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Abstract—In a recent paper, the authors introduced the notion
of sample width for binary classifiers defined on the set of real
numbers. It was shown that the performance of such classifiers
could be quantified in terms of this sample width. This paper
considers how to adapt the idea of sample width so that it
can be applied in cases where the classifiers are defined on
some finite metric space. We discuss how to employ a greedy
set-covering heuristic to bound generalization error. Then, by
relating the learning problem to one involving certain graph-
theoretic parameters, we obtain generalization error bounds that
depend on the sample width and on measures of ‘density’ of the
underlying metric space.

I. INTRODUCTION

By a (binary) classifier (or function) on a set X , we mean a
function mapping from X to {−1, 1}. A classifier indicates to
which of two classes objects from X belong and, in supervised
machine learning, it is arrived at on the basis of a sample, a
set of objects from X together with their classifications (−1
or 1). In [3], the notion of sample width for binary classifiers
mapping from the real line X = R was introduced. In this
paper, we consider how a similar approach might be taken to
the situation in which classifiers map from some finite metric
space (which would not generally have the linear structure of
the real line). The definition of sample width is given below,
but it is possible to indicate the basic idea at this stage: we
define sample width to be at least γ if the classifier achieves
the correct classifications on the sample and, furthermore, for
each sample point, the minimum distance to a point of the
domain having opposite classification is at least γ.

A key issue that arises in machine learning is that of gen-
eralization error: given that a classifier has been produced
by some learning algorithm on the basis of a (random)
sample of a certain size, how can we quantify the accuracy
of that classifier, where by its accuracy we mean its likely
performance in classifying objects from X correctly? In this
paper, we seek answers to this question that involve not just
the sample size, but the sample width. By relating the question
to that of quantifying generalization error in ‘large-margin’
classification, we obtain generalization error bounds involving
‘covering numbers’ of the underlying metric space. We then
discuss how to employ the well-known greedy set-covering

heuristic to bound these covering numbers, and hence the
generalization error. We next show that we can obtain bounds
on generalization error by considering the domination numbers
of certain graphs associated with the underlying metric space.
Using some combinatorial results bounding domination num-
ber in terms of graph parameters, including number of edges
and minimum degree, we obtain generalization error bounds
that depend on measures of density of the underlying metric
space.

II. MEASURING THE ACCURACY OF LEARNING

We work in a version of the popular ‘PAC’ framework of
computational learning theory (see [23], [9]). This model
assumes that the sample s consists of an ordered set (xi, yi) of
labeled examples, where xi ∈ X and yi ∈ Y = {−1, 1}, and
that each (xi, yi) in the training sample s have been generated
randomly according to some fixed (but unknown) probability
distribution P on Z = X × {−1, 1}. (This includes, as a
special case, the situation in which each xi is drawn according
to a fixed distribution on X and is then labeled determinis-
tically by yi = t(xi) where t is some fixed function.) Thus,
a sample s of length m can be thought of as being drawn
randomly according to the product probability distribution
Pm. In general, suppose that H is a set of functions from
X to {−1, 1}. An appropriate measure of how well h ∈ H
would perform on further randomly drawn points is its error,
erP (h), the probability that h(X) 6= Y for random (X,Y ).

Given any function h ∈ H , we can measure how well h
matches the training sample through its sample error

ers(h) =
1

m
|{i : h(xi) 6= yi}|

(the proportion of points in the sample incorrectly classified
by h). Much classical work in learning theory (see [9], [23],
for instance) related the error of a classifier h to its sample
error. A typical result would state that, for all δ ∈ (0, 1),
with probability at least 1 − δ, for all h ∈ H we have
erP (h) < ers(h) + ε(m, δ), where ε(m, δ) (known as a
generalization error bound) is decreasing in m and δ. Such
results can be derived using uniform convergence theorems



from probability theory [24], [19], [12], in which case ε(m, δ)
would typically involve a quantity known as the growth
function of the set of classifiers [24], [9], [23], [2]. More
recently, emphasis has been placed on ‘learning with a large
margin’. (See, for instance [22], [2], [1], [21].) The rationale
behind margin-based generalization error bounds is that if
a classifier can be thought of as a geometrical separator
between points, and if it has managed to achieve a ‘wide’
separation between the points of different classification, then
this indicates that it is a good classifier, and it is possible that
a better generalization error bound can be obtained. Margin-
based results apply when the classifiers are derived from real-
valued function by ‘thresholding’ (taking their sign). Although
the classifiers we consider here are not of this type, we can
deploy margin-based learning theory by working with the real-
valued functions related to the classifiers.

III. THE WIDTH OF A CLASSIFIER

We now discuss the case where the underlying set of objects
X forms a finite metric space. Let X = [N ] := {1, 2, . . . , N}
be a finite set on which is defined a metric d : X × X →
R. So, d(x, y) ≥ 0 and d(x, y) = 0 if and only if y = x;
and d(x, y) = d(y, x). Furthermore, d satisfies the triangle
inequality:

d(a, c) ≤ d(a, b) + d(b, c). (1)

Let D = [d(i, j)] be the corresponding ‘distance matrix’. D is
symmetric with (i, j)th element d(i, j) ≥ 0, and with d(i, j) =
0 if and only if i = j.

For a subset S of X , define the distance from x ∈ X to S as
follows:

dist (x, S) := min
y∈S

d(x, y).

We define the diameter of X to be

diamD(X) := max
x,y∈X

d(x, y) = ‖D‖∞

where ‖D‖∞ is the max-norm for matrix D.

We will denote by H the class of all binary functions h on
X .

The paper [3] introduced the notion of the width of a binary
function at a point in the domain, in the case where the domain
was the real line R. Consider a set of points {x1, x2, . . . , xm}
from R, which, together with their true classifications yi ∈
{−1, 1}, yield a training sample

s = ((xj , yj))
m
j=1 = ((x1, y1), (x2, y2), . . . , (xm, ym)) .

We say that h : R → {−1, 1} achieves sample margin at
least γ on s if h(xi) = yi for each i (so that h correctly
classifies the sample) and, furthermore, h is constant on each
of the intervals (xi−γ, xi+γ). It was then possible to obtain
generalization error bounds in terms of the sample width. In

this paper we use an analogous notion of width to analyse
classifiers defined on a finite metric space. We now define the
notion of width that naturally suits this space.

Let us denote by Sh− and Sh+ the sets corresponding to the
function h : X → {−1, 1} which are defined as follows:

Sh− := {x ∈ X : h(x) = −1} , Sh+ := {x ∈ X : h(x) = +1} .
(2)

We will often omit the superscript h. We define the width
wh(x) of h at a point x ∈ X to be the following distance
(where h̄(x) is the sign opposite to that of h(x), meaning −
if h(x) = 1 and + if h(x) = −1):

wh(x) := dist
(
x, Sh(x)

)
.

In other words, it is the distance from x to the set of points
that are labeled the opposite of h(x). The term ‘width’ is
appropriate since the functional value is just the geometric
distance between x and the set Sh(x).

Let us define the signed width function, or margin function,
fh, as follows:

fh(x) := h(x)wh(x).

Note that the absolute value of fh(x) is, intuitively, a measure
of how ‘definitive’ or ‘confident’ is the classification of x by
h: the higher the value of fh(x) the greater the confidence in
the classification of x. Note also that the error erP (h) of h
can also be expressed in terms of the margin function fh:

erP (h) = P (h(X) 6= Y ) = P (Y h(X) < 0) = P (Y fh(X) < 0) .
(3)

We define the class F of margin functions as

F := {fh(x) : h ∈ H} . (4)

Note that fh is a mapping from X to the interval
[−diamD(X), diamD(X)]. Henceforth, we will use γ > 0
to denote a learning margin parameter whose value is in the
range (0, diamD(X)].

IV. MARGIN-BASED GENERALIZATION BOUNDS AND
COVERING NUMBERS

A. Margin-based bounds

For a positive margin parameter γ > 0 and a training sample
s, the empirical (sample) γ-margin error is defined as

P̂s(Y fh(X) < γ) =
1

m

m∑
j=1

I (yjfh(xj) < γ) .

(Here, I(A) is the indicator function of the set, or event, A.)

Our aim is to show that the generalization misclassifica-
tion error P (Y fh(X) < 0) is not much greater than



P̂s (Y fh(X) < γ). Such a result, which would constitute a
large-margin generalization bound for the class of margin
functions, will in this context be a generalization bound that
involves the sample margin (since the class F of margin
functions is defined in terms of the sample margins).

Explicitly, we aim for bounds of the form: for all δ ∈ (0, 1),
with probability at least 1 − δ, for all h ∈ H and for all
γ ∈ (0,diamD(X)], we have

erP (h) = P (h(X) 6= Y ) < P̂s(Y fh(X) < γ) + ε(m, δ).

This will imply that if the learner finds a hypothesis which,
for a large value of γ, has a small γ-margin error, then that
hypothesis is likely to have small error. What this indicates,
then, is that if a hypothesis has a large width on most points
of a sample, then it will be likely to have small error, exactly
the type of result we seek.

B. Covering numbers

To use techniques from margin-based learning, we consider
covering numbers. We will discuss different types of covering
numbers, so we introduce the idea in some generality to start
with.

Suppose (A, d) is a metric space and that α > 0. Then an α-
cover of A (with respect to d) is a finite subset C of A such
that, for every a ∈ A, there is some c ∈ C such that d(a, c) ≤
α. If such a cover exists, then the mimimum cardinality of
such a cover is the covering number N (A,α, d).

Suppose now that F is a set of functions from a domain X to
some bounded subset Y of R. For a finite subset S of X , the
l∞(S)-norm is defined by ‖f‖l∞(S) = maxx∈S |f(x)|. For
γ > 0, a γ-cover of F with respect to l∞(S) is a subset F̂ of
F with the property that for each f ∈ F there exists f̂ ∈ F̂
with the property that for all x ∈ S, |f(x)− f̂(x)| ≤ γ. The
covering number N (F, γ, l∞(S)) is the smallest cardinality of
a covering for F with respect to l∞(S). In other words, and
to place this in the context of the general definition just given,
N (F, γ, l∞(S)) equals N (F, γ, d∞(S)) where d∞(S) is the
metric induced by the norm l∞(S). The uniform covering
number N∞(F, γ,m) is the maximum of N (F, γ, l∞(S)),
over all S with S ⊆ X and |S| = m.

C. A generalization result

We will make use of the following result. (Most standard
bounds, such as those in [7], [2], do not have a factor of 3 in
front of the empirical margin error, but involve ε2 rather than
ε in the negative exponential. This type of bound is therefore
potentially more useful when the empirical margin error is
small.) The proof is omitted here but can be found in the full
version of this paper [5].

Theorem 4.1: Suppose that F is a set of real-valued functions
defined on a domain X and that P is any probability measure
on Z = X×{−1, 1}. Let δ ∈ (0, 1) and B > 0, and let m be
a positive integer. Then, with Pm probability at least 1− δ, a
training sample of length m will be such that: for all f ∈ F ,
and for all γ ∈ (0, B], the error P (Y f(X) < 0) is no more
than

3 P̂s(Y f(X) < γ) +
4

m

(
lnN∞(F, γ/4, 2m) + ln

(
8B

γδ

))
.

Note that, in Theorem 4.1, γ is not specified in advance, so
γ can be chosen, in practice, after learning, and could, for
instance, be taken to be as large as possible subject to having
the empirical γ-margin error equal to 0.

V. COVERING THE CLASS F

To use the generalization result just presented, we need to
bound the covering number of F . Our approach is to construct
and bound the size of a covering with respect to the sup-norm
on X . (This is the norm given by ‖f‖∞ = supx∈X |f(x)|.)
Any such covering clearly also serves as a covering with
respect to l∞(S), for any S, since if ‖f − f̂‖∞ ≤ γ then,
by definition of the sup-norm, supx∈X |f(x)− f̂(x)| ≤ γ and,
hence, for all x ∈ X (and, therefore, for all x ∈ S where S
is some subset of X), |f(x)− f̂(x)| ≤ γ.

We first show that the margin (or signed width) functions are
‘smooth’, in that they satisfy a sort of Lipschitz condition.

A. F is smooth

We prove that the class F satisfies a Lipschitz condition, as
follows:

Theorem 5.1: For every fh ∈ F ,

|fh(x)− fh(x′)| ≤ 2d(x, x′) (5)

uniformly for any x, x′ ∈ X .

Proof: Consider two points x, x′ ∈ X . We consider
bounding the difference |fh(x)− fh(x′)| from above. There
are two cases to consider: h(x) and h(x′) equal, or different.

Case I, in which h(x) 6= h(x′). Without loss of generality,
assume that h(x) = +1, h(x′) = −1. Then Sh(x) = S− and
Sh(x′) = S+. We have

dist (x, S−) = min
z∈S−

d(x, z) ≤ d(x, x′),

since x′ ∈ S− . Similarly,

dist (x′, S+) = min
z∈S+

d(x′, z) ≤ d(x′, x),



since x ∈ S+. Hence,

|fh(x)− fh(x′)| = |h(x)dist(x, S−)− h(x′)dist(x′, S+)|
= |dist(x, S−) + dist(x′, S+)|
≤ d(x, x′) + d(x′, x)

= 2d(x, x′),

since d(x, x′) = d(x′, x) by symmetry of the metric.

Case II, in which h(x) = h(x′). Without loss of generality,
assume that h(x) = h(x′) = +1. Then Sh(x) = Sh(x′) = S−.
We have,

|fh(x)− fh(x′)| = |h(x)dist(x, S−)− h(x′)dist(x′, S−)|
= |dist(x, S−)− dist(x′, S−)|

=

∣∣∣∣min
z∈S−

d(x, z)− min
z∈S−

d(x′, z)

∣∣∣∣ . (6)

Denote by s, s′ the closest points in S− to x, x′, respectively.
Then∣∣∣∣min

z∈S−
d(x, z)− min

z∈S−
d(x′, z)

∣∣∣∣ = |d(x, s)− d(x′, s′)| .(7)

Assume that

d(x, s) ≥ d(x′, s′) (8)

so that (7) equals d(x, s)− d(x′, s′). We have

d(x, s) ≤ d(x, s′) ≤ d(x, x′) + d(x′, s′) (9)

where the last inequality follows from the fact that D satisfies
the triangle inequality (1).

So combining (6), (7), (8) and (9) gives the following upper
bound,

|fh(x)− fh(x′)| ≤ d(x, x′) + d(x′, s′)− d(x′, s′)

= d(x, x′).

In the other case where the inequality (8) is reversed we also
obtain this bound.

Next we use this ‘smoothness’ to obtain a cover for F .

B. Covering F

Let the subset Cγ ⊆ X be a minimal size γ-cover for X with
respect to the metric d. So, for every x ∈ X there is some
x̂ ∈ Cγ such that d(x, x̂) ≤ γ. Denote by Nγ the cardinality
of Cγ .

Let Λγ be the set of numbers of the form λi = iγ as i runs
through the integers from −

⌈
diamD(X)

γ

⌉
to
⌈

diamD(X)
γ

⌉
and

define the class F̂ to be all functions f̂ : Cγ → Λγ . Clearly,
a function f̂ can be thought of simply as an Nγ-dimensional
vector whose components are restricted to the elements of the
set Λγ . Hence F̂ is of a finite size equal to |Λγ |Nγ . For any

f̂ ∈ F̂ define the extension f̂ext : X → [−1, 1] of f̂ to the
whole domain X as follows: given f̂ (which is well defined
on the points x̂i of the cover) then for every point x in the ball
Bγ(x̂i) = {x ∈ X : d(x, x̂i) ≤ γ}, we let f̂ext(x) = f̂(x̂i),
for all x̂i ∈ Cγ (where, if, for a point x there is more than
one point x̂i such that x ∈ Bγ(x̂i), we arbitrarily pick one of
the points x̂i in order to assign the value of f̂ext(x)). There is
a one-to-one correspondence between f̂ and f̂ext. Hence the
set F̂ext =

{
f̂ext : f̂ ∈ F̂

}
is of cardinality equal to |Λγ |Nγ .

We claim that for any f ∈ F there exists an f̂ext such that
supx∈X |f(x)−f̂ext(x)| ≤ 3γ. To see that, first for every point
x̂i ∈ Cγ consider the value f(x̂i) and find a corresponding
value in Λγ , call it f̂(x̂i), such that |f(x̂i) − f̂(x̂i)| ≤ γ.
(That there exists such a value follows by design of Λγ). By
the above definition of extension, it follows that for all points
x ∈ Bγ(x̂i) we have f̂ext(x) = f̂(x̂i). Now, from (5) we have
for all f ∈ F ,

sup
x∈Bγ(x̂i)

|f(x)− f(x̂i)| ≤ 2d(x, x̂i) ≤ 2γ. (10)

Hence for any f ∈ F there exists a function f̂ ∈ F̂ with a
corresponding f̂ext ∈ F̂ext such that given an x ∈ X there
exists x̂i ∈ Cγ such that |f(x)− f̂ext(x)| = |f(x)− f̂ext(x̂i)|.
The right hand side can be expressed as

|f(x)− f̂ext(x̂i)| = |f(x)− f̂(x̂i)|
= |f(x)− f(x̂i) + f(x̂i)− f̂(x̂i)|
≤ |f(x)− f(x̂i)|+ |f(x̂i)− f̂(x̂i)|
≤ 2γ + γ (11)
= 3γ.

where (11) follows from (10) and by definition of the grid Λγ .

Hence the set F̂ext forms a 3γ-covering of the class F in
the sup-norm over X . Thus we have the following covering
number bound (holding uniformly for all m).

Theorem 5.2: With the above notation,

N∞(F , 3γ,m) ≤ |Λγ |Nγ (12)

=

(
2

⌈
diamD(X)

γ

⌉
+ 1

)Nγ
. (13)

VI. A GENERALIZATION ERROR BOUND INVOLVING
COVERING NUMBERS OF X

Our central result, which follows from Theorem 4.1 and
Theorem 5.2, is as follows.

Theorem 6.1: Suppose that X is a finite metric space of
diameter diamD(X). Suppose P is any probability measure
on Z = X × {−1, 1}. Let δ ∈ (0, 1). For a function



h : X → {−1, 1}, let fh be the corresponding margin (or
signed width) function, given by

fh(x) = h(x)wh(x) = h(x)dist
(
x, Sh̄(x)

)
.

Then, for any positive integer m, the following holds with
Pm-probability at least 1− δ, for a training sample s ∈ Zm:

– for any function h : X → {−1, 1},

– for any γ ∈ (0,diamD(X)], P (h(X) 6= Y ) is at most

3 P̂s(Y fh(X) < γ) + ε,

where

ε =
4

m

(
Nγ/12 ln

(
27diamD(X)

γ

)
+ ln

(
8 diamD(X)

γδ

))
.

Here, for any given α > 0, Nα = N (X,α, d) is the α-
covering number of X with respect to the metric d on X .

Proof: This follows directly from Theorem 4.1 and
Theorem 5.2, together with the observation that, for γ in
(0,diamD(X)],

N∞(F , γ/4, 2m) ≤
(

2

⌈
12 diamD(X)

γ

⌉
+ 1

)Nγ/12
≤

(
2

(
12 diamD(X)

γ
+ 1

)
+ 1

)Nγ/12
≤

(
27 diamD(X)

γ

)Nγ/12
.

In order to use this result, we therefore would need to be able
to bound Nγ , and this is the focus of the remainder of the
paper.

VII. USING A GREEDY ALGORITHM TO ESTIMATE THE
COVERING NUMBER

We have seen that Nγ , the covering number of X at scale γ,
plays a crucial role in our analysis. We now explain how it is
possible to obtain a bound on Nγ by using the familiar greedy
heuristic for set covering.

We start from the given distance matrix D. Given a fixed
margin parameter value γ > 0 let us define the N×N {0, 1}-
matrix

Aγ := [a(i, j)] (14)

as follows:

a(i, j) :=

{
1 if d(i, j) ≤ γ
0 otherwise.

The jth column a(j) of Aγ represents an incidence (binary)
vector of a set, or a ball Bγ(j), which consists of all the points
i ∈ X that are a distance at most γ from the point j.

We can view Aγ as an adjacency matrix of a graph Gγ =
(X,Eγ), where Eγ is the set of edges corresponding to all
adjacent pairs of vertices according to Aγ : there is an edge
between any two vertices i, j such that d(i, j) ≤ γ. We note
in passing that Gγ can be viewed as an extension (to general
metric space) of the notion of a unit disk-graph [11], [17]
which is defined in the Euclidean plane.

The problem of finding a minimum γ-cover Cγ for
X can be phrased as a classical set-cover problem as
follows: find a minimal cardinality collection of sets
Cγ := {Bγ(jl) : jl ∈ X, 1 ≤ l ≤ Nγ} whose union satisfies⋃
lBγ(jl) = X . It is well known [15], [10] that this can

be formulated as a linear integer programming problem, as
follows: Let the vector v ∈ {0, 1}N have the following
interpretation: vi = 1 if the set Bγ(i) is in the cover Cγ
and vi = 0 otherwise. Denote by 1 the N -dimensional vector
of all 1’s. Then we wish to find a solution v ∈ {0, 1}N that
minimizes the norm

‖v‖1 =

N∑
j=1

vj

under the constraints

Aγv ≥ 1, v ∈ {0, 1}N .

The constraint Aγv ≥ 1, which is
N∑
j=1

a(i, j)vj ≥ 1, for every 1 ≤ i ≤ N,

simply expresses the fact that for every i ∈ X , there must be
at least one set Bγ(j) that contains it.

It is well known that this problem is NP-complete. However,
there is a simple efficient deterministic greedy algorithm (see
[10]) which yields a solution — that is, a set cover — of
size which is no larger than (1 + lnN) times the size of the
minimal cover. Denote by Ĉγ this almost-minimal γ-cover of
X and denote by N̂γ its cardinality. Then N̂γ can be used to
approximate Nγ up to a (1 + lnN) accuracy factor:

Nγ ≤ N̂γ ≤ Nγ(1 + lnN).

VIII. BOUNDING THE COVERING NUMBER IN TERMS OF
THE DOMINATION NUMBER OF A RELATED GRAPH

Next, we relate the problem of bounding Nγ to a graph-
theoretical question about some related graphs.

Given a graph G = (V,E) with order (number of vertices) N ,
let A(G) be its adjacency matrix. Denote by deg(x) the degree
of vertex x ∈ V and by ∆min(G), ∆max(G) the minimum
and maximum degrees over all vertices of G.

We now define a quantity we call density, which depends only
on X and the distance matrix D.



Definition 8.1: Let x ∈ X . The γ-density induced by the
distance matrix D at x, denoted ργ(x), is the number of points
y ∈ X such that d(x, y) ≤ γ.

The more points in the ball Bγ(x), the higher the density value
ργ(x). Clearly, the degree of x in Gγ satisfies

deg(x) = ργ(x). (15)

A dominating set of vertices U ⊆ V (G) is a set such that for
every vertex v ∈ V (G) \ U there exists a vertex u ∈ U such
that u and v are adjacent. The domination number η(G) is the
size of the smallest dominating set of G. (It is usually denoted
γ(G), but we are using γ to denote widths and margins.) A
useful and easy observation is that any dominating set of Gγ
is also a γ-cover of X with respect to the distance matrix
D (or underlying metric d). For, suppose U = {u1, . . . , uk}
is a dominating set. Any u ∈ U is evidently covered by U :
there exists an element of U (namely, u itself) whose distance
from u is 0 and hence is no more than γ. Furthermore, for
v ∈ V (G)\U , since U is a dominating set, there is some u ∈ U
such that u and v are adjacent in Gγ which, by definition of
the graph, means that d(v, u) ≤ γ. Hence U indeed serves as
a γ-cover of X . This is, in particular, true also for the minimal
dominating set of size is η(Gγ). It follows that the covering
number Nγ of X is bounded from above by the domination
number of G = (X,Eγ). That is,

Nγ ≤ η(Gγ). (16)

There are a number of graph theory results which provide
upper bounds for the domination number of a graph in terms of
various other graph-theoretic parameters. For instance (though
we will not use these here), the domination number can
be related to the algebraic connectivity, the second-smallest
eigenvalue of the Laplacian of the graph [16], and it can
also [20] be related to the girth of the graph, the length of
the shortest cycle. Other bounds, such as those in [18], [14],
involve the order, maximal or minimal degree, or diameter of
a graph. We now mention some results which will enable us to
bound the covering numbers in terms of a measures of density
of the underlying metric space X . First, we have the following
result (see [8], [25]):

η(G) ≤ N + 1−
√

1 + 2 size(G)

where size(G) is the number of edges of G, equal to half
the sum of the degrees

∑
i∈X deg(i). For Gγ we have

2 size(Gγ) =
∑
x∈X ργ(x). Let us make the following def-

inition in order to involve quantities explicitly dependent on
the metric on X .

Definition 8.2: The average density of X at scale γ (which
depends only on the matrix D of distances) is

ργ(D) :=
1

N

∑
x∈X

ργ(x).

Applying this to Gγ , we therefore have

Nγ ≤ η(Gγ) ≤ N + 1−
√

1 +Nργ(D) (17)

Any bound on domination number in terms of the number
of edges can, in a similar way, be translated into a covering
number bound that depends on the average density. Equally,
bounds involving the minimum or maximum degrees yield
covering number bounds involving minimum or maximum
densities. For instance, a bound from [18] upper-bounds η(G)
by⌊

1

N − 1
(N −∆max(G)− 1) (N −∆min(G)− 2)

⌋
+ 2.

Letting

ρmin,γ(D) = min
x∈X

ργ(x)

and

ρmax,γ(D) = max
x∈X

ργ(x)

then gives as an upper bound on Nγ the quantity η(Gγ), which
is at most:⌊

1

N − 1
(N − ρmax,γ(D)− 1) (N − ρmin,γ(D)− 2)

⌋
+ 2.

(18)

If Gγ has no isolated vertices (which means that each element
of X is within distance γ of some other element) then, by a
result of [6] (mentioned in [14]),

Nγ ≤ η(Gγ) ≤ N
(

1 + ln (1 + ρmin,γ)

1 + ρmin,γ

)
. (19)

Note that from (19), the bound on Nγ can be made, for
instance, as low as O(lnN) if D satisfies ρmin,γ(D) = αN
for 0 < α < 1.

In [14], it is shown that if Gγ has no cycles of length 4 and
if ρmin,γ ≥ 2 then

Nγ ≤ η(Gγ) ≤ 3

7

(
N − (3ρmin,γ + 1) (ρmin,γ − 2)

6

)
.

The paper [14] also mentions some bounds that involve the
diameter of the graph (Theorem 4.1-4.8).

We remark that, for a given γ, it is relatively straightforward
to determine the average, maximum, and minimum degrees of
Gγ by working from its incidence matrix Aγ , which itself is
easily computable from the matrix D of metric distances in
X .

IX. CONCLUSIONS

In this paper, we have considered the generalization error in
learning binary functions defined on a finite metric space. Our
approach has been to develop bounds that depend on ‘sample



width’, a notion analogous to sample margin when real-valued
functions are being used for classification. However, there is
no requirement that the classifiers analysed here are derived
from real-valued functions. Nor must they belong to some
specified, limited, ‘hypothesis class’. They can be any binary
functions on the metric space. We have derived a fairly general
bound that depends on the covering numbers of the metric
space and we have related this, in turn, through some graph-
theroretical considerations, to the ‘density’ of the metric space.
We have also indicated that the covering numbers of the metric
space (and hence the generalization error bounds) can be
approximated by using a greedy heuristic. The results suggest
that if, in learning, a classifier is found that has a large ‘sample
width’ and if the covering numbers of the metric space are
small, then good generalization is obtained. An approach based
on classical methods involving VC-dimension would not be as
useful, since the set of all possible binary functions on a metric
space of cardinality N would have VC-dimension equal to N .
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