. [1996], Shawe-Taylor et. al. [1998],
Lugosi & Nobel [1999], Ratsaby et. al. [1996].

For the purpose of reviewing other published results we use m as a scalar
sample size variable just for the remaining of this section. Many model selec-
tion criteria may be represented by a sum of the form Lm(ĉk) + ε(m, k) where
ε(m, k) is some increasing function of k and is sometimes referred to as a com-
plexity penalty, see for instance Barron [1994], Lugosi & Zeger [1996], Buescher

4



& Kumar [1996]. The classifier chosen by the criterion is then defined by

ĉ∗ = argmin1≤k≤∞ (Lm(ĉk) + ε(m, k)) . (2)

In SRM, the term ε(m, k) is related to the worst case deviations between the
true loss and the empirical loss uniformly over all functions in some class Ck

of a fixed complexity k which for the case of boolean classifiers (i.e., M = 2)
is defined as the Vapnik-Chervonenkis-dimension 3 cf. Vapnik [1982], Devroye
et. al. [1996]. We will take the penalty to be (cf. Vapnik [1982] Chapter 8,
Devroye et. al. [1996])

ε(m, k) = const

√
k ln m

m
(3)

where again const stands for an absolute constant. This bound is central to the
computations of the paper 4 . As will be later shown, a procedure of gradient
descent will minimize a criterion (6) based on ε(m, k) and the const becomes
unimportant as it appears symmetrically in all components of the gradient.

We note that for the two pattern classification case, M = 2, cf. Devroye et.
al. [1996] section 18.1, the error rate of the SRM-chosen classifier, henceforth
denoted by ĉ∗ (which implicitly depends on the random sample of size m since
it is obtained by minimizing the sum in (2)), satisfies

L(ĉ∗) > L(c∗) + const

√
k∗ ln m

m
(4)

infinitely often with probability 0 where c∗ is the Bayes classifier which is as-
sumed to be included in C and k∗ is its intrinsic complexity. The assumption
that the Bayes classifier is in C is not very severe as C may have an infinite
VC dimension. From (4) it is apparent that aside from being consistent, the
SRM-chosen classifier automatically locks onto the error rate as if k∗ is known
beforehand. Due to this nice property we choose SRM as the learning ap-
proach for the classification problem. We note in passing that recently there
has been interest in data-dependent penalty terms for structural risk mini-
mization which do not have an explicit complexity factor k but are related to

3For a class H of functions from a set X to {0, 1} and a set S = {x1, . . . , xl} of
l points in X, denote by H|S = {[h(x1), . . . , h(xl)] : h ∈ H}. Then the Vapnik-
Chervonenkis dimension of H denoted by V C(H) is the largest l such that the
cardinality

∣∣H|S
∣∣ = 2l.

4There is actually an improved bound due to Talagrand, cf. Anthony & Bartlett
[1999] Section 4.6, but when adapted for almost sure statements it yields

O(
√

k+ln m
m ) which is insignificantly better than (3) at least for our work.
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the class Ck by being defined as a supremum of some empirical quantity over
Ck, for instance the maximum discrepancy criterion [Bartlett et. al., 2002] or
the Rademacher complexity [Kultchinskii, 2001].

The primary aim of this paper is to answer the following main question:

Question: Let m be the total number of examples available for training.
Suppose that it is possible for a learner to query for i.i.d. labeled examples
randomly drawn from particular pattern classes which are not necessarily se-
lected at random according to their a priori probabilities pi, 1 ≤ i ≤ M . Can
the error rate of learning via SRM be improved by such sample-querying ?

This question is not only interesting from a theoretical standpoint but is also
motivated by real pattern classification problems (cf. Ratsaby [1998]). There,
an application of the algorithm SQ (in Section 3.3) was realized based on k-
NN classifiers. It improved the error rate compared to the setting where equal
sized sub-samples are obtained a priori from every pattern class, this being
the standard approach to on-line learning when the a priori class probabilities
are unknown.

This non classical scheme of randomly drawing examples is related to active
learning in which the learner actively engages in the process of sample se-
lection. Some of the works in this area include Angluin [1988], Cohn et. al.
[1994], Cohn [1996], Kulkarni et. al. [1993], Niyogi [1995], Rivest & Eisenberg
[1990]. The common denominator here is the fact that some form of interaction
between the learner and teacher which enables the learner to obtain labeled
examples not only in a passive manner, as has been considered classically in
the field of pattern recognition, leads to an improvement in the learning ac-
curacy. Sample querying is also related to boosting [Freund & Schapire, 1995]
since both seek a better weighting for the different parts of the sample ex-
cept boosting is stuck with a given sample while here we allow the learner to
acquire the sample as learning proceeds. Also related to that is stratified sam-
pling which aims at getting a lower sampling error by oversampling smaller
groups and then re-weighting, see also Japkowicz [2000].

In this paper we answer the above posed question in the affirmative which
thereby provides further support in favor of active learning.

3 Querying for examples as means of improving the learning accu-
racy

A classifier c(x) may be represented as a vector of M boolean classifiers bi(x),
where bi(x) = 1 if x is a pattern drawn from class ‘i’ and bi(x) = 0 otherwise.
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A union of such boolean classifiers forms a well-defined classifier c(x) if for
each x ∈ IRd, bi(x) = 1 for exactly one i, i.e.,

⋃M
i=1{x : bi(x) = 1} = IRd and

{x : bi(x) = 1}⋂{x : bj(x) = 1} = ∅, for 1 ≤ i 6= j ≤ M .

We also refer to these boolean classifiers as the component classifiers ci(x),
1 ≤ i ≤ M , of a vector classifier c(x).

With such a representation, the loss of a classifier c is the average of the losses
of the component classifiers, i.e., L(c) =

∑M
i=1 piL(ci) where for a boolean

classifier ci the loss is defined as L(ci) = Ei1{ci(x) 6=1}, and the empirical loss
is Li,mi

(ci) = 1
mi

∑mi
j=1 1{ci(xj) 6=1} which is based on a subsample {(xj, i)}mi

j=1

drawn i.i.d. from pattern class “i”.

The class C of classifiers is decomposed into a structure S = S1×S2×· · ·×SM ,
where Si is a nested structure (cf. Vapnik [1982]) of classes Bki

, i = 1, 2, . . .,
of boolean classifiers bi(x), i.e.,

S1 = B1,B2, . . . ,Bk1 , . . .

S2 = B1,B2, . . . ,Bk2 , . . .

up to

SM = B1,B2, . . . ,BkM
, . . .

where ki ∈ ZZ + denotes the VC-dimension of Bki
and Bki

⊆ Bki+1, 1 ≤ i ≤ M .

For any fixed positive integer vector k ∈ ZZ M
+ consider the class of vector

classifiers

Ck = Bk1 × Bk2 × · · · × BkM
. (5)

Define by Gk the subclass of Ck of classifiers c that are well-defined (in the
sense mentioned above). Note that every c ∈ Gk corresponds to a well defined
classifier while any combination of b1 ∈ Gk1 , b2 ∈ Gk2 , . . ., and bM ∈ GkM

is
not necessarily a well-defined classifier [b1(x), . . . , bM(x)].

For vectors m and k in ZZ M
+ , define

ε(m, k) ≡
M∑
i=1

piε(mi, ki) (6)

where ε(mi, ki) is defined according to (3). For any 0 < δ < 1, we denote by

ε(mi, ki, δ) =

√
ki ln mi+ln 1

δ

mi
and ε(m, k, δ) =

∑M
i=1 piε(mi, ki, δ).
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The next lemma states an upper bound on the deviation between the empirical
loss and the loss uniformly over all classifiers in a class Gk and is a direct
application of Theorem 6.7 Vapnik [1982].

Before we state it, it is necessary to define what is meant by an increasing
sequence of vectors m.

Definition 1 (Increasing sample-size sequence) A sequence m(n) of sample-
size vectors is said to increase if

• at every n, there exists a j such that mj(n + 1) > mj(n) and mi(n + 1) ≥
mi(n) for 1 ≤ i 6= j ≤ M ,

• there exists an increasing function T (N) such that for all N > 0, n > N
implies every component mi(n) > T (N), 1 ≤ i ≤ M .

Note that Definition 1 implies for all 1 ≤ i ≤ M , mi(n) → ∞ as n →
∞. We will henceforth use the notation m → ∞ to denote such an ever-
increasing sequence m(n) with respect to an implicit discrete indexing variable
n. The relevance of Definition 1 will become clearer later, in particular when
considering Lemma 3.

Definition 2 (Sequence generating procedure) A sequence generating proce-
dure φ is one which generates increasing sequences m(n) with a fixed function
Tφ(N) as in Definition 1 and also satisfying the following: for all N, N ′ ≥ 1
such that Tφ(N

′) = Tφ(N)+1 then |N ′−N | ≤ const, where const is dependent
only on φ.

The above definition simply states a lower bound requirement on the rate of
increase of Tφ(N).

We now state the uniform strong law of large numbers for the class of well-
defined classifiers.

Lemma 1 For any k ∈ ZZ M
+ let Gk be a class of well-defined classifiers. Con-

sider any sequence-generating procedure as in Definition 2 which generates
m(n), n = 1, . . . ,∞. Based on examples {(xj, yj)}m(n)

j=1 , each drawn i.i.d. ac-

cording to an unknown underlying distribution over IRd × {1, . . . ,M}, define
the empirical loss as in (1). Then

• For arbitrary 0 < δ < 1,

sup
c∈Gk

∣∣∣Lm(n)(c)− L(c)
∣∣∣ ≤ const ε(m(n), k, δ)

with probability 1− δ and
• the events supc∈Gk

∣∣∣Lm(n)(c)− L(c)
∣∣∣ > const ε(m(n), k), n = 1, 2, . . ., occur

infinitely often with probability 0,
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where m(n) is any sequence generated by the procedure.

The proof is in Section A.

We will henceforth denote by c∗k the optimal classifier in Gk, i.e.,

c∗k = argminc∈Gk
L(c) (7)

and

ĉk = argminc∈Gk
Lm(c) (8)

is the empirical minimizer over the class Gk.

In the next section we consider several learning settings in which sample query-
ing is useful.

3.1 Motivation

As part of the motivation for our work in succeeding sections, let us first answer
the main question posed in Section 2 for the simplest case where there is only
a single classifier class Gk with a complexity vector k = [l, . . . , l], for some
finite positive integer l. In this setting, the problem of learning classification
may be well represented by the PAC model (Valiant [1984], Haussler [1992],
Blumer et. al. [1989]) as follows: For arbitrary accuracy parameter η > 0 and
confidence parameter 0 < δ < 1, based on an i.i.d. labeled sample of size m,
the learner aims at outputting a hypothesis classifier ĉk, as defined in (8), such
that L(ĉk) ≤ L(c∗k) + η with confidence 1− δ, where c∗k is defined in (7). The
classifier ĉk is said to be an (η, δ)-good estimate of c∗k.

From Lemma 1 it follows that

L(ĉk)≤Lm(ĉk) + ε(m, k, δ)

≤Lm(c∗k) + ε(m, k, δ)

≤L(c∗k) + 2ε(m, k, δ)

with confidence 1−δ. Choosing any sample size vector m such that ε(m, k) ≤ η
2

yields a ĉk which is (η, δ)-good. In order to find the minimizing subsam-
ple proportions which we denote by the sample size vector m∗, we mini-
mize

∑M
i=1 mi under the constraint that

∑M
i=1 piε(mi, ki) = η

2
. This yields

m∗
i = const

(
l
(

mpi

η

)2
) 1

3

log
(

mpil
η

)
where const > 0 is an absolute constant,
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1 ≤ i ≤ M , for a total sample size m =
∑M

i=1 m∗
i . We note in passing that for

the more restricted setting where the classifier class contains a Bayes optimal
classifier with a zero misclassification probability then the bound of (3) can
be strengthened to one without a square-root, cf. Section 4.5 in Anthony &
Bartlett [1999].

As the next case consider a class Gk of classifiers which has an arbitrary but
finite complexity k ∈ ZZ M

+ , i.e., with elements ki, 1 ≤ i ≤ M , which are
not necessarily all equal. Following the same reasoning as before we conclude
that the minimizing subsample proportions m∗

i need to satisfy a set of non-

linear equations mi = mpiε(mi,ki)
ε(m,k)

which depend on k and on the a priori class
probabilities.

In both of the cases above the learner is forced to use a certain classifier class
and knowing its complexity vector k he may then compute the best subsample
sizes for batch learning, i.e., where by batch we mean all the labeled examples
are obtained prior to running the empirical minimization algorithm. However
in many instances of non-parametric classification (as well as parametric ones),
cf. Ripley [1996], Duda et. al. [2001], the learner is theoretically free to use
arbitrarily complex classes, e.g., nearest-neighbor classifiers having arbitrarily
large number of prototypes as discussed in Section 2. In such circumstances
the above settings of a single fixed hypothesis class do not apply and it is
necessary to consider more flexible class structures as the ones introduced in
the beginning of Section 3. Here the learning algorithm uses some form of
model selection that automatically selects a class which balances the tradeoff
between the empirical loss and the complexity penalty.

If we consider again the main question posed earlier but this time under this
richer class setting, the answer is not at all obvious since the complexity cho-
sen by a model selection criterion is determined only after the sample has
been drawn leaving no room for querying for fine-tuned subsample sizes that
minimize the upper bound on the loss of the chosen classifier. This difficulty
is intrinsic to batch learning where querying needs to be done in advance.

However, as shown in this paper, it is possible to interleave sampling with
learning and hence potentially obtain sub-samples, one per pattern class, of
different sizes. The question remains as to what sub-sample size proportions
mi yield a better loss rate. In particular, if one resorts to a model-selection
learning criterion then the complexity of the classifier class Gk can change
as the sample increases hence one cannot apportion sample sizes as in the
previous two settings.

In Section 2 we mentioned the nice property of the method of SRM which
effectively yields a loss rate as if the minimal complexity class containing
the Bayes classifier was known in advance. Essentially, the intrinsic unknown
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complexity k∗ of the Bayes classifier is automatically learned by the SRM
criterion. Hence it should be possible to minimize an upper bound of the form
of (4), but for vector sample size m, and to yield an even better selected
classifier, i.e., one whose loss is not ε(m, k∗) but ε(m∗, k∗) where m∗ minimizes
the criterion.

This raises an interesting path to proceed as far as querying is concerned. It
says that if the intrinsic complexity of the Bayes classifier could be predicted
early in time then based on it an estimated criterion involving the sample size
m can be defined. Querying should be done in a manner which minimizes this
estimated criterion and which hopefully yields subsample proportions which
are close to those minimizing the ‘true’ criterion, i.e., the one involving the
intrinsic Bayes complexity k∗.

The remainder of the paper will be devoted to doing precisely that. It will be
shown that the complexity of the classifier chosen by the method of SRM is
a consistent estimator of the Bayes complexity k∗. We next outline our ap-
proach: First we present additional notation concerning some complexities that
are associated with the method of SRM over structures of well-defined classi-
fier classes. We then state Lemma 2 (proved in Section B) which establishes
an estimate on the loss of the SRM-selected classifier and the convergence
of its complexity with increasing i.i.d. sample sizes. Corollary 1 (proved in
Section C) states the same results for samples that are i.i.d. only when condi-
tioned on the pattern class thereby allowing the examples to be drawn from
pattern classes even in a dependent manner. This allows introducing an on-
line algorithm which combines SRM with sample querying and then establish
(through Theorem 1) its optimality in a certain sense. In Section 4 we analyze
the convergence properties of this on-line algorithm, first just applying the
query-rule to a deterministic criterion (Lemma 4) and then to the realistic
case of a random criterion estimate (Lemma 5). At that point the necessary
results for proving the main Theorem 1 are in place (the proof is in Section
E).

One comment concerning the convergence mode of random variables. Upper
bounds are based on the uniform strong law of large numbers, see proof of
Lemma 1 in Section A. Such bounds originated in the work of Vapnik [1982],
for instance his Theorem 6.7. Throughout the current paper, almost sure state-
ments are made by a standard application of the Borel-Cantelli lemma. For
instance, taking m to be a scalar, the statement supb∈Br

|L(b)− Lm(b)| ≤

const

√
r log m+log 1

δ

m
with probability at least 1− δ for any δ > 0 is alternatively

stated as follows by letting δm = 1
m2 : For the sequence of random variables

Lm(b), uniformly over all b ∈ B, we have L(b) > Lm(b) + const

√
r log m+log 1

δm

m

occur infinitely often with probability 0.
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Finally, concerning our, perhaps, loose use of the word optimal, whenever not
explicitly stated, optimality of a classifier or of a procedure or algorithm is only
with respect to minimization of the criterion, namely, the upper bound on the
loss. In particular, it is not intended to claim that the algorithm introduced
later is optimal with respect to other sample querying approaches but that it
minimizes the upper bound on the loss.

3.2 Structural Risk Minimization for Multi-Category Classifiers

We will henceforth make the following assumption.

Assumption 1 The Bayes loss L∗ = 0 and there exists a classifier ck in the
structure S with L(ck) = L∗ such that ki < ∞, 1 ≤ i ≤ M . The a priori
pattern class probabilities pi, 1 ≤ i ≤ M , are known to the learner.

Before continuing we make a few remarks.

Remark 1 It is assumed that the Bayes loss of the underlying classification
problem is zero and that the structure S is rich enough and contains the Bayes
classifier. The problem of learning classification under the restriction that the
target Bayes classifier has a zero loss is not necessarily easy or trivial since
it can have an arbitrarily complex decision border. Such problems have been
extensively studied, for instance, in the Probably Approximately Correct (PAC)
framework, cf. Blumer et. al. [1989], and the proceedings of conferences on
computational learning theory (COLT), see also Devroye et. al. [1996] Section
12.7.

Remark 2 In practice the a priori pattern class probabilities can be estimated
easily. In assuming that the learner knows the pi, 1 ≤ i ≤ M , one approach
would have the learner allocate sub-sample sizes according to mi = pim fol-
lowed by doing structural risk minimization (this actually corresponds to pas-
sive learning where the teacher provides the samples according to the a priori
pattern class probabilities). Note that this does not necessarily minimizes the
upper bound on the loss of the SRM-selected classifier and hence is inferior in
this respect as Principle 1 states later.

Remark 3 We note that if the classifier class was fixed and the intrinsic
complexity k∗ of the Bayes classifier was known in advance then because of As-
sumption 1 one would resort to a bound of the form O (k∗ log m/m) and not the
weaker bound of (3). However, as mentioned before, not knowing k∗ and hence
using structural risk minimization as opposed to empirical risk minimization
over a fixed class, necessitates using (3) as the upper bound or complexity-
penalty.
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Remark 4 If one uses the expected value EL(ĉ) as a criterion, where ĉ is the
learnt classifier which is dependent on the random sample (the expectation here
is taken with respect to this random sample) then the bound can be improved
from (3) to O(log m/m) as noted in Problem 18.4 in Devroye et. al. [1996].
However, it is well-known that such expected losses are less interesting and less
realistic since usually one has to live with the particular random data set at
hand and does not have the luxury of obtaining multiple data sets with which
to take averages. The loss Lm(c) used in this paper is a random variable since
it depends on a random data set and is not an expectation with respect to the
data distribution. The upper bound defined in (3) is therefore not weak.

We continue now with introducing some concepts that will be used for defining
our sampling-criterion.

Consider the set

F ∗ = {argmin
k∈ZZ M

+
L(c∗k)} = {k : L(c∗k) = L∗ = 0} (9)

which may contain more than one vector k. Following Assumption 1 we may
define the Bayes classifier c∗ as the particular classifier c∗k∗ whose complexity
is minimal, i.e.,

k∗ = argmin{k∈F ∗}{‖k‖∞} (10)

where ‖k‖∞ = max1≤i≤M |ki|. Note again that there may be more than one
such k∗. The significance of specifying the Bayes classifier up to its complexity
rather than just saying it is any classifier having a loss L∗ will become apparent
later in the paper.

For an empirical-minimizer classifier ĉk, define by the penalized empirical loss
(cf. Devroye et. al. [1996]) L̃m(ĉk) = Lm(ĉk) + ε(m, k). Consider the set

F̂ = {argmin
k∈ZZ M

+
L̃(ĉk)} (11)

which may contain more than one vector k. In structural risk minimization
according to Vapnik [1982] the selected classifier is any one whose complexity
index k ∈ F̂ .

For our purposes the original definition of the SRM-selected classifier is not
sufficient since by its definition it may have any complexity as long as it
minimizes the criterion, namely, the sum of the empirical loss and the penalty,
over k ∈ ZZ M

+ . The algorithm to be introduced later relies on the convergence
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of the complexity k̂ to some finite limiting complexity value with increasing 5

m. The selected classifier is one whose complexity satisfies

k̂ = argmink∈F̂‖k‖∞. (12)

That is, among all classifiers which minimize the penalized empirical error
we choose the one having a minimal complexity magnitude. This minimal-
complexity SRM-selected classifier will be denoted as ĉk̂ or simply as ĉ∗. We

sometimes write k̂n and ĉ∗n for the complexity and for the SRM-selected clas-
sifier, respectively, in order to explicitly show the dependence on discrete time
n.

The next lemma states that the complexity k̂ converges to some (not neces-
sarily unique) k∗ corresponding to the Bayes classifier c∗ defined in (10).

Lemma 2 Based on m examples {(xj, yj)}m
j=1 each drawn i.i.d. according to

an unknown underlying distribution over IRd× {1, . . . ,M}, let ĉ∗ be the chosen
classifier of complexity k̂ as in (12). Consider a sequence of samples ζm(n)

with increasing sample-size vectors m(n) obtained by a sequence-generating
procedure as in Definition 2. Then

• the corresponding complexity sequence k̂n converges a.s. to some k∗ as de-
fined in (10) which from Assumption 1 has finite components.

• For any sample ζm(n) in the sequence, the loss of the corresponding classifier
ĉ∗n satisfies

L(ĉ∗n) > const ε(m(n), k∗)

infinitely often with probability 0.

The proof is in Section B.

Remark 5 For the more general case of L∗ > 0 (but two-category classifiers)
the upper bound becomes L∗ + const ε(m, k∗), cf. Devroye et. al. [1996]. It is
an open question whether in this case it is possible to guarantee convergence
of k̂n or some variation of it to a finite limiting value.

That querying for randomly drawn examples from particular pattern classes
may serve useful is seen from being able to minimize the loss rate of ĉ∗ with
respect to the sample size vector m. The principal idea of our work is realizing
that the subsample proportions may be tuned to the intrinsic Bayes complexity

5We will henceforth adopt the convention that a vector sequence k̂n → k∗, a.s., means
that every component of k̂n converges to the corresponding component of k∗, a.s.,
as m →∞.
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k∗ thereby yielding an improved loss rate for ĉ∗. We formally state this in the
following:

Principle 1 Choose m to minimize the criterion ε(m, k∗) with respect to all m
such that

∑M
i=1 mi = m, the latter being the a priori total sample size allocated

for learning.

There may be other proposed sampling criteria just as there are many criteria
for model selection based on minimization of different upper bounds. Our
proposed sample-querying can be viewed as paralleling the structural risk
minimization approach of model selection.

If k∗ was known then an optimal sample size m∗ = [m∗
1, . . . ,m

∗
M ] could

be computed which yields a classifier ĉ∗ with the best (lowest) deviation
const ε(m∗, k∗) away from Bayes loss. The difficulty is that k∗ = [k∗1, . . . , k

∗
M ]

is usually unknown since it depends on the underlying unknown probability
densities fi(x), 1 ≤ i ≤ M . To overcome this we will minimize an estimate of
ε(·, k∗) rather than the criterion ε(·, k∗) itself.

3.3 An On-Line Learning Algorithm

In this section we introduce an on-line learning algorithm which repetitively
cycles between running SRM over the current sample and querying for more
examples in a manner which asymptotically has the criterion estimate con-
verging to the true unknown criterion. The interleaved querying step ensures
that this true criterion is minimized eventually. As before, m(n) denotes a
sequence of sample-size vectors indexed by an integer n ≥ 0 representing dis-
crete time. When referring to a particular ith component of the vector m(n)
we write mi(n).

The algorithm initially starts with uniform sample size proportions, i.e., m1 =
m2 = · · · = mM = const > 0. Then at each time n ≥ 1 the algorithm
determines the SRM-selected classifier ĉ∗n defined as

ĉ∗n = argminĉn,k:k∈F̂n
‖k‖∞ S− step (13)

where

F̂n = {k : L̃n(ĉn,k) = min
r∈ZZM

+

L̃n(ĉn,r)}

and for any ĉn,k which minimizes Lm(n)(c) over all c ∈ Gk we define L̃n(ĉn,k) =
Lm(n)(ĉn,k)+ε(m(n), k) while Lm(n)() stands for the empirical loss as defined in
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(1) using the sample size vector m(n) at time n. The complexity k̂n of ĉ∗n will
be shown later to converge to k∗ hence ε(·, k̂n) serves as a consistent estimator
of the criterion ε(·, k∗).

We will use a query rule which depends on the observed sample. While for
any fixed i ∈ {1, 2, . . . ,M} the examples {(xj, i)}mi(n)

j=1 accumulated up until

time n are all i.i.d. random variables, the total sample {(xj, yj)}m(n)
j=1 consists

of dependent random variables since by the query decision the choice of the
particular class-conditional probability distribution used to draw examples at
each time instant l depends on the sample accumulated up until time l − 1.
As the next Corollary shows, this dependency does not alter the results of
Lemma 2.

Corollary 1 At time n, based on M subsamples {(xj, i)}mi(n)
j=1 , each of which

contains an i.i.d. sample which is drawn according to fi(x), 1 ≤ i ≤ M , let
ĉ∗n be a chosen classifier as defined in (13). Consider any sequence of samples
ζm(n) with increasing sequence m(n) as n → ∞ generated by a sequence-
generating procedure. Then the corresponding complexity sequence

k̂n → k∗, a.s. with n →∞

for some k∗ as defined in (10) which from Assumption 1 has finite components.
Furthermore, for any sample ζm(n) in the sequence, the loss of the correspond-
ing ĉ∗n has

L(ĉ∗n) > const ε(m(n), k∗)

infinitely often with probability 0.

The proof is deferred to the Section C.

According to Principle 1, if k∗ was known then a natural query-step would be
to adapt the sample vector m(n) in a direction which minimizes the criterion
ε(·, k∗). As k∗ is unknown, we will instead base the query step on minimizing
the estimate ε(·, k̂n) of ε(·, k∗). While doing that it must be assured that the
query-step results in m(n) increasing to m(n + 1) as defined in Definition 1.
This is required since once having obtained a sample of size-vector m(n) at
time n it makes no sense to throw away some examples, i.e., decrease the
sample size, in particular where for k̂n to converge to k∗ it is necessary to have
an ever-increasing sample size sequence m(n).

There are various ways of defining a query-step given the restrictions above.
We choose here a greedy query rule which adapts only one component of m
at a time, namely, it increases the component mjmax(n) which corresponds to
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the direction of maximum descent of the criterion ε(·, k̂n) at time n. This may
be written as

m(n + 1) = m(n) + ∆ ejmax Q− step (14)

where the positive integer ∆ denotes some fixed query step size and for any
integer i ∈ {1, 2, . . . ,M}, ei denotes an M -dimensional elementary vector with
1 in the ith component and 0 elsewhere.

Thus at time n the query-step produces m(n + 1) which is used for drawing
additional examples according to specific sample sizes mi(n + 1), 1 ≤ i ≤
M . Consequently the SRM-step (13) is repeated, this time using the newly
acquired sample of size vector m(n + 1).

We now state the learning algorithm explicitly. The querying rule will be
discussed in the next section where it is proved that it obtains the minimizing
sample-size vector in the limit with respect to increasing n. The notation
a := b represents assigning the variable a with the value of the variable b.

Learning Algorithm SQ (SRM with Queries)
Let: mi(0) = const > 0, 1 ≤ i ≤ M .

Given: (a) M uniform-size samples {ζmi(0)}M
i=1, where ζmi(0) = {(xj, ‘i’)}mi(0)

j=1 ,
and xj are drawn i.i.d. according to underlying class-conditional probability
densities fi(x). (b) A sequence of classes Gk, k ∈ ZZ M

+ , of well-defined classi-
fiers. (c) A constant query-step size ∆ > 0. (d) Known a priori probabilities
pj, 1 ≤ j ≤ M .
Initialization: (Time n = 0) Based on ζmi(0), 1 ≤ i ≤ M , determine
a set of candidate classifiers ĉ0,k minimizing the empirical loss Lm(0) over
Gk, , k ∈ ZM

+ , respectively. Determine ĉ∗0 according to (13) and denote its

complexity vector by k̂0.
Output: ĉ∗0.
Call Procedure Greedy-Query: m(1) := GQ(0).
Let n = 1.
While (still more available examples) Do:

1. Based on the sample ζm(n), determine the empirical minimizers ĉn,k for
each class Gk. Determine ĉ∗n according to (13) and denote its complexity
vector by k̂n.
2. Output: ĉ∗n.
3. Call Procedure Query: m(n + 1) := GQ(n).
4. n := n + 1.

End Do

Procedure Greedy-Query (GQ)
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Input: Time n.

1. jmax(n) := argmax1≤j≤M pj
ε(mj(n),k̂n,j)

mj(n)
, where if more than one argmax

then choose any one.
2. Obtain: ∆ new i.i.d. examples from class jmax(n). Denote them by
ζn.

3. Update Sample: ζmjmax(n)(n+1) := ζmjmax(n)(n) ⋃ ζn, while ζmi(n+1) :=
ζmi(n), for 1 ≤ i 6= jmax(n) ≤ M .

4. Return Value: m(n) + ∆ ejmax(n).

2

Algorithm SQ alternates between the SRM-step (13) and the Query-step (14)
repetitively until finally exhausting the total sample size limit m which for
most generality is assumed to be unknown to the learner.

The next lemma implies that the previous Corollary 1 applies also to Algo-
rithm SQ.

Lemma 3 Algorithm SQ is a sequence-generating procedure.

The proof is deferred to Section D. Next, we state the main theorem of the
paper.

Theorem 1 Assume that the Bayes complexity k∗ is an unknown M-dimensional
vector of finite positive integers. Let the step size ∆ = 1 in Algorithm SQ, re-
sulting in a total sample size which increases with discrete time as m(n) = n.
Then the random sequence of classifiers ĉ∗n produced by Algorithm SQ is such
that the events

L(ĉ∗n) > const ε(m(n), k∗) or ‖m(n)−m∗(n)‖lM1
> 1 (15)

occur infinitely often with probability 0 where m∗(n) is the solution to the
constrained minimization of ε(m, k∗) over all m of magnitude ‖m‖ = m(n).

2

Remark 6 In the limit of large n the bound const ε(m(n), k∗) is almost min-
imum (the minimum being at m∗(n)) with respect to all vectors m ∈ ZZ M

+ of
size m(n). Note that this rate is achieved by Algorithm SQ without the knowl-
edge of the intrinsic complexity k∗ of the Bayes classifier. Compare this for
instance to uniform querying where at each time n one queries for subsamples
of the same size ∆

M
from every pattern class. This leads to a different (deter-

ministic) sequence m(n) = ∆
M

[1, 1, . . . , 1]n ≡ ∆ n and in turn to a sequence
of classifiers ĉn whose loss L(ĉn) ≤ const ε(∆ n, k∗), as n → ∞, where here
the upper bound is not even asymptotically minimal. A similar argument holds
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if the proportions are based on the a priori pattern class probabilities since in
general, letting mi = pim does not necessarily minimize the upper bound. In
Ratsaby [1998], empirical results display the inferiority of uniform sampling
compared to an online sample-query approach based on Algorithm SQ.

The proof of Theorem 1 is postponed to Section E. It is based on the previous
Lemmas and on Lemma 4 and Lemma 5 of the next section both of which
deal with the the convergence property of the greedy query rule stated above.

4 Technical Results

Algorithm SQ uses a query step which increments at time n the particular
sample of pattern class jmax(n) where jmax(n) corresponds to the component
of m along which the criterion function ε(m, k̂n) decreases the fastest. From
(15), in order to analyze the convergence properties of the loss sequence L(ĉn)
it suffices to obtain convergence results on the random sequence of sample size
vectors m(n) generated by Algorithm SQ.

First, letting t, as well as n, denote discrete time t = 1, 2, . . ., we adopt the
notation m(t) for a deterministic sample size sequence governed by the de-
terministic criterion ε(m, k∗). We write m(n) to denote the random sequence
governed by the stochastic criterion ε(m, k̂n). Thus t or n distinguish between
a deterministic or a random sample sequence m(t) or m(n), respectively.

We then define precisely the meaning of an optimal minimizing trajectory
m∗(t) for the deterministic case which corresponds to the setting where k∗ is
known, and prove (in Lemma 4) that the query-rule ‘learns’ this minimizing
trajectory, i.e., that m(t) → m∗(t), t →∞, in a sense to be described below.

Consequently based on the convergence of k̂n to k∗ we conclude (in Lemma
5) that applying the query rule to the criterion function ε(·, k̂n), instead of
ε(·, k∗), yields a random sequence m(n) such that ‖m(n) − m∗(n)‖lM1

≤ ∆,
a.s., as n →∞, where ∆ is the step size used in Algorithm SQ.

We start with the following definition.

Definition 3 (Optimal trajectory) Let m(t) be any positive integer-valued
function of t which denotes the total sample size at time t. The optimal tra-
jectory is a set of vectors m∗(t) ∈ ZZ M

+ indexed by t ∈ ZZ +, defined as

m∗(t) = argmin{m∈ZZM
+ :‖m‖=m(t)}ε(m, k∗).

2
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We now proceed to study the convergence properties of the sequence m(t)
generated by the query rule in the deterministic setting where k∗ is known.

4.1 The case where k∗ is known

First let us solve the following constrained minimization problem. Fix a to-
tal sample size m and minimize the error ε(m, k∗) under the constraint that∑M

i=1 mi = m. This amounts to minimizing

ε(m, k∗) + λ(
M∑
i=1

mi −m) (16)

over m and λ. Denote the gradient by g(m, k∗) = ∇ε(m, k∗). Then the above
is equivalent to solving

g(m, k∗) + λ[1, 1, . . . , 1] = 0 (17)

for m and λ. The vector valued function g(m, k∗) may be approximated by

g(m, k∗) '
[
−p1ε(m1, k

∗
1)

2m1

,−p2ε(m2, k
∗
2)

2m2

, . . . ,−pMε(mM , k∗M)

2mM

]

where we used the approximation 1− 1
log mi

' 1 for 1 ≤ i ≤ M . The approxima-
tion is appropriate as it is applied in the same manner for all components and
the GQ rule treats the components symmetrically. Moreover the statements
made throughout the paper are for large m.

Using this approximation for g(m, k∗) and denoting the minimizing values
by m∗

i , 1 ≤ i ≤ M , and λ∗, we then obtain the set of equations 2λ∗m∗
i =

piε(m
∗
i , k

∗
i ), 1 ≤ i ≤ M , and λ∗ = ε(m∗, k∗)/(2m). The solution may be ob-

tained using standard non-linear optimization methods see for instance Dixon
[1972]. We are interested not in obtaining a solution for a fixed m but obtain-
ing, using local gradient information, a sequence of solutions for the sequence
of minimization problems corresponding to an increasing sequence of total
sample-size values m(t).

We restate the GQ rule but now applied to a deterministic sample-size se-
quence with a fixed complexity k∗. Note that in this section, k∗ is assumed
to be known and may therefore be used for querying. The rule modifies the
sample size vector m(t) at time t in the direction (among all directions along
the elementary vectors ei, 1 ≤ i ≤ M) of steepest descent of ε(m, k∗).
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Greedy Query Rule (GQ) Let ∆ > 0 be any fixed constant. At discrete

times t = 1, 2, . . ., let j∗(t) = argmax1≤j≤M

pjε(mj(t),k
∗
j )

mj(t)
and in case of more

than one argmax (e.g., if all M values are identical) choose any one to be j∗(t).
Let

mj∗(t)(t + 1) = mj∗(t)(t) + ∆ (18)

while the remaining components of m(t) remain unchanged, i.e.,

mj(t + 1) = mj(t),∀j 6= j∗(t).

The value of the derivative with respect to continuous time t evaluated at
t = 1, 2, . . ., is chosen as ṁj∗(t)(t) = ∆ and ṁj(t) = 0 for j 6= j∗(t). 2

The next lemma shows that the rule achieves the desired result, namely, the
deterministic sequence m(t) converges to the optimal trajectory m∗(t).

Lemma 4 For any initial point m(0) ∈ IRM , satisfying mi(0) ≥ 3, there
exists some finite integer 0 < N ′ < ∞ such that for all discrete time t > N ′

the trajectory m(t) corresponding to a repeated application of the adaptation
rule GQ, is no farther than ∆ (in the lM1 -norm) from the optimal trajectory
m∗(t).

PROOF. Recall that ε(m, k∗) =
∑M

i=1 piε(mi, k
∗
i ) where ε(mi, ki) =

√
ki ln mi

mi
,

1 ≤ i ≤ M . The derivative ∂ε(m,k∗)
∂mi

= pi
k∗i

2ε(mi,k∗i )
1−ln mi

m2
i

' pi
1

2ε(mi,k∗i )

−k∗i ln mi

m2
i

which equals −piε(mi, k
∗
i )/(2mi). We denote by xi = piε(mi, k

∗
i )/(2mi), and

note that dxi

dmi
' −3

2
xi

mi
, 1 ≤ i ≤ M .

There is a one-to-one correspondence between the vector x and m. Thus we
may refer to the optimal trajectory also in x-space. First, let us consider the set
T = {x = c[1, 1, . . . , 1] ∈ IRM

+ : c ∈ IR+} which is not a trace (with parameter
t) but the ‘static’ set corresponding to the trace of the optimal trajectory in
x-space. We refer to T ′ as the corresponding set in m-space.

Define the Liapunov function

V (x(t)) = V (t) =
xmax(t)− xmin(t)

xmin(t)

where for any vector x ∈ IRM
+ , xmax = max1≤i≤M xi, and xmin = min1≤i≤M xi,

and write mmax, mmin for the elements of m with the same index as xmax,
xmin, respectively.
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Denote by V̇ the derivative of V with respect to t. The notation V̇ (x) denotes
the derivative of V with respect to t evaluated at x. We first claim the following
stability property:

Claim 1 If x 6∈ T then V (x) > 0 and V̇ (x) < 0. If x ∈ T then V (x) = 0 and
V̇ (x) = 0.

We prove the claim next. For x 6∈ T we have x 6= c[1, 1, . . . , 1], for any c ∈
IR+. Thus xmax − xmin > 0 which implies V (x) > 0. While for x ∈ T , x =
c[1, 1, . . . , 1] for some c ∈ IR+ hence xmax = xmin which implies V (x) = 0.

We also have

V̇ =
dV

dt
=

M∑
j=1

d

dxj

V
dxj

dt
. (19)

Now, according to Rule GQ at any time t only xmax changes. Thus the right
side of (19) equals

dV

dxmax

dxmax

dmmax

ṁmax. (20)

According to Rule GQ, ṁmax = ∆. Also, dV/dxmax = 1/xmin. Thus (20)
becomes

−3

2

∆

mmax

xmax

xmin

=−3

2

∆

mmax

xmax − xmin

xmin

− 3

2

∆

mmax

≤−3

2

∆

mmax

xmax − xmin

xmin

=−3

2
∆

V (x)

mmax

≤ −3

2

∆ V (x)

t ∆
= −3

2

V

t

the latter follows since mmax ≤
∑M

i=1 mi(t) = ∆ t using the fact that ṁmax =
∆. Thus we now have the following differential equation

V̇ ≤ −3

2

V

t
. (21)

Since for x 6∈ T , V (x(t)) > 0 it follows that V̇ (x(t)) < 0 while for x ∈ T ,
V (x) = 0 implies V̇ (x) = 0, which together with the above proves Claim
1. 2

We have proved that as long as m(t) is not on the optimal trajectory then
V (t) decreases. In order to show that the trajectory is an attractor we need
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to show that V (t) decreases fast enough to zero.

Solving (21) yields

V (t) ≤ const
(

1

t

) 3
2

. (22)

As we now show, this rate of decrease suffices to guarantee the convergence of
x(t) to the optimal trajectory. Denote by dist(x, T ) = infy∈T ‖x− y‖lM1

, where

lM1 denotes the Euclidean vector norm.

Claim 2 As t →∞, the distance

dist(m(t), T ′) → 0.

Fix a time t such that V (x(t)) ≤ ε. For this x we have xmax − xmin ≤ εxmin.
Denote by x = 1

M

∑M
i=1 xi. Take

x̃ = [x, . . . , x] (23)

and denote the vector corresponding to x̃ by m̃.

Then the distance |x̃i − xi| ≤ εxmin, for every 1 ≤ i ≤ M . Using the Mean
Value Theorem for the function xi(mi) = ε(mi, k

∗
i )/mi, applied to the points

m̃i and mi we have for every 1 ≤ i ≤ M ,

|m̃i −mi| =
|x̃i − xi|

3x′i
2m′

i

≤ εxmin

3x′i
2m′

i

(24)

where x′i corresponds to the point m′
i which satisfies min{m̃i, mi} ≤ m′

i ≤
max{m̃i, mi}. Now, we have

x′i ≥ min{x̃i, xi} = min{x, xi} ≥ xmin.

Combining the above we have

|m̃i −mi| ≤
2

3
εm′

i ≤
2

3
ε max{m̃i, mi}. (25)

Note the simple inequality max{m̃i, mi} ≤ mi + |m̃−mi|. This yields

|m̃i −mi| ≤
2
3
εmi

1− 2
3
ε
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which holds for any 1 ≤ i ≤ M . Hence ‖m̃−m‖lM1
≤ 2

3
M εmmax

1− 2
3
ε
.

Now, choose a t such that const(1/t)3/2 = ε, where the constant const is
from (22). For such t, we have V (t) ≤ ε hence the above inequality applies.
Moreover, mmax ≤

∑M
i=1 mi(t) = t ∆. So, making now the dependence on t

explicit, we have

‖m̃(t)−m(t)‖lM1
≤

2
3
M
(

1
t

) 3
2 t ∆

1/const− 2
3

(
1
t

) 3
2

=

2M
3
√

t
∆

1/const− 2
3

1

t
3
2

→ 0 (26)

as t →∞. We also have

dist(m(t), T ′) = inf
y∈T ′

‖m(t)− y‖lM1
≤ ‖m(t)− m̃(t)‖lM1

→ 0, t →∞

since m̃ ∈ T ′. This proves Claim 2. 2

So m(t) gets closer to the set T ′ with increasing time t. Denote by the tth

problem the minimization of ε(y, k∗) under the constraint
∑M

i=1 yi = m(t).
Denote its solution by m∗(t). We next show that m(t) gets closer to m∗(t) as
t →∞.

Letting β(t) = ‖m̃(t) −m(t)‖lM1
, then from above, β(t) → 0 with t → ∞. It

follows that ‖m(t)‖lM1
− β(t) ≤ ‖m̃(t)‖lM1

≤ ‖m(t)‖lM1
+ β(t). Since m(t) =

‖m(t)‖lM1
, and denoting by m̂(t) = ‖m̃(t)‖lM1

, then it follows from (17) and
(23) that m̃(t) is the solution to the minimization of ε(y, k∗) under a constraint∑M

i=1 yi = m̂(t), where |m̂(t)−m(t)| ≤ β(t). By the continuity of the mapping
which takes the constraint value m to the solution vector m∗ it follows that
the two solution vectors m̃(t) and m∗(t) of the two minimization problems
under constraints

∑M
i=1 yi = m̂(t) and

∑M
i=1 yi = m(t), respectively, become

arbitrarily close in the lM1 -norm as t →∞. The rate of convergence of m̃(t) →
m∗(t) depends on the complexity vector k∗.

Combining this with (26) it follows that as t → ∞, m(t) gets closer in the
lM1 -norm to the solution m∗(t) of the tth minimization problem. As both m(t)
and m∗(t) are multi-integers, there is some finite discrete time N ′ such that
m(N ′) = m∗(N ′). At that point the Rule GQ will adapt, i.e., increase m, in
any one of the component directions mi, 1 ≤ i ≤ M , since all the components
of x(N ′) are equal. This results in a step of size ∆ away from the optimal
trajectory followed by, at time N ′ + 1, a renewed convergence of m(t) to
m∗(t), t > N ′, which follows from the above analysis. Hence for all discrete
time t > N ′, ‖m(t)−m∗(t)‖lM1

≤ ∆. 2
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Thus we conclude that for the case of known k∗, the Rule GQ ensures that the
sample size vector m(t) converges to a ∆-band around the optimal trajectory.
In the next section we show that the same rule may also be used in the setting
where k∗ is unknown.

4.2 The Realistic Case—k∗ is unknown

In the previous section we determined the convergence property of the se-
quence m(t) generated by Rule GQ which asymptotically was shown to mini-
mize the criterion ε(m, k∗) under the constraint that ‖m(t)‖lM1

= m(t).

In this section we are concerned with the convergence of the random sequence
m(n) generated by Algorithm SQ, see (14), which adapts m(n) to minimize
a random criterion ε(·, k̂n). This bears similarity to stochastic approximation
under non-exogenous noise where noise depends on the state variable which
is adapted at each time instance, cf. Kushner & Clark [1978]. In our case
however, the random sequence k̂n converges to a deterministic value k∗ (see
Corollary 1) thereby admitting a simpler analysis.

The next lemma states that even when k∗ is unknown, it is possible, by using
Algorithm SQ, to generate a sample-size vector sequence which converges to
the optimal m∗(n) trajectory asymptotically in time (again, the use of n in-
stead of t just means we have a random sequence m(n) and not a deterministic
sequence m(t) as was investigated in the previous section).

Lemma 5 Fix any ∆ ≥ 1 as a step size used by Algorithm SQ. Given a sample
size vector sequence m(n), n → ∞, generated by Algorithm SQ, assume that
k̂n → k∗ almost surely, where k∗ is the Bayes complexity as defined in (10).
Let m∗(n) be the optimal trajectory as in Definition 3. Then the events

‖m(n)−m∗(n)‖lM1
> ∆

occur infinitely often with probability 0.

PROOF.

From Lemma 3, m(n) generated by Algorithm SQ is an increasing sample-size
sequence. Therefore by Corollary 1 we have k̂n → k∗, a.s., as n → ∞. This
means that P (∃n > N, |k̂n − k∗| > ε) = δN(ε) where δN(ε) → 0 as N → ∞.
Now, since k̂n, k∗ are multi-integers there exists a small enough ε > 0 and
some large enough N(ε) such that for all n > N(ε) we have |k̂n − k∗| ≤ ε
implying k̂n = k∗. Combining the above, it follows that for all δ > 0, there
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is a finite N(δ, ε) ∈ ZZ + such that with probability 1 − δ for all n ≥ N(ε, δ),
k̂n = k∗.

It follows that with the same probability for all n ≥ N , the criterion ε(m, k̂n) =
ε(m, k∗), uniformly over all m ∈ ZZ M

+ , and hence the trajectory m(n) taken by

algorithm SQ, governed by the criterion ε(·, k̂n), equals the trajectory m(t),
t ∈ ZZ +, taken by Rule GQ, see (18), under the deterministic criterion ε(·, k∗).
Moreover, this probability of 1−δ goes to 1 as N →∞ by the a.s. convergence
of k̂n to k∗.

Finally, by Lemma 4, there exists a N ′ < ∞ such that for all discrete time
t > N ′, ‖m(t)−m∗(t)‖lM1

≤ ∆. It follows that for all n > max{N, N ′}, the ran-
dom sequence m(n) generated by Algorithm SQ satisfies ‖m(n)−m∗(n)‖lM1

≤
∆ with probability going to 1 as max{N, N ′} → ∞. Stated more formally: Let

N ′′ = max{N, N ′} then P
(
∃n > N ′′, k̂n 6= k∗ or

∥∥∥m(t)|t=n −m∗(t)|t=n

∥∥∥
lM1

> ∆
)

=

δN ′′ where δN ′′ → 0 as N ′′ →∞. The latter means that the event k̂n 6= k∗ or
‖m(n)−m∗(n)‖lM1

> ∆ occurs infinitely often with probability 0. The state-

ment of the lemma then follows. 2

5 Conclusions

In this work we considered the problem of learning multi-category classification
of M pattern classes with the assumption that the Bayes classifier has zero
loss. We proposed a criterion according to which there are sample sizes m∗

i ,
1 ≤ i ≤ M , which minimize an upper bound on the loss of an estimator
of the Bayes classifier. These sample sizes depend on the unknown intrinsic
complexity of the Bayes classifier and as such cannot be computed directly.
For this reason we introduced an on-line algorithm which chooses at each
time instant the particular pattern class from which to draw randomly labeled
examples. The choice is governed by a stochastic gradient descent rule which
minimizes a random criterion and for all large enough time is shown to generate
these minimizing sample sizes.

There are various possible extensions including the treatment of the case of
having a Bayes loss greater than zero and trying to improve the rate of con-
vergence of m(n) to m∗(n) by allowing the step size ∆ to vary somehow with
time n. For this, it appears though that the rate of convergence of k̂n to k∗

needs to be known.
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useful comments

A Proof of Lemma 1

As in the beginning of Section 2, for k ∈ ZZ M
+ let Ck denote a class of classifiers

of the form c(x) = [c1(x), . . . , cM(x)], x ∈ IRd where ci(x) ∈ {0, 1}, 1 ≤ i ≤ M ,
are the boolean component classifiers of c. Denote by Gk ⊂ Ck the set of well-
defined classifiers in Ck.

For a class Br of boolean classifiers with V C(Br) = r it is known (cf. Devroye
et. al. [1996] ch. 6, Vapnik [1982] Theorem 6.7) that a bound on the deviation
between the loss and the empirical loss uniformly over all classifiers b ∈ Br is

sup
b∈Br

|L(b)− Lm(b)| ≤ const

√√√√r ln m + ln
(

1
δ

)
m

(A.1)

with probability 1 − δ where m denotes the size of the random sample used
for calculating empirical loss Lm(b). Choosing for instance δm = 1

m2 implies

that the bound of const
√

r ln m
m

, with a different constant const, does not hold
infinitely often with probability 0. We will refer to this as the uniform strong
law of large numbers result. This bound was defined as ε(m, r) in (3).

We begin with proving the first part of the lemma.

PROOF. From above we have for arbitrary δ′ > 0 and for each 1 ≤ i ≤ M ,

P

 sup
ci∈Cki

|Li(ci)− Li,mi
(ci)| > const ε(mi, ki, δ

′)

 ≤ δ′ (A.2)

provided mi is larger than some finite value.

P

(
sup
c∈Ck

|L(c)− Lm(c)| > ε(m, k, δ′)

)
=

=P

(
sup
c∈Ck

∣∣∣∣∣
M∑
i=1

pi (L(ci)− Li,mi
(ci))

∣∣∣∣∣ >
M∑
i=1

piε(mi, ki, δ
′)

)

≤P

(
sup
c∈Ck

M∑
i=1

pi |L(ci)− Li,mi
(ci)| >

M∑
i=1

piε(mi, ki, δ
′)

)
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=P

(
∃c ∈ Ck :

M∑
i=1

pi |L(ci)− Li,mi
(ci)| >

M∑
i=1

piε(mi, ki, δ
′)

)
≤P (∃c ∈ Ck : ∃1 ≤ i ≤ M, |L(ci)− Li,mi

(ci)| > ε(mi, ki, δ
′))

≤
M∑
i=1

P (∃c ∈ Ck : |L(ci)− Li,mi
(ci)| > ε(mi, ki, δ

′))

=
M∑
i=1

P (∃c ∈ Cki
: |L(c)− Li,mi

(c)| > ε(mi, ki, δ
′))

≤Mδ′ ≡ δ.

We also have

sup
c∈Ck

|L(c)− Lm(c)| ≤ α ⇒ sup
c∈Gk

|L(c)− Lm(c)| ≤ α

since Gk ⊆ Ck. The first statement of the lemma then follows. 2

For the second part of the lemma, by the premise, consider any fixed complex-
ity vector k and any sequence-generating procedure φ. Define the following set
of sample size vector sequences: AN ≡ {m(n) : n > N,m(n) is generated by φ}.
As the space is discrete, for any finite N , the set AN contains all possible
paths except a finite number of length-N paths. We will show that the events
En ≡ {supc∈Gk

∣∣∣L(c)− Lm(n)(c)
∣∣∣ > ε(m(n), k, δ) : m(n) generated by φ} occur

infinitely often with probability 0, where ε(m, k, δ) is defined just below (6)
and choosing δ as a function of m.

Let us define δ∗m = 1
max1≤j≤M m2

j
. We write {∃m(n) ∈ AN : property holds} to

mean there exists a sequence m(·) ∈ AN such that there exists n > N such
that the property holds for the point m(n). We have

P

(
∃m(n) ∈ AN : sup

c∈Gk

∣∣∣L(c)− Lm(n)(c)
∣∣∣ > ε(m(n), k, δ∗m(n))

)

≤P

(
∃m(n) ∈ AN : sup

c∈Ck

∣∣∣L(c)− Lm(n)(c)
∣∣∣ > ε(m(n), k, δ∗m(n))

)

≤P

∃m(n) ∈ AN : sup
c∈Ck

M∑
j=1

pj

∣∣∣L(cj)− Lj,mj(n)(cj)
∣∣∣ > M∑

j=1

pjε(mj(n), kj, δ
∗
m(n))


≤P

∃m(n) ∈ AN : ∃1 ≤ j ≤ M, sup
cj∈Ckj

∣∣∣L(cj)− Lj,mj(n)(cj)
∣∣∣ > ε(mj(n), kj, δ

∗
m(n))


where we used again the fact that Gk ⊆ Ck. Now, m(n) ∈ AN implies there
exists a point m such that min1≤j≤M mj > Tφ(N) where Tφ(N) is increasing

28



with N . This follows from Definition 1 and from m(n) being generated by φ
which means it is an increasing sequence.

Continuing from above we have,

P

∃m(n) ∈ AN : ∃1 ≤ j ≤ M, sup
cj∈Ckj

∣∣∣L(cj)− Lj,mj(n)(cj)
∣∣∣ > ε(mj(n), kj, δ

∗
m(n))


(A.3)

=P

∃m ∈ ZZ M
+ : min

1≤i≤M
mi > Tφ(N), ∃1 ≤ j ≤ M, sup

cj∈Ckj

∣∣∣L(cj)− Lj,mj
(cj)

∣∣∣ > ε(mj, kj, δ
∗
m)


≤

M∑
j=1

P

∃m ∈ ZZ M
+ : min

1≤i≤M
mi > Tφ(N), sup

cj∈Ckj

∣∣∣L(cj)− Lj,mj
(cj)

∣∣∣ > ε(mj, kj, δ
∗
m)


≤

M∑
j=1

P

∃m ∈ ZZ M
+ : mj > Tφ(N), sup

cj∈Ckj

∣∣∣L(cj)− Lj,mj
(cj)

∣∣∣ > ε(mj, kj, δ
∗
m)


where by going to (A.3) we have eliminated the need for n using the function
Tφ(N) which depends only on the generating procedure φ and holds for all
possible sequences generated by φ. By definition of δ∗m we have,

ε(mj, kj, δ
∗
m) =

√√√√√kj ln mj + ln 1
1/ max1≤j≤M m2

j

mj

>

√√√√√kj ln mj + ln 1
1/m2

j

mj

= ε

(
mj, kj,

1

m2
j

)

for any 1 ≤ j ≤ M . Continuing we have,

M∑
j=1

P

∃m ∈ ZZ M
+ : mj > Tφ(N), sup

cj∈Ckj

∣∣∣L(cj)− Lj,mj
(cj)

∣∣∣ > ε(mj, kj, δ
∗
m)


≤

M∑
j=1

P

∃m ∈ ZZ M
+ : mj > Tφ(N), sup

cj∈Ckj

∣∣∣L(cj)− Lj,mj
(cj)

∣∣∣ > ε

(
mj, kj,

1

m2
j

)
=

M∑
j=1

P

∃mj > Tφ(N) : sup
cj∈Ckj

∣∣∣L(cj)− Lj,mj
(cj)

∣∣∣ > ε

(
mj, kj,

1

m2
j

)
≤

M∑
j=1

∑
mj>Tφ(N)

1

m2
j

(A.4)

≡
M∑

j=1

η(N) ≡ sN

where (A.4) follows from the uniform strong law result under (A.1). Note that
the set {mj : mj > Tφ(N)} is strictly increasing, i.e., Tφ(N) + 1, Tφ(N) +
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2, . . ., as opposed to {mj(n) : mj(n) > Tφ(N) which is not necessarily strictly
increasing but may have repetitions, i.e., Tφ(N) + 1, · · · , Tφ(N) + 1, Tφ(N) +
2, · · · , Tφ(N)+2, . . .. Having eliminated n since step (A.3) means we deal with
the former set. The quantity η(N), and hence sN , is strictly decreasing with
respect to N . We have therefore shown that

P(∃m(n) ∈ AN : sup
c∈Gk

∣∣∣L(c)− Lm(n)(c)
∣∣∣ > ε(m(n), k, δ∗m(n))) ≤ sN

and it follows that the same holds if we replace ε(m(n), k, δ∗m(n)) with ε(m(n), k)
(see (3)) since there exists a constant const such that for all m(n) and 1 ≤
i ≤ M , we have max1≤j≤M mj(n) ≤ const mi(n) based again on φ being
a sequence generating procedure which places a lower bound on the rate of
increase of Tφ(N).

So we have

lim
N→∞

P(∃m(n) ∈ AN : sup
c∈Gk

∣∣∣L(c)− Lm(n)(c)
∣∣∣ > ε(m(n), k)) = 0

which implies that the sequence of events

En ≡
{

sup
c∈Gk

∣∣∣L(c)− Lm(n)(c)
∣∣∣ > ε(m(n), k)

}
, n = 1, 2, . . .

where m(n) is any sequence generated by φ, occurs infinitely often with prob-
ability 0. This proves the second part of the lemma 1. 2

B Proof of Lemma 2

First we prove the convergence of k̂ → k∗, where k∗ is some vector of minimal
norm over all vectors k for which L(c∗k) = 0. We henceforth denote for a
vector k ∈ ZZ M

+ , by ‖k‖∞ = max1≤i≤M |ki|. Throughout the proof all sequences
and convergence statements are made with respect to the increasing sequence
m(n). The indexing variable n is sometimes left hidden for simpler notation.

The set F̂ defined in (11) may be rewritten as F̂ = {k : L̃(ĉk) = L̃(ĉ∗)}, i.e., it
is the set of complexities corresponding to all empirical loss minimizers whose
penalized loss is the minimum over all k ∈ ZZ M

+ . The cardinality of F̂ is finite
since for all k having at least one component ki larger than some constant
implies L̃(ĉk) > L̃(ĉ∗) because ε(m, k) will be larger than L̃(ĉ∗). This implies
that the set of k for which L̃(ĉk) ≤ L̃(ĉ∗) is finite. Now for any α > 0, define
F̂α = {k : L̃(ĉk) ≤ L̃(ĉ∗) + α}. We recall F ∗, which was defined in (9) as
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F ∗ = {k : L(c∗k) = L∗ = 0}, and define F ∗
α = {k : L(c∗k) ≤ L∗ + α}, where

the Bayes loss is L∗ = 0. Recall that the chosen classifier ĉ∗ has a complexity
k̂ = argmink∈F̂‖k‖∞. By Assumption 1 there exists a k∗ = argmink∈F ∗‖k‖∞
all of whose components are finite.

We start with the following Claim.

Claim 3 F̂ 6⊆ F ∗
ε(m,k∗), i.o. with probability 0

where i.o. stands for infinitely often.

PROOF.

P (L(c∗k) > ε(m, k∗) i.o.)

≤P (L(ĉk) > ε(m, k∗) i.o.) (B.1)

=P (L(ĉk) > Lm(ĉk∗) + ε(m, k∗) i.o.) (B.2)

where (B.1) follows since L(ĉk) ≥ L(c∗k), (B.2) follows by Assumption 1 which
by L(c∗k∗) = L∗ = 0 implies that Lm(c∗k∗) = 0 for any sample size vector m
and by definition of an empirical loss minimizer

Lm(ĉk∗) ≤ Lm(c∗k∗) = 0. (B.3)

We continue from (B.2). For any k ∈ F̂

P (L(ĉk) > Lm(ĉk∗) + ε(m, k∗) i.o.)

=P
(
L(ĉk) > L̃(ĉk∗) i.o.

)
≤P

(
L(ĉk) > L̃(ĉ∗) i.o.

)
(B.4)

=P
(
L(ĉk) > L̃(ĉk) i.o.

)
(B.5)

=P (L(ĉk) > Lm(ĉk) + ε(m, k) i.o.) = 0 (B.6)

where (B.4) follows from the definition of ĉ∗, (B.5) follows from by definition
of F̂ and (B.6) follows from Lemma 1.

As the cardinality of F̂ is finite, it follows that L(c∗k) > ε(m, k∗), i.o., with
probability 0 simultaneously for all k ∈ F̂ . Hence F̂ 6⊆ F ∗

ε(m,k∗), i.o. with
probability 0. 2

Claim 4 k∗ ∈ F̂ .
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PROOF. For any α > 0, we have k∗ ∈ F̂α. To see this first let m be large
enough such that ε(m, k∗) = α. Then it follows that k∗ ∈ F̂ε(m,k∗) since

L̃(ĉk∗) = Lm(ĉk∗)+ε(m, k∗) ≤ ε(m, k∗) ≤ L̃(ĉ∗)+ε(m, k∗), where we used again
the fact that Lm(ĉk∗) ≤ Lm(c∗k∗) = 0. It follows that k∗ ∈ limα→0 F̂α = F̂ . 2

We now claim the following:

Claim 5 For all m large enough, k∗ = argmink∈F ∗
ε(m,k∗)

‖k‖∞.

PROOF.

There exists a k̃ = [l, . . . , l] such that the cube C = {k : ki ≤ l, 1 ≤ i ≤ M}
contains the vector k∗, and there exists a β > 0, such that for all 0 < α < β,
F ∗

α

⋂
C = F ∗ ⋂C. To see this, note that for any α > 0, the set F ∗

α

⋂
C contains

a finite number of vectors k ∈ ZZ M
+ . Each of these vectors corresponds to a

certain classifier c∗k with a certain loss L(c∗k) and there must be at least one
such vector with a corresponding classifier having a loss of zero since k∗ ∈ C.
There clearly exists a β > 0 small enough such that only those k ∈ F ∗

α

⋂
C

for which L(c∗k) = 0 satisfy L(c∗k) ≤ β. It follows that for all 0 < α < β,
F ∗

α

⋂
C = F ∗

β

⋂
C = {k : L(c∗k) = 0, k ∈ C} = F ∗ ⋂C as claimed.

We continue with the proof of Claim 5 assuming that 0 < α < β. For every
k ∈ F ∗

α \ C there exists a component ki > l for some i ∈ {1, 2, . . . ,M}.
Hence ‖k‖∞ > l. Moreover, since k∗ ∈ C then k∗i ≤ l, 1 ≤ i ≤ M . Hence it
follows that ‖k‖∞ ≥ ‖k∗‖∞ for all k ∈ F ∗

α \ C. Hence the k ∈ F ∗
α which has

minimal norm must be a k which has a minimum norm over F ∗
α

⋂
C. But the

latter is equivalent to the set F ∗ ⋂C. Now, since k∗ = argmink∈F ∗‖k‖∞ and
since k∗ ∈ C it follows that k∗ = argminF ∗

⋂
C‖k‖∞. Hence it follows that

k∗ minimizes ‖k‖∞ over all k ∈ F ∗
α. Letting α = ε(m, k∗), then for all large

enough m, α < β which proves the statement of Claim 5. 2

From Claims 3, 4 and 5 it follows that k∗ 6= argmink∈F̂‖k‖∞, i.o. with proba-

bility 0. And since by definition k̂ = argmink∈F̂‖k‖∞ then it follows that

‖k̂‖∞ 6= ‖k∗‖∞ i.o. (B.7)

with probability zero but where k̂ does not necessarily equal k∗. The latter
combined with Claim 3 implies that k̂ 6= argmink∈F ∗

ε(m,k∗)
‖k‖∞, i.o. with prob-

ability 0. Finally, we have k̂ 6∈ C i.o. with probability 0 since ‖k̂‖∞ = ‖k∗‖∞
hence it follows from the proof of Claim 5 that the event that k̂ does not min-
imize ‖k‖∞ over all k ∈ F ∗ ⋂C and hence over F ∗ happens infinitely often
with probability 0.
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So we have proved that any sequence of vectors k̂ = argmink∈F̂‖k‖∞ does not
minimize ‖k‖∞ over all k ∈ F ∗ infinitely often with probability 0. Therefore
we conclude that

k̂ → k∗, (componentwise) a.s., m →∞

(or equivalently, with n → ∞ as the sequence m(n) is increasing) where
k∗ = argmink∈F ∗‖k‖∞, is not necessarily unique, but all of whose components
are finite. This proves the first part of the lemma. 2

Next, we prove the second part of the lemma which states an upper bound
on L(ĉ∗). We make use of the same idea as in the proof of Lemma 1 where
we start off with sequences of n and then eliminate the dependence on n.
We explicitly denote the dependence of ĉ∗ on n by writing ĉ∗n. Let φ be any
sequence-generating procedure and define the following set of sample size vec-
tor sequences: AN ≡ {m(n) : n > N, m(n) is generated by φ}. As before,
we write {∃m(n) ∈ AN : property holds} to mean there exists a sequence
m(·) ∈ AN such that there exists an n > N such that the property holds for
the point m(n). We have

P (∃m(n) ∈ AN : L(ĉ∗n) > ε(m(n), k∗) ) (B.8)

=P
(
∃m(n) ∈ AN : L(ĉ∗n) > Lm(n)(ĉk∗) + ε(m(n), k∗)

)
(B.9)

=P
(
∃m(n) ∈ AN : L(ĉ∗n) > L̃(ĉk∗)

)
≤P

(
∃m(n) ∈ AN : L(ĉ∗n) > L̃(ĉ∗n)

)
(B.10)

=P
(
∃m(n) ∈ AN : L(ĉ∗n) > Lm(n)(ĉ

∗
n) + ε(m(n), k̂n)

)
where (B.9) follows from (B.3) and (B.10) follows from the definition of ĉ∗.
Now, for any fixed n, based on the randomly drawn sample of size vector m(n)
the SRM-chosen classifier ĉ∗n could be any one of ĉk in a set which is no larger

than
{
k ∈ ZZ M

+

}
. We therefore have

P
(
∃m(n) ∈ AN : L(ĉ∗n) > Lm(n)(ĉ

∗
n) + ε(m(n), k̂n)

)
≤P

(
∃m(n) ∈ AN , ∃k ∈ ZZ M

+ : L(ĉk) > Lm(n)(ĉk) + ε(m(n), k)
)

≤P
(
∃m(n) ∈ AN , ∃k ∈ ZZ M

+ : ∃1 ≤ j ≤ M, L(ĉkj
) > Lj,mj(n)(ĉkj

) + ε(mj(n), kj)
)

≤P
(
∃m(n) ∈ AN , ∃1 ≤ j ≤ M, ∃kj ∈ ZZ + : L(ĉkj

) > Lj,mj(n)(ĉkj
) + ε(mj(n), kj)

)
.

Now, we eliminate n using the same reasoning as in the proof of Lemma 1.
We have
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P
(
∃m(n) ∈ AN , ∃1 ≤ j ≤ M, ∃kj ∈ ZZ + : L(ĉkj

) > Lj,mj(n)(ĉkj
) + ε(mj(n), kj)

)
≤P

(
∃m ∈ ZZ M

+ , min
1≤i≤M

mi > Tφ(N), ∃1 ≤ j ≤ M, ∃kj ∈ ZZ + : L(ĉkj
) > Lj,mj

(ĉkj
) + ε(mj, kj)

)

≤
M∑

j=1

P
(
∃m ∈ ZZ M

+ , mj > Tφ(N), ∃kj ∈ ZZ + : L(ĉkj
) > Lj,mj

(ĉkj
) + ε(mj, kj)

)

≤
M∑

j=1

P
(
∃mj > Tφ(N), ∃kj ∈ ZZ + : L(ĉkj

) > Lj,mj
(ĉkj

) + ε(mj, kj)
)

≤
M∑

j=1

∞∑
kj=1

P
(
∃mj > Tφ(N) : L(ĉkj

) > Lj,mj
(ĉkj

) + ε(mj, kj)
)
. (B.11)

We now make use of the uniform strong law result mentioned under (A.1),
just stating it more explicitly. First, let us choose a constant const to be

the maximum of
√

6 and the constant in (A.1). This means const
√

kj ln mj

mj
≥

√
3
√

kj ln(emj)

mj
, for all mj ≥ 3 and henceforth define ε(mj, kj) to be const

√
kj ln mj

mj

with the new const. Using the upper bound on the growth function cf. Vap-
nik [1982] Section 6.9, Devroye et. al. [1996] Theorem 13.3 we have for some
absolute constant κ > 0

P
(
L(ĉkj

) > Lj,mj
(ĉkj

) + ε(mj, kj)
)

(B.12)

≤κm
kj

j e−mjε2(mj ,kj)

= κm
kj

j e−mj(const)2kj ln mj/mj

≤κm
kj

j e−3mjkj ln(emj)/mj

= κ
1

m
2kj

j

e−3kj

≤κ
1

m2
j

e−3kj for kj ≥ 1.

Continuing to upper bound (B.11)

M∑
j=1

∞∑
kj=1

P
(
∃mj > Tφ(N) : L(ĉkj

) > Lj,mj
(ĉkj

) + ε(mj, kj)
)

(B.13)

≤κ
M∑

j=1

∑
mj>Tφ(N)

∞∑
kj=1

e−3kj

m2
j

≤ 2κ
M∑

j=1

∑
mj>Tφ(N)

1

m2
j

≡ σN .

Just as (A.4) was shown to be strictly decreasing with N , the same holds here
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for σN . It follows that

lim
N→∞

P (∃m(n) ∈ AN : L(ĉ∗n) > ε(m(n), k∗)) = 0

implying that the events {L(ĉ∗n) > ε(m(n), k∗)} occur infinitely often with
probability 0. The second part of the Lemma is proved. 2

C Proof of Corollary 1

The proof of Lemma 2 uses only the result of Lemma 1, namely, the uniform
upper bound on the deviations between the empirical and the true loss of well-
defined classifiers. From the proof of Lemma 1 it is apparent that the same
uniform upper bound holds even if the sample is i.i.d. only when conditioned
on a pattern class. This follows since the upper bound is the weighted aver-
age of the uniform upper bounds on the SLLN deviations of the individual
subsamples corresponding to each of the pattern classes.

Also, by premise of the corollary, the components of the vector m(n) all in-
crease with time n → ∞. Thus k̂n corresponds to a sequence of complexities
of chosen classifiers based on an increasing sample size sequence m(n). The
proof of Lemma 2 applies also for the setting of Corollary 1. 2

D Proof of Lemma 3

Note that for this proof we cannot use Lemma 1 or parts of Lemma 2 since they
are conditioned on having a sequence-generating procedure. Our approach here
relies on the characteristics of the SRM-selected complexity k̂n which is shown
to be bounded uniformly over n based on Assumption 1. It follows that by
the sample-size increment rule of Algorithm SQ the generated sample size
sequence m(n) is not only increasing but with a minimum rate of increase as
in Definition 2. This establishes that Algorithm SQ is a sequence-generating
procedure.

PROOF.

We start with the next claim.

Claim 6 Consider an increasing sequence m(n) as in Definition 1 For all n
there is some constant 0 < ρ < ∞ such that ‖k̂n‖∞ < ρ.
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Suppose that there does not exist a ρ such that for all n, ‖k̂n‖∞ < ρ. This
implies the existence of some 1 ≤ i ≤ M such that for all ρ > 0 there exists
N(ρ), ∀n > N(ρ), k̂n,i > ρ where k̂n,i denotes the ith component of k̂n. By
Assumption 1 there exists k∗ with L(ĉk∗) = 0. This implies Lm(ĉk∗) = 0
which implies Li,mi

(ĉk̂∗i
) = 0 where by the same assumption, the complexity

‖k∗‖ < ∞ hence k∗i < ∞, for all 1 ≤ i ≤ M . The S-Step of the algorithm
minimizes L̃(ĉk) over k ∈ ZZ M

+ and L̃(ĉk̂n
) ≤ L̃(ĉk) for all k ∈ ZZ M

+ by definition of

k̂n. In particular, it is true for a k which equals k̂n in all but the ith component
in which it takes the value k∗i . So we have

∑
j 6=i

pj

(
Lj,mj(n)(ĉk̂n,j

) + ε(mj(n), k̂n,j)
)

+ pi

(
Li,mi(n)(ĉk̂n,i

) + ε(mi(n), k̂n,i)
)

≤
∑
j 6=i

pj

(
Lj,mj(n)(ĉk̂n,j

) + ε(mj(n), k̂n,j)
)

+ pi

(
Li,mi(n)(ĉk∗i

) + ε(mi(n), k∗i )
)

true for all n. We have therefore

Li,mi(n)(ĉk̂n,i
) + ε(mi(n), k̂n,i)

≤Li,mi(n)(ĉk∗i
) + ε(mi(n), k∗i ) = 0 + ε(mi(n), k∗i ). (D.1)

But by the premise, k̂n,i is increasing with n hence there exists some N ′ such

that k̂n,i ≥ k∗i and hence Li,mi(n)(ĉk̂n,i
) = 0, for all n > N ′ where we used

Assumption 1. Combining with (D.1), for all n > N ′ we have ε(mi(n), k̂n,i) ≤
ε(mi(n), k∗i ) which implies k̂n,i ≤ k∗i . This contradicts the premise of having

k̂n,i increasing forever and hence proves the claim. 2

It follows that for all n, k̂n is bounded by a finite constant independent of n.

So for a sequence generated by the GQ criterion, pj
ε(mj(n),k̂n,j)

mj(n)
are bounded

by pj
ε(mj(n),k̃j)

mj(n)
, for some finite k̃j, 1 ≤ j ≤ M , respectively. It can be shown

by simple analysis of the function ε(m, k) that for a fixed k the quantity
∂2ε(mj ,kj)

∂m2
j

/∂2ε(mi,ki)
∂m2

i
converges to a constant dependent on ki and kj with in-

creasing mi, mj. Hence even for the worst case k̂n, which still must be bounded
by the above claim, it follows that the adaptation step of Procedure GQ, which
always increases one of the sub-samples, amounts to increments of ∆mi and
∆mj that are no farther apart than a constant multiple of each other for all
n, for any pair 1 ≤ i, j ≤ M .

Hence for a sequence m(n) generated by Algorithm SQ the following is satis-
fied: it is increasing in the sense of Definition 1, namely, for all N > 0 there
exists a Tφ(N) such that for all n > N every component mj(n) > Tφ(N), 1 ≤
j ≤ M . Furthermore, its rate of increase is bounded from below, namely, there

36



exists a const > 0 such that for all N, N ′ > 0 satisfying Tφ(N
′) = Tφ(N) + 1,

then |N ′−N | ≤ const. It follows that Algorithm SQ is a sequence-generating
procedure according to Definition 2. 2

E Proof of Theorem 1

The classifier ĉ∗n is chosen according to (13) based on a sample of size vector
m(n) generated by Algorithm SQ which is a sequence-generating procedure
(see Lemma 3). Then from Corollary 1

L(ĉ∗n) > const ε(m(n), k∗), i.o.

with probability 0 and furthermore since ∆ = 1 then from Lemma 5 it fol-
lows that ‖m(n) − m∗(n)‖lM1

> 1 infinitely often with probability 0 where
m∗(n) =argminm:‖m‖=m(n)ε(m, k∗). 2
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