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ABSTRACT

THE COMPLEXITY OF LEARNING FROM A MIXTURE
OF LABELED AND UNLABELED EXAMPLES

Joel E. Ratsaby
Santosh S. Venkatesh

The learning of a pattern classification rule rests on acquiring information to
constitute a decision rule that is close to the optimal Bayes rule. Among the various
ways of conveying information, showing the learner examples from the different classes
is an obvious approach and ubiquitous in the pattern recognition field. Basically there
are two types of examples: labeled in which the learner is provided with the correct
classification of the example and unlabeled in which this classification is missing.
Driven by the reality that often unlabeled examples are plentiful whereas labeled
examples are difficult or expensive to acquire we explore the tradeoff between labeled
and unlabeled sample complexities (the number of examples required to learn to
within a specified error), specifically getting a quantitative measure of the reduction
in the labeled sample complexity as a result of introducing unlabeled examples. This
problem was posed in this form by T. M. Cover and may be succinctly, if inexactly,
stated as follows: How many unlabeled examples is one labeled example worth?

The direction taken in this dissertation focuses on the archetypal problem of
learning a classification problem with two pattern classes that are typified by fea-
ture vectors, i.e., examples drawn from class conditional Gaussian distributions and
where the learning approaches are parametric and nonparametric. Denoting the di-
mensionality of the example-space as N, and the number of labeled and unlabeled
examples as m and n respectively, then for specific algorithms, it is shown that un-

der a nonparametric scenario the classification error probability decreases roughly
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as O ((con'z/ N ) lgN) +0 (e~®*™), and in the parametric scenario the error decreases
roughly as O (Na/sn‘1/5) +0 (e~™), where ¢, ¢; > 0 are constants with respect to
N, m, and n. This shows that in both the parametric and nonparametric cases it
takes roughly exponentially more unlabeled examples than labeled examples for the
same reduction in error. When considering the effect of the dimensionality NV, roughly
speaking, a labeled example is worth exponentially more in the nonparametric than

in the parametric scenario.

The parametric approach uses the Maximum Likelihood technique with labeled
and unlabeled samples to construct a decision rule estimate. In this scenario the
learner knows the parametric form of the pattern class densities. Sufficient finite
sample complexities are established by which the value of one labeled example in
terms of the number of unlabeled examples is determined to be polynomial in the
dimensionality V. The analysis may provide the details for broadening the results to
other non Gaussian parametric based families of problems. An extension to the case
of different a priori class probabilities is investigated under this parametric scenario,
and for the non-unit covariance Gaussian problem it is conjectured that the value of

a labeled example is still polynomial in N.

In the nonparametric scenario the primary focus is on an algorithm which is
based on Kernel Density Estimation. It uses a mixed sample to construct a decision
rule where now the learner has significantly less side information about the class den-
sities. The finite sample complexities for learning the Gaussian based problem are
established by which the value of one labeled example is determined to be exponential
in the dimensionality V. An extension to a larger family of nonparametric classifica-
tion problems is provided where the same tradeoff applies. A variant of this approach

is investigated in which only a finite number of functional values of the underlying
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mixture density are estimated. This yields a smaller tradeoff but is still exponential
in N. The mixed sample complexities for the classical k-means clustering procedure
are also determined.

An experimental investigation using neural networks examines the value of a
labeled example when learning a classification problem based on a Gaussian mixture.
For other classification problems, the cost of learning measured by the labeled sample
size as a function of the dimensionality NV, is shown to be lower for a two-layer network
than with the regular single layer Kohonen network. This is attributed to the better

discrimination ability of the partition of the classifier.
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Chapter 1

Introduction

The problem of learning a classification decision rule (cf. Duda & Hart [1], Fukunaga
[2]) has been the subject of a large, diverse body of literature spanning at least the
last 60 years. It has been approached by many methods in statistics and pattern
recognition. In its basic form, we are given two classes, “1” and “2”, of patterns that
are represented by vectors whose elements represent various features about each of the
two patterns. For insta}lce, in the medical diagnosis of cancer, the two pattern classes
are “malignant” and “benign” cells. A cell in a class has a variety of features such as
size, color, shape, genetic code, etc., by which it is described. For our purposes, we
assume the features are represented by a point z in N-dimensional Euclidean space.
The objective is to find a decision rule which when presented with a pattern (ie., a
vector) that is drawn randomly either from class “1” (with probability p1) or class
“9” (with probability p;), produces a label which identifies it as belonging to the true
class of origin. Ideally we would desire a rule that never misclassifies a pattern. This
however is only achievable if the pattern classes have non-overlapping probability
one supports; in general the best achievable rule (the Bayes classifier) has a nonzero
misclassification error, Pgayes, determiﬁed by the class conditional probability density

functions fi(x), f2(x) and the a priori class probabilities p; and p,.

The Bayes decision rule is derived from the following: let I(z,7), with 1,7 € 1,2,




denote the loss incurred when the classifier decides “” while the true class of the

pattern is “;”. We limit our discussion to the case of the symmetric 0-1 loss function:

1(1,1) = 1(2,2) = 0 and {(1,2) = I(2,1) = 1 for which the expected loss is identically

the probability of misclassification, Pe,yor. In this case we have
Perror = El(i,j) = E;E (I, j)|2) .
The inner expectation is
E(I(,j)le) = P(i=1,j=2l) + P(i=2j=1)
= P(i=1lj=2,2)p(j = 2le) + P(i=20j = 1,2)p(j = 1]2)

where p(j = 1|z), p(j = 2|z) are the a posterior class probabilities. This expectation
is a nonnegative quantity hence in order to minimize Pe.o it suffices to specify a
classification rule which minimizes it.

A classifier can be considered as a mapping
C: RN - {1,2}

or a partition of the feature space into disjoint regions R;, Ry, where

_ 1 lf'l,'ER]_,
C(‘”)‘{z itz € Ry.

This is a deterministic rule hence we have
P(i=1|j = 2,z) = 1g, ()

and

P(l = 2‘.7 = lsT) = 1R2($)

where we use the notation 14(z) to denote the indicator function for the set A, i.e.,

la(z)=1ifr € Aand 14(z)=0if = & A.

8]




The optimal (or Bayes) classifier is one which minimizes

p(j = 1|$)1x€32 +p(] = 2]$)1$€R1'

Only the decision regions R;, R, are controllable and it is clear that the minimizing

choice is

Ry = {z:p(j = 2le) < p(j = 1|z)} and Ry = {z : p(j = 1]z) < p(j = 2|=)}.

The decision border is

{e:p(j = 1lz) = p(j = 22)} = {z : p1fi(e) = p2fo(2)}, (1.1)

where the last equality follows from Bayes’ theorem, fi(z)p1 = p(j = 1|z)f(z), with
fi(z) being the class conditional densities, and p; are the a priori class probabilities,
1=1,2.

Hence fi(z), f2(z) and p;, p, determine the Bayes decision rule and the resulting
(minimum) error of the Bayes classifier is zero if and only if the pattern classes have
disjoint probability one supports. |

If the class conditional densities and the priors were known. we can hence de-
termine the Bayes optimal decision rule with Pe.or = Ppayes- However, realistically,
this is a rare occurrence; as in the above medical diagnosis example, such detailed
prior information is usually not available. We can at best hope for partial informa-
tion about the classes, a typical scenario providing randomly drawn data according to
the unknown probability distributions. This will be our focus here. Using a random
sample, our goal is to determine a rule that achieves a given error probability which
is not much larger than Ppg,y.s. More precisely, for € > 0 chosen suitable small, we
would like to obtain P..ror bounded between Pgyes and Pgayes(1 + €).

Broadly speaking, the approach to classifier design is to use randomly drawn

examples to estimate the class conditional densities and plug them into the above



expression that relates the densities with the decision regions. The resulting rule
has a classification error P,,,,, which may differ from the optimal Pgyyes. This ap-
proach can be validated, at least asymptotically in the limit of large sample sizes. For
example, it is shown in Glick [38] that sample-based density plug-in rules are asymp-
totically optimal i.e., minimize the classification error when the density estimates are

themselves densities and are strongly consistent.

Classification methods vary according to the type and amount of additional side-
information that is available. Direct information about the class densities leads to
an estimate of the likelihood ratio and hence of the optimal decision border. More
typically, only partial info;‘ma,tion is accessible; for instance: the parametric form of
the distributions but not the parameter value; knowledge that the distributions are
monotone decreasing; or that the mixture (i.e., weighted sum of the class conditionals)
has k modes (peaks).

Traditionally, in the fields of statistics and pattern recognition, there are two
main categories for density estimation: parametric and non-parametric. These are
divided into various branches based upon the estimation method which depends on
the information that is provided (or assumed) about the classes; for instance, if it
is known that the class densities are of a given parametric form then the method of
maximum-likelihood can be invoked. Once a density-estimation method is chosen, it
remains to learn the constraints in the observed data and deduce the density that is

closest (w.r.t. some quantitative measure) to the true underlying class densities.

If information regarding the densities is not available then one must resort to
assumptions or heuristics based on some rules of thumb, in order to construct a
decision border that hopefully has low Pe,.,r. For instance, observed data can be
tested for clusters and a partition of the feature space is constructed such that each

cluster is captured by one disjoint subset (a cell) of the partition. Then each cell gets



associated with the class corresponding to the class of the majority of the observed
examples. This induces a decision rule which may have low error. Neural network
algorithms as applied to learning classification, are one of numerous ad hoc methods

that fall under this category.

1.1 Classification Methodologies

The following is a nonexhaustive list of a few popular classification methodologies (cf.

Fukunaga [2], Duda & Hart [1], Izenman [3] ):

Parametric density estimation: We are restricted to a class of parametric density

functions, f(z|0), with known form and unknown true parameter fo.

Mazimum Likelikood Estimation (MLE): The parameter is viewed as a deter-
ministic variable, and one solves for the value of 8 that achieves the global
maximum of the likelihood function L(#) = £ "%, log f(z:|0), where {z;,
1 < i < n}is a set of examples drawn independently and distributed ac-
cording to f(x|6). This value of 8 is defined as the estimator §. Defining
the decision regions as in (1.1) using the estimates f (z}6;) and f (z|6,) for
the two class densities yields an estimate of the Bayes classifier.
Maximum likelihood parameter estimates typically exhibit optimal proper-
ties (cf. Bickel & Doksum [39]). They are often asymptotically consistent,
i.e., converge to the true unknown parameter as the sample size increases
and are asymptotically efficient, i.e. the rate of decrease of their variance
converges to the Cramér-Rao lower bound. Hence a decision rule based on
the MLE-density estimates are, at least theoretically, attractive for solving

a classification problem.



Bayestan Estimation: We seek the distribution of z given the random sample
z" = (21,...,2y), .., f(z|z"). The parameter § is viewed as a random
variable with an a priori distribution 2(8). Any side information we might
have about the unknown parameter is assumed to be contained in this

distribution. We can write

f(alz) = [ f(ale,0)9(0s") a0 = [ f(zl0)g(6lz") do

because z is independent of the sample z”. By assumption, f(z|) is
known, hence the desired density is the expected value of f(z|0) w.r.t. the

possible values of 6 based on the random sample z".

Learning involves updating the a posterior distribution f(6|z™), whose
variance decreases as the number of examples increases, whereby the in-
tegral on the right tends to f(z|6y). For instance in learning the mean of
a Gaussian distributed random variable, the variance of the estimator 0 is

asymptotic to o?/n as n — oo.

Moment Estimation: The parameter vector 8 is composed of the moments m;,

1 <2 <k, of the true distribution. These are estimated by the empirical

1<

-2 71 ;. These estimates are consistent and

(sample) moments m; =

yield consistent density estimates.

Non-parametric density estimation: Very little information is available. Neither the
form of the class conditional distributions nor any of the parameters if such

exist, are known.

Kernel Estimation: A function K, 5 (), called the Kernel, is placed centered

at each example z;, i.e.,

Ko@) = K (=)

On

6



where o, is a smoothing parameter. The smoothed average of the func-

tions, each centered at one of the n examples, forms the density estimate
1

= T, —
naNZK< o )

n =1

fa(z) =

where N denotes the dimension. The bias of the estimate decreases as
the smoothing parameter o, — 0. However, the rate of decrease of the
variance of the estimate as n — oo, becomes worse, i.e., slower as ¢ — 0.
By selecting o,, to decrease to zero at fhe right rate, it is possible for f,(z)

to be strongly consistent, uniformly for all z € RN (cf. Pollard [21]).

The shape of the kernel function can be designed to accelerate the decrease
in the bias of the estimate as n — oo (cf. Izenman [3], Silverman [40]).
For learning classification, it may not be necessary for f,(z) to be a bona
fide pdf as for instance in our investigation in Chapter 5. There the modes
of the mixture density can directly determine the Bayes decision regions,
and may be estimated by the modes of a kernel estimate which takes also
negative values. With such a kernel, better rates of decrease for the bias

are achievable.

Histogram Methods: The histogram method is an old and basic approach to
density estimation. The feature space is divided into cells, ¢; C RN,1 < ¢ <
M, and the density function is approximated by the number of examples
that fall in each cell. In a one dimensional sample space the estimate is

1 M
ZnileC,—,

no, =

f(z) =

where n; is the number of examples in ¢;, and o, is the cell width. The
histogram density estimate is suboptimal and its defects include the dis-

continuity at cell boundaries and its strong sensitivity to the location of



-

the origin, i.e., shifting the starting point of the first cell can result in very
different looking histograms. For optimal error rates, the cell width needs
to decrease slower than n~! as n — oco. But even its optimal error rate is

substantially slower than most other kinds of density estimators.

Direct classification approaches: These methods do not estimate the class conditional
densities but instead directly construct a decision rule using the randomly drawn

examples.

Nearest Neighbor Rule: A partition of the feature space is constructed by
drawing m labeled examples, z;, 1 <1 < m, and defining a voronoi cell of

the partition to be
v; ={z: |z -z <l|z—=zj|,j #i}.

Each voronoi cell is assigned the label of the example z; corresponding to
it. The decision rule for classifying a given z is to assign to it the label of

the voronoi cell in which it falls.

The nearest neighbor decision rule is suboptimal since even as the number
of labeled examples tends to infinity its classification error need not tend

to the Bayes optimal error. However its error is bounded (tightly) as

PBayes S Perror,NN S 2PBayes(1 - PBayes)-

The simplicity of this rule, its near-optimal performance for small Pgyyes
(Perror, NN 18 upper bounded by twice the Bayes error for large sample
sizes) and the fact that it is based on a Voronoi partition whose efficient

implementation has been studied, are significant advantages.




Clustering Procedures: These methods aim to discover inherent clustering in
the given sample of patterns, which possess strong feature-similarity. Each
cluster constitutes one of the mutually disjoint decision regions of the clas-
sifier. The performance of the classifier depends on the metric that is used
to measure similarity between examples. Different problems, with different
class densities, may require different similarity measures for good classifier

performance.

One way of learning the partition is to choose any one which extremizes a
criterion function. For instance a simple criterion is

. 2

e({Rlv""RC}) = E Z lx —/J'il

i=1 z€R;
where R;, 1 < ¢ < ¢ are the clusters of a particular partition and y; is
the average of the examples in the i** cluster. Minimizing this function
over the space of possible partitions may yield an optimal classifier, in

particular for problems that have well separated pattern classes.

Gradient Descent Procedures: These procedures extremize some criterion func-
tion in order to obtain the desired classification rule. For instance, feedfor-
ward neural networks can implement general highly non linear mappings
from the feature space X = R" to the output space, Y, which for classi-
fication problems can be a finite set of integers whose elements represent
the possible classes.

The neural net classifier is represented by a family of parametric functions
fw(x), each indexed by a particular vector w of weights. There may be
many neural nets, with different w that yield optimal classifiers. For a
randomly drawn test vector # € X, a criterion function e(w), can be

defined to measure the expected difference between the classifier output



fuw(z) and the correct classification y of the vector z. Using a teaching set
of examples, (z;,¥;), 1 <7 < m, an algorithm, such as backpropagation
(cf. Hinton et. al. [4]), can be used to search for any w that achieves a
global minimum of the criterion function by stepping in small increments

in the direction for which the gradient of e(w) is minimum.

One of the main difficulties of such algorithms is choosing the starting
point of the search. A bad starting point will yield a sequence of gradient
descents leading to a local minimum associated with a nonoptimal clas-
sifier. Adding random noise to the learning rule may help increase the

chance of reaching a global minimum.

1.2 Labeled and Unlabeled Examples

From our vantage point, we emphasize that, as in all scientific research where rules are
to be discovered, observed data (or examples) is of primary necessity in all methods
regardless of the a prior: partial information. There are two fundamental types of
examples, labeled and unlabeled. A labeled sample s a collection of m pairs (2, ¥;), 1 <
i < m where z; is a feature vector and y; is its corresponding class label; y; € {1,2}.
The class label y; € {1,2} is drawn at random according to the a priori probabilities py
and p,; the feature vector x; corresponding to y; is then drawn at random according to
the class—conditional density f,,(z). An unlabeled sémple consists only of the feature
vectors x; drawn according to the mixture density f(z) = p1fi(z) + p2fo(z).
Labeled examples clearly contain more information than unlabeled examples and
all things being equal would be the preferred form of data for the learner. However,
as T. M. Cover [6] indicates, very often it is the case that unlabeled examples are
more abundant and cheaper to acquire than labeled examples and for that reason

mixed-sample learning is intuitively attractive.

10



Consider again the problem of medical cancer diagnosis. Here it is necessary
to recognize malignant cells. Let us take as thesis that the process of generating
unidentified malignant/benign pictures of cells from both cancer patients and healthy
persons is substantially cheaper than having an expert determine whether a given cell
is malignant: say that one needs $100/picture for an expert to identify the cells but
oniy $10/picture for a technician who takes the pictures *. Ideally, one would want to
take say 100 pictures and have the expert label only 10 of these as being malignant
or not and then feed the whole information to a computer and with some clever
algorithm, learn the classification to within a small error; this is preferred, costwise,
over taking 25 pictures and having an expert label all of them t. As it stands today, the
practitioner must resort to a variety of heuristics and knowledge from past experience
in order to decide how many labeled and unlabeled examples need to be procured to
obtain a good classification rule. As another example, consider the task of classifying
trees in a forest by their names. Unlabeled examples are free as there are practically
an endless number of trees that one can examine. The human expert charges by the
hour for supplying the names of trees.

Let us denote explicitly by Peyror(m2,n) the objective error (for a fixed algorithm)
given a labeled sample of size m and an unlabeled sample of size n. Our interest here is
to present a theoretical analysis that provides an insight into the tradeoff between the
finite unlabeled and labeled sample sizes needed to learn (i.e., determine Pe,ror(m,n)).
The question may be succinctly put as follows: How many dnlabeled ezamples is one
labeled example worth?

In this thesis we present an approach which answers this question for some classi-

fication problems under different scenarios. Each scenario depends on the additional

*These figures may improve pending the fate of the new health care plan !

tOf course, what one really wants to do is to minimize the Bayes risk for appropriate loss functions

11




side information that is given to the learner, for instance the parametric form of the
underlying mixture density, and also on the particular algorithm which approaches

the estimation of the decision rule by a specific technique.

1.3 Orgariization

In Chapter 2 we present some additional motivation for being interested in the trade-
off between the number of labeled and unlabeled examples for learning a classification
rule. We refer to several established results that touch upon this area in the limiting
sense—with infinitely many unlabeled examples and just one labeled example a deci-
sion rule having P,,.., = 2Ppgyes(1 — Ppayes) can be achieved. Roughly speaking this ‘
means that the first labeled example contains one half of the classifying information
(cf. Cover & Castelli [5]). Still with an infinity of unlabeled examples, as we increase
the number, m, of labeled examples the classification error goes arbitrarily close tov
Pp,yes and exponentially fast with m. The question remains as to how fast does the
error decrease with respect to increasing the unlabeled sample size. In Chapters 4, 5,
6 we determine the rates under different scenarios. We then describe our approach
for learning with a mixed sample, which follows the Probably Approximately Correct
(PAC) model of learning with examples. With the technical background on which
PAC is based we can analyze learning with a mixed sample under different scenarios
of side information given to tile learner. We explore two such scenarios— a paramet-
ric, based on the MLE principle and a nonparametric one based on Kernel Density
Estimation.

In Chapter 3 we present the necessary technical background in the form of es-
tablished theorems, definitions and examples. The main technical results needed are
various uniform strong laws of large numbers over classes of functions which arise

from the pioneering work of V.N. Vapnik and A. Ya. Chervonenkis. The results

12



themselves constitute powerful generalizations of the earliest and best known uni-
form strong law—the Glivenko-Cantelli theorem. The basic form of the uniform
strong law that will be invoked asserts that, for various general function classes, the
averages of functions (evaluated from a random sample) converge uniformly and ezpo-
nentially fast to the corresponding expectations, this rates being governed by various
covering numbers and a combinatorial parameter known as the Vapnik-Chervonenkis

dimension.

The main contributions of the thesis are contained in Chapters 4, 5 and 6. In
order to compare the tradeoff between labeled and unlabeled examples under the para-
metric and nonparametric scenario, we focus on learning the same problem, namely
two N-dimensional Gaussian distributed pattern classes, but with the learner hav-
ing different amounts of side information. Our overall approach is to obtain sample
complexities, i.e., the sufficient number m of labeled examples and the number n of
unlabeled examples for learning to classify under a prespecified accuracy € and con-
fidence 1 — §. With the theory of Chapter 3 we obtain finite bounds on the sample

complexities which enables us to quantify the tradeoff between m and n.

In Chapter 4 we investigate the parametric scenario where the learner knows
the form of the underlying probability densities. We present theorems which state
the finite sample complexities for two parametric algorithms, E and M. Algorithm E
utilizes a purely labeled sample of size m which is polynomial in % and in the dimen-
sionality N. Algorithm M, which is based on maximizing the likelihood function,
utilizes a mixed sample. The unlabeled examples are used for estimating the decision
border, and the labeled examples are used to determine the optimal labeling of the
partition. The proof of the sample complexities for algorithm M is intricate. We pro-
vide a preview of the proof and explain the basic concepts underlying it. As expected,

algorithm M requires fewer labeled examples than algorithm E on account of using
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the unlabeled sample. We take the ratio of the number of unlabeled examples over
this reduction as a representative of the value of one labeled example when learning
under this parametric scenario. This is shown (in Chapter 6) to be polynomial in
N, -}, and log -15. We then investigate the sample complexities under the parametric

scenarios of equal and different a priori class probabilities.

Chapter 5 focuses on the nonparametric scenario. The learner has no knowledge
about the form of the underlying class densities and resorts to extracting all of the
information solely from the n unlabeled examples and m labeled examples. Our
approach is to use the modes of the Gaussian mixture to determine the Bayes decision
border. Our algorithm utilizes Kernel Density Estimation to estimate the unknown
mixture density f by f.(z). Using f.(z), it then constructs estimates of the modes of
f which are shown to be consistent whence the decision rule can have P,,,,, arbitrary
close to Ppgayes- We provide a theorem which states the finite mixed sample complexity
for this algorithm. The proof again utilizes the theory of Chapter 3, where the uniform
strong law of large numbers plays a principle role in admitting a measure of complexity
for this nonparametric approach. We then use the finite sample complexities to
establish the tradeoff between m and n. This is shown (in Chapter 6) to be exponential
in N, 1. Requiring no parametric information suggests that the algorithm can be
applied to other, non Gaussian, problems where the Bayes decision border can be
identified via the modes of the class density mixture. We describe the family of
problems for which algorithm K can be used and show that the decision rule is still

close to optimal when the sample complexities are as for the Gaussian problem.

Also in Chapter 5, we discuss two other nonparametric approaches to learning
classification— the Kohonen LVQ neural network, and the k-means procedure. The
Kohonen LVQ neural network utilizes primarily the unlabeled sample to adapt a

fixed number of vectors, called neurons, according to a sequential learning rule which
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performs gradient descent in the space of mean square error. In different fields,
e.g., vector quantization, pattern classification, speech recognition, etc. practitioners
have reported successful results using this type of learning rule. In our experimental
investigation we focus on the tradeoff between the number of labeled and unlabeled
examples that are necessary to achieve a specified classification accuracy. We consider
experiments that aim to reduce the labeled sample complexity, m, by adding a second
layer of neurons. This may be useful in situations where a labeled example is costly
and unlabeled examples are abundant. We report on the family of classification

problems for which a significant reduction in m w.r.t. the dimensionality IV is evident.

The ad hoc clustering procedure known as the k-means method is based on a
voronoi partition with center vectors y; that adapt in a way to minimize the empirical
mean square error (MSE) based on the randomly drawn unlabeled sample. The true
MSE is defined as E min;<ick | — y;]> which measures the discrepancy between the
input z and the output y where y is one of the k vectors y;. In some problems
the minimum MSE partitions achieve classification rates that are optimal or close
to optimal when labeled correctly. We consider such a learning problem and using
the uniform convergence laws of Chapter 3 we obtain the sufficient mixed sample

complexities.

In Chapter 6 we accumulate the results of previous chapters and report the trade-
off between the unlabeled and labeled examples for learning a classification rule under
the different scenarios. We discuss another possible approach based on algorithm K
of Chapter 5 which uses fewer unlabeled examples by estimating the mixture density
f only at a finite number of points. Here however the learner needs more side in-
formation than in algorithm K as the knowledge of a compact region which contains
the modes of f is a necessary condition. We then discuss our ongoing work and a

conjecture about the sample complexity for the Gaussian mixture problem with non-
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unit covariances. We also briefly discuss several extensions to learning with different

types of examples and issues relating to side information.

The following table lists the notation that will be used.

E
P
€
1-6

bo

B(ao, 6)
0dB(0, €)
L(6)

0e

|z| = V Zﬁl 7
VO(H)

d

N

n

m
N(e,H, Ly)
©

poly(z)

1a

C1,€2,C3, .-

expectation

probability measure

positive accuracy parameter

positive confidence parameter

the true unknown parameter vector

a ball of radius € centered at 6,

the surface of the ball of radius € centered at 6,

likelihood function based on the sample (z1,...,z,) evaluated at
point on the surface of the ball B(6y,¢)
Euclidean-norm of N-dimensional vector z = [z;, 23, ..., ZN]

VC-dimension of class H

VC-dimension

dimension of example-space

number of unlabeled examples

number of labeled examples

covering number for class H under L!-norm with probability measure Q
parameter space (compact set in Euclidean space)

rtt-degree polynomial in z

indicator function of the set A

positive constants

Table 1.1: Notations
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Chapter 2
The Problem

In the preceding section we argued that a mixed-sample approach to learning a clas-
sification rule has high appeal in practice. It is of interest to try to quantitatively
describe the tradeoff in unlabeled versus labeled sample sizes required for learnabil-
ity. To further our intuition, let us deduce some simple limiting results when either
the number of labeled examples m — co or when the number of unlabeled examples
n — 00.

Begin with the following observation: With an unlimited supply of independently
drawn examples we can estimate any probability distribution function arbitrarily well.
This is based on an extension of the Glivenko-Cantelli theorem, the oldest and best
known uniform strong law of large numbers (cf. Pollard {21]).

Consider first the case m = oo, n = 0, where there are an infinity of labeled
examples and no unlabeled examples. An a,ppea.l\to the Glivenko-Cantelli theorem
shows that we can obtain exact estimates of each of the pattern-class probability

distributions, and hence deduce the optimal Bayes rule. Consequently
Pe'rv‘ar(ooa 0) = PBayes-

Unlabeled examples alone are not sufficient to learn a decision rule; with infinitely
many unlabeled examples the mixture density f = p; fi +pa2 f2, can be learned exactly

(via the Glivenko-Cantelli theorem) but even if the decision border can be uniquely
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identified from the mixture we still need labeled examples to associate every decision
region with one of the two classes. Indeed suppose there are no labeled examples,
m = 0, and an infinity of unlabeled examples n = oo, and' suppose the best case
where the class-conditional densities fi,f; and the priors p;,p,, can be extracted from
the mixture (this notion of identifiability can be made mathematically f)recise). The
Bayes decision border can thus be procured but we are still left with the problem
of deciding the label “1” or “2” for the two regions Ry, R,. With no recourse but
random guessing one of the two labelings we hence obtain

1

1
—Paes =3
2(1 By) 2

1
Pe'r'ror(oa OO) = EPBayes +

a result no better than randomly guessing the label of an z in the first place! Nev-
ertheless, it is clear that unlabeled examples do carry information, and with a small
amount of additional information in the form of labeled examples we should be able
to exploit this untapped source of information as we see in the sequel.

Let us now restrict ourselves to an identifiable mixture distribution f(z) (cf.
Teicher [29]). In particular, if f(z) = mg(z) + (1 — 7)h(z), we can identify the exact
value of © and the form of g(z) and h(z) given f(z). Note, however, that it is not
known which of g(z) and h(z) is fi(z) (the other will be f;(z)) and whether 7 = p
or T = p,. Nevertheless, given an infinity of unlabeled examples, the Bayes decision
border {z : p; fi(z) = p2fo(z)} = {z : 7g(z) = (1 —7)h(z)} can be identified. This is
because the identifiable mixture f(z) is obtained via the Glivenko-Cantelli theorem
and the Bayes border is invariant to the labeling of g and h. As before, this decision
border optimally partitions the feature space into two disjoint regions R, and R; and
the difficulty is that we do not know which region should be labeled “1” and which
“27.

Now suppose we have one labeled example (z,y), i.e., m = 1. Denote by E the
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event that a random z drawn according to f(x) is misclassified. Draw one labeled
example by first choosing a class according to the a priori probabilities p;,p; and then
drawing an = according to the density of the chosen class (which is either fi(z) or
f2(z)). Then label as class y the region that contains z, and the second region by the
complement label. Clearly, there are two possible‘labelings: one has R; labeled “1”,
R, labeled “2”: this corresponds to the Bayes optimal labeling (denote it as Lgooq)
which has (conditional) error probability Perror = P(E|Lgood) = PBayes; the other
labeling has R; labeled “2”, and R, labeled “1” (denoted by Ly,q) and its conditional
error probability is given by Perror = P(E|Lpsa) = 1 — Ppayes- Any one of these two
might be chosen. Consequently, the unconditional error probability of our decision

rule is given by

Peror(l,00) =P(E) = P(E|Lyea)P(Lpaa) + P(E|Lyood)P(Lgood)

= (1 - PBayes)P(Lbad) + PBayesP(Lgc;od)
We have

P(Lys) = P(z has true label “1” and « fell in Ry)

+ P(z has true label “2” and z fell in R,).

This equals
J3 /Rz fi(z)dz + po /R1 f2(2) dz = Ppayes-

Clearly P(Lyo0a) = 1 — Ppayes hence the total misclassification probability P(E) of

the resulting classifier is
Perro'r(la OO) = 2IDBayes(1 - PBayes) < 2F)Bayes-

Therefore for any problem with an identifiable class mixture and for any algorithm

that produces a decision rule utilizing n = oo unlabeled examples and m =1 labeled
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examples the classification performance is no worse than twice the best achievable
error performance ! This result was demonstrated by T. M. Cover and V. Castelli
(5] who also considered the case when there is more than one labeled example. We
tackle this next.

With a few more labeled examples we can rapidly get as close as desired to Bayes
performance. Suppose we have m labeled examples and n = oo unlabeled examples.
Use the infinity of unlabeled examples to deduce the Bayes border {z : mg(z) =
(1 — m)h(z)}. Now w.lo.g. suppose Ry = {z : mg(z) > (1 — m)h(z)}, R, is the
complement of Ry, and h(z) = fa(z), g(z) = fi(z). We can determine exactly the
quantities 7, = P(2|z € R;), . = P(l|z € R;), and p = g, f(z) dz. The quantities
m and 7, are the probabilities that a randomly drawn test example z is misclassified
given it is in R; or Ry, respectively. Also, p = P(R;) and 1 — p = P(R;). The

procedure for labeling the regions is as follows: draw
1 ' 3

" Pmin (1 - 2\/7]ma.1;(1 - nmax) logz

labeled examples, where p,;, = min(p,1 — p) and n.; = max(ny,72) and 6§ > 0 is

arbitrarily small. Assign to each region R; and R, the label of the majority of the
examples that fell in it. If no examples fell in R; then label it “1” with probability -;—

and “2” with probability -;- Then the resulting classifier has error probability
PCTT‘OT'(m7 w) S PBayes(l - 25) + 46.

(Cover & Castelli [5] have shown a similar bound.) We now briefly prove this result.
Let E denote the event that a random z is misclassified. There are four possible
labelings of the regions R;, R, based on the labeled examples: Lo, has Ry labeled
“1” and R, labeled “2”; Lp,q1 has Ry labeled “2” and R, labeled “17; Lpaa has Ry
and R, labeled “1”; Ly,q3 has R; and R, labeled “2”. We have

P(E) = P(E|Lgoad)P(Lgood) + P(ElLbad,l)P(Lbud,l) + P(EILbad,2)P(Lbad,2)
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+ P(E|Ltai3)P(Lyaa3)-

We have P(E|Lgood) = Ppayes and clearly P(Lgood) < 1. Also, P(E|Ltad,1) = 1—PBayes
(see earlier), while P(E|Lygq2) = p2 and P(E|Lpq3) = p1-

Now, P(Ly.q2) equals the probability that the majority of examples in R, are
“1” and that the majority of examples in R, are “1”, or that the majority of examples
in Ry are “1” and none fell in R; and “1” was chosen, or that the majority in R, are
“1” and none fell in R, and “1” was chosen. Similarly P(Ly,q3) equals the probability
that the majority of examples in R; are “2” and that the majority of examples in
R, are “2”, or that the majority of examples in R; are “2” and none fell in R; and
“2” was chosen, or that the majority in R, are “2” and none fell in R; and “2” was
chosen. We have the prébability that the majority of examples in R, are “1” given

by
= é (7)) A=p) @)™ X () nj(1 —na)*

j=k/2

Using Chernoff’s bound for a binomial distributed random variable we can bound the

inner sum by (475(1 — n;))*/? whence obtain the upper bound

e-m(l—p)(1—2 7)2(1—772)) Se—mpmm(l—2 ﬂm(tx(l—'nm(xz)).

Similarly, the probability that the majority of examples in Ry are “2” is given by
5 @ -t S0 - g e ()
k=1 i=k/2
We also have that the probability of the majority in R; are “1” and majority in R,
are “1”, is less than the probability that the majority of examples in Ry are “1”.
Also, the probability that the majority in Ry are “2” and the majority in R, are “27,
is less than the probability that the majority in R; are “2”. Similarly, the probability

that the majority in R; are “1” and none fell in R, and “1” was chosen, is less than
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the probability that none fell in R, and “1” was chosen, which is bounded above by

(I-p)"5 <

Y

[\J
[N

the last inequality following since (1 — 2y/Nmaz(l — nm,w)) < 1. Define

5= e—mpmen (1—2m) )

Using the above we have
1 1. :
P (Lbad,Z) S ) + 56 + '55 = 26, and P (Lbad,3) S 26.

We can similarly obtain that

P (Lpua1) < 26.

Thus we have

P(E) < PBayes -1+ P225 + P125 + (1 - PBayes)26

= PBayes(]- — 25) + 494.

The left side is by definition Perror(m,00). This concludes the proof. As § > 0
can be arbitrarily small, we conclude that given an infinity of unlabeled examples,
as the labeled sample size m increases, the classifier performance approaches Ppgyyes
exponentially fast in m.

Related to the limiting case of Pe,ror(00,0) is a classical result of Cover & Hart
[33] pertaining to the nearest neighbor (NN) classification rule (a nonparametric
method). This classifier is based on a voronoi-partition of the feature space, each
voronoi cell placed around one labeled example. They bound the error of the NN-

classifier in the oo-labeled sample limit as
PBaye.s S Perror,NN(ooao) S 2PBayes(1 - PB(Lyes)-

22



An improvement towards a more realistic case (having finite sample size instead of
infinite) has been recently achieved by Psaltis,v Snapp & Venkatesh [15], who showed
that |

Perror NN (m,0) = Ppayes + O(m™*/Y)

for the nearest neighbor classifier in N-dimensional feature space.

Finally, for mixed-sample learning, the case of P..,,.(m,n) is the most realistic
since both sample sizes are finite. The form of the solution depends strongly on
the algorithm used to learn the classification rule. Different methods may utilize
different assumptions, or side information, regarding the class distributions and there
may be various ways of learning from a mixture of labeled and unlabeled examples.
For instance the learning of the decision border may be done solely with unlabeled
examples while leaving the labeled sample only for labeling the regions. Another
approach would use both labeled and unlabeled examples to learn the border. Our
effort in this thesis is dedicated to tackle the P,,,.,(m,n) case. In this context, Cover
& Castelli have suggested that for identifiable families, P.....(m,n) may take the
form O(2) + O(e™®™), i.e., that there is an exponential tradeoff between labeled and
unlabeled examples.

Analyzing the size of finite labeled-samples as the basis of learning-complexity is
the approach taken in the PAC (probably approximately correct) model of learning
theory (Valiant [34], Blumer, Ehrenfeucht, Haussler & Warmuth [13],[14], Haussler
[12]) and also in the analysis of the nearest-neighbor classifier of Psaltis, Snapp &
Venkatesh [15]. (In contrast, another apbroach for representing learning-complexity
is to get asymptotic co-sample limits as for instance, in Cover & Hart [33].) In these
approaches, which utilize only labeled examples, the finite sample size may depend on
a prespecified required accuracy, probabilistic-confidence of the result, dimensionality

of the feature space and possibly more given parameters.
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The theory on which PAC learning is based can be used to analyze learning with
a mixed sample, i.e., with both unlabeled and labeled examples, and obtain finite
bounds on m and n. These estimates can then be used as a measure of quantifying
the tradeoff in unlabeled versus labeled examples in learning a classification decision
rule. However, as was discussed in the previous section, there are really three forces
at play here: the number of labeled examples m, the number of unlabeled examples
n, and the amount of side information given a priori to the learner (for instance, in
terms of assumptions on the class conditional densities). To see the tradeoff between
any two of these three variables we need to fix the third. It is not clear how to
quantify side information; there are still open issues to tackle here. Our approach
will be to compare the tradeoff between labeled and unlabeled sample sizes under

several (qualitative) scenarios of side information available to the learner.

Finite sample complexities results are more difficult to derive than asymptotic
results, and typically require a case-by-case analysis — a fully general theory is still
in abeyance. In this thesis we primarily investigate two scenarios: (1) the tradeoff
between m and n, conditioned on the knowledge of the parametric form of the class-
conditional densities; the analysis and results are presented for the specific parametric
case of a multi-dimensional Gaussian mixture though the technique extends to other
parametric families (2) The tradeoff between m and n conditioned on the knowledge
that the modes of the mixture determine the Bayes optiIﬁaI decision border (neither
the parametric form of the mixture nor information about whether it is identifiable,
are given to the learner). The function classes considered in the latter case are

potentially much larger than the former parametric case.

We approached scenario (1) by choosing two parametric estimation methods, mo-
ment estimation and maximum likelihood parameter estimation (MLE). The former

is easily applied to the case of a purely labeled sample since it involves estimating
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independently the moments of the two class conditional densities; the latter method
can utilize unlabeled examples to estimate the mixture’s parameters and labeled ex-
amples to choose the good labeling. Chapter 4 presents the analysis and results for
this scenario. In scenario (2), we compared learning with only-labeled examples by
the parametric moment-estimation method, to learning with a mixed sample with the
Kernel Density Estimation method. The kernel based method invoked here can utilize
unlabeled examples and requires no knowledge neither about the form of the class
mixture nor whether it is identifiable but dbes utilize prior knowledge that the modes
of the mixture f(z) determine the Bayes border for the class under investigation.

Results are presented in Chapter 5.

In both scenarios, the sample size of the purely labeled parametric approach
represents a lower limit on the necessary number of labeled examples for learning
classification when unlabeled examples are unavailable since the sufficient statistics
are accessible and hence the method is efficient. One should expect that unlabeled
examples are worth something and hence anticipate ;L reduction in the labeled sample
size when learning with a mixed sample approach compared to the purely-labeled
approach. As we will see, the relative amounts of side-information available to the

learner in the two scenarios determines the tradeoff.

One common denominator between the MLE and the Kernel estimation tech-
nique used here, is that they both can be analyzed using the technical machinery of
the uniform SLLN (reviewed in Chapter 3). This is also the fundamental principle
behind the main branch of the field of computational learning theory. Using this the-
ory, the complexity, or cost of learning general abstract problems, and also practical
problems such as classification, regression, can be expressed quantitatively. A primary
measure of cost is the number of examples that are sufficient (or even necessary) to

learn the problem to within a prespecified accuracy and confidence. In subsequent
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chapters we base all of our algorithmic complexity measures on the sufficient sample
sizes for learning a classification problem.
To compare the tradeoff between both scenarios, we restrict our discussion largely

to learning one common classification problem, in which the two classes are distributed

by
. _ 1
fi(z) = (2m)N /2

for i = 1,2, and x, jig, iz € RY, |z| = y/2? + ... + =%, and the classes have a priori
K1, } 1 N

probabilities p;, po. In scenario (1) this problem belongs to a parametric family of

|2

-3le—p

classification problems since the form of the mixture is known to the learner. In
scenario (2) this same problem belongs to a family of nonparametric classification
problems where the learner knows very little about this mixture. The tradeoff between
unlabeled and labeled examples is significantly different in both scenarios as will be
shown in subsequent chapters.

In both scenarios, for the mixed-sample methods, we used unlabeled examples
to estimate the mixture density (thereby learn the decision border) while labeled
examples were used solely for labeling the decision regions. Had we chosen a different
approach which also utilizes the labeled sample for learning the decision border, we
might have needed fewer unlabeled examples. So in this respect, our results give
an upper bound on the number of unlabeled examples required in a trade for every
labeled example, when conditioned on fixed side information.

For scenario (1) we also considered the case where the class a priori probabilities
are different and obtained the unlabeled versus labeled examples tradeoff. This is
presented in Chapter 4. In Chapter 5 we investigated two additional nonparametric
algorithms which use a mixed sample. We present computer simulation for a LVQ
neural network classifier, and theoretical analysis for a related algorithm called k-

means.
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Before presenting our work, we first review several established theorems and

examples of the theory which we use in succeeding sections.







Chapter 3

Technical Results

3.1 The Strong Law of Large Numbers

In this chapter we present several needed techniéal results to be used in calculating the
finite values n and m which are sufficient for the two density estimation methods—
maximum likelihood estimation (MLE) and kernel density estimation. Both the MLE
and the kernel methods involve learning with randomly drawn unlabeled examples.
It is possible to represent each as a problem of approximating the expectations of

functions, h, in some large class H by the empirical means, ;11- —

, h(z;) where
zy,...,T, denotes a random sample. We would like to assert that the empirical
means ;1; " h(z;) converge uniformly over the class H to the corresponding expec-
tations EA(x). This will be achieved by the principle of the uniform SLLN which
is hence at the heart of both the MLE and kernel methods (as well as many other
methods).

The SLLN is one of the fundamental laws in statistics and it arises whenever
an empirical procedure which involves randomly drawn observations is believed to be
governed by the laws of probability. In practice, we can only run empirical methods,
e.g., MLE and kernel. The SLLN assists in bridging the gap between inference based

on empirical measurements and that based on probability. We now present some fun-

damentals of the theory of uniform SLLN convergence for empirical means of functions
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to their expectations (these results were pioneered by Vapnik & Chervonenkis in [16],
[17]).
The classical SLLN of Kolmogorov shows that we have arbitrarily small devia-

tions between the empirical and true mean of a function h, with probability 1.

Theorem 3.1 (SLLN) Ifz;, 1 < i < n, is an i.i.d. sequence of random variables
with finite expectation E|z| < oo, then
1 n
- Z z; — Ez a.e.

nix
Consequently for any measurable function h(z) with E|h(z)| < oo,
1 n
=3 h(z;) — Eh(z) ae.
nis
This guarantees a.e. convergence for any single function h € H and consequently
jointly for any finite collection of functions. When the class H of functions of interest
is infinite, however, the strong law by itself will not suffice to guarantee uniform
convergence over the whole class. There is a stronger version of this notion, however,
called uniform SLLN which is the only convergence concept needed for our purposes
and can be found in Pollard [21]. For the MLE and kernel methods it is necessary in
Sections 4.3 and 5.2 to have convergence for a whole uncountable class H of functions.

In technical terms the uniform SLLN is expressed as

sup — 0 a.e.

171
-y hiz;) — EI
hGHnZz(r) L

T =1

Such uniform convergence cannot hold over all classes of functions — it is easy to
construct instances of classes for which such convergence fails. The whole game is
hence to identify classes H (as generally as possible) for which we can assert such uni-
form convergence. To facilitate the understanding of how such uniform convergence

over a class of functions is proved and to introduce the basis for the finite-sample-size
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results that will be exhibited subsequently. we choose to express this notion with the

following statement

Eh — Eh(z)

t—'l

(sup > e) <é (3.1)
heH

for any €, 6 > 0 and for all large enough n (which may be a function of § and €). (Note,
since we may write § = §(n,¢€), then if 352, é(n, €) converges, then by the Borel-
Cantelli Lemma, (cf. Chung [19]) the above definition of uniform a.e. convergence
will follow; in the theorems to follow, this will be the case because §(n, €) = e~%(").)

If the class H is finite with cardinality K, then the regular SLLN can guarantee
this convergence for every h € H since then the sup becomes a max; in particular, a

single application of Boole’s inequality (the union bound) gives

Zhl ) — Eh(z)

(max > 6) < Ké
1<j<K |n

which can be made arbitrary small since § > 0 is arbitrary. However, if the class
‘H has infinite cardinality (as is the case of the MLE and kernel methods), then the
regular SLLN in conjunction with Boole’s inequality do not suffice to ensure uniform
convergence. It is necessary in such a case to approximate the class H by a finite
collection of functions {h1, ha, ..., heou(r)}, called a finite covering for H, such that
every h € M is “close” (in some metric-sense) to at least one function h; in the
covering. The integer cov(H) is the minimum cardinality of such a covering and is
called the covering number of H. Then applying the SLLN uniformly over A;, 1 <
j < cov(H), (together with some technical details), results in uniform convergence for
the whole class H. In the MLE method we explicitly determine the ckovering number.
In some situations, such as in the kernel method, it is easier to use a bound for the
covering number. The covering number cov(H) is bounded by a polynomial whose

degree is the celebrated quantity called the Vapnik-Chervonenkis (VC) dimension
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denoted as VC(H). The VC-dimension VC(H) influences the upper bound (3.1) on
the probability of e-deviation from the mean and hence is an important quantity
when determining the sufficient value of n for which this probability is at most §. We
now proceed with several definitions and theorems relating the VC-dimension to the
covering number and apply them to get sample sizes that are sufficient for uniform

SLLN convergence.

3.2 Uniform Strong Laws

The following theorems and definitions can be found in Pollard [21], Dudley [23], and

Haussler [12]. Let X denote some universal set.

Definition 3.2 Given a class C of sets in X, and a set S C X, denote by [T¢(S)
the set of all subsets of S that can be obtained by intersecting S with a set in C, that
is, [1c(S) = {SNc : c € C}. The VC-dimension of C, denoted by VC(C) is defined
as the cardinality of the largest set S C X such that |[I¢(S)| = 2. (Define VC(C)

= 0o if the property holds for S unboundedly large.)

In words, the VC-dimension of C is the largest cardinality of a set S of points, all of
whose subsets can be obtained by intersecting S with sets in C.
ExaMPLE: Let C be the class of all finite intervals on the real line. When |S| =1

then |[Jo(S)| = 2. When |S| = 2 it is 4. When |S| > 2, [[T¢(S)| < 25!, Hence,

ExampLE: Let C be the class of all two-fold unions of intervals on the real line.
W.lo.g. take a set S of points @; < < 23 < T, i |S| = 4. From the previous
example, it is clear that when |S| = 4 then |[I¢(S)| = 16 because we can find intervals
that achieve (by intersection with S) all 4 possible subsets of {1, 2,} and intervals

that achieve all 4 possible subsets of {x3,z4}. Taking these intervals in pairs gives us
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the 16 possible subsets of {2y, 23, 23,24}. So VC(C) > 4. Now try any set S with 5
points {z1, T2, T3, T4, T5} With 23 < 2 < 23 < @4 < Ts. There do not exist any pairs

of intervals that can achieve the subset {{z1,z3,zs},{z2,24}}. Thus VC(C) = 4.

ExaMpPLE: A neuron (or a linear threshold element) with N inputs may be repre-
sented by an N-dimensional hyperplane. The number of dichotomies of a set of m

points that such a hyperplane can separate is given by the quantity
N
2> ("7
i=0

which equals 2™ if and only if m < N + 1. This is the celebrated result of L. Schlafli

[46]. Hence the VC dimension of the class of all neurons with NV inputs is equal to N.

Theorem 3.3 Given any set S of cardinality m > 0 and a class C with VC(C) =
d >0, then [1c(S) £ Y% (7) if m>d and [[c(S) = 2™ otherwise.

3=0

For our purpose, we will use the fact that for m > 2 and d > 2, the sum

?=0 (7) < m? so that [¢(S) < m?, in consequence.

Definition 3.4 The graph of a real-valued function f(z) on a set X is defined as the
subset Gy = {(z,y): 0 <y < fx) or f(z) Sy < 0} of X x IR.

A figure of a graph of a function is displayed in Figure 3.1.

Definition 3.5 The VC-dimension of a class H of real-valued functions h(zx) on X

is the VC-dimension of the class of sets that are graphs of the functions in 'H.

Theorem 3.6 Let the class H be a d-dimensional vector space of real valued functions

from X to RY, i.e., the functions h(z) are linear combinations of some basis set
{¢1(z), d2(T),. .., da(x)}. Then the class of sets of the form {z € X : h(z) 2 0} has

VC-dimension = d.
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Figure 3.1:

ExaMPLE: Let H be all functions h{z) of the form h(z) = ay ¢ + a2 ¢2 + az és3

where {¢1, ¢2,¢3} = { 1, , 2* }. Then VC(H) = 3.

Exampre: Let H be a class of sets of the form {z : |z—8| < 1,z,0 € R"}. Then we
can express such sets by {z : gg(z) > 0} where gy(z) = — TN, 22— |0]2+2 =X, z:6,+1.
Clearly g is a linear combination of the basis {1,z,23,...,zn,2%}. Hence VC(H)

=2N +1.

Definition 3.7 (Covering number) Let Q) be a probability measure on X and let
H be a class of functions in L1(Q), i.e., Eg(|h]) < oo. For each ¢ > 0, the
covering number N (e, H, L) is defined as the smallest value of k for which there
exist functions ¢i,9s,...,gr (not necessarily in ‘H) such that min; Eq|h — g;| < €

for each b € 'H. If no such k exists, then N(e,H,L{) = .

As mentioned earlier, uniform convergence is achieved by first approximating a class
of functions by a finite covering. This introduces the covering number into the bounds
on the deviation-probability. With the next theorem (from Pollard {21] and Haussler

[12]) it is possible to replace the covering number in these bounds by a quantity that
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involves the VC-dimension (which may sometimes be easier to calculate). This was
done to obtain Theorem 3.9 and Theorem 3.10. The definition of permissibility can
be found in Pollard [21], and is a regularity condition guarding against some possible
measurability difficulties; basically, if a class of functions can be shown to be indexed
by some parameter that lives in a compact metric space, then it is possible to exhibit a
finite covering for this class. In our applications, i.e., maximum-likelihood estimation
and kernel-density estimation, we explicitly show the existence of a finite covering for

the particular function class that is used.

Theorem 3.8 Let H be a permissible class of functions from X to the interval [0,M]
with VC(H) = d for some 1 < d < oo. Let Q be any probability measure on X.
Then for all0 < e £ M,

N(eH, Lb) < 2(
The following is Corollary 2 in Haussler [12].

Theorem 3.9 (the 1 uniform convergence) LetH be a permissible class of func-
tions from X into a bounded interval [0,M] with VC(H) = d for some 1 < d < oo.
Assume n > 1, and draw a random n-sample independently according to any distri-

bution Q@ on X. Then, for all0 < ¢ < M,

Zh — Eh(x)

(sup e) < 4./\f< , H, L1> —€?n/64M?
heH

log

€ €

where P denotes probability measure corresponding to independent sampling according

to Q. Moreover, for

M 2
S 64 M (2dlog 16eM 8)

n > +log3

€

this probability is at most 6.
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The following is based on Theorem 37 in Pollard [21]. The idea is that even
if a class H depends on the sample size n (as will be the case when we deal with
kernel density estimation) then it is still possible to have uniform convergence for
the empirical means of functions A € H to their true means. Iﬁ Pollard [21] the
condition is for functions in the class to have magnitude bounded by 1. We stated
the result here under the condition |h| < M for every h € H. Note that the result is

distribution-free.

Theorem 3.10 (the 2™ uniform convergence) For each n, let H, be a permis-
sible class of functions whose covering number is bounded as in Theorem 3.8 and the
constants M and d do not depend on n. Suppose z1,...,T, are obtained by indepen-
dent sampling from an arbitrary probability distribution on X. If |h| < M and
E(h?) < 62 for each h € H, where 62 satisfies !3%@ — 0, then

2 2 92\ d
P (Sup .8 ) < o (326M L, 32eM ) -
h€Hn

M c6z 8 Teqz
and the RHS — 0 faster than any power of n.

lXn:h(a:i) — Eh(2)

n =1

The fact that the bound goes to 0 faster than any power of n ensures a.e. con-
vergence (via the Borel-Cantelli lemma) therefore achieving uniform convergence of
empirical means to expectations over the whole class H, for arbitrary sampling dis-

tributions.
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Chapter 4

Parametric Scenario

In this chapter we discuss several variants of learning a classification rule with para-
metric underlying distributions. The overall theme is to determine the sample com-
plexities of learning to classify when the form of the densities involved is known to
the learner, and either a mixed or just a labeled sample is available. Following the
approach of the Computational Learning Theory field (cf. [34], [12]), we measure
the sample complexity of learning by the number of examples that are sufficient to
achieve an accuracy € > 0 in learning the decision rule, with a certain level of confi-
dence in excess of say > 1 — §. Hence all the statements of learnability that we make
are probabilistic in nature, where the confidence parameter § > 0 can be arbitrarily

chosen.

The investigated scenarios are limited to multi-dimensional Gaussian distributed
pattern classes with unit covariances and the theorems are stated for this family of
problems. It will be quite clear, however, that the analysis techniques pertains to
other parametric families as well, albeit resulting in different constants and rates.

We start in Section 4.1 by determining the sample complexity of learning only
with a labeled sample, where the classification problem has two equiprobable pattern
classes. The learner uses algorithm E, based on moment estimation, to construct

a decision rule. Tight bounds on the deviation of the moment estimates from the
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true values yield a tight sample complexity bound. This learning scenario represents
a state in which the learner utilizes the labeled sample efficiently and has access
to the sufficient statistics for estimating the class conditional densities. The cost
of learning under such a scenario is therefore representative of the minimal cost in
terms of exploitation of information under this scenario. This hence provides a good
reference point for interpreting the cost of learning with a mixed sample. In particular,
we determine the reduction in the labeled sample size due to introducing unlabeled
examples. This establishes the tradeoff between labeled and unlabeled examples when

the parametric form of the densities is available as side information.

In Section 4.2 the case of a mixed sample is considered. The problem is the same,
i.e., two equiprobable pattern classes each distributed as a unit-covariance multi-
dimensional Gaussian. The learner is given randomly drawn unlabeled and labeled
examples and uses algorithm M, which is based on maximum likelihood estimation, to
construct estimates of the two class conditional means using only unlabeled examples.
These are then used to construct a linear decision border which approximates the
Bayes partition. The labeled examples are used in this approach only for labeling the
two regions of the hyperplane. As expected, the mixed sample approach uses fewer
labeled examples. The reduction, compared to the purely labeled sample approach,
is significant, being polynomial in the dimensionality of the feature space and in the

accuracy and confidence parameters.

We will proceed as follows: in Section 4.1 we state Theorem 4.1 which pertains
to learning with a purely-labeled sample, then preview the proof before providing the
actual proof. In Section 4.2 we state Theorem 4.2 which pertains to the mixed sample
learning, followed by a preview of the proof. The proof is given in Section 4.3. The
referenced auxiliary lemmas are included in the proof. In Sections 4.4, 4.5 we analyze

the same classification problem as the previous sections, except the two classes have
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different a priori probabilities. Discussions of the results are deferred to Chapter 6.

4.1 Purely Labeled Sample

Here the parametric form of the N-dimensional class conditional densities f;(z), f2(z),

is known:
1
(27T)N/2 g

—3|z—poil®

fiz) =

i=1,2.

We denote this by writing fi(2) = g(x|ro1) and fo(z) = g(z|poz). The only unknowns
are the two mean vectors, po; and po;. The Bayesian decision border is a linear
hyperplane orthogonal to pg; — oy (see Figure 4.1). A learner is given only labeled
examples drawn according to the mixture f(z) =2g(z|uo1)+39(z|poz). Algorithm E,
based on moment estimation, is used to determine close estimates of the means, with
which a classifier is constructed.

We first state the algorithm then we state the theorem, provide a preview of the

proof followed by the proof itself.
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Algorithm E:
The setting: Two pattern classes with underlying Gaussian mixture density
1 1
f(z) = 59(zlpar) + 59(loz).
The teacher draws labeled examples according to f(z) by choosing class “1”

or class “2” with probability 7 and then drawing according to the selected
class conditional density g(z|uoi), ? = 1,2.

Given: m; examples labeled as “1” and mg examples labeled as “2”, where m; +
mq =M.
Begin: 1) Let the mean estimates of pi, ¢ = 1,2, be
=L SH (=12
m; k=1

where we denote by zi the k** element of the i** example z;.

2) Let the decision border be the hyperplane that passes through the
point ﬂ%& and orthogonal to the vector fi; — fi1.

3) Label the two decision regions across the hyperplane by the subscript

of the mode estimate, fi;, 2 = 1,2, on that side, respectively.
End.

Theorem 4.1 Suppose we are given two equiprobable classes which are distributed
according to Gaussian probability densities g(z|po1) and g(x|poz), with means po; €

RN, i = 1,2, and unit covariances. For small € > 0, arbitrary § > 0, given

m-—ﬂlo (w)
€ & )

labeled examples and n = 0 unlabeled examples, algorithm E results in a decision rule

with a classification error

PBu‘yes < Perror(777'70) S PBa,yes(l + C(-'.)

with confidence at least 1—6, where ¢ > 0 is « constant depending only on the distance

between the means.
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We first preview the proof. The aim is to estimate the Bayes decision border
(which is a hyperplane orthogonal to po; — goz2) by a hyperplane that is orthogonal
to the difference of the two sample averages, fi; — fiz and which passes through their
midpoint.

The teacher draws labeled examples from the mixture f(z). We first establish
the sufficient sample size, my, of examples from class “1” for which 2; will be e-close
to po;. The estimate my will be identical. Then we find an upper bound on m such
that the number of “1”-labeled examples is at least m; and the number of “2”-labeled
examples is at least my with high confidence.

To obtain an exponentially small bound (w.r.t. sample size) on the deviation
between each mean and its corresponding sample average, we utilize the Chernoff
bound (cf. Papoulis [43]), which is a variant of Chebyshev’s inequality. This bound
uses the moment generating function and hence can be easily specialized to a normal
random variable. It gives a high confidence for both sample averages to be e-close
to their respective means with m as above. Then we analyze the classification error
of the resulting decision rule by finding the worst-case (error-wise) deviation of the
hyperplane from the Bayes optimal hyperplane. As a consequence of having a linear
decision boundary (hyperplane) the discriminant function which represents the deci-
sion region becomes a univariate-normally distributed random variable. This leads
directly to a bound on P, which depends on the above € and hence is valid with the
above confidence, given that m is as stated in the theorem. Note that the constants

in the theorem are not the best possible and can doubtless be improved.

PROOF:

The aim is to show that P({|fy — p1| > €} U {|ita — p2] > €}) is at most §
when m = m; + my is as specified in the theorem.

First we determine the sufficient sample size m; from class “1”. We use u;; to
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denote the k™ element of the vector py, and denote by zi the k** element of the i

2

example z;. To have |fi; — py|° > € it is necessary that at least one of the N

components (jx — pix)? > €2/N, for k=1...N. So, as a consequence of Boole’s
inequality,

N
P (| —ml > 9 < 3P (b — pl > ¢/ VN).
k=

1

Now since z is a vector distributed as N(u1, I), then each component xj is distributed
as N(p1, 1) hence the sample mean estimate fiyx = m% Y™ zi is normal with mean

f1x and variance 7n1—1 Now note the useful elementary bound
P(z> A) < igge_”‘ E(e*).

Let
1

1
2=——2,% — Hi
mli:l

and A = ¢/v/N. Simple algebra upper bounds P(z > A) by e~ m /2N And hence

1 28 .
P l——— Tt — (i
(mlg k HE

> e/ﬁ) < 2e~¢ ™/,

So from above,

P(lis — | > €) < QNe ™/ = §/9.

It follows that the sufficient sample size is
my > (2N/é) log (4 N/§).
Repeating the same argument for class “2” we have that
my > (2 N/€) log (4 N/§)

is sufficient for

P(ljt; — 2| > €) < QN e m/?N = 6/2.
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Now we find the sufficient m so that the number of class “1” labeled examples
is at least m; and similarly with class “2”. Let p be the frequency of “1”-labeled

examples, i.e., p = -71; ™, 1y,=«» where y; is the label of the i example. We have

m
""A—ls =73
p p—4 7€

my my

m =

where ¢, is a given constant representing the allowed deviation between the mean and

the average of a binomial random variable. For this we have
P(lp— 3l > a) <27 =6

hence it suffices to draw
1 2
m > — log —
- 26% & 61
labeled examples to have
lp—pl < e

with confidence > 1 — §;. Therefore the overall m sufficient for obtaining m,; “1”-

examples with confidence > 1 — §; is

S { my 1 1 2 }
m 2 max{ ——, — log —
- % — € 26% & 51

Repeating the above argument for “2”-examples (where m,; = m; = 26—1;’ log % ) and

combining we get that the sufficient m for obtaining m; “1”-examples and m, “2”

examples with confidence > 1 — 26; is

™my 1 2
m > max{ ——, — log — ¢ .
—_— 1 b
{5 — ¢ 262 61}

To simplify the bound we select ¢; so that the two terms inside the max are equal.

Then substituting for ¢, and replacing both é and 268; by §/2 we obtain that with

4N 8N
m > s (=)
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we have
P({lin—ml> e U{lin—pl > ) < 6.

Now we aim to show that if there is an e-deviation for each of the estimates
from the true means then it results in the claimed error. We have two N-dimensional
Gaussians, f1(z) with mean g, and fo(z) with mean p; and a hyperplane orthogonal
to iy — fi;, passing through their midpoint. First translate the Gaussians so that the
line between p; and p, is on first-dimension axis and the origin is equidistant from
both. Let A = (|u; — p2])/2 and let ut = [A,0,...,0]T and u~ = [-A,0,...,0].
Now consider the decision rule that the hyperplane gives; denote it as h(z). Clearly
h(z) = (fo— )T (z — 1) — 3|2 — fir|? and the region where h(z) > 0 is classified
as class “2”, i.e., the decision point is at A = 0. The vector z is joint Gaussian and so
h(z), which is just a linear transformation of z is a one-dimensional Gaussian random

variable conditioned on the high probability event that the estimates j; are e-close to

wi. Letting g(z) = h(z)/|jiz — fu| yields py(g) ~ N(Ee=lle tJUBP1ER) 4y 4ng

{2 — i |

pa(g) ~ N(eziTer + sULP-1RF)

o] ,1). The decision point is at ¢ = 0 and it is away

from the Bayes border of these two one-dimensional distributions by %“T;—:;Eflzﬂ The
configuration of fi; and fi, that gives a good upper bound on the probability of error is
achieved by minimizing the distance between the means and maximizing the distance
from the border to 0. After some algebra we get an upper bound
2 2
Parer < 50 (—;fﬁ - J_A:_A_J +zo (Affe - \/_é_z_z) .

Approximating this expression for small € > 0 and using the fact that ®(—A) =

Pguyes we have Porror < Pgayes + €162 = Ppayes(l + c2€?), for some positive con-
stants c;, c;. Replace €2 by € both in this bound and in the bound for m, to get the

claimed statement of the theorem. 1
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We now proceed to mixed-sample learning, with side information of the para-

metric form of the mixture density of the classes.

4.2 Mixed Sample

In this section we consider the problem of classifying two pattern classes with equal a
priori probabilities each distributed according to a multi-dimensional unit-covariance
Gaussian density. Both unlabeled and labeled examples are drawn according to the

mixture
F(alfe) = 3 (sl00r) + 5 alcla)

where fi, f, are Gaussians with means 6;, ¢ = 1,2, respectively and unit covariance
matrix. (Here 6, = [0o1,002], and we use two functions f;, f since it will enable
us to drop the parameters y; for brevity.) The mixture is indexed by the unknown
vector § = [0o1,002] in a class of multi-dimensional Gaussian mixtures. This class is
identifiable and hence if, using unlabeled examples, we estimate the unknown mixture
f(z|@) by some other function f(|d) in this same class, then it will uniquely identify
two class conditional densities, fl(:t:|él), fz(wléz), 6 = [él,éz], whose Bayes decision
regions approximate the optimal unknown decision regions. The latter is a hyperplane
orthogonal to 6, — 6oz and passing through their midpoint. If 60 = 02 then any
decision rule with regions R;, Ry, in particular any hyperplane going through the
point o1, yields Perror = PBayes = -,1; Thus in that case, the fact that the hyperplane

cannot be identified is insignificant.

We use algorithm M which is based on Maximum Likelihood Estimation (MLE)
with a mixed sample to construct a decision rule which has a P, close to Ppgyes.

The n unlabeled examples are used to find the point 6 which maximizes the likelihood
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function

n

1
L(O|zy,...,20) = ;Zlog f(z:]6).

=1

By taking n sufficiently large, 6 is guaranteed with high confidence to be e-close to
the unknown 6y. (The maximum likelihood estimation principle is discussed below).
This implies that f; is e-close to fg;, ¢ = 1,2 and a hyperplane is constructed as the
decision border estimate (see Figure 4.2). The algorithm then uses the m labeled
examples with the majority rule, assigning to each of the two regions the label of the
majority of the examples that fell in it. The sample size m is taken sufficiently large so
that with high confidence the labeling having the minimum error is picked. Because
the majority rule results in an exponentially small bound (in m) on the probability
of mislabeling the regions, the sample size m is very small, and in particular, is

independent of N and e.

The main reason that we chose the MLE for the unsupervised estimation pro-
cedure is for its direct coupling with the uniform SLLN principle. As mentioned in
Chapter 2, this induces a clear notion of cost, through finite sample complexities,

which is what we seek.

We now provide a brief review of the MLE principle.
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4.2.1 Maximum Likelihood Estimation: A Review

The method of Maximum Likelihood Estimation (MLE) was first proposed by the
German mathematician C.F. Gauss in 1821. However, the approach is usually cred-
ited to the English statistician R. A. Fisher who first investigated in 1922 the prop-
erties of this method (cf. Bickel & Doksum [39]). The intuition behind this method
is based on the following: consider the frequency or density function f (z]0) of the
random variable X where 8 is a parameter vector in a subset © of RY. Given n real-

izations 21, ..., 2, of X, drawn independently and identically distributed according

to f(z|0), the likelihood function L(f|z™) is defined as

1 &
LO|zy...,z,) = ;Zlog f(z:0).
=1

(We will sometimes drop the dependence on the sample and write L(6).) If the random
variable X is discrete then for each @ the likelihood function represents the log of the
probability of observing the sample zi,...,Zs. .Thus L(0|z,,...,z,) represents a
measure of how likely 8 is to have produced the observed sample. The method of
MLE aims at finding the parameter value 6 = argsupyeo L(8]z1,. . ., ,) which is the
most likely to have produced the given sample.

To illustrate this method consider the following example. Let z,...,z, be ob-
servations from a Gaussian N(go,02), s.t. 0o = [po,03] € © where the parameter
space © is —00 < g1 < 00, 0 < 0% < co. We seek an estimate 9 of 6. Simple algebra
gives

n

_ i=l(mi — #)2
L(0) = —nlogo — Z=LT ).

and the maximum likelihood estimator is
0= [:5,32]
1 n

where z = 2 ¥0 @y and 8* = - 3 (i — 7)2. By the law of large numbers this ML
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estimate is consistent, i.e., T — po and s> — o2 as n — oco. In general, as in this

example, the MLE method yields asymptotically optimal parameter estimators, being

asymptotically efficient, consistent and function of the minimal sufficient statistic.
However there are some possible difficulties with this method. The first is that

L(#) may be unbounded over ©. An example of this (cf. Redner & Walker [7]) is

when f(z|0) is a mixture of two Gaussians having the same variance 0% and means

Ho1, Ho2, 1.€.

Tt 2 1{z=p 2
f(a:|90)=%( ! e‘%(‘%"*) b e‘i(—sa‘“)).

\/2mod 2no?

The likelihood function

1 1 1 _1(zi=#m)? 1 _1(zi=p2\?
L(OICUl,,Zn):;;logi(me 7( 4 )+\/27r76 2( o ))

can be unbounded for 6 = [uy, i3, 0?] in the limit as ¢ — 0 and where one of the
means (i1, [z coincides with an example z;. Hence if © is —co < ; < 00,1 = 1,2,
and 0 < 0?2 < o0, and §y € O, then 6 will not yield a consistent estimate since the
argsupgeo L(#) does not tend to 6y as n — oo. There are some ways to circumvent
this difficulty, including various regularization techniques (cf. Grenander Ulf [47])
in which the parameter space © is allowed to change with n such that the singular
points are contained only in the limit as n — oo.

We note that the function L(f) may have several relative and global maxima. If
the density f(z|0) is identifiable, i.e., there do not exist two different parameters 6,
and 6, which correspond to the same density, then under some weak conditions, it
can be shown theoretically that the ML estimate is consistent. But if f(z|f) is not
identifiable then regardless of how large n is, L() can possibly attain its maximum
value at several different points and thus one is left with no clue as of which of these

points should be chosen to be the estimate of the unknown parameter fo.
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It should be mentioned that even if the density f(z|6) is identifiable and L(9)
is well behaved then still finding the maximum of L(#) can be costly in practice and

involves some type of a global optimization technique (cf. Redner & Walker [7]).

The MLE method has a robust theoretical basis. There is a vast amount of
literature about this method from both experimental and theoretical aspects. From
the theoretical side, considerable work exists in proving convergence of the estimator
§ to the unknown 8, as the sample size n — oo, see Wald [8], Le Cam [9], Bahadur
[10], Huber [11]. The experimental work regarding MLE is concerned with efficient

algorithms of finding the global maximum of the likelihood function L(#).

On the theoretical aspect of the MLE principle, a brief historic overview shows
that initially in 1946, Cramér [35] established the consistency of a 6 at which the
likelihood function L(#) has a relative maximum. This however is not strong enough
since there may be several relative maxima and one cannot know which of these critical
points to select as the estimator of 6. In 1949, Wald [8] established the consistency
of the global maximum of L(#). This means that the critical point at which L(6)
achieves its highest maximum, should be chosen as the estimator of 8y, resulting in a
consistent estimate of ;. Wald introduced an ingenious method utilizirig the extremal
properties of the Kullback-Leibler distance function with a uniform SLLN. His method
is fundamental in the subject of MLE and it permits remarkable extensions to the
case of infinite-dimensional abstract parameter spaces (cf. Grenander U. [47] Chapter
7). The main details of the ML principle will appear in the proof of Theorem 4.2.
Much work has been done since then in weakening the conditions of Wald’s proof.

This includes the work of Huber [11].
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4.2.2 Gaussian Mixture

In the previous section we mentioned that the MLE principle yields consistent param-
eter estimators. Consistency is an asymptotic notion, i.e., a property of the estimator
as n — oo. Our interest is not in asymptotics but in a finite sample size n required for
a prespecified estimation error when using the MLE method. Using that the trade-
off between the unlabeled and labeled sample sizes for learning classification can be

calculated.
We now describe algorithm M and then proceed with the technical details.

Algorithm M:

The setting: Two pattern classes with underlying Gaussian mixture density

F(zl0e) = 3 fa(elfn) + 5 follfon)

with 8y = [001, 0o2] is in a compact set © of IR?M. The teacher draws labeled
and unlabeled examples independently according to f(z|6p) by choosing
class “1” or class “2” with probablhty and then drawing according to the
selected class conditional density fi(zx IOOL), 1=1,2.

Given: m labeled examples and n unlabeled examples.

Begin: 1) Find a point 6 € RN satisfying

6 = ar gqupoeo Zlogf (z;9).

=1

2) Select as separating surface the hype1plane that passes through the
point _1j-_z and orthogonal to the vector 6 — 6.

3) Label each of the two decision regions separated by the hyperplane

by the label of the majority of the labeled examples in the region.
End.

We state the following theorem, then preview its proof, followed by the proof
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itself.

Theorem 4.2 Suppose the two pattern classes are distributed according to N-dimensional
Gaussian probability densities fi(x|001) , f2(x|0o2), both with unit covariance matrices
and unknown means 0oy, boy where Oy = [0o1,002] € © and O is a compact subset of

R¥N. Then for small € > 0, arbitrary § > 0, given
N? 1 1
n=oa—4s (Nlogz + log -(-S-)
unlabeled examples and

m = cglogg

labeled examples, algorithm M determines a decision rule with classification error
Per'ror(rn',n) S PBa.yes(]- + 636)

with confidence at least 1 — §. In the above, ¢y, c3 > 0 are constants which depend on
6o, c; > 0 depends on Pgayes. All constants may be replaced (with a slight worsening

of the bounds) by absolute positive constants.

4.2.3 Preview of the proof of Theorem 4.2

We now outline the proof (for more details see Section 4.3). The proof can be divided
into three sections: first, if is shown that with n as above, the maximum likelihood
estimator, 0= [91, 92], is e-close to y; consequently the hyperplane estimator is close
to the Bayes hyperplane. Secondly, assuming that we picked the good labeling (as
in Chapter 2, there are only two labelings) we determine the classification error of
the resulting regions. This involves the same analysis as in Section 4.1. Thirdly, we
determine a sufficient size for m that guarantees with some high confidence that the
good labeling is picked by .the majority-rule on each of the two regions. As this is a

random labeling method, it influences the confidence parameter ¢ of producing the
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overall classification rule. This labeling method yields an exponentially small (w.r.t
m) upper bound on the probability of choosing the bad labeling and therefore is
superior.

The first section of the proof is more involved; it entails classical techniques in
the field of probability and statistics. A preview of the first section of the proof is
now provided.

It is known that Gaussian mixtures f(x|f) are identifiable (see Section 4.3).
Using this, the problem of estimating the true unknown distribution function, f(z|6o),
becomes one of estimating only the true parameter 6 given that the learner has side
information about the parametric form of f(z|6). In the Gaussian mixture case, this
is sufficient for estimating the optimal classifier since §, alone identifies the Bayes
border.

Given n random unlabeled examples drawn according to the true unknown mix-

ture density f(z|6), the aim is to show that any 6 that maximizes the function

1) = + Y- log f(z:l0),

i=1

is e-close to the unknown 8y, i.e.
‘90 - él S €

with high confidence provided n is large enough. The approach, which is based on
the original proof of Wald [8] (see also Rao [22]), is to show that L(#) < L(6p) for
all § in the parameter space © such that |6 — 6| > €, and simultaneously that there
exists a 0, with |6, — 6| < e such that L(6,) > L(6,). So by calculating argsupeL(9),
the learner must obtain § which is e-close to the true unknown parameter 6.

The first step is realizing that the Kullback-Leibler distance between two densities
f and ¢ defined by

f
E,log =
Jogg
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achieves its maximum value of 0 uniquely when f = g. Then, because the Gaussian
mixture is identifiable, it means that not only is there uniqueness in the the space of
all Gaussian mixtures but also in the parameter space, i.e., there does not exist a 6

differing from 6, at which

4,(0) = Elog ]{ ((;':0))

attains the value 0. (In the proof, we will drop the subscript fp and write only ®(),
since 0, is fixed throught, and all expectations are w.r.t. f(z]6).)

If we can guarantee that the empirical Kullback-Leibler function

B,,(0) = -71; ﬁ;log Jf ((;]'(i)) (4.1)
which equals
L(0) — L(6bo)

is close enough to ®(6) uniformly for all § € © then it is not difficult to see that ®,(0)
can be made < 0 for all 8 s.t. |6 — 6y| > € for arbitrarily small € > 0. This in turn
implies that L(6) < L(6,) for all 8 such that |§ — 6| > €. It is also necessary to show
that there exists at least one point 6, with L(6,) > L(6,) with |8, — 6o| < €. Then it
follows that argsupg L(#) must be e-close to §p—the needed result.

These two demands are satisfied with the help of the uniform SLLN (Theorem

3.9). It allows us to guarantee that
[4(6) = B(0)] < Baye?,

for 0 s.t. |0 — 6] = € where the constant By, > 0 is s.t. ®(0) < —Bg,€* for such §
and small € > 0. For all such 6§ we therefore have L(8) < L(6,). Using the continuity
of L(6) this implies that there exists 6,, e-close to 6y, which is a maximum (not

necessarily the global maximum) of L(#). We then again use the same principle to
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show that

|2,,(6) — @(9)] < afe) (4.2)

which makes L(8) < L(8,) for all 6 s.t. |§—8p| > €, where the deviation e(e) is within
our control.

We can only use the uniform SLLN over a class of uniformly bounded functions
(over z € RY). The difficulty here is that the function log f(z|0) is unbounded over
z € RYN. This difficulty is finessed by use of a truncation argument restricting the

class of functions to which we apply the uniform SLLN to be a class
{9(e10) = f(20)1Lp(z) : 6 € O}

where D is a properly selected set in RY. This is a class of bounded functions so
we can get uniformly small deviations between the empirical and true means of such
functions with high probability. To get such deviations over the complement, D°,
which is not compact, we must properly select D such that the tail of the Gaussian
(i.e., the underlying probability measure) decreases fast enough over D° so that the
expectation of log f(z|6)1p-(x) is negligible.

It is crucial to find the necessary deviation needed to have ®,(6) < 0 for all 8
s.t. |0 — 0| > € because from Theorem 3.9, it is clear that this deviation has a direct
effect on the sample size n, i.e., appearing in the form of 3-2-1(7) in the expression for
n. If a(e) decreases exponentially fast as NV increases or as e decreases to 0 then the
number of unlabeled examples will increase exponentially fast.

The last part of this analysis shows that the bound a(e) in (4.2) may be selected
O(€?) independent of N. Thus the sample size n stays polynomial in N and in % The
major part here is based on a technique that takes advantage of the low dimensional
symmetry of the N-dimensional integrals that constitute the function ®(f). Once

such symmetry is identified, it follows that the set of values that ®(6) takes for
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0 € © ¢ R?N remains the same for all N > 3. This establishes a sufficient deviation

a(e) which is constant with N for NV > 3.

4.3 Proof of Theorem 4.2

- In the following, all expectations are taken w.r.t. f (z|6p). Initially we use the uniform.
SLLN to show that with n (as above) unlabeled examples‘ it is possible to estimate
the true parameter, 6y, by 6 to within small deviation. This implies the decision rule
is close to Bayes. And finally we calculate the m that guarantees with high confidence
the labeling of the decision regions correctly.

The parameter space © C R?N since in our case § consists of the two N-
dimensional mean-vectors. Denote by 6, the unknown parameter which determines

the optimal decision border. The likelihood function is defined as

L) = illog F(2:l6)

where z; are the unlabeled examples. The learner calculates the value of § which
achieves the global maximum of L(9); call it f. This 0 is then used for determining
the decision rule as described above. Our aim is to show that 6 is e-close to 0. First
we find how large n suffices to guarantee that there exists a maximum (possibly a
relative maximum) of L(6), inside the closed e-ball at 6o (denoted by B(fo,€)), i-e.,
that there exists some 0, € B(y,¢) such that L(6,) > L(f,). Then we show that
for all @ outside this ball, L() < L(f,). This will imply that by picking the global
maximum of L(6), the learner chooses a § which is e-close to 8. Theorem 2 and
Proposition 1 of Teicher [29] together with Proposition 2 of Yakowitz [30] imply that
mixtures of N-dimensional Gaussians are identifiable hence there can be only one
unique true unknown parameter, 6, (we disregard the vector [6o2, 001] which differs

only in the permutation since the decision border is the same in this case).
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Because L(-) is continuous in 8, to have a maximum inside B(6, €) it is sufficient
to have L(6.) < L(f) where 0, € dB(by,¢), the surface of the ball of radius € at fp.
We also use € to denote any 2/N-dimensional vector of magnitude e. Hence we need

Y, log Hzilfe) 0. For any two different distributions g(z) and h(z), it is easy to

f(=ilbo)
show that [ g(:z)loggl(%)l < 0. Hence Elog %%{g—;} < 0. (This is provided that both

Elog f(z]6o) and Elog f(z|6), exist, which is true in our case as is shown in Lemma

4.3))

Lemma 4.3 For a Gaussian mizture f(z|0) with unit covariances and a priori prob-

1

abilities 3,

ElogMo—)- <

f(=l6o)
for any fized 8y and 6 in IR?Y,

Proor: It suffices to show that Eg, log f(z|6p) is finite for any fixed § and 6, in
IR?N. We have

= %(2#)—]\'/2 (e—%|x—01|2 + e—%lf—ﬂzP)

(2m)y~N? <1

IN

for all z € RN. Consequently,

|.’E - 01!2

log £(210)| < [log 51 (2161)

<log2+
It follows that
Eq, log f(2]0) = / F(z00) log f(x]0) da
< [ Fol0o) Pog £(al6)] da
/f(Tl‘go) <10g2 + M) dz

<

IN
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1 1
= 10g2 + Z/I:U - 01|2f1($l(901) dz + Z / I(l) - 02|2f2($|002) dz

< o0

as the two integrals on the right hand side just yield finite combinations of various

second moments of the Gaussian. |1

As mentioned, the class of N-dimensional Gaussian mixtures is identifiable up
to permutation of the two parameters of the marginals. This means that if f(z|0) =
f(z]0o) then either 6 = [0o1, bo2) or 6 = [fo2, 601]. Now, Elog fi&l% equals 0 if and only
if f(z]0) = f(z|6o) (cf. Cover & Thomas [31]). Hence it follows that if 8 # [6o1, 602
and 6 # [0o2,001] then Elog-ff(jaﬁ%); < 0. So our following argument will prove that
there exists a maximum of L(#) either e-close to 8, i.e., [0o1,002], or to the vector
[0o2,001). To be more clear we will only mention conditions which are sufficient that
there exist a relative maximum, and later that there exist a global maximum, e-close
to @g; this will be apparent from the fact that the uniform SLLN is applied only
over the ball {6 € B(6y,¢)}. However strictly speaking we should use the uniform
SLLN over the region {0 € B(fo,¢€)U B([fo2,00],€)} which will yield the existence
of a relative max of L(6) either e-close to [0g1, bo;], or to the vector [6oz,001]. And
similarly with the proof for the global maximum of L(f). It turns out that the sample

complexities are practically unaffected by this notational nuisance.

4.3.1 Local Maximum of the Likelihood Function

We would like to have with large enough n, and with high confidence, that

1 n

sup | =Y _log f(zi|#) — Elog f(z|0)| < /2. (4.3)
968(90,6) n =1

Further ahead, we utilize the uniform SLLN (Theorem 3.9) to achieve this once we

define an appropriate function class which satisfies the boundedness condition of the
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theorem. Once (4.3) is true, it implies that

sup |— Zlogf (z;]0,) — Elog f(z|6.)| < a/2
€ 1—1
and that
1 n
;Zlogf(xiWO) — Elog f(z|f0)| < /2
=1

since it is the special case when ¢ = 0. These imply

Lo Sl g f(alf)
Zl gf($i|90) Bl gf(mleo) N

i=1

sup

€

Hence to get 1+ "7, log -;-((i—f%g—g))- < 01t is sufficient to have (4.3) true and choose

f(=l6e)
Elog Falo) |

We need to estimate the dependence of a(€) on € and show that a(e) is not arbitrary

ale) = 1101€f

close to 0 for a fixed ¢ > 0. For small ¢ > 0 we expand Elog-}f—((fllz—;% in a 2N-

dimensional Taylor series around 6, as follows:

f(zlo
Blog % wo)

The first term becomes

= [ f(elbo) log f(216.) do ~ [ f(zl6o)log f(al6o) do

[ #(z160) 1og £ (al6.)
- / F(z]8) log f(<|60) d:c+Ze,/f 2100) 5~ 1ogf( 160) de
Z e,e]/f ol00) gz 08 S a1 d
t,j=1
03
%jlezejq / S a100) g 108 /@l o (4.4)

where ¢ is on the line between 0 and ¢. Lemma 4.4 shows that the integral of the
third order partials is bounded by some constant making the term bounded above by

co€® for some positive constant cp.
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Lemma 4.4

83
Z 616]61:/ wl@o)m log f(x|06,) dz S 663 (45)
1,7,k=1 ? 7 :

for some constant ¢ > 0.

Proor: First work on the integral; denote %ﬁf(xl@o)lgc, = f;. Then from page 61

we have

o’ ‘ _ [fy—fifi fzfj

and hence (denote fo = f(z]0o) and f = f(z|0e)

3

0
/f($|90)m10g f(z]00)ls,, dz
_ /fo <ffij;2fifj) o — /fofz(fkfij + ffije — fun f; _f4fifjk) —2f fi(f fi; — fif;) du
k
/fo (fkfij + ffijk};fikfj — fifie 2fkffijf—3fkfifj) d

Let f denote any one of the two class conditionals, i.e. f(x|feq) or f(z|fe) and
poly,.(z) denote any polynomial in z,...,zx of degree < r. Then f; = £ poly, (),
fjj = fpolyg(x), and fijr = fpolyg(:c). Hence the above is bounded by

£2 2 £ £2 ya(z £2 N
/f0<f |polys (= | §1p01y3($)|+ f? |polys(z)| N f? |polys(z)|

f? f? f?
F2 polys(x)| | f3|polys(z)|
A e S da

Recall that f = f(z|6e1)/2+ f(2]|0e2)/2 hence 1/ f < 2/f and so the above is bounded

by 12 [ fo |polys(x)|dz. This is composed of a finite sum of products of terms such as

e ;?l’b, de; for0<r<3,1<i<N

7L
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It is easy to show that such terms are finite. For instance, we can bound the 3" order

term as follows (we use y to denote any one-dimensional component):

®© 1 1 _1,2 1 _1
V2T —ooe * |y|3dy - V2r /Iy|<Ae * |y|3dy+ \Vor IyI>A6 2y2fy|3dy.

The first term is clearly finite since the integrand is continuous and over a closed set.

The second term is bounded as follows:

e~ ¥ % gy — L e=*12 dy

V2 /y|>A : - V2 J22>A2)c

where using the fact that Vy > A > e'/?, log y/y* < log A/A? hence e~V /2B < v 2

"W yPdy <

1
—_— e
V27 /|y|>A

fore > 1/(1 - 6 A); therefore it suffices to let A > €'/2 and choose c accordingly.
Finally, the last integral can be bounded by 2Nc?/A* using the variance of a chi-
square and Chebyshev’s inequality. So we have shown the integral in (4.5) is finite.

Call it a;jx. From (4.5) we have

Z ceieraie < Y le] D leraie] <D |€i€j|\lz 62,/2 a, =€y lel Y lebijl
1,7 k 1,7 k k 1 7

7]7
< 622 leici| < ce®
i

for some constant ¢ > 0. |}

For the other terms note that

F(z160) 2

o g (z1) =

a7 (alfo).

Then the derivative can be represented as a limit of a bounded sequence (since f(z|)
is differentiable) hence by the Lebesgue bounded convergence theorem we can take
the limit, hence the derivative, outside. Doing this, the term with the first order

derivatives becomes zero. Now consider the terms corresponding to the second order
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derivatives. We have:

[ $alto) 5 a(?o,- (z160) da
=fﬂ“ﬂ£f%¥ﬁ?)
RPN . <@iﬂ%)(|%u9 felte)
- [ sl TLEI AT,

= —-E (8_00; log f(x|€0)a§ log f(zIGO)) = —I;;(6o)

where I;;(6,) is the ij™* element in the Fisher information matrix evaluated at 6.

Thus the above imply

f(=|0)
Elog —f(-’b‘leo)

The first term on the right is —-%Bgo €2 where By, is a constant depending on §o which

1
~3 Z e:€;1;;(60) + co€®
i,j

is positive if 8y, # o, since for such a 8y, I(6) is positive definite, as is shown next.

Lemma 4.5 Given a mizture f(x|6y) of two Gaussians fi(x|0p;) and f2(z|0o2) with
means 0y, # Oy and with unit covariance matrices, then the Fisher Information

“matriz I1(6) whose i7" element is

0 0
B (- log (el Loz (210

is positive definite.

PROOF:

For any vector u # 0

uwlITu = Zu u/ |90 0 logf('vlﬂo)aj log f(z|60) dz

/f(ar|00) (Z u.iilog f(n:l@o)) dz >0
i 8001'
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which follows since
P 2
(Z; ui—-aam log f(:c|90))

is not identically zero over the probability 1 support of f(z|f,) as we now show. The

functions in the set
9 1og f(alhe) : 1 <i < 2N
8001

are linearly independent when 8y # 6o, since for any u # 0 we question whether

there is a solution to

Zu, 0 log f(zl6o) = %iuz — 0oi)— f +-1— % ui(:c,-_N—oo,-)fl=0.
0001 <=1 f 2 1=N+1 f

This is the same as asking if any function in the set

{331 — 001,22 — Oo2, ..., TN — Oon, %(551 - 90,N+1), %(mz — b N+2) f2 (-’BN — 0 2N)}

J1 1 ' T h

is a linear combination of the others. By inspection, as long as 8y; # 6o, this is not
possible because % is a nonlinear function of the z; — ;.
"So for 6y = [y, z] wherey # z and y,z € RY, we’ve shown that the Fisher matrix

1(6y) is positive definite. |

Now from Rayleigh’s quotient we have &35 > A..;;, > 0 because all eigenvalues

of a positive definite matrix are positive. This implies that €7 e = Q(e?) and so for

any €
f(zl0.) 1 2 3
Elog —— = —= ;
og F(olt0) 23906 + coe” <0
therefore
f(x]6c) _ 1 2 3
sblepElog Falo) = —2B90€ +coe” <0

for small enough €, and By, > 0.
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(The case of 801 = 0o is trivial as this results in Perror = % Without loss of
generality we henceforth assume 6o; # 6o whence By, > 0 strictly. )

We did not consider the dependence of the right hand side on N but instead only
as a function of € and 6, since the left side is invariant for N > 3; we show later that
this is true more generally. Hence we have
f(=10)

f(z]6o)

and with this selection of o = «a(e), (4.3) will force 3"i-, log Jfﬂ(%}g—‘-} < 0. (Henceforth

ale) = f Elog = By, €’ + coe (4.6)

we rename By, as ¢;).

We now estimate the unlabeled sample size n needed to guarantee (4.3). The
uniform SLLN holds for a class of functions that are uniformly bounded (see Theorem
3.9). Hence define a function class G as follows: let D C RN be a compact subset of

the probability one support of f(z) and denote its complement as D°. Let

G = {log f(z10)1n(z) : 0 € B(do,)}-

The functions in G are bounded hence we can use the uniform SLLN over it. Then

n

1
Elog f(x|6) — ~ > _log f(wilf)

" i=1

> a/Q)

P ( sup
€ B(80,¢)

= P ( sup
0B (8o.€)

[, F(alto)tog (216) da — >~ log f(wil0)1o(z:)

z—l

+ /Dc f(z|6o) log f(z]0) dz — ;Z:logf(xiW)ch(mi) > a/2).

Using Boole’s inequality we upper bound this by

P(oesggz’e) /D f(z|0o)log f(z |0)(lt——;logf z;|0)1p(z ) >a/4)
+ P (665'5}}%6) /D f(x]00) log f(z|0) (lT——;logf z;|0)1pe(z;)| > a/4).

(4.7)
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The first term of the sum is the probability of uniform convergence for functions in

G. Hence Theorem 3.9 can be used here to make the first term arbitrary small. The

theorem does not directly apply for the second term since log f(z|0) is unbounded

over D¢. However this term can be made arbitrary small as we show next. Our aim is

to choose the region D such that both the empirical and the true means over D° are

small (so their absolute difference must be small); that is, we do not need the SLLN

to guarantee their difference is small. We achieve that by utilizing the rapid decay

of the Gaussian outside a large enough sphere centered at the mean. We bound the

second term of (4.7) by

1 n
P( sup / f(z|00)log f(x|0)dz|+ sup |=)_log f(x:|0)1pe(z:) >a/4)
6€B(fo,¢) 1Y D* 0€B(fo¢) [T i=1
and
sup | [ f(alfo)log f(zl0)ds| < [ f(zlfo) sup [log f(al6)] da.
6€B(8o.c) IV De De 8€B (6o ,¢€)

Without loss of generality suppose 8p; = 0 (rotational symmetry allows us to translate

the coordinate system). We choose

D={x:|z]| <A or |t —6p| <A}

for some constant A. We then have

[, f(elte) sup flog f(z|0)| dz = [

€ B(60,¢)
1
'<_ 5 /[:cl>Af‘l |z—0o2{>A f(:L‘|901) oESBL(lg,,E)
1
+ -2— /|$|>Aﬂlx-902|>A f(flfleoz) oesgz(}z,e)
< 3 [, et sup log 5 1(e161)
1
+ 5 /l ~6o2{>A .f(f["902) 06%%?),6}
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|z|>A N |z—602{>A

1
log §f1(m|01)

1
log 5 f2(x|02)

1
5 log f2(alf:)

f(|6o) ,

dx

dx

sup

(00 ,C)

X

dz

|log f(z|0)] d=




s % lef> A f(@1601) |log é’fa(x_) dz
* % oot 21002) 10g-;—fa(:c — 0g2)| dz
- % |z|>A(_2_—,r1)T/2-e—lzl2/2 log%fa(m) dx
¥ % lz=f021>A (27r1)N/2 ele=0l /2 log %fa(x — 002)| dz,

where the normal density

1 2 2
R - L -4
fo(z) = (27r<72)1\7/2e

is defined (by choosing an appropriate o) such that

|log f1(z161)| < |log fo ()|

for 6 € B(fo,€) and {z : |¢| > A}. (Recall that 8, denotes the first N components of

6.) For this it is sufficient to choose o that satisfies

1

1 _|$|2
%75 €
(27‘-)N/2

—(z 2oz2—..—z2 o?
{=(z1+e)* 23 N}/Zla::[A,O,...,O] = me /2 ]x=[A,0,...,0]-

Later, we discuss more specifically the choice of o. The above is bounded by

1 2 N . 1 1
-l=/2 2 log —— 2
/ImI>A (2W)N/26 (log2 + 5 log 52 + 202|x| ) dz (4.8)

The terms of (4.8) can be bounded by the tail of a chi-square distribution (see Rao

[22]). We outline how this is done. We use the fact that

1
-2/2 , « —z/2e
€ 2= wpt

for z > 9N and for all N > 1 (since log 9N/N < log9/9 for all N > 1). So we have

1 2
- =1=1*/2) 12 2
(27 )N/2 [x|2>A2 ¢ 21" d=

1 i 2 1 2
~|z*/2e .. _ —l|z|*/2
= (QW)N/ZCN/Z /|1’|2>A2 € du = (27T)N/2 Az|2>L:' ¢ d
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for A2 > 9N and N > 1. The last integral is equivalent to the probability that the
sum of squares of N standard normal random variables, which is distributed as a
chi-square with second moment 2N, is > A%/e. Hence using Chebyshev’s inequality
we can bound this integral by 2Ne?/A*. The remaining terms of (4.8) are simple to
bound by similar arguments. Finally, let us return to the choice of . The condition
A? > 9N together with the condition on o (in the construction of f,(z)) yields:

eUtrrr e (A+e)? _ A2
=
(2m)N/2 = (2m)NI2gN 2 202

+ Nlogo
Letting y = 1/0? we have 3 logy = log(1/0). Solving for y by bootstrapping yields
1/0% > 2(1 + bo(¢/VN)) =

(where by, b; are constants). Thus we can take 1/6? = by, i.e., treat it as a constant

w.r.t. N in (4.8). So we get the bound

sup < a—

N
1 (N + Cg)
€ B(fo,¢)

A

/weDc £(x6o) log f(=|6) dx

(where ¢,, ¢z are positive constants) which is independent of §,. Denote this by A.

We continue to bound the second term of (4.7). We have

P( sup Zlogf (z:]0)1pe(z;)

GEB(GO ,C)

/ f(z6o) log f(z|0) (l7,|+ sup
z€D*® B(8

o.€) | T

Zlogf z;10)1pe(x;)

< P (A + sup
0€B(90 e) |7

> a/4)

< P ( sup Z llog f(z:|0)| 1pe(z;) > a/4 — A)

963(90 C) n i=1

. Elswpseniq ¥ T llog £(2i10)] 1pe()|
= la/a = A

the last step following from Markov’s inequality. Now

sup }—leogf(milO)l1Dc(:z:i) < —1-2 sup |log f(x:|0)| 1pe(;).

8€B(fo,e) TV =1 T ;27 6€B(6o.¢)
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Hence

E supyep(s, ¢ l0g f(2]0)| Lpe(7) _ Jeepe f(2100) supoep(s, o) 1108 f(z|0)| dx

la/4 — A - la/4 — A
_ A
a4 — A
< $
- 4

the last bound achieved by selecting A < 46(:-616 or equivalently A% = c47]-:’;3. This is
the choice for A such that the second term of (4.7) is at most §/4.

We now proceed to find a bound on the first term of (4.7). Here the functions
are bounded since their domain D is bounded so that Theorem 3.9 is applicable.
The procedure will be to directly find an upper bound on the covering number of
this class instead of calculating its VC-dimension for bounding the covering number
as mentioned just above Theorem 3.8. Then we can use the analysis in Haussler
[12] and obtain a bound similar to Theorem 3.9. The class G is defined with the
parameter 6 restricted to within the closed ball B(g,€). It is easy to calculate an
upper bound for the covering number of this ball with respect to the Euclidean norm,
denoted by |- |. From Haussler [12], an €-cover for a set T' is a finite set C' (not
necessarily in T') such that for all # € T there is a y € C with |z — y| < €. The
cardinality of the smallest €’-cover for T is called the covering number and is denoted
by N(€,T,|-|). A set T is ¢-separated if for all distinct z,y € T, |z —y| > €.
The size of the largest €- separated subset of T is called the packing number and is
denoted by M(¢',7,|-|). It is easy to see that N'(¢/,T,|-|) < M(€,T,]|-|). Consider
an ¢-separated set with size M(¢/,T,|-|). Put around each point a sphere of radius
¢’ and let this be a covering. Suppose it is not an €’-covering. Then there exists some
point  whose distance from any of the points is > €’. But this would increment the
size of the €/-separated set by one, which contradicts the fact that it is the maximum

€'-separated set. Therefore there exists an €' covering of size M(€',T,|-|) and clearly
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the smallest €-cover has cardinality smaller than it. That proves the inequality.
Hence it suffices to find the packing number of our ball B(y,¢). The volume of
a 2N-dimensional ball is k;nr?N where kon is a constant and r is its radius. The
number of ¢- balls that can be contained without overlap in B(6o, €) is therefore at
most (kone?V)/(kone’™) = (£)?N. Clearly this is also the maximum number of 2¢-
separated set of points contained in B(f, €) hence is equal to M(2€¢', B(0o, €),]|-]). So
therefore it follows that A'(¢’, B(6g, €),|-|) < (%)*N. We now proceed to find a bound
on the covering number of the class G with respect to the L'-norm (as in Definition
3.7).

Let the set {0~1, by, ... ,éN(CI,B(()O'C),'.I)} be a covering of B(fy, €). We now construct
a covering for §. Fixing a particular 6;, we show that any function g(z|6), with
|0 — 6] < € is &-close to g(x|6;) in the sup_-norm. Using the notation for such a @
as 0. we therefore have {0 — é;ll <€ and |02 — (qu < ¢ and so 0;; = 0.4 + v; and
9~i2 = By + v, where both v, and v, are of magnitude < ¢’. Then

up sup, |9(al6) ~ g(e1fs)| = sup sup_log f(c|6)1p(z) ~log f(al8)10()|
e r€ ¢ x€

_1ly._ 2 _lp._ 2
= sup sup llog (e L S L )lp(m)
0 N
zcR
i P —uy |2 i N po —u 2\
—_ log (6 2]12 96/1 'Ull +6 2Ix 96’2 v2| ) lD(x)l
— sup sup !log (e—%lx_ee’lp + 6_%|$_0€’2|2> — ]og (e_%lx-ee’l_vl |2 + e—%lx_0€’2_v2|2)|
951 z€D
log (e-%w + e—%w) —log (e—-;-lyl-m P 4 e=tlz2-v2 P)

= sup
yeEE;

where E; = {y :y = [xv,2] — 0,2 € D, 0. € B(6;, €')} is a compact subset of R?M as
is now shown (the subscript 7 shows the dependence on 02) A metric space X, e.g.,
IR?*N in our case, is compact if every infinite sequence has a subsequence converging
to a point in X (cf. Royden [32]). It suffices to consider a sequence y, € E; and

prove that it has a convergent subsequence. Since y, = [t,,T,] — e, is in E; then
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z, € D. But D is compact hence 3 a subsequence () — & € D. Corresponding
to it we have the subsequence Ym(z) = [Zm(n) Tm(n)] = Oerm(n). Now Ocrm(n) € B(é,-, €)
hence 3 a subsequence O x(m(n)) — € B(éi,e’). Corresponding to this we have
Yk(m(n)) = [azk(m(n)),mk(m(n))] — Oerk(m(nj). But clearly Zi(mn) — & € D. Hence the
subsequence Yi(m(n)) — § € E; which proves the claim that E; compact. Continuing,

we have

= sup |h(y) — h(y — v)|

sup sup_|g(zl0s) — g(=0;)
ocl yEEa

zcR"
where h(y) = log (e'%“’1|2 + e"lf]”'z) is continuous and [v| < v/2¢; note that for any
y€ E;,,y—v € E;since . +v = 0; € B(6;,€). Clearly h is uniformly continuous
over E; so that, for any fixed ¢ > 0 we can find M; such that
sup |h(y) — h(y — v)| < Mi€.
yEE;

It follows that
sup |g(z]0) — g(z|6:)| < Mie < My €, 8¢ B(;,¢€)

where M = maXj<i<a(e,5(6¢) ) Mi- Finally, take any function g(z|0) where 8 €
B(6y,¢). Then in the covering of B(fo, €) there exists §; such that |0 — ;] < €. Corre-
sponding to this §; there exists a function g(z]6;) such that sup, |g(z|0) — g(z]6:)] <

Mj €. This implies that for any function g(z|0) € G, there exists a g(z]6;) in the

collection
{9(2161),9(x102), - - -, 9(x)0n (e, B o)D) }
such that
sup |g(z|6) —g(:c|9~i)| < Mg, €.
mEIR,N
Hence

Elg(=l0) - g(elf)| < Mg, = &
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where expectation is w.r.t. any probability measure on IRV. So a subset of G with

2eMy, w
6/

2eM? \ 2N
functions covers G to an accuracy of §' w.r.t L}-norm hence N'(¢', G, Lp) < (——99->

&

for any measure Q (see Definition 3.7). (Henceforth we rename My, as cs). Lastly, in

order to use Theorem 3.9 we need to determine a bound on the range of the functions

of G. We have

tog (551 + 32

)

4+ sup sup
[ I:L'-—GOQISA

supsup |log f| = sup sup
8 =zeD [4 |1,‘—-901|SA01'|1‘—502|SA

INA

log (%fl + %fz log (%f} + %fz)

sup sup
6 |x—601|<A

+sup sup
6 |e—602|<A

IN

1
log =
°g2f2

1
log =
°g2f1

sup sup
6 |r—601}<A

= 2sup sup
6 |z—601]<A

.

1
log =
082f1

Define S as

1
log = =sup sup
B 8 |o—601|<A

1
log §f1

To find # we evaluate the maximum shifted Gaussian at the boundary of the region

{z: |z —0n| < A} ie., at [A,0,...,0] (since we take fp; = 0 as before). With

e"'%(A+C)2
T 2(2m)N/2
we have
1 =3 (A+e)? (A4+¢? N
log 7 = \log DL = 5 + 5 log 27 + log 2.

Now recall that A% = q\%—ﬁ S0 log% < CG\/_NET_g for some positive constant cg. We let
this be M in Theorem 3.9 with a = ¢;€? 4+ coe® and use (22)?N to bound the covering

number there. This implies the probability that the first part of (4.7) is not true is
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at most % when the number of unlabeled examples is

> czé\: (N log El—q + log —C(SE) (4.9)
or simply when
n> 61616];72 (N log% + log %) .

With this many unlabeled examples, the probability of the first term of (4.7) is at
most §/4. We have already bounded the second term of (4.7) by 6/4 therefore this
unlabeled sample complexity guarantees that (4.3) holds, and hence that there exists

a maximum of L(8) inside the ball B(o, €) with probability > 1 —§é/2.

4.3.2 Global Maximum of the Likelihood Function

Now we analyze the conditions needed to ensure that the global maximum of L(f) is
e-close to 0. We have established above that there exists a maximum of L() inside
the closed ball B(,€) i.e., there exist some 6, € B(fo, €) such that L(8.) > L(6o).
It remains to guarantee that for all 6 € ©\B (0o, €), L(0) < L(fp) where O denotes a-
compact region in R2N which contains 6o, and is the region where the learner searches
for the argsup of L(9).

There is a small notational nuisance here: in the preceding, we used the com-
pactness of B(fg, €) when proving that the class G is finitely coverable. Now we use
the notation B(fo, €) to mean an open ball; so that ©\B(fp, €) is compact. Following
the same steps as before, to guarantee to within some confidence that L(H) < L(6o)

it is sufficient to have

ey, S S
66(_;\1131()90'6) nZlog Fal0o) E log Flelfo) < a(e) (4.10)
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where

f(z16)

lo
| e
We first redefine the class G = {log f(z|0)1p(z) : € ©\B(y,€)}. Then we estimate

a(e) = GEG{%(ﬁo,c)

the value for «, and in particular, analyze its dependence on € and the dimension
N. This is in analogy to our previous findings for o used for the sample complexity
calculation for guaranteeing the consistency of a relative maximum of L(f); we had
earlier found the estimate a(e) = O(€?) independent of N. Then it remains to find
the covering number of the region ©\B(f,€) and use it to calculate the sample
complexity needed such that (4.10) holds. As before, the covering number is still
bounded by an exponential in N and the analysis leading to (4.9) still holds; we
construct a f,(z) and ¢ = C, C is constant w.r.t. N, e. We only need to replace
log B by log Be in the argument prior to (4.9), where o is the smallest value that
any mixture f(z|@) can take over the domain D when 6 € ©; this is smaller than
but still, log i = C'N/+/aé for some constant C > 0.

We proceed to estimate a(e) anew once again for the new domain. Denote
®(0) = Elog -ff(%‘%. For any given € > 0, using our new notation for the open ball,
the region ©\B(fy, €) is compact. The function ® is continuous over the region hence
® achieves its maximum value, which must differ from 0 (shown earlier) hence is
strictly < 0 whence it follows that a(e) > 0. To verify that ®(8) is continuous over

this region, write

o(0) = /f(:c|00)logf(m|9)dac—/f(:c|00)logf(a:|00)d:c.

Let {f,,n > 1} be a sequence convergent to a point 8, € ©\B(0y, €) and such that
for a constant p > 0, |6, — 6,| < p for each n. It suffices to show that the first term,

denoted by ¢(#) is continuous. It suffices to show

lim / F(2100) log f(|0n) de = / f(2100) lim log f(xl6,) do = g(6a).  (4.11)

72




To justify the exchange of limit and integral, note that log f(z|6,) is continuous and

(z1o)log f(216.)
< flalto) log f(216,)] < (1) g 5 i (al0w)

< Cuf(elfe) + 37 (@lfo)lal? + f(z100)ICa + 5 (s100)C3

< Cif(al00) + 5 (alfo)]z — O

where Cy, C, are constants and |0,| < C, for all 8, € B(d,,p). The integral of the
right side is bounded by some finite constant w.r.t n (we partition the integral and
then bound the noncompact part similar to page 64) hence the Lebesgue dominated
convergence theorem permits the exchange of limit and integral in (4.11).

Now we show that «(e) does not depend on N. (In the following we will ignore
the constant % for clarity). We first split ®(8) as follows:

e~dle=0il 4 o=dle-0aP)

1 1 2 1 2 (
_ ~1|z—601} =3z le=boz|
®0) = /(‘hr)N'/'z(e T e log (e-2lo—0l® 4 g=3lo—tozl?y
- / 5

m )N/
1

+ /(27()1\7/2 emaletual log(e™ Flo-6:f? +e3 |x_92|2)d$
1

1. 1 2
e—-2-|1—002|2 10g(e—§|z—001| + e 32 .'13—902' )de'

/ (2m)N/2”
1

Lo g |2 —llo—go |2 Lip_fas2
zlx Bo1| log(e 5 lz—6o1 +e 3 [z—602] ) dz

(QW)N/2
1

- 2 D W PO 2
3lz=for] loge 2le=01” qp

- /(Q,T)N/z
1
+ f (@m)N2° “letaljog(1 4 estif~zle=l) gp

1
+ /(ZW)N/2€ 2le=tl og e=2l=% 1 o
1

+ / (%)N/z
1

-3 lz—fo2|? 108(1 + e%lx—92|2—%|x—(91|2) dz

-"|1’— ~3lec—601 2

o1 ? log e dz

()ﬂ. N/2

)
1 -
| e og(1 4 et tnR) g
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B / (27r1)N/2 e~ Hle—torl Jog e=3l e g
1

e~ 2lz—0bo2l? log(1 + e3le—fo2 '2‘%“’—901’2) dz

/ (27r)N/2
Four of the above terms sum to:

N 1

5 §|002 — b - —+

1 \ N N N
_2'0"‘_9”_ 5 T3 13

1 1
= —5 1601 = 17 = 51602 — o

The other four terms (those with the log(1 + e()) we denote by Iy + I, — Is — I;. We

manipulate I; as follows:

L = ! e~ 3le=fo1l 155(1 + eile=0iP-3le=02y 4o
(27 )N/? 8

1
= / (27{')N/2 e—%|y+01—0m|2 lOg(l n €%Iy|2_%|y+01"92|2)dy

where we simply changed to the y-coordinate frame whose origin is at the point 6.
Now rotate the coordinate frame to a new primed frame as y’ = Qy where @ is a
unitary matrix chosen so that the y;-axis goes through the point 6, and the (y3,y3)-

plane goes through g;. So we have y = QTy’ and the inverse Jacobian is just 1 since

the determinant of ) is 1. Thus

I = / ® 1)N/2 o= 31QTY +61~001 log(1 + e%IQTy'Iz—%IQTy'Hl—ezlz) dy’
T

_ / 5 1)N/2e—%IQTy’+QT(91—9m)’|2 log(1 + 317V P-31RTY+Q7 (@ -02) ) gy
T

= / (2 1)N/ze-%lQT(yw(el-f?m)')lz log(1 + 21Q7vP=zIQT(WH(E=02))F) gyt
T

where (fg; — 0,) is a coordinate vector w.r.t the primed frame. Observe that
1QTy'* =yTQQ™Y = (v',y) = l¥'[’
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and

QT + (61— 6))I* = (¥ + (61— 00)) QQT(Y' + (61 — b))

= (' + (6= 001), ¥ + (61 — b)) = v + (61 — On)'”.
The integral can hence be written in the form

1 1.1 1 792 1,712 11,/ ! 112
-3y’ +61 -84, | slv'P—3ly'+01 -85 '
/——e 2 1 01 log(l + e2 2 1 2 )dy
(27)N/2

! gl
/ 1 =3P 310,60, P16 64, (' P =hy)
= — ¢ 01~"1
(27)
I ! ! ’ ! 9zl _o’]
% log (1 + e“%|91—92l2+|92—91|(y,Ieé_f;“)) dy’.
The inner-product (y/, TZé':_z:Ll) is the size of the projection of the N-dimensional vector
2 1
y’ on the y| axis because we chose the primed frame so that the vector §; — 8] is on
the yj axis. Hence this equals the first component of y’ i.e. y;. The inner-product
(y', I—Z&%) is the size of the projection of ' on the vector 05, — 07 which is on the
Y}, ¥4 plane hence it must be a function only of the first two elements of the vectors y’
ol -6 . 6., 8! 6!, —6! .
and I—ézll_—e]i—l, e, y1,y5, < l—ﬁg':_—e‘h >1 and < I_H?)i???_l >,; denote it by ¢g(y1,y5). (Here the
notation < - >; means the ;** elentent of the vector.) For clarity we rename y’, which

is just a variable of integration, to . Now we transform to cylindrical coordinate

system:

T =2
Tg = Ty
T3 = T COS (b COS Py . .. COS PN _3
Ty = T8I0 ) COS Py ... COS PN_3

TN = TSsin Pn_3.

For example, for N = 2,3 the Jacobian is 1. For N = 4 the inverse of the Jacobian
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is r. For N =5 the inverse Jacobian is:

1 00 0 0
010 0 0
0 0 —rsin¢;cos¢; —rcos@ysings cos Py cos Py
0 0 rcos¢ycosgy —rsingysing, sin ¢ cos Py
0 00 T COS P sin ¢y
1 00 0 0
01 0 0 0
= sinl % 0 0 —rsingycos¢y 0 0
0 00 —rsing; cos ¢y
0 00 rCcosg,  sing,
= —(rcos ¢)(r).

For N = 6, the inverse Jacobian equals —(r cos ¢, cos ¢3)(r cos ¢3)(r). In general, for
N > 4 the Jacobian evaluates to rV¥ 3 cosN4pn_3...cos ¢,. The variables range over
values 0 < r < 00,0 < ¢y <2, —7/2 < ¢ <7/2, 2< k< N —3. It is easy to see
that the transformation is globally invertible. Also we have |z|? = r? + 2,2 + z,%. So
the integral becomes:

I /1r/2 N—4¢ /71'/2 d) /27r /00 /oo /oo 1 N—3
COos L TP COSs —
! g N=8" ) a2 2Jo Jo JesoJoo (27r)N/2r

—3(r2+23+23) - 5101 =05, P +16] =65, l9 (z1,72)

X €

x log(l + e~ 21B-0P~10~0ler) 4o dzydrdpydeps ... ddn-s.

The integrand does not depend on ¢, ..., #n—3 hence we can write [, = G(N) - I

where
/2 Ned /2 2
G(N) =/ cos ¢N_3(l</>N_3.../ cos ¢2(l¢2/ d¢y
—7/2 —-r/2 0
and
= /O‘” TN—B(_Q;JWG—%TQ dr /:o /:’o o~ 3 (@3+23) - 1160, ~ 8} *+164, 6} |9 (z1 2)

_Lipgr _pr12 -
x log (1-}-6 2105=01 12 +10 91|£1) dzy dzo.

To evaluate GG(N), start with the identity

1 1
3= g,
/(zﬂ)lee 2" dr = 1.
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Passing to the cylindrical frame we obtain the identity

©0 B 1 1, oo oo (g2t
G(N)/O TN 3W6 ;2(17"/_00[_006 ;(?+ g)d.’lfldxz:l,

whence

© 1 1,2 00 f0O 12,2
o) = ([ gt [ [ bt an e
T

-1 1 <27re
F(%) or3/2 \ N

N/2
) (N = o). (4.12)
From (4.12) we obtain

o) 1.2 2y_Lligt _g' 12 /1 _g! Yt _pr2 gl
f_oooo f__oo e 3 (=143 31061011 +165, 1lg(z1,22) log(l +e 218, -011°+162 01|$1)d$1 d$2

—Ll(p24 42
ffooo ffooo € 2($1+z2) dxl dm2

From this we see that I; depends on 6y, 65, 8o, only through the transformed-coordinate

o |p! ’ ' ' 65,61 6., —0! . .
vector quantities: |05, — 1], |65 — 03], < e > and < T 2 Similarly, I

81,62 6,0}
depends only on |0}, — 85|, 107 — 63|, < =i 1 and < e > For I3 we have:

1 ~dz—001]2 L1z—8012 =2 |z—002[?
L= [ Grywme o g1 + ettt =itnf g

1
ezl log(1 + eslol - 3let00 =001y 1

"n’z —e’m
“%l%'z—e{n [242105, =65, (=, 67, =01, |)) dz

- / (27r1)N/2
1

e~ zloF log(l +e

= / (2m)N/2

where we chose the primed frame such that 6y, is the origin and the z, axis through

002 (we did not bother writing y’ but kept x since it is only a variable of integration).

Hence (=, %éz{—géli) is the projection of  on the z;-axis which therefore equals z;.
02 01

Using the identical transformation again

1 12
N-3 -7
/ r We 2" dr

0
x /'°° /"‘ =363 1og(1 4 €™ 3102001 +Hoha0halo1) g .
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So I5 depends on |0f, — 0, |. Similarly for I,.
Now, given any four N-dimensional points 61, 63,601,602 we can apply the follow-

ing procedure to form a vector v:

Let 6; be the origin.

e Choose a primed- N-dimensional frame s.t. 6; lies on the yj-axis and 6p; on the

Y1, Yo-Plane.

e Record the values

! ! 7 /
[ 91 6’01 — 91

o1 = 10y = O3l 3 = 10 = B, w0 =< 5 o >0, =< 1

>, .

e Let 6, be the origin.

o Then choose another primed N-dimensional frame s.t. 6; lies on the y;-axis and

6oz on the y1, y5-plane.

e Record the values

g 0. — ¢
02 2 — 02 2
>1, v =

= |0, — 0" =< = < =
vs = |0y — 03], ve |65, — 64 |02, — 03]

>3,V = |0 — 0o,

Recall that the values of the other terms besides the Iy, ..., I, depended on |6o; — o2
(which equals vg), hence it follows that ®(6) is a function only of the vector v. But
there exist four 3D-vectors, 8, 0,, 001, 002, with the same vector v. This follows since
our four points in N-dimensional space lie on some 3D-subspace. Let N = 3 and
apply the above procedure to these points (which have 3D coordinate vectors w.r.t
some frame in this 3D-subspace). This must yield the same vector v because we did
not disturb the points in any way. The vector v lives in some subset V C R® and the
function ® maps vectors v € V to R'. In particular, take any 4 points 6o, 82, 01, 0 in

N-dimensions such that |§ —6,| > € or equivalent by |0o; — 6, |24 602 — 62> > €. Then
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apply the procedure to get the vector v. As before, there exist 4 points, o1, fo2, 01,02
in 3D with the same v therefore with the same |6y; — 6,| and |fp; — 02| therefore the
same |0 — 0| > € as the N-dimensional points. So for any N > 3, fixing |6o; — o3|
results in fixing supggp(g, ) (I)(H) Recall that supgee\p(g,,c) 2(0) = —a(€). The above
implies that, for a fixed € > 0 and |6p; — o2, (e) is invariant for all N > 3. This
validates the earlier claim, in the case of small € > 0, that a(e) is independent of N.

At this stage we’ve shown that given any € > 0, there exists a(e) > 0 which when
used in (4.10), yields a finite sample complexity that guarantees with some confidence,
that the global maximum of L(8) is e-close to the true unknown parameter 6, € RV,
This a(e) is constant for all N > 3 hence its effect on the sample complexity cannot
worsen (i.e., a(e) cannot decrease) with increasing N. But we are still left with
the question of how fast a(e) can decrease with ¢; if, for instance, it is decreasing
as quickly as e~/¢ then the sample complexity n will grow exponentially with the
accuracy parameter €.

Consider a ball B(f,€') with ¢ > 0 such that (using our previous results) we
have ®(8.) = —1c1€® + co€® for all 9, on the surface B(0,€), with 0 < e < €. As ®
is continuous it achieves its maximum value over the region ©\B(,, ') at a point 6§,
(where B(6p,€') is an open ball). Now, let 6, be the farthest point from 6y such that
6, is in the closed ball B(fy,€) with ®(8,) < ®(6;). (6, could be on dB(fy,€)). By
simple arguments it follows that for all §, such that |8 — 0o} < |65 — o], a(€) > |®(6e)]
= 116 + coe®, and it is true for all N > 3. Hence for all sufficiently small € > 0 we
can estimate a(e) = c;€? for all N > 3.

Hence we may proceed using c¢;€? for a(e) in (4.10) and for all sufﬁc.iently small
€ > 0, the bound on the unlabeled sample complexity (4.9) not only guarantees that
there exists a maximum of L(#) e-close to y but is also the global maximum, i.e.

that § is e-close to ;. Therefore we have P({|él — O] > €} U{|é2 — 0p2| > €}) <
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P(|0 — 8] > ¢) < &

We’ve established above that the estimates él and éz are at most e-away from 6o,
and 0y, respectively. Using the analysis of Section 4.1, the classification error (under
optimal labeling) can be written as Perror = Ppuyes(1 + c12€%)). We can replace €2 by

€ here and in (4.9) to get that with

= (1ogL 41 )
n=—3; Nloge—{—log‘S

unlabeled examples, the P, of the optimal labeling of the decision regions is

Pgayes(1 + c12€). It only remains to use labeled examples to guarantee that we pick

this optimal labeling.

4.3.3 Labeling the Partition

We have two unlabeled regions separated by the hyperplane between 6, and 0, where
both are e-close to their respective true parameters. The good labeling has the above
élassiﬁcation error. We use the labeled examples to control the confidence of picking
the good labeling by the majority rule. We have the two regions R;, R, on each side
of the hyperplane. Draw m labeled examples. Assign to each region the label of
the majority of the examples that fell in it. If no examples fell in R; then label it
“1” with probability % and “2” with probability % We now calculate m needed to
guarantee we pick the good labeling. Denote 7, = P(2|z € R;), 12 = P(1l|z € Ry),
and p = [, f(z)dzx. The quantities n; and 7, are the probabilities that a randomly
drawn z is misclassified given it is in R, or R,, respectively. Also, p = P(R;) and
1 —p = P(Ry). Let ppin = min(p,1 = p) and Npes = max(n;,72). Let the event
{a random = is misclassified} = E. There are four possible labelings: Lgooa has Ry
labeled “17 and R, labeled “2”; Ly,q; has Ry labeled “2” and R, labeled “1”; Ly,q2

has R; and R, labeled “1”; Ly,q3 has Ry and Ry labeled “2”. With the same analysis
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as in Section 2 with the replacement of

we obtain the probability of not choosing Lgs0q is

) ) 6 1
P(Lpad1) + P(Lyad2) + P(Lpaas) < 3 ('1—2 + o + —) = 55.

Using the analysis of the error of the decision rule in RN of Section 4.1 we get
that pnin > % — ¢14€ and ez < Pgayes + c15€. Plugging this into the exponential

bound, for suitably small €, we get m = cglog 7 is sufficient to guarantee that we do

not pick Lye.q¢ with low probability, i.e.,

l\D.I Sl

P (Perror > PBa.yes(]- + 6176)

{16~ bl < e} 1 {1 ~ Il < €}) <
Combining this with the fact that
A \ . §
P ({11 — 0oz > €} U {|f2 — ool > €}) <P (10— 60| > ) < 3

completes the proof of the theorem. |
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4.4 General « priori Class Probabilities

Here we extend the results of Section 4.1 to the case of general a priori class proba-
bilities, p and 1 — p. The learner uses algorithm E, with the randomly drawn labeled

examples to construct the decision rule.

Algorithm E,:

The setting: Two pattern classes with underlying Gaussian mixture density

f(z|lro, p}) = p g(z|po1) + (1 — p)g(z|po2)-

The teacher draws labeled examples randomly at least once according to
f(z) by choosing class “1” with probability p class “2” with probability
1 — p and then drawing according to the selected class conditional density

g($|l"0i)a = 1,2
Given: m, examples labeled as “1” and m, examples labeled as “2”, where

my+my=m>0.

Begin: 1) If m; = 0 then label all of R" as “2”. If m, = 0 then label all of RY
as “1”. Go to End.

2) Otherwise, continue with the following steps.

3) Let the mean estimates be

1 &

ﬂiEEZfﬂik (1=1,2)

k=1

th

where z!, denotes the k' component of the example vector ;.

4) Estimate p by

1
m =1

m
PR S

where y; is the label of the i example.
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5) Let the decision border be the hyperplane defined by

A

e s I, . P
h(fc)=(m—ul,ﬂz—m)—§luz—ﬂll2—logl_ﬁ=0-

6) The classifier decides “1” for z if h(z) < 0 and decides “2” otherwise.

L]

End.

The difference here, compared to the case of p = %, is that the Bayes decision

border depends on p, i.e.,

1
h(z) = (z — por, foz — por) — §|,ll02 — po1]* — log T = 0.
In this case
_ 1. 1-p 1, 1-p
Ppayes = (1 — p)® (—QAIOg " A)+p<1><2Alog . A)

where A = Miﬂﬂl and ®() denotes the standard normal probability distribution.
(We will use ¢; to denote finite positive constants as before). So we need to estimate
p by p in order to form an estimate of the Bayes decision border.

We now determine the labeled sample complexity m. W.l.o.g. we assume p <
1 — p. Denote by A the event that the decision rule is as line (1) in the algorithm,

and let A° denote the complement. We have
P...or = P (error|A) P (A) + P (error|A°) P (A).

Now
P(A) = P({m; =0} or {my=0})<2(1 —p)™

and
P(A°) = P({m; > 0} and {m; > 0}) < P({my > 0}) = 1-P(my =0) = 1—-(1-p)™.
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Now conditioned under event A, the probability of error is determined as follows:
given an z labeled as “1” (with probability p) the algorithm misclassifies it only
if m; = 0 which has probability (1 — p)™. Similarly, given an z labeled as “2”
(with probability 1 — p) then the algorithm misclassifies it only if my = 0 which has

probability p™. Using the inequality (1 — p)™ < e™™" we have
P(error|d) = (1 —p)"p+p"(1—p) = p(1—-p)"+p" (1~ p))

p(1—p) (A —p)"+pm7)

< 2p(1 — p)e VP < 2epe™™.

IN

So
P (error|A) P (A) < 4epe™™.

Define the event
E={|p—pl<ei=12and|p—p|<e}.
We bound the term P (error|A°). We have
P (error|A°) = P(error| E)P(E) + P(error| E°)P(E°) < P(error|E) + P(E®).

In the rest of this section we estimate the two terms on the right.

First we determine P (EC) This is bounded above by the probability that |p—p| >
¢ added to the probability that at least one of the mean estimates deviate by more
than e from the corresponding true mean.

For p we use the obvious estimate, i.e., p = # Y7, 1y=«» where y; is the label
of the t* example. For this we have

2.
1

P(lp—5l>ea) <279 =6,

To estimate fig; and fig wWe use the same ideas as in Section 4.1. This means the

requirement is to have m; and m, 2 %V— log % examples from class “1” and the same
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N |

number from class “2”, respectively. The teacher draws labeled examples by using
the mixture, i.e., first choosing class “1” according to the a priori probability p then
drawing according to the selected class distribution.. If p is at most €;-far from p
then we do not need m to be larger than P in order to get m; class-“1” examples.
The former has probability > 1 — §;. Similarly, m suffices to be > T_—(’;ﬁ—el—) in order to
get my class-“2” examples with probability > 1 — 6. Equivalently, with probability

> 1 — 26;, m needs to be at most p—’f—h to get m; examples of class “1” and at most

Tty o get ma examples of class “2”. Clearly it suffices to take
S 2N ) 4N 2N 1 AN

m 2> max g —77 . .2©
et p-a)@ 26 (A-p-ea) 75

to get my class-“1” examples and mg class-“2” examples with probability > 1 — 26;.

Using our assumption of p < 1 — p, the above requirement is to have at least

__2N 4N
mE-ame 25

which guarantees that with probability at least 1 — 26, we get the necessary m; and
mg s.t. with probability at least 1 — &, |po1 — flo1| < € and | oz — ftoz| < € (for the last
part see Section 4.1).

Therefore

P(E°) < (26, +6) + 61 < 36, + 6.

Now we determine P(error|E) i.e., the Pe o of the decision border based on the
above e-close estimates.

As in Section 4.1, fi; and fiz, are e-close to jio; and o respectively. The decision
border is obtained by plugging the estimates into the functional form and solving for
z in

1 ~ 12 A
e~zle—il 1-p

e~ 3lz=ial? P
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which yields a decision border
2 a2 1—9
h(z) = (z, 1 — jl2) +M ——log,‘—f]3 =0.
2 p

As in Section 4.1, conditioned on the high probability event that the estimates f;,
p are e-close to p;, p respectively, we have h(z) is distributed as a one-dimensional
Gaussian. For g(z) = h(z)/|ft1 — ji2] we have
(= f2)Tu™ + %(lﬂzlz — |i?) — log 1‘;?2 1

it — i ’

pi(g) ~ N(

and

(i — fi2)Tut + 3(|fal? = | [?) — log 152 )
|tz — i .

pa(g) ~ N(

where u~, ut are defined in Section 4.1. So we get a one dimensional decision problem
which has the same P,,,,, for the decision rule as the original N-dimensional problem.
Considering the configuration of fi; and i, that yields a good upper bound on Peyor,

we get

< 1 _ R
P.ror < (1 p)@( A 2A log

+Ae+cOe +Clp>

+ p@( A—!——log

€
oA p—Ae+c262-—c3j>.

Breaking the ®() into two parts and additional bounding gives

1-
< 1—p)® A——
Pe'r'ror = (1 ) ( 2A108
€1
+ C4<€+—2>
p

€
- PB(:.yes + ¢4 (6 + _;) .
p

)

1 1
)+p(1)( A+2—A10g

So
P(error|A°) < Ppayes + ¢4 (e + f;) +36,+6
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and hence
Perror < (PBayes + ¢ (6 + 1%) +36; + 5) (1 — (L= p)™) + 4epe™>™.
So for arbitrary 0 < a, 3,7, in order to have an error
Perror < (PBayes + @)B+7

the sufficient sample complexity m is

N . N lgit 1
m = ¢; max { —— log —, g11p’_log_}3 .
a?p a lgiz p 7

For a prespecified P..,,,, m is polynomial in %, but as p — 0 we can let « — oo,

B,y — 0, such that m — 1 and P, — 0. (Note, we used the fact that algorithm
E, draws at least one labeled example). Now, for fixed 0 <p < 1, but increasing N

or decreasing a, m grows like

N N
log —.

a?pt Q@

Cs

This is further discussed in Chapter 6.

4.5 Mixed Sample

In this section we use both labeled and unlabeled examples for learning the decision
rule. As in Section 4.4, the Bayes decision border depends on the two means po1, foz
and on the « priori class “1” probability p. So we need to estimate these by fio1, foz

and p and use

A

[ 2 _|n 2 1—
|fro2|* = |fion| g =P .

h(x) = (=, flor — fio2) + 2
p

as the decision border estimate.
We consider two approaches of utilizing the mixed sample: the first is based on

algorithm AM;, which uses the labeled examples to estimate p by p to an accuracy €
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and confidence > 1 — §;, and the unlabeled examples to estimate pg = [to1, foz) to

an accuracy € and confidence > 1 — § using the MLE procedure.

The second approach estimates the vector 8 = [to1, to2, p] using the MLE proce-
dure with unlabeled examples and uses labeled examples only for labeling the decision

regions. We assume w.l.o.g. that p <1 — p. We start with the first method.

4.5.1 Learning using algorithm M,

Algorithm My:

The setting: Two pattern classes with an underlying Gaussian mixture density

f(z|po, ) = pg(|por) + (1 — p)g(x|o2)

with o € M where M is a compact subset of IR?N. The teacher draws
labeled and unlabeled examples according to f by choosing class “1” with
probability p, class “2” with probability 1 — p, and then drawing according

to the selected class conditional density g(z|go;), ¢ = 1,2.
Given: First, the teacher draws m = m; + m; > 0 labeled examples.

Begin: 1) If m; = 0 then label all of RY as “2”. If m, = 0 then label all of R
as “1”. Go to End.

2) Otherwise request n > 0 unlabeled examples.

3) Estimate p by

1 m
LS
m =

1=

p=
where y; is the label of the i** example.

4) Using the unlabeled sample, estimate the mean vector o = [tto1, po2)
by the point f,

R 1 & .
fi = argsup e = 3 log f(xilu, B)

i=1
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5) Let the decision border be the hyperplane define by
p

1_p=0.

2 —log

.. . 1. .
h(z) = (z — fir, fr2 — 1) — 5]#2 — i

6) The classifier decides “1” for z if h(x) < 0 and decides “2” otherwise.
End.

As in Section 4.4, we estimate p using the labeled sample to have that
P(lp—p|>ea)< 2e~2m = §,.

However now we use the unlabeled sample to estimate the means and get that the
probability of either estimate being > € from the true values is at most 6/2 when

N?log®2 1 1
_—P — —
&5 (N log < +log 5)

n==auq

and we select the bad labeling of the hyperplane partition with probability at most

§/2 when m is at least

The analysis follows as in Section 4.4 to obtain
€
Perror S (PBuyes + ¢4 (6 + ;15) + 51 + 6) (1 - (1 - p)m) + 48p6_2mp.
So for arbitrary 0 < «, 3,7, in order to have an error

Pe.rror S (PBayes + C(),@ + 8

the sufficient sample complexity m is

; 1 ; ; log 1
m = ¢s max { ! log —, ! log —l—, €1y 1 log 2}
(Y ————

a?pt cp+1 o’ logls’ p T
and
N3log? Llog L
n>cr Cp
a)



For a prespecified P..,r, m is polynomial in %, and n is polynomial in log%, For
p — 0, we can let @ — oo, and let both 3,7 — 0, such that m — 1, n — 0 and
P.,.,, = 0 (Note that Pggyes — 0 as p — 0, and we used the fact that the algorithm

requires at least one labeled example.) For a fixed 0 < p < %, m depends on a as

1 1

cg— log —
a? ga

and n depends on a, N, as

N3logl

Cy r

«

Hence n is polynomial in N, and %, while m only depends on « and is polynomial in

QI

This is further discussed in Chapter 6. Now consider the second approach.

4.5.2 Learning with algorithm M,

Algorithm M,:

The setting: Two pattern classes with an underlying Gaussian mixture density

f(z]6) = pg(z|por) + (1 — p)g(z|poz)

where 0y = [po1, ftoz, p) € O, and © is a compact subset of R+ such
that the teacher draws labeled and unlabeled examples according to f by
choosing class “1” with probability p, class “2” with probability 1 — p, and
then drawing according to the selected class conditional density g(z|uo:),
i=1,2.

Given: The teacher draws m = my + my > 0 labeled examples.
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Begin: 1) If my; = 0 then label all of RY as “2”. If m; = 0 then label all of RN
as “1”. Go to End.

2) Otherwise request n > 0 unlabeled examples.

3) Estimate 6, by

. 1.
6 = argsuppee > log f(z:]6).

=1

4) Let the decision border be the hyperplane defined by
p

1__p=0.

A S A 1 o ~
h(z) = (2 = fis fr2 = ) = S |ft2 — in[* — log

5) Label the two decision regions across the hyperplane by the label of

the majority of the examples in each region.
End.

We proceed as in the previous two sections, except now the unlabeled examples
are used to estimate the means and p, while the labeled examples are just used for

picking the labeling. Then with algorithm M it suffices to draw
c1 N2 log? % 1 1
0= =g (Nlog ¢ + g 5)
unlabeled examples to yield estimates p, 6;, 6,, each e-close to its corresponding
unknown parameter. (c; is larger than ¢; in the expression for n in Section 4.5.1.)

The decision rule based on these estimates has

1
Perror S PBu.yes + cy¢€ (1 + _2>
p

when labeled with the optimal labeling which is picked with confidence > 1 —é when

at least
< lo l
cp+1 g 6

m =

labeled examples are drawn.
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We obtain that for

Perror S (PBayes + a)ﬁ + 7

the sufficient sample complexity m is

1 logi 1
! log —, gl;p, -—logp
aptl “a logim p 7

m:c5max{

and the sufficient n is
N3log? >log 2

a7p14

n = cg

for arbitrary 0 < «, 8,7. For a prespecified Pe,ror, m is practically uneffected by p,
and n is a polynomial in %. However, as in the preceding sections, for p — 0 we can
let & — oo, and let both 3,7 — 0, such that m — 1, n — 0, and Perror — 0 (Where
we used the fact that algorithm M, draws at least one labeled example). For fixed
0<p< %, but variable N and «a, m is constant, while

N3log 1
7.

n==~«c
a7

So n is effected by N, growing polynomial in NV, and 1.

This is further discussed in Chapter 6.




Chapter 5

Nonparametric Scenario

In this chapter we study another approach to learning classification of two pattern
classes. The approach is called Kernel estimation—a non parametric approach which
assumes very little knowledge about the form of the distribution. This method can
be used with both a purely labeled or a mixed scenario. When learning with a
purely labeled sample one would estimate each of the nonparametric class conditional
densities and then use the estimates for defining an estimate decision rule using
the Bayesian approach (Chapter 1). This falls under the field of Nonparametric
Discriminant Analysis (cf. Silverman [40]). Theoretical studies of nonparametric
discrimination techniques indicate that they yield asymptotically optimal decision

rules (cf. Silverman [40]).

We are interested in using the kernel technique with the mixed sample scenario.
In the last chapter, we found the unlabeled and labeled sample complexities of learn-
ing a Gaussian mixture. It is interesting to ask what is the complexity of learning
the problem, based on the same underlying mixture, with the nonparametric kernel
estimation. In this scenario the learner does not utilize the information that he had
in Chapter 4, namely that f can be indexed by a finite real vector and that the deci-
sion rule can be determined from the class conditional densities which can be inferred

uniquely from the mixture estimate.
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So investigating the complexity of a nonparametric method for such a family
shows us how much more complexity, in terms of sample sizes, is needed when, for
example, parametric side information is not available. We then show how to ex-
tend this approach to a large nonparametric class of distributions which includes the

Gaussian mixtures.

One way to try to use the Kernel method with unlabeled examples is by limiting
consideration to a family of problems whose underlying mixture f(z) is identifiable
(not necessarily parametric) (cf. Cover & Castelli [5]). The family is chosen so that.
given f(z), it is possible to uniquely determine its components, fi(z), f2(z), and
the a priori probabilities py, p,. The mixed sample can be used by some nonpara-
metric method, say kernel estimation, to estimate f(z) by fn.(z) to within accu-
racy € uniformly over z. Then, there exists an identifiable function f(:c), such that
|/(z) — f(z)| < e. By careful selection of the functions that are elements of this
family, it may be possible to have the latter imply that the two corresponding com-
ponents are close, i.e., |p; fi = pifil < 2¢, 1 =1,2. Then construct the decision rule
based on p;, Po, fl, f2 which has P.,.., close to Pg,yes. The goal would be to try to
match the richness of this family with the power of the estimation technique, e.g.,
the kernel method has only a few restrictions on the types of f that can be estimated
and therefore it can handle a very rich family of functions. This way the large sample
complexities (which we expect for a powerful estimation technique) will be justifiable

for learning the family of functions that we defined above.

One difficulty in this approach is in finding f from f,, especially if the identi-
fiable family of mixtures is nonparametric. This translates into difficulty in finding
the decision rule estimate. While in principle (with an appeal to the continuum hy-
pothesis) it may be possible to order all functions in this family and then search for

any function that is € close to f, (we know that there exist at least one, namely the
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Figure 5.1:

unknown true mixture f), it is not clear that a practical polynomial-time algorithm

can be constructed to find such an f .

Consider for a moment a Gaussian mixture (Figure 5.1). It appears that the
modes (i.e., the two global maxima) of this one-dimensional mixture may determine
the Bayes border. In Lemma 5.5 we show that this is true for the N-dimensional
mixture, while the condition that the means of the class conditional densities are a
certain distance apart. This suggests that there may be another approach using the
kernel technique for constructing a classifier. There may be an algorithm that first
estimates the mixture f by f.(z) (where the subscript n shows the dependence on
the sample) to within e-accuracy, then determines consistent estimates, #;, %z, of the
modes 71, 72, of f using fn(z). This method would be categorized as bseudo—direct
because it skips the estimation of the class conditional densities, however it still uses
density estimation for the mixture. Of course, this approach can be used for a large
generic class of nonparametric problems whose Bayes border is determined by modes.

We pursue this approach here.

To begin with, we will consider an algorithm, called algorithm K, which follows
the above intuition, and learns the classification problem with an underlying Gaussian

mixture. We then present a description of a rich nonparametric family of mixtures
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that contains the Gaussian mixture, in addition to other types of mixtures which

algorithm K can handle. For every mixture f in this family, the Bayes border is a

linear hyperplane and is identified by the modes of f.

In this nonparametric scenario, if we view the problem of finding the best esti-
mate f,(z) for f(z) as a leafning problem in the generalized framework of PAC (cf.
[12]) then we expect that a larger sample is needed to learn f(z) (compared to the
parametric scenario of Chapter 4) since the class of functions of which fn(z), f(z) are
members is significantly richer. Our analysis of kernel estimation uses the principle
of the uniform SLLN differently from the PAC framework, i.e., there is no overall em-
pirical loss which is minimized in order to learn f(z). Nonetheless a quantity called
the VC-dimension (see Chapter 3) which bounds the covering number through the
expression of (3.8), will emerge as a clear indication of the complexity that is involved
in learning f(z) when no parametric knowledge is assumed about its form. In Chap-
ter 4 we saw that the complexity of the problem of learning a Gaussian mixture as
an element of the parametric class of Gaussian mixtures was reflected in the covering
number of a related class (the class G on page 63). So the covering number plays
an important role in realizing the difference in complexities of learning a particular
function f(z) both in the parametric and nonparametric scenarios.

The results Chapter 5 indicate that for the nonparametric scenario a sufficient
unlabeled sample for learning the Gaussian mixture problem is significantly larger
than in the parametric scenario of Chapter 4. The labeled sample size is the same,
hence the value of a labeled example is significantly higher when less side informa-
tion is at hand. This is discussed further in Chapter 6 where we discourse on the
measurement of this value.

The material of this chapter is organized as follows: In Section 5.1 we provide a

review of kernel estimation, which contains the important points that we need in later
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sections. In Section 5.2 we investigate learning the classification problem based on
a Gaussian mixture, using algorithm K. The main result of this section is embodied
in Theorem 5.1 which gives the mixed sample complexity for learning with algorithm
K. Before proving the theorem in Section 5.4 we state several lemmas in Section 5.3.

In Section 5.5 we consider learning using algorithm K (with the same sample
complexities stated in Theorem 5.1) a classification problem which is based on pat-
tern class densities whose mixture f is of a more general type. We describe the
nonparametric family, and then prove the consistency of the mode estimates which
are constructed by algorithm K.

In Section 5.6 we present an alternate nonparametric technique— learning vec-
tor quantization in neural networks, which can use unlabeled examples and labeled
examples in learning a classification rule by exploiting clustering. In Section 5.7 we
analyze a learning-classification approach, called k-means, which is based on mini-
mizing the empirical MSE of the voronoi partition on which the classifier is based.
We find the labeled and unlabeled sample complexities for learning a general decision
problem having well-separated pattern classes.

We now discuss the principle ideas behind the Kernel technique (cf. Silverman

[40], Duda & Hart [1}).

5.1 Kernel Density Estimation: A Review

The naive one-dimensional kernel density estimate is based on the idea of placing a

o-scaled version of the window function

1 d< L
'LU(.’E):{l |'7“|——2

0 otherwise

around the test point x then counting the number of examples z; that fall inside the

window, and normalizing by the total number n of examples and the window width
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Figure 5.2:

o. The value of the estimate f,(z) at z is therefore expressed as

This estimate, however, does not possess some important properties, such as smooth-
ness, that will be discussed later. We hence introduce a more general estimate which
depends on a function K(z) called the kernel, that satisfies

/°° K(z)dz = 1.

—00

That is,

1 &1 T —;
h =2 2ok (557).
The estimate f,(z) is still defined using the same equation as for the window function.
However now it can be viewed as a sum of “humps” centered at the examples z; (see
Figure 5.2). The kernel function K determines the shape of the humps and the
parameter o determines their effective width.
As o goes to 0 the estimate is a sum of delta functions at the examples. Such

an estimate does not interpolate the data at all. At the other extreme, as o tends to
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infinity, all the humps overlap and sum up to a very smooth function that hides all
the high frequency detail of the underlying density.

There are several ways to measure the goodness of the kernel estimator. Viewing
fn(z) as a random variable because of its dependence on the random sample, admits

the mean square error (MSE) as a measure of error, i.e.,

E (fa(z) - f(2))’

with expectation w.r.t. the joint density of the examples z,...,z,. (Here z is
nonrandom and all the randomness resides in the examples.) The MSE can be written

as a sum of two terms:

(Efa(2) = f(2))" + var (fu(z)) = bias® (fu(z)) + var (fa(=))

We could also view f,(z) as a regular function and hence use the sup norm as a

measure of discrepancy,
sup |fu(2) = S(2)

which itself is a random variable (as f, is random). So one may define the error

measure as
P (sx;p |fu(2) — f(2)] > e) .
The event

Lsup |ful@) = 1@ > ¢}

implies that

{sup (@) = 7@)| > 5} or {sup|F(e) - £(@)] > 5}

where

f(z) = Efy(2).



The first term is analogous to the variance and corresponds to a random event. The
second term is the magnitude of the bias of f,(z) and is a deterministic event. For a

good estimate we demand that the probability of the event

sup |fa() = f(2)] > ¢

be less than § where § > 0 is chosen suitably small. This amounts to demanding that

the bias term

f(@) - f@)| < 5

sup
T

with probability 1 (i.e., it is a deterministic event) and that

P (sup |ful(e) - F(@)] > §) <8

We will refer to these two components as the random and the bias parts of the
error. This error measurement will be used in this chapter because it fits nicely in
the framework of uniform SLLN convergence which was introduced in Chapter 3.

We now review some well known properties of these two components of the
error. We limit the discussion to the univariate case. Consider the bias part. Since

the examples are identically and independently distributed, we have

fo) = Bfa(@) = = [ K (L=2) .

Using the fact that by choice K(z) integrates to 1, we have

f) - 5@) = = [ SK (L5 dy - [ 1(e)K(2)d=

lea

= /f(:c + 02)K(2)dz — /f(:v)K(z) dz
- /K(z) (f(z +02) — f(x)) d.

Now, expand in Taylor series around the point ¢ = 0 to obtain
1
flz +0z2) = f(z)+ oz f'(z) + 30222]‘”(@ + .-,
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whence

f@) = fl@) = of'(z) [ +K(2) dz + S f"(a) [ K@) dat

If we let o decrease to 0 with increasing n then the bias goes to zero. The rate
of decrease can be made faster by choosing K(z) such that its first 7 moments are
identically 0, i.e.,

/I\'(m):cid:c=0, 1< <.

Such a choice of kernel guarantees that the first r terms of the bias are 0 so that the
expression for the bias becomes

r4+1
TS [ K40, oo

However, if K(z) is to have zero moments of order > 2 then it must take negative
as well as positive values. The estimate f,(x) may itself be negative at some points.
This is not acceptable if the estimate is to be a density. In our case we will use f,(z)
to estimate only the modes of f(x) allowing f,.(z) to be negative at places at need.

Now let us consider the random part of the error, namely

P <81;p fulz) = F(2)] > g) :

By the definition of f,(x) this can be written as

P{ sup > €0
Ko 2€Kq

“where K, is a class of functions indexed by the scalar z, i.e.,

1 n
- Z K, .(z;) —EK, +(z1)

n =1

K, = {['\'a,m(y) =K <ﬂc — 2/) tx € IR.}.
o
Theorem 3.10 bounds this probability by a quantity of the form

1 1 VC(Ke)
<-—— log —) e = §
(el €T
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where we ignored some of the constants which are irrelevant to our discussion here
and we used the fact that 62 in the theorem is proportional to o if the underlying dis-
tribution can be uniformly bounded and K is square integrable. Thus the confidence

of getting an € accurate estimate f,(z) is at least 1 — 4.

The above discussion identifies two critical variables that influence whether this
bound is small, and how fast it decreases with n. First, the choice of o. The bound-
on the probability of the random error term is reduced as o increases. That means
we can make the accuracy parameter e smaller while keeping the confidence é the
same, i.e., the random error term is reduced as o increases. The intuition behind it is
that as the “window size” o gets larger, the variance of the estimate f,(z) decreases.
However, as we noted before, the bias increases as o increases. This conflict of interest

demonstrates one of the fundamental problems of density estimation.

The second conflict of interest appears when trying to shape the kernel K(z) so
as to have a bias that depends on high order terms of o (as noted above). As we
saw, the bias can be made to decrease faster if we choose K(z) which is orthogonal
to z', 1 < i < r. However, as will be shown in the proof of Theorem 5.1, one class
K, of such kernels, exhibits a VC-dimension which increases as r increases. -As a
result, the bound on the random part of the error increases, unless we increase the
error deviation € of the estimator in order to keep the same confidence 1 — 4. This
is obviously not desirable. So as we try to exhibit a shape for the kernel that has
the first 7 moments identically zero in order to reduce the bias at a faster rate w.r.t
n, there is an adverse effect, coming from the random part of the error through the
increase in VC(K,). The intuition behind this is that a kernel function having more
zero moments is likely to have more relative maxima and heavier negative parts over
its fixed support in which case sup, ,.1,_y <o |K(2) — K(y)| = M increases. It can

be shown by an argument as in Lemma 5.6 that the covering number of the class
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of functions increases as M increases. A higher covering number implies a higher
VC-dimension (by Theorem 3.8) which agrees with the above.

With some algebra it can be shown that the fastest possible decrease of o w.r.t.
n, while keeping a tight bound on the random component of the error, is such that
Toaa7n —* 00 asm — 00 (cf. Silverman, B.W. [41], Stute, W. [48]). In fact, this
yields a bound that decreases fast enough to achieve uniform a.e. convergence of

sup, |fa(z) — f(z)| to 0. In choosing the kernel one minimizes the bound on the

random part w.r.t. r.

5.2 (Gaussian Mixture

In this section we consider the mixed sample complexities for learning the classification
decision rule for a problem whose pattern classes are distributed as N-dimensional
Gaussians with unit covariances where the learner, in the absence of specific para-
metric side-information about the class, opts for a kernel estimation approach.

The modes of the Gaussian mixture determine the Bayes decision whenever the
mixture has two modes, which holds if the means satisfy |6y; — 0p2| > 2. This together
with the fact that the Bayes decision border is the hyperplane equidistant from the
modes and perpendicular to the line 7, — 7, is shown in Lemma 5.5. (Note, the
modes of the mixture do not equal the means of the class conditional).

Algorithm K (shown below) is used to construct the decision border by first using
the unlabeled sample to estimate the mixture f(z) by the kernel estimate f,(z). Then
two modes 7);, 7j2 of f,(«) are obtained such that they are consistent estimates of the
two modes of the mixture f. The intuition here is that for sufficiently small accuracy
€ > 0 the main humps of f, capture the modes 7, 7, of f. Hence the value #; at
which f, is maximized over the :** hump is a consistent estimate of the ;.

Using the same analysis as for the MLE in Chapter 4, the decision regions sepa-
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rated by the hyperplane between the mode estimates yield close-to-Bayes misclassifi-
cation error when labeled with the good labeling (as in the MLE we also have L4,
Ly,q and use the same number, m, of labeled examples to choose L, with some
confidence).

Wé first state the algorithm, then we state the theorem, followed by the proof.
(Algorithm K can be used to learn the Gaussian-mixture based problem as well as
the larger class of mixtures of general form which is discussed in Section 5.5. In order
not to break the flow, we only state the algorithrri here while its discussion is delayed
to Section 5.5. For the Gaussian mixture problem we will show the construction of
the mode estimates in the proof of Theorem 4.2 hence for the moment it suffices to
focus only on the main part of the algorithm without procedure P which describes

the construction of the mode estimates for the more general case.)
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Algorithm K:
The setting: f(z) has global modes, n;, 1 <4 < k, where k > 2.

Given: _ n unlabeled examples, m labeled examples drawn randomly according to
the unknown f(z).

Begin: 1) Use kernel estimation to obtain f,(z).
2) Use procedure P to determine the mode estimates, 7;, 1 < < k.

3) Use the mode estimates to construct a decision border as the hyper-
plane which passes through the point 7,

k
== i
i=1

and which is perpendicular to the straight line which is the closest
(in the mean-squared-error sense) to 7;, 1 < ¢ < k. (Note, in the
Gaussian mixture case k = 2 hence this step produces the hyperplane
which is perpendicular to the line through 7; and 7.)

x| =

4) Label the two decision regions across the hyperplane by the label of

the majority of the examples in each region.
End.
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Procedure P: Definitions:
®

D = {z: fl(@;tun,e) =0,x #n;, f(n) = M, f(n;) = M,1 < 4,5 < k}
L sup f(z)
reD

where f'(z;u,, ,) is the directional derivative of f at z in the direction
of the unit vector u,, , whose direction is the same as the ray starting
at 1; going through z.

e Choose € < Mg'i.
° i = argsupxeanfn(:c).
4 Bc = {1: : fn(r) > fn(ﬁl) _46}'

Aie = {y:ly -l <inf inf |2 =], fa(2) < fa(i) — 6e} U {ii}.

for 1 < i <k, where rj, , is a ray from #); going through z.

o 1 =2,

Do While: Y #0
1) 4 = axgsupsey falo).
2) Y=Y - A.
3) i=i+1.

End Do.

End Procedure.

We now state the theorem, followed by its preview and proof.
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Theorem 5.1 Suppose we are given two classes which are distributed according to
Gaussian probability densities fi(z), fo(z), with means by, and 0oy respectively, and
with unit covariance matrices. Suppose further that 0 < Pp,yes < 0.16 (or, equiva-
lently |61 —0oz| > 2). Then there exists a positive constant b (determined by |0p; —0o,|)

such that for 0 < € < b and arbitrary 6 > 0, given

13N log(5+log N) 1
n=a—/—~x~_ log <
€2log N 66

unlabeled examples and

m = ¢, log 3

labeled examples, algorithm K determines a decision rule with a classification error

Perror("nvn) S PBayes(l + C3€)

with confidence at least 1 — §, where ¢; > 0 an absolute constant, c; > 0 is a constant

depending on Pguyes, and c3 > 0 depends on 0.

REMARK: The restriction on Pgyyes is a consequence of the constraint on the two
means of the class conditional densities to be sufficiently distant in order for the mix-

ture to have two modes and thereby identify the Bayes border.

We now provide a preview of the proof.

5.2.1 Preview of the proof of Theorem 5.1

As mentioned at the start of Chapter 5, our nonparametric approach here is kernel
estimation which utilizes the unlabeled sample to estimate the mixture f(z) by the

estimate

fulz) = Ql-}ija-N K (‘—_ﬁ> (5.1)

n i=1 o
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where we use here the notation (, ..., (s, to represent the randomly drawn unlabeled
sample of size n. We denote by x, a vector in IRN, and z;, 1 <7 < N denotes its
components. We will use the particular kernel function defined by the polynomial
over the interval [—1,1] as

Yico ey e <1,

otherwise,

where zi denotes the variable z; raised to the :** power with r an even integer and
with coefficients a; selected so that K;(z;) is orthogonal to m‘l for1<:<r-—1and
such that [ K(z;)dz, = 1. (The subscript in K; denotes it is a one dimensional

kernel.) The N-dimensional kernel used in (5.1) is defined as the product

K(y) = Ki(y1)Ki(y2) - - Ki(yn), y=[Y1,-- -, Yn)-

As mentioned before, having r — 1 zero moments helps in the reduction of the bias.

The estimation discrepancy will be defined as the worst case (over all ) deviation
of fu(z) from f(z) divided by the absolute value of f(z). This allows us to compare
the performance as a function of dimensionality N, i.e., fix an e-accuracy between
P.rror and Ppyyes to hold for all dimensions, and compare the sample complexities for
different N with this fixed error criterion. As before, the total error is split into the

bias and the random components

supy [ fa(@) = f@)] . sup, |f(®) = f(@)] | supe [falz) = f(=)|

Because we are interested in estimating the unknown distribution f(z) uniformly
for all x € RN by the estimate f,(a), the aim will be to transform the random
component of the error partly into a uniform SLLN convergence over a class K, of
bounded functions using the same truncation ideas as before. Each function in K, is

indexed by a point @ € D C R, where D is a suitably chosen compact set, and hence
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uniformly approximating this class of functions gives the uniform approximation of
f(z) over D. The uniform SLLN cannot be applied over D¢ as it is a non compact
region. However, we can choose D so that the magnitude of f(z), fu.(z), and hence
their difference, is sufficiently small, to obtain a good estimate, f,(z), uniformly for
z € RV,

We first proceed to determine a bound on the bias component. We show that
there exists a coefficient vector @ which satisfies the above orthogonality conditions
on the kernel K;. Lemma 5.3 is used to bound the magnitude |K;(z,)| from above.
This bound is needed for both the bias and the random parts.

The bias is then expanded in a Taylor series with remainder around o = 0 which
yields a polynomial in ¢ whose coefficients depend on the first » + 1 derivatives of
the unknown mixture f(z), which is a Gaussian mixture in this case, and also on the
first 7 moments of the one dimensional kernel. Using the orthogonality of K; we are
left with one term which depends on a bound of f(”)(z) and on the r*» moment of
K. The former is bounded using the theory of Hermite polynomials, see Lemma 5.4,
and the latter is bounded using the results of Lemma 5.3.

The random part of the error is bounded using the uniform SLLN (Theorem
3.10). Adapting an approach from Pollard [21], we view the estimate f,(z) as the
empirical mean of a class of N-dimensional functions K, ,(y) = K (y—;—x-) € K,, each
indexed by a “parameter” @ € D C RY. The uniformity that is sought for the
estimate f,(z) over all # € RY is achieved by invoking the uniform SLLN theorem
over the class K,. The reason that Theorem 3.10 and not Theorem 3.9 was used here
is due to the 1/o™ factor which is a part of f,(x) and is allowed to increase as the
sample size n is increased.

We cannot let K, .(y) be defined simply as ;}NK (%) because this would make

‘the magnitude of functions K, , in the class, K,, depend on n; in particular, the
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magnitude of K, , would increase with n.

The bounds on the random part of the error involve the quantity VC(K,). This is
evaluated easily by Theorem 3.6 together with Definitions 3.4, 3.5. We have chosen the
one dimensional Kernel to be an (r —1)*" degree polynomial, i.e., a linear combination
of basis functions, specifically in order to be able to apply Theorem 3.6 and yield a
bound for VC(K,).

Finally, we combine the bounds on the two error parts and deduce the finite
unlabeled sample complexity.

With that accomplished, we then describe the learning procedure (which is based
on algorithm K that is described in details in Section 5.5) and show how the modes of
fa(z) yield consistent estimates of the modes of f(z). Using the same analysis as in
the parametric cases of Chapter 4 we use the small labeled sample with the majdrity
rule to confidently pick the good labeling of the partition.

We first collect auxiliary lemmas needed in the proof of the theorem to avoid

breaking up the flow subsequently.

5.3 Auxiliary Lemmas

The following lemma can be found in Szego & Polya [25, page 89].

Lemma 5.2 For any arbitrary polynomial P(z) = Yi_, a;x' with real coefficients a;

such that f1,(P(z))?dz =1 then for =1 <z <1 we have |P(z)| < -T—\/Lz—l

Proor: P(z)is a an arbitrary polynomial of degree r hence can be expanded using

the Legendre basis as

. 2k +1

Then by the condition on P(a) we have

1
/ P2(:1:) dax = (t% + (/,f 4.0+ (1.2 = 1.
J-1

110




From Holder’s Inequality we have

Sabi <Y labil < [, 300

hence (; a;5;)% < ;a2 5, b2. Regarding /21 P(z) as a sequence in k we have
i i i g g 2

2
4 2k k
P) = (Y E 2 hw@) <@ T2 R < o 2
‘ k 2 k k 2 k 2
because |Pi(x)| < 1 for |z] < 1 (the reason for that is provided below). Finally,
1 T r 1 1 2
SN 2%4+1=)k+z(r+1)= (T"; )
2 k=0 k=0 2 “

which proves the theorem.
Now we show that for the Legendre polynomial P,(x) we have |P,(z)| < 1 over
|z] < 1. We first prove that P,(z) satisfies a recursion equation, then from this we

find the generating function for the sequence P,(z), in n. Denote the coefficient of

z™ of P,(z) as ky.
P, (z) — kkn

n-—-1

:BPn_](iL')

is an (n — 1)-polynomial hence can be expanded as linear combination of Legendre

basis,

kn n—1
k aP,_1(z) = Y e Pi(a).
n—1 k=0

Multiply both sides by (P;(x),:) where (-,+) = J1()() dz. Note that
. (@Pp-1, P;) = (@ Piy, Po_y)

and aP;(z) is an (i + 1)-polynomial therefore if ¢ + 1 < n — 1 then (zP;, P._1) = 0.
Also, (P,, P, =0if i <n —2. So the LHS is zero for 7 < n — 2. The RHS is

co(Po, P) + ... cne3(Pu3, P) + cn2(Pa=2, ;) + cnoa(Pr1, By).
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If 2 = 0 then the RHS is co(Po, Py) hence ¢y = 0. Similarly withz=1,...,n —3. So

co=c =cp_3=0. So

kn
Pn(x) = (k _11. + cn—l)Pn—l(z) + c'n—ZPn—Z(x)-

Now we show that

We have
1

/1 P,(—z)Py(—a)dx = / P.(2)Pp(z) dz = bpm.

-1 -1

So the polynomials { P,(—z)} form an orthogonal basis and hence we can expand

P.(z) = :L:akpk(—w)

since P,(z) is an n-polynomial. Now, (Pn(af),Pi(—x)) = 0 when ¢ < n so a; = 0 for
i < n. So P,(z) = a,P,(—z). Equate coeflicients of " and find that o, = (—1)".
Hence P,(z) = (=1)"P,(—xz).

With this we can find the value for ¢,_;. Clearly, (—1)"P,(—z) satisfies the

recurrence equation hence

(=1)"Po(—z) = (kiilfc + cn—l)(_l)n_lpn—l(_x) + Cn—2('—1)n—2pn—2(_x)'

Subtract it from the original recursion and we get ¢,_; = 0. Now to find ¢,_, we

use the fact that P,(1) = 1 which can be seen from the general formula (cf. Szego &

P =(5) % (5 ) )

k=0

Polya [25])

(where we use the notation 0° = 1). We have,

k.,

Pall) = == 1+ Paca(1) + eacaPaal1)

n—1
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which implies ¢, = 1 — k—:“ﬁ Finally, it is easy to show that k, = -1—1-—2,,2(:!;2 SO
—“—k:_l =21 and ¢,y = -l

Hence we proved the recurrence

P(z) = =1 p - n—1

n

Pn_g(.’II).
Now from the recurrence we can get the generating function of P,(z),

f(w) =" Po(z)w".

n>0
We have |
TLPn = (27’L - 1)$Pn_.1 - (n - 1)Pn_.2.

We multiply both sides by 3.5 ™! and after some manipulation get
f’(w)(l — 2zw 4+ w?) = (z — w) f(w).

This yields
1

flw) = V1= 2zw + w?

Let £ = cos . Plug into the g.f. and get

1 1 1
\/1 — 2 cos(8)w + w? CVI-efwyl—ePw

Using the identity
1 %\ .
=5t
the right hand side becomes 3 ;5 ( 2]5 ) 4Rtk T s ( J ) 43y, Taking

the coefficient of w™ on both sides we have

. Mo

Pn(COS 0) — Z (2};) (2:) 4—nei0(k—j)
I+k=n

= (8) (**) 4™"2cos(nf)+ (3) (*rz) 47"2cos((n —1)8)

+ cet + (1772) (n72) 4_""/.
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All the terms multiplying the cosines are positive and cos(-) < 1 so therefore | P,(cos 0)] <

P,(1) = 1 where the last equality we already established above. This proves that
|Pa(z)] <1. 1

Lemma 5.8 Suppose the polynomial

r—1

Ki(z1) = Y @it ey <1

1=0

satisfies

1 :
/ Ky(zy)x] dzy = 6jo

for 0 < j <r—1, where §jo is the Kronecker delta. Then for an even integerr,

T2

_2_ (2—r (r;2) )2 .

Ay =

In particular, as r — oo through the even integers,

ag ~ —.
Proor: By Cramér’s rule we have
1 1 1 L
3 ? 5 . -1 01 1
0 5 r—1 0 r+1 O
or=1 cee e e
1 1
01 r+1 0 0 1 2r-3 0
— 31 0 0 2r—3 0 2r—1
1 2 1 s ot 1
0 3 0 3 — 0
9r e . e
A 1 1
r—1 01 r+1 0 0 2r—3 0 1
0 1 0 o 0 2r—1
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We will now reduce the determinant of the denominator as follows: number the rows

and columns from 0 to r — 1 (with r even). Consider the matrix

1 1 1
)
1 8 1 5 1 6—-1 " 6+1
3 5 r—1 r+1
T

T+1 2r—1

Note that row 2j can be written as

1 1 1
[2j+102j+3 "'02j+r+1ol

while row 25 + 1 can be written as

1 1 1
0 0 0|
[ 274+3 2545 2j+r+1]
Now multiply all even numbered rows 2j for j =1,2,3,...,(r —2)/2 by —1, whence

the determinant becomes

1 1
S A SRR =
0 5 0 3 — 0 5
=L 0 =l ... = 9 =L 0
(_1)(r~2)/2 3 5 T—1 T+1
-1 -1 —~1
1 01 1 0 - 0 73 0 )
0 20 N () =
Now add the top row to all the rows that start with a non-zero element yielding
1 0 -;— 0 % e Til 0
1
R - L
2 0 2 —2__ 0 —2___
(_1)(7‘—2)/2 31 5.3 (r=1)(r-3) (r+1)(r—1)
r—2 =2 r—2
(r—1)1 01 (r+1)3 o - 0 (2r=3)(r—1) 0 .
0 A cee e e 0 L
First factor out the numerators of alternating rows and get
1 1 1
1 0 3 0 s =
0 s 0 5 —1 0
i 9 L .1 1
(_1)(r—2)/2(,’,_2)(7~__4) o (4)(2) 31 5.3 {(r—1)(r—3) (r+1)(r—1)
1 1
(r—1)1 01 (r+1)3 0 0 (2r-3)(r-1)
0 o 0

el




Then factor the denominators of alternating columns to get

1 0 1 0 1 1 0
o 10 4o ko
(_1)(1_2)/2(7"—2)(7“—4)...(4)(2) 3 0 5 r=1) 0 40 0

(r=1(r-3)--3)

1 1 1
=50 0 « 0 &5 0

1 .. Y . . 1
0 r+1 0 0 2r—-1

Now repeat the operation on the columns: start with columns whose top element is

1 (excluding the first column), and multiply them by (—1). The determinant now

becomes

1 0 -1 0 -1 -1 0
6 3 0 3 50 o
(_1)7—2 (T‘ _ 2)(T - 4) s (4)(2) % 0 :51 Tt (r—-ll) 0 ('r-;-ll) . 0
(r—l)(r—3)---(3) 1 .._.1 .. . .._.1
(r-1) 0 (r+1) 0 e 0 (2r—3) 0
0 7% 0 e 0 2T1_1

Since r is even, then (—1)""2 = 1. Now add the first column to all the columns that

start with a —1 to get

1 0 0 0 0 0 0
0 % 0 % T ril 0 r-}-l
(r=2)(r=4)...49@2)| 3 0 5 =5 0 e 0 ,
r—1)(r—3)---(3) SRR e N K
0 e 0 - 0 moem O
20 cee s o 0 L
factor out the numerators from the alternating columns to get
1 0 0 0 0 0 0
-
2 ? 2 01 P 1 = 1 w1
(r=2)(r=4)..40@)°|s 0 33 s 0 T 0
r—)(r-3)-3) - SRR SR
| e O mmem 0 0w O
0 20 cee e e 0 L
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And finally factor the denominators from the alternating rows to get

1 0 0 0 0 0 0
o & o f - Lo e
r-2)(r—4)...@)\* |1 0 3 e 0 o O

1 1

0 r-}-l 0 oo 0 1

The determinant in the above expression equals the determinant on the numerator

of (5.2). So the denominator of (5.2) is

% ? % 1 1'}-1 01 r-}-l
((r—2)<r—4)~--(4)(2))"’ T T I
(’I“— 1)(7' '—3)(3) 0 7‘_-1*__1 0 0 27‘1_3 0
Ilﬁ 0 - 0 21'1—3 0 2r—1

2
and so ag = % ((JT%)%@—;%) . Simple manipulations results in the alternative form

w=" (27 ()"

A simple application of Stirling’s formula to the central term of the binomial gives

277 (r;?) ~ “\7—\/71_?_;

as r — oo. This completes the proof.

Lemma 5.4 Let f(x) be a Gaussian N-dimensional density, then

sup | £ , (1)] < C@2r) N irier

RS SEES DRI

where iy,%9,...,1 € {1,2,..., N}, and C is some positive constant.

Proor: We need to bound

e 31l [(2m) N2

g 9n on
92t 922 0z
Ty Ty .’LN
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where 0 < t; < r, and N, #; = r, and use the convention that d°/dz°f(z) = f(z).
Without loss of generality suppose the derivatives are taken w.r.t. zy,...,7, i.e.,

o gh ot

L2 N/2
ozl 9z m(?:vfle )

where 1 < t; <r, ¥\, t; = r. Clearly 1 <1 < r. We will suppress the (2r) factor for

brevity. This can be written as

9" - 9" —;:v% o -;312 e_%zlz+1 |e_'2"r?\’
— D _e
aa:i‘ Jz; 927 ¢ Oz}
ot _ o _lx2 ot 1,2
atl atz 22”'5&._;1621
We first bound any one of the one dimensional factors, i.e., denoted by
a 1o
Oz )
From the theory of Hermite polynomial we have
2 o™ _,2
T Hy(zx) = (-1)" B
e Ho(e) = (~1)" 5
So
Y VP BN |
(-1 prek =(—2') €2 Hn(ﬁm)
and therefore _
o 1,2 1, _1,2 1
%‘;6 2 = (%) € 2 Hn(ﬁx) .
We now bound the right side. Using the identity (cf. [26, page 102]),
S k n! 2k
H,(x)= —1)F (22"
(=) ,;( T TATICY
the above becomes
871' 1.2 n/2 n 2k ——:E
Tt = Z( 1) A' )'(\/_'c
714/2 '
_ —1)k n: 9=k pn—2k .~ 32
k;( S Hm—e & ¢
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where we used n/2 instead of |n/2] for simplicity. This is further bounded by

n/2

n! 1.2
2—k n—2k -5
kE;; Kl(n — 2K)! [
Now
n! - - nnk .
kl(n — 2k)! - (n — 2k)!

Also, simple differentiation shows

af2
a
2% < (-—) , a=1,23,...

e
Thus
—2k
o 2 n/2 nnk n—2k\ 2 poi (/2 /N3
e C
8:1:"6 < :L:B (n —2k)! e i=w§,_._,0 i 2! e
_ (n)nﬂ 5 1<2m‘>"/2
2 i=n,n—2,...,0 Z' €

By Stirling’s formula,
il > V2rit 2t WY > /om (-)
e

So
o _1.2

e 2%

ozm

n\ "2 Ine\ /2
<a(3)” £ ()

~ i=n,n—2,...,0 t

i/2
where ¢, = 1/1/27, and using the convention that (1/0)° = 1. The function (%?3)'/
increases monotonically in the range 0 < y < n since its derivative is positive there.

Thus the sum is bounded by %(26)"/2 and we have

e 2"

dx™

o™ _i n\"?%n
‘ <a (7) >(2e)"? = en/PHien?

& &

where ¢, is an absolute positive constant. Finally, we have

o o o

_.1.|;p|'-’
th gtz oA b "
a.’tll aﬂlz ().’Cl

2

l
S 03t§1/2+1et1/2t2t2/2+16t2/2 . tltl/2+letl/2 S 3 H tﬂ'r/26T/2. |

1=1
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Now, recall that 1 < t; < r, and 25=1 t; = r. We can use the following bound (cf.

Marcus & Minc [42, page 106])

fle<(i%) ()

i=1 =1

) <) -

Simple differentiation gives

hence

r/2er(l/2+1/e) 7,.1'/267'

C3Tr
= (2m)NT? < e (2m) 72

IR R (R
(%tl a,l:tz (r),vtle zlel /(271-)]\’/2 =
w1l Y2 1

Lemma 5.5 The N-dimensional Gaussian mizture with unit covariance matrices and
equal a priori class probabilities has two modes whenever the means, 01, 03 of the class
conditional densities satisfy |0, —0,] > 2. In this case, the modes determine the Bayes

border (hyperplane).

Proor: The modes of the mixture are denoted by 7y, n7,. We have

1

1
f(m) = We—%lf—elp + —%lx—GZP

22m)

First, translate the frame so that the point whose coordinate vector is 8; is at the
origin. Then transform to a new primed-coordinate system, ¢’ = Qz s.t. the coordi-
nates of the means, 8] and 6, are on the z}-axis. (We will still denote the point by
6, although it is the origin). This is simply a rotation hence @ is unitary and the

Jacobian equals 1 yielding

]. 1 T Tpt12 ]. LT Tyt |2
N - —3leTa QT - _emzletd Qe
f@) = Q(QW)NMG Tt 2(27T)N/2e ’ ?
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.l _%I:LJ_GIP 1 ___;_kv/_%lz

2(@m) L
= .2—(—2%F/-2_ (e—%(‘ri—ail)z + e—%(xi —651)2) e_%xéze—%z{iz - e_%zi\lz
Clearly the 2’ which maximizes f(z') has z}, = ... = &}y = 0. So the modes must be
y 2 N

on the z-axis and hence on the line through the means. We differentiate f (z') w.r.t.

z and equate to zero getting

-3} -01, ) ’ /
e~ 2\%17 " _921—:1;1

- =
e"i(“’i‘%ﬂz .’1:'1 - 9{1
The left side is positive hence the solutions for zj must be between 8, and 6.

Additional manipulation yields

' ! ! !
' 1 21 — 1 02, + 01,
Ty = i lOg ] / +
- — 2
11 21 Ty 11

. . 9’ +gl 0! _0/ .
! 2 —_ 21 11
and substituting y = zj — =5+, a = 25 gives

y+a
a—y

1
y = 5 log (5.3)

(Note, @ = |6; — 62]/2). The right side is an odd function around zero. At y = —a
and y = a it equals‘ —o0o and oo respectively. Taking its derivative w.r.t. y yields
'Ez_l_yﬁ' which never equals zero hence it has no critical points. There are two cases for
the derivative at y = 0: (1) < 1 which ha.pinens when a? > 1, (2) > 1, occurring for
a? < 1. Case (1) implies that the right side of (5.3) intersects the line (the function
on the left side is a line y) only at the two points y, and y, (besides 0) which are
equidistant from 0. This implies f(') has three critical points: at 2] = ﬁ_%o’u (cor-
responding to y = 0), and at two points which are equidistant from 2-1‘1’;—954‘-. The first
is a relative minimum and the other two are the modes hence the mixture has two
modes. So in case (1) we showed that the modes are equidistant from the average of

the means (which is where the Bayes hyperplane passes) hence the hyperplane passes
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through the average of the mode, and the line through the modes is perpendicular to
the Bayes hyperplane. Therefore the modes determine the Bayes hyperplane under
the condition that |0, — 65| > 2. In case (2), there is only one extrema, and it is a
maximum at ] = ﬂi;;-%l; the mixture has only one mode. The Bayes hyperplane
goes through this point, however it is not possible to determine which of the infinitely

many possible hyperplanes is the Bayes border since the line perpendicular to the

Bayes hyperplane cannot be determined.

Lemma 5.6 The class K, of kernels can be finitely covered.

(We prove this lemma since finite coverability is a necessary condition for Theo-
rem 5.1, in which it is stated as a permissibility condition. )

ProoFr: In denoting the class K, = {K,.(y) : ¢ € D} and N-dimensional ker-

nel K, ., we will omit the o since it is the same for all functions in K,, and D is
compact subset of R". In the following, all vectors, such as z,y are in RN. We
first show that for a fixed & (a center of a sphere in the covering of D), and fixed ¢,
sup, E|Kz(y) — K¢ (y)| < ce, where z, € RY iss.t. | -2 <e¢ andc>0is a
constant. We assume that the distribution of y is absolutely continuous and denote
the pdf by f(y); we also need that f(y) has a probability-1 support containing the
region {z : |z —y| < 1,y € D}. In what follows we denote the one dimensional kernel

by Ki(y: — @) = poly(y; — @i)ljy—eij<1, 1 <2 < N. We start with:

sup E |K3(y) — K..(v)]
Te
= sup / [poly(y1 = 2a) Ly, —eat<1Poly(v2 — T2 -zal<t -+~ LY (YN = Tew) Ly —zonl1

— poly(yy — 1)Ly, -z, <10y (y2 — T2)ljyp=sa)<1 * - Poly(yn — 9~CN)1|yN-iN|51|f(y) dy



In the above, let A;(y,z., &) denote the quantity inside the absolute value. We need

to define the following:

L;,xe,i' = {7/1 : | xczl >1 |yz - mzl < 1}
Ly, s = {vitlyi—2al <10y — %] <1}
LIiB,:c“:i' = {7/1 : | ;— Tl <1, lyi — -'i'i| > 1}

where subscript ¢ denotes i*" component of a vector. Continuing we have

sup [ |Ai(y,zc, )| f(y) dy
Te
= sup |A1(?/,$ca57)l1{y1€L1

:'r

sup [ 14y, D Luers ., () (5.4)

) dy +sup [ (.20 D) Lnery,,, S (4)

The first term equals

N
poly(y; — "::51)1|q1_,4.d|<11{1,161;,1 wez) I1 poly(y; — e))ljy;-oes1<1
i=2

sup
Te

N
— poly(yr — &)l -z lmert . ) H poly(y; — &;)1jy,~z,1<1|f(¥) dy

= sup /lpol?/ Yy — &y 1{u1€L1 o) H poly(y; 1Iy]—rjl<1|f(y

}1|1/1‘5IIS1 = 1{1/161’{,15,5:}' The above is

since gy ert  3lpp-zals1 = 0 and lg, ep

1,2¢,% 1,z¢,%

< CN'sup f(y2,-- - uw) /Ll fnlyz, ... yn)dy

= Te |y2—5‘.2|S1 ..... |yN—51N|§1 1,5e,%

where ' bounds the one-dimensional kernel over its support. Now the only factor

depending on @ is L}, ; whichis C LY. where
1 1 ) -
L:It.c = Ll,:ne,:'c . I"Eﬁl — T =€
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(recall that |z — z.| < € hence |z — ;| < €). That is, L}M is the one interval that

corresponds to L1 with the specific z, that is € away from ;. Hence the above is

1,z,%

< N 1/ : - f(y1|y27~-,yN)dylf(?/Zv---vyN)dyz---dyN
|y2—1'2|51,...,|yN-—mN]§1 LL'C
S CN_IMlé
where we assume f(vilyz,--.,yn) < M over the support of the integral, for some

positive constant M;. Note, because of the initial assumption on the probability-1
support of f(y) it follows that L} . cannot contain all the probability mass and hence
the above follows.

We can similarly bound the third term of (5.4) by CN~!Mge, for some positive

constant M3, using the fact that 1¢, 11 . ,}1|y1 s1<1 = 0 and 1{uleL3 . m}1|,,,_,:d|<1

Liyoers . .y We use the fact that 1{1/1EL }1Im—x1|<1 = lgerr . ) and 1{y1€L }1ly1—za|$1

3,%e, T 2,1¢, 2,7, % 2,2¢,2

= 1{341‘513%,@,.5} to get the second term of (5.4)
sup / |poly (v wel)l{ylezu 2 Hpoh — e ) jy;—zel<1

= poly(yr — &1)lyyer, ) H poly(y; — 51j)11y,~-5,-|g1|f (y) dy
i=2

Denote the quantity in the absolute value as A,(y,z.,Z). We break it as

sup [ |4a(y, 2o, 2)| Lsers, 3/ (v) dy

+ /|A2 Y, Te, )ll{wEL }f 7/ d"/+/|A2 Y, Te, )l]-{ygeL (y)dy

2,Te,T 315.1

Using the same ideas as before, we find the first and third terms are bounded from

above by some positive constant multiple of e. Then continue to break the second

term into
N
sup poly(yr — xa)lyyery, POV — Te2)lqyerz, ) I poly(y; — ej )y —zq1<1
€ j=3
— poly(y; - ’11)1{1,1@1 POIJ(Uz — &y 1{u2eL 3 H 17017/ 1|‘uj—:z:]|<1 f(y)dy

,,,,,,,

124




Denote the quantity in absolute value by As(y,z, ) and continue to break as before
until we end up with all terms which are bounded from above by some positive

constants-multiple of ¢, and one term which is as follows

sup
Te yleL%vzﬁiv"-vyNeLgre’i

fy)dy

N N
I1 poly(y: — zi) — T[] poly(yi — &:)
11

i=1

N N
I1 poly(y; — xi) — T1 poly(y: — &:)

< sup sup
Te yléLé,,e,i,-u,yneLﬁ%i =1 1=1
N N

< (I poly(yr — %) = [] poly(yr — ) (5.5)
i=1 1=1

where z*,y* are where the maximum is achieved (it is achieved since each of the
one-dimensional kernel functions, K, (y;), is bounded over the set on which (z.,y)

vary). But each of the one-dimensional factors,
|poly(y; — %) — poly(y; — &)| < Mje
where M/ is some finite constant, because

sup sup |poly(y; — %) — poly(y; — &)| <sup  sup  |poly(y; — za) — poly(y: — &)

Tei yi€ly , . x Tei yilyi—Ei]<1
since L%,xeg,a':,' C {y; : lyi — %;| < 1}. And therefore the above is bounded by
sup |[poly(s) — poly(t)| < Mie

st —1—e<s,t <Fi+1+e,|s—-t|<e

because |z — %;] < ¢, and poly() is continuous over the compact set
{s,t:3—1—€e<s,t <& +1+¢}

Hence in (5.5), poly(y; — %) = poly(y; — &;) + coe for some constant ¢o > 0; by
inspection it is clear that (5.5) becomes a constant multiple of € for some positive
constant.

Hence sup,_ E |Kz(y) — K. (y)| < ce, for some positive constant c. Now, for any

K.(y) € K,, (hence z € D), there is a &, a center of a sphere in the covering of D,
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such that [z—%;| < e. Corresponding to this Z, 3 Kz, (y) > E|Kz,(y) — Kz(y)| < ce
because we showed it is true for any z. with |z, — #x| < €. This implies the existence
of a finite collection of functions {Kz, (v), Kz,(y), -, Kz, (¥)} which covers K,

in the L; norm to an accuracy ce. |

5.4 Proof of Theorem 5.1

We will use here the notation (i,...,(,, to represent the randomly drawn unlabeled
sample of size n, where n is stated in Theorem 5.1. We denote by z, a vector in RV,
and z;, 1 <7< N denotes its components.

Initially we show that with this n-sample it is possible to estimate f(z) by f.(z)

to within small deviation where the goodness of fit is measured by

sup, | fn(z) — f(<)|
sup, f(z)

where the sup is over R". This implies that the mode-estimates are good and hence

the decision rule h(z) is close to the Bayes rule. The reason for this measure of fit is
to enable a comparison of performance, i.e. error versus sample size, across different
dimensions N. This choice will ensure that the O(¢) term of P, in the theorem
is independent of N (it may depend on quantities such as the distance between the
true modes) and the range allowed for € holds for all N; we still say for small € > 0
in order for some approximations to hold, but the choice will be indépendent of N,
and in particular, does not decrease with V.

We define a function K, . € K, as follows: let

Koo{y) = K (y_m)

g

where y € RY, and 2 is in a compact set D in RY (to be specified later), and K is
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a real valued function chosen as

K(y) = Ki(y1)Ki(y2) - Ka(yw)

where K;(y;) is an (r—1)®" degree polynomial which is orthogonal to y, yi2, ...,

and such that
1
/ Ky () dy, = 1.
-1

(The subscript in K; indicates that it is a function on IR'.) We later describe the
reason for this choice and its construction in detail. Define the estimate f,(z) as the

empirical mean of the function

o NK,.()
le.,
— l N N [GimE
fo(z) = n;zf K (—a )
where

Koo) =K (12F),  yoeRY, oeR

(Note, we use a double subscript for K, , which indicates it is not the same function
as the one dimensional kernel K;.) We treat & as a constant, acting as the index of
the function in the class K,, while the only randomness is in the sample (3, (2, ..., (-
Clearly fn(z) is a random variable with expected value f(z) = E(¢6™" K,,). The

bias of the estimate is then

sup, |f(z) — f(2)]
sup, f(’B) .

We can express the error of the estimate in terms of the bias, i.e.,

sup, | fn(@) = f(2)] sup, | f(z) — f()] N sup,, | fa(z) — f(2)]
sup, f(2) - sup,, f(z) sup,, f(z) '

In the current context, f(z) is Gaussian, hence sup, f(z) = 1/(27)N/2. The bias is

nonrandom and, as we later show, decreases to zero as ¢ — 0. The learner aims
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at reducing the kernel-window but not too fast (w.r.t n) because the probability of
the second error component decreases at a rate which becomes worse (i.e., slower) if
o — 0 too fast with n. The second component is random and is the deviation of the
empirical mean from the true mean of K, , which we can bound (after we partition
the domain of the indexing-parameter into D and D¢) using the uniform SLLN over

the class K, of functions K, ,, ¢ € D. We start with the bias component.

5.4.1 The bias component

As will be seen shortly, the bias term can be made smaller by constructing a ker-
nel K;(z;) taking both negative and positive values, and which is orthogonal to
€1,212,...,2""L. We first define the one-dimensional kernel. Let r be an even inte-

ger and

r—1

A .l <
1(1(1;1) — { 0 i=0 @iTq lel _ 17

otherwise.

The a; are chosen as the solution of the r equations,

(lo((U?, T?) + al(x?’ :l:%) + -+ a"—l(x?a "U;_l) =1
ao(z), %)+ ai(al,zd) 4+ -+ a,-i(ad, 27t =0
alzi™a)) + @(@ihe) + o 4 aa(eiThel ) = 0

where

(F.9)= [ feg(a) don.
REMARK: (2},2]) =0if 7+ j is odd, and (z},2]) = T i ¢+ 7 is even.
Denote the solution vector as «, and the matrix of the dot products as A. There
always exist a solution vector « for any chosen r since the matrix A has a nonvanishing
determinant. That is because the quadratic form

r—1 N 2
Z bp’l}zl) > 0

17=0

r—1
(b, Ab) = /_11 Z bi:zr’ibjx'{. dz, = /1 (

i,j=0 -1
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whenever b # 0. Our one-dimensional kernel function K; (2, ) satisfies (K;(z1), i) =10
for 1 <i<r—1,and (Ki(z1),1) = 1. Before we show the effect of r on the bias, we
prove an upper bound on the magnitude of this kernel; this will be used later when
we require uniforrr; SLLN convergence for this class of kernel functions. We look for
an upper bound on |K;i(z;)]. From Szego & Polya (25, page 89], for any arbitrary

polynomial P(z;) of r** degree with real coefficients such that
1
| (P da =1,
-1
we have
r+1
\/'2' ’

uniformly for all =1 < z; < 1. For the proof see Lemma 5.2 in Section 5.3. In our

|P(z1)] <

case the polynomial K;(z;) is of degree r — 1 and satisfies

1
/1(1(1(581))2 dzy = (a,Ad) = (a,[10...0]") = ao.

Hence

1 , 2

/ (IX1($1)> d’z:l =1

-1 a,

so that
[Ki(z)| <7 222

for |z1] < 1. Now we calculate ap. Without loss of generality, take r to be even. By

Cramér’s rule we have

-13: (1) % 1 'r_-l-_l- 01 r-}-l
q0 s = 0 s 0
or- e e
1 1
01 et 0 0 = 0 1
o = I ﬁ) 0 T 0 0 T -3 0 0 26_1 (5.6)
S S T S
3 5 r—1 r41
or
L0 0 s0 g
0 L0 - 0
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With some manipulations (see Lemma 5.3) and for even r, we obtain

L =1e=3)B) N
‘= (( 2)(r—4)-- <4)<2)) 7 (27 )

whence from Stirling’s formula applied to the central term of the binomial, we obtain

ag ~ = as r — oo through the even integers. Consequently,

@ 32

\/27r’

With z = [z1,23,...,2x] € RY, from before we have the N-dimensional kernel

K (z)| <7

(r — o).

as

K(z) = Ki(z1)Ki(23) - - Ky (an).

We now show the effect of  on the bias by expressing the bias as follows (all integrals

are over RY unless explicitly specified):

fle)= @) = [V K (Y=2) sw)dy - flo) [ Koy

since
1 1 1
/K(y)(ly = /1 I&l(g/l)(lg/lfl Ki(y2)dys - --/l K (yn)dyn = 1.
Changing the variable of integration to z = £=* we obtain

T@) = f(@) = [ KE)(f(e+02) = f(a))dz

We expand f(x 4+ 0z) in a Taylor series around o = 0. The bias becomes

/K(z( —I-O'Z:zl1 (l)

i1=1

f(2) = f(=)| @m)/* = (2m)"/* sup

2
g 2
+ 7 Z le 272 fl(l )12 ) +
< i1,42=1
o’ N
+ F Z Zi Ziy ,,lrf“ P2 (:E + cz) — f(:z:)) dz
Y 21,00, tr=1
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N
< @En)"swle 3 ) [ K()zdz

11=1

2 N
+ s T S S () [K(@)zzds| 4o

11,i2=1

r N
TCE DY / 0, e+ e)K(2)zzi, -+ 2, d

i1z ,ir=1

where 0 < ¢ < 0. Now, by Lemma 5.4 in Section 5.3

‘.f'L(ti)u,‘z...u.‘kl < M
uniformly over iy,4,,...1; € {1,2,... N} for k <r+ 1 where
My, = C(2r) N2k% ek (5.7)
with C' an absolute positive constant. Then by the mean value theorem we have
If(y) = FO ()] £ Mraly — 2l
implying uniform continuity of f (") hence

V6 >0 Je(8) 3 | (z + c(8)z) — f(z)| < &

where we view f(7) as a function of z, while ¢(8;)z as a small deviation. It suffices
that |z¢(8;)] = 61/M,41. Now |z| < 2¢/N as z ranges over [—1, +1]" only. To achieve

§; deviation the lowest necessary c is 6/ 2N M, . With this choice we can write
FO (@ +cz) < fO(x) + 2V NMrro < M, + 6

as 0 < ¢ < o, for a suitably small choice of o < & /2V/ NM,; (from (5.7) we have

M,4; < ). To avoid carrying the nuisance factor of 6, around, increase each M,
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slightly to include an extra é;. The bias is now bounded above by

p|f(z) - f(@)| @ < (2m)"*Mio 5

11—1

/ K(2)z,dz

+ (27T)N/2M2 +

/K )zi, zi,d2z| +

1 12"‘1

+ enVSM, >

11,825000yir =1

/K(z 2y Zip + -0 % dz|

Using the orthogonality of K;(z;) to the first 7 — 1 powers of 2y, only the last term

survives so that

sup |F(z) - f(:v)l(27r)N/2

_ N/2
= Ve T ”

i, 22 Lir=1
(27r)N/2MT—T-'— (l / Ki(z)7dn]| +

< @0VPNeM, =
r.

/K 2)zi, Ziy - 2 dz

I

I/ Ki(z2)z5dze| +

l/,Kl ZN szZN

)

where, for any 1 <z < N, | f_ll Ky(z)z] dzil = ¢, is an absolute positive constant as

[ 5

1
< / \Ky(2)27] dz
-1

1 1

< \// K%(zi)dz,-\// 2% dz;
-1 -1

= Vg 2 <

BN ST

from Lemma 5.3 for ag. Now, Lemma 5.4 shows that

M, < C@2r)~N?r3e. (5.8)

The bias is hence bounded above by



for some positive constant c3. Using Stirling’s formula for r!, we see that the latter
goes to 0 as r — oo given that ¢ < 1. (Note that the condition on o from before

translates into the requirement o < ¢(2m)N/2N=1/2p=1/2¢77 )

5.4.2 The random part of the error

We now treat the second component of the error, i.e.

sup, | fu(2) — f(2)|
sup, f

We partition the domain of x, the index-parameter, and apply the uniform SLLN over
the compact part of the partition. Let D be a compact subset of RY to be specified.
We have

b (p fale) = F@)| )

sup, f
<P (supxeu [fa(2) = F@)]  supsepe lfule) = F@)] )
sup, f sup, f
sup,ep |fa(z) = f(2)] supgepe | fu(2) — f(2)]
< P < =2 wap. > 6/2) +P( b — > 6/2)

(5.9)

where the first term on the right is ready for application of the uniform SLLN. We

first show that the second term is subdominant. We have

p (SuprDC |fu(z) = f(2)] S e/2> <p (supxeDc | fu(2)] N SUPepe f(:v)l S 6/2)

sup, f sup, f sup, f
P SUPepe %E?:l ?,IW'I\’U,I(Ci)) + SUPgepe f U_ll\fj(a,z(y)f(y) dyl > /2
= € .
sup, f sup, f
(5.10)

Now suppress the o to simplify notation, and choose
D= {.’lY : I.’lf - 901| S A, 01'|£E - 002' < A}
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where A will be specified shortly. (We denote by poly(z) an rth degree polynomial in

Ty, T2,...,2N.) We have

sup /K,,.x y)dy| = sup /polz — 2)1y—z<1.f(y) dy'
reDe |x—001|>An|z:—Gogi>A
< sup | [ polyly = a)Liy-atca fo(ulon) ]
|z—601|>AN|z—602|>A
+ sup / poly(y — )1jy—as1<1.f2(y1602) dy‘
IZ—001'>AQ|1:—002|>A
< sup lpoly(y — )| 1jy—zi<1 f1(¥1001) dy

|z—601|>A

+ sup |P01.7/(?/ - T)| 1|y—x|s1f2(y|002) dy
|z—602|>A

= su / |poly(y — )| 1 .
|x—603>A ly—b01|>A~1 povly Iy—x|<1(2ﬂ_)N/2

1 2
u oly(y — z)| 11—z —3lv=bo2” g
+ n /IU—002|>A—1 |p J(y )I lvy=2I<175 YN/2 (2 )N/2 y

|$—902|>A

—%ly—901|2 dy

IA

an

T2 1
PSRN I ly—6o1| d
“ (27‘-)1\7/2 /Iy—001|>A—1 (27(’)N/2 $
1

—Liy—bosl?
e~zlv=bo2l® gy

T2
Toa (2m)N/2 /Iy—002]>A—1 (2m)N/2

From page 66 these two integrals are bounded above by c2Ne?/A* for some positive

constant ¢. Therefore

f (,—I,V-I&’a,r(y)f(y)dy| _ V2N
sup, f T oNAt

SUPzepe

A.

Applying Markov’s inequality to (5.10) we now have

P SUPgepe |7 Limt ”I\”I(gt)\ S<c_A

p SllpxeDC%Z?=l #I(ﬂ.r(ci)‘ S £ Al < E% Z?:l SUPzeDe ;%VI{U,-’L‘(G)|
< 1/(2m)N/2 9 I(é _ A)/(2W)N/2)|
7% Ju>4-1 89Pgepe poly(?/—-"c)1|y_x|glf(y)dy\ A A
(5 — A)/(2m)V2)| Tle-a] -4
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since for any ¢, o, and N we can choose A large enough to make A suitably small

compared to e. We hence obtain

(SumeDc fn(l') - f(iII) 6) 67]\’1"3‘)\7/2
P

Sl <eA=Tm—— =
>3 < A e 5/2

where A is chosen accordingly. Hence the second term on the right of (5.9) is < 6/2.

Now we estimate the size of n needed to make the first term of (5.9) less than 6/2.
The stage is set for an application of Theorem 3.10. The class X, of functions is

the set {K, .,z € D}. These functions are uniformly bounded by choice of compact

D (note that o is permitted to decrease with n). Lemma 5.6 shows that this class is

finitely coverable which is a condition for its permissibility (needed by the theorem).

We begin by bounding EK? . We have
EK2 (y) /f?/ K2 (y)dy = o™ /f (z + 02)K*(2)dz

with the change of variable z = (y — z)/o. In our case f is a multi-multivariate

Gaussian mixture and

F<1/@m)Ne. (5.11)
The bound hence becomes
EK2, < (oV/@2r)M?) / K*(z)d=
= (/0" [ ’1 Ki(z)da [ 11 Ki(z2)dz - [ 11 K2(2n)dan
< (V/2m)™?) (; (27 () )2)N
< (M /enm (Z)

_ or
\Verd
We let this be 62 in the theorem. In order to satisfy the conditions of the theorem,
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we need to select o as functions of n such that

log n/n
82

-0 (n—o0)

This is satisfied if

2 () ()

or or

We will see that this condition is trivially met in our subsequent choice of n. Now for

M in the theorem, we bound the functions in the class as

N . . N 3N/2
_ . T; — 2 _q'_g ._L__.._ =
Ko =TT | (B52) | < (5 ) < grpe=M

i=1

by again using Lemma 5.3. We thus have

Cz A Cl -z 52
(itexg ZK( . EK . >¢€ M
= <suP ZK (Ct — )—EK (C‘ "x) > eV rN g -N)
zeD [N o o
= ( sup ZK” —EK, ()| > eV r N2 -N)
I(O'TGK:G 'L"l

d
24( 32e  log 32e N) e—né(\/g.r%)N/mm (5.12)
«(V2z)  <(VE3)

The left hand side is equivalent to

(sup lfn f(x)' > 6T"N/277“N) = P (SquED o = 1 > er“N/27r‘N(27r)N/2>

zeD sup, f
_F N/2
p (supzep i (_2_) ) .
sup, f T
Redefining € as € ( 2 )N/2 and calling the right hand side of (5.12) 6/2 we obtain

Sup, . ( 3
and hence combining with the previous result we have

sup, | fo(z) = F(z)]
P ( sup, f(’l:) > 6) S 67
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when
N N/2 3N/2
csr’ (2/7) r 1
> — .
"= olNe? dlog eaN +log )

We can use this bound once we calculate d = VC(K,) which is obtained (see

Definition 3.5) by noticing that IC, is class of functions that are linear combinations
of a finite basis of functions (as in Theorem 3.6). It will transpire that we can easily
calculate the VC-dimension of the graphs of such functions (Definition 3.4) which by
Definition 3.5 is VC(K, ).

Define F as the class of graphs of the N-dimensional kernels K, , € KX, where
from before we have K, .(y) = K(%:%). Recall that, by definition, K has a compact
support [—1,1]¥. Each function in K,, and hence each graph in F, has the same
fixed o but has a different N-dimensional vector  which indexes it in the class. The
graphs are sets in RN x IR since a function K, »(y) is a mapping from RVto R. By
Definition 3.5, VC(K,) = VC(F) so our aim is to find VC(F). Replace z with 8 to
indicate the parameter indexing a function and let £ now denote the domain of the

function, i.e., K, g(z). The one-dimensional kernel equals

r—1
Z(lz Ty — 91 l|x1—01|<1’ xlyal € R.
1=0

This is an (r — 1)**-degree polynomial in z; whose coefficients are comprised of the

0{‘ and a;. Hence we write the N-dimensional kernel as a product

Ko () = poly™*(z1)poly” " (z2) - - - poly™ (&N ) iz, =01 1<1 Ljms—ta1<1  * - Low—buI<1

where poly™~(-) denotes a polynomial of degree r — 1 in a single variable z;. Denote
by

p(x) = poly” ™" (x1)poly™*(z2) - - poly™*(an).

B= r,/‘;" > |Kqi(21)]
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for the bound on the magnitude of the one dimensional kernel. Use the notation

|z — 0] < 1 to denote the set based on the vector inequality
{le; —6:| <1, 1<i< N}

the function 1,_g<1 then connotes the indicator for the cube (in RY) of side 2 at 6.

Let G4 denote the graphs of the functions +B1|,_g|<; respectively. Also, let
Py ={(z,9): 0 <y < p()}

P- ={(z,y) : p(z) <y < 0}.

The graph of K, ¢(z) is then represented simply by (P+ N G4+)U (P~ NG-). Our aim

now is to express this set by intersection/unions of sets of the form

{(w,y) : ;amsi(x,y) > o}

where the sum is finite. Then we can directly apply Theorem 3.6 to find the VC-

dimension of K, g(z). We first construct a function
hpo(z,y) = p(z) — ay
where a is a real scalar. We have
{(2,) : hpalz,y) 2 0} (W(z,y) 1y 2 0} = {(2,9) : 0 < y < p()}
and
{(z,9) + hep—a(z,y) = 0} {(x,9) : y < 0} = {(z,y) : p(z) <y < 0}
We can index any function of the form
p(x) = poly™ ™ (z1)poly” " (x2) - - - poly™ ™ (zn)
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using the basis

{{l,xl,xf,...,:c’l"l} X {1,$2,x§,...,$;"1} X oo X {l,mN,a:}"v,...,x;v'l}}.

N

This basis has cardinality r". Hence the function A&,.(z,y) can be expressed as a

linear combination of rV +1 terms. By Theorem 3.6 it follows that the VC dimension,
d, of the class, H, of sets {(z,y) : hpq(z,y) > 0} is at most ¥ + 1. The class, H,
of intersections of such sets with {(z,y) : ¥ > 0} can pick out at most the same
number of dichotomies of an m-sample as H does. 'i‘o see this, note that if (z¢,y?),
1 <7 < m is any m-sample shattered by H’ then necessarily we must have y* > 0
for each . Now, take any dichotomy of this sample, say the one achieved by a set
A'= An{(z,y) : y > 0} which is an element of the class of sets H'. (Note, the set

A is in H). Clearly, the set A achieves the same dichotomy of the sample. Hence H
must shatter this m-sample. Hence VC(H) > VC(H').

So therefore the VC dimension of the class of sets

{(z,9) : hpalz,y) > 0}({(2,9) : y 2 0} = {(z,9) : 0 < y < p(x)}
is at most "V + 1 and likewise the VC dimension of the class of sets

{(z,9) : hepale,y) > 0} {(2,y) 1y < 0} = {(,9) : p(z) < y < 0}
is at most 7V + 1. Continuing, we have by deﬁniti;)n,

Gy =N{@y) eRVxR:0<y <B-1pp gy}
It suffices hence to estimate the VC dimension of the class of sets
{(2,9): 0 <y < B 1y g1}

Define

o(y) = 1 f0<y<B
Y'=1 0 otherwise.
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It is easy to see that

{(2,9) 10 Sy < B lpyogy} = {(z,9) : ay) — (2 — 6:1)" > 0}.

The function c(y)—(z,—6;)? is a linear combination of the function basis {z?, z,1, a(y)}.
Hence by Theorem 3.6 the class of sets {(z,y) : a(y) — (1 — 61)? > 0} and therefore
the class of sets {(z,y) : 0 <y < B 1j5,_4,)} has VC dimension < 4. This is true
for every one of the N classes, {(z,y): 0 <y < B-15,-¢;},1 <t < N. By Theorem
3.3, the number of dichotomies of an m-sample that is picked out by any such class
is < m*. Hence the class of sets G, can pick out at most m*" dichotomies of any
m-sample. It follows that the family of graphs P4 N G4 picks out at most m™" +4N+1
dichotomies of any m-sample. An analogous treatment shows that the number bf di-
chotomies of an m-sample picked out by the class of sets P_NG_ is at most mr AN+

It follows that the class of sets
F=(PsNGL)U(P-NG.)

achieves no more than

N
m2r +8N+2

subsets out of any collection of m points. Denote the exponent by ¢ = 2r"V + 8N + 2.
By definition, the VC-dimension of F is bounded above by the largest value of m for
which
me > 2™
whence direct computation shows
VC(F) < 1.37clog, ¢ < 2clogc = (4r + 16N + 4)log(2r" + 8N + 2).

Note that rN¥ > 4N +1 when r > 5+4log N for every N > 1. For this range of r then,

VC(F) < 8N log (47‘N) < 3272,
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as logz < « for all z. We complete the bound on n by using the following bounds on

dand M,

d < 32N,
F3N/2
M< —
—_ (27[')N/2,
and obtain that
N N/2 3N/2 N N/2
cror™ (2/7) o 2N T cror” (2/7)
> N2 32r*" log = N2 log(S (5.13)
is sufficient in order to have
sup, | fa(z) — f(2)]
<
i ( sup, f(x) >e) <o

for 6, ¢ arbitrary positive, and o sufficiently small as before.

Together with the bias we have that with the same n,

sup, | fa(z) — f(z)|
sup, f(z)

r O
> €+ c;;rier-—'N
r!

with probability < /4. To simplify this we replace ¢ with \/€/2 and replace
csrze" SN by 1/€/2 (to find o) yielding total error of \/e. First look at the first

term (ignoring the less significant log() part) in the bound for n. We have

7.N(2/7T)N/22N/1- e T (B)N/T) (ﬂ') Nir 3972N

TN : (5.14)
Now we are free to choose r, so let r = 5 + log N. We have
N/(54+log N 5+lo
N oo < (—N )N/(5+l =) < 1N/(G+legN) _ |
(5 + log N)! = \ 95+lgN = :
So (5.14) is bounded by
2\ N,
o1y (23) N los(5+og N) (2%) /2 9N/ (5+log N) 519

61-1-1\7/210g N
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Now 27 < 12, and there exists a ¢;3 such that for all N > 1,

9e2 N/2 13 %Nlog(5+logN)
- < a2 <—) .
T 12

Use similar arguments for the 2V/G+18N) o get that (5.14) is bounded by

—Nl()g(5+10g N)

eN/2log N

Now the less significant log() part in the first term of (5.13) is bounded by

13Nlog(5+logN)/3 1

01371—2 log =

It follows that (5.13) is bounded by

13N log(5+log N) 1
C14 eN/2logN g -6_5

Hence
sup, | fn(z) = f(=)]
> V€ 5.16
SV (5:16)
when
13Nlog(5+log N) 1
n 2> Ci4 —

oy %8
with probability < §/4. We now need to see how this translates into the decision
rule error by showing that the mode-estimates will also be close.

Since f,(x) may have many relative maxima we need to choose two such modes
that can be used to estimate closely the modes of f(x). This is achieved by the
following procedure which is based on the more general algorithm K (see Section
5.5). The requirements that are necessary for this procedure is that 0 < € < b where
b is proportional to |fy; — 2|, and that f(x) must have two modes (not just one);
for this reason we need the requirement on the means, fy; and fy,, of f(z) to satisfy

|61 — Bo2] > 2 (see Lemma 5.5).



Consider first the case of z € IR. Denote the true modes as 7; and 7, and
without loss of generality let 5, > 5;. We first describe how the mode estimates are

calculated. For simplicity we proceed with the assumption that sup, |f.(z) — f(z)| <
€¢/2 and later replace that by %ﬂ < € as in (5.1‘6). For small enough
€, the learner determines the maximum of f,(z) to be, say, closer to 7, which puts
it under the first hump of f(z); denote it by #; and this will be the estimate for
71. Then the learner determines the a-coordinates, zy, and z,;, of the two points
closest to 7y, where a horizontal line through the point (71, f(71) — 8¢) cuts fo(z).
Note, because |fn(z) — f(z)| < e it follows that regardless of where #; is, we have
M € (14, 1s); in fact that is the case even if the line is defined with 3¢ instead of 8e.
This guarantees that f(z) is decreasing, when moving away from z;, or from z; by
a small amount (again under the main assumption of small enough €). Using this,
together with the fact that |f,.(z) — f(z)| < € we have that for all z s.t. = < 24,
or ¢ > 1, and such that z is closer to n; than 7, then fn(z) < fa(71) — 6e. We
claim that there exists a point whose z-coordinate, z,, is closer to 7, than 7, and
fn(z2) > fn(H1)—6e. This can be seen by drawing a line through (71, f(i:1) —4¢) which
intersects f() on the second hump at a point (23, f(x2)). The reason it intersects is
because |f,(%;) — f(m)| < 3¢ which implies f, () — 4e < f(m) — e < f(m) = f(n2)-

The former follows from the fact that

| fa(iy) = f(n)] <€

and

[f(h1) = f(m)] < 2e.

The former is trivial. The latter is true since assuming the contrary implies that
fn(h1) < folm) and this is clearly false since it contradicts the definition of 7, as

being the sup, fo(x). Moreover, fu(x2) > f(z2) — € = fu(fh) — 5€ > fo(f1) — 6,
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which proves the above claim.

So the learner needs only to use the horizontal line through (%, fu(7:1) — 8€),
determine x4, Z1p, look for the maximum of f,(z) over z > z < x1, or ¢ > x; and
let it be 7j;. This guarantees 7, is closer to 7, than 7, and hence the consistency of
f; to n; as € — 0. For f(z) with « € RY a similar procedure can be applied to find
the mode estimates.

Now we find the possible deviation for 7; from 7; where : = 1,2. Without loss of
generality let the means be yy; = 0 and gy = p. The modes are 7; and n,. We look
for the largest deviation, y, from 7; such that it is possible for f,(n1 +y) > fu(m).
This is the largest deviation for 7; from 7; and by symmetry also for 7j; from 7, .
When ‘—‘%K;‘T"fl < €/2 then at the point, y+n;, we have f(n;1)— f(y+m) = €/(2m)N/2.
Therefore we look for the y such that f(n,)— f(y +m) > €/(27)"/? which implies that
s—“—%u’;;‘%i > ¢/2. After some algebra we determine y = c;5¢ for some positive constant
¢15. Then, adhering to the statement of (5.16) we replace €¢/2 by /e for the deviation,
and get that |f,(-)— f(:)| = ci6v/€ if the maximum deviation from #; to ;, ¢ = 1,2, is
c171/<. So from last paragraph, it follows that {|1—m1] > ci7¢/€) or |fla—n2| > c174/€}
has probability at most §/2.

Lastly, the learner outputs the hyperplane orthogonal to the line between 7; and
f, as a decision rule. Since the Bayes border is between 7; and 7, then from Section
4.1, it follows that the above deviation yields a Perror < Ppayes + 613\/22 = Ppoyes +
cig€ if the regions across the hyperplane are labeled correctly. Lastly, using the same
analysis for the labeled sample complexity as in Section 4.3 but using /€ there instead
of € for the deviation of the mode-estimates we get that with m = ¢9log % labeled
examples and given that both mode-estimates are ¢;7./€-close to the true modes, then
the probability of choosing a labeling (by the majority rule) with Pe,ror > Ppayes+C20€

is at most §/2. Hence the probability is at most ¢ that the learner outputs a decision
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rule whose P.,,or > PBuyes + €20€ = Ppayes(1 + c21€). This completes the proof of the

theorem. |

5.5 Mixture of a General Form

In the previous section we established the complexity of learning a decision rule for a
problem based on a Gaussian mixture f using a procedure that estimates the modes
of f. The réquirements of this procedure, together with the resulting exponentially
large n stated in Theorem 5.1 suggest that the procedure is powerful to handle a richer
variety of mixtures. That is, we already saw in Chapter 4 that the Gaussian mixture
can be learned with polynomial sized samples given that parametric side information
is available. So having an exponential sized sample suggests that the technique may
be powerful enough to learn problems based on a richer variety of mixtures.

In this section, we extend the intuition that modes can determine the Bayes bor-
der for a large nonparametric class (containing Gaussian mixtures) where the mixtures
are not necessary identifiable. We define a family, P, of classification problems, each
specified by a pair of class conditional densities and having a Bayes border that is
identified by the modes of the mixture corresponding to the specific problem. We
denote by F the class of mixtures which is induced by P.

First we will prescribe the general form for the pair of densities that a problem in
P may have, through several conditions. One of the consequence of these conditions is
that a sufficient mixed sample complexity for learning a decision rule for any problem
in P is the same as that of Theorem 5.1. It is of no concern whether there are several
different problems in P that are associated with the same mixture (in which case the
mixture is not identifiable) because the hyperplane identified by this mixture is the
Bayes border for all these problems. We will impose the conditions on the class P in

the course of the discussion, rather than all at once, for better comprehension.

145




Secondly, we will describe the algorithm K and prove its consistent estimation
of the modes of an f € F.
We now proceed with the description of the problem class P. Let a classification

problem in P be defined as having the following class conditional densities

1
fg,ol(m) = ;’ﬁg(h" - allz)’

1
fo(2) = —o(lz = 0,1,

for 6; € RN (¢ = 1,2) and where g is smooth, decreasing on [0,00), bounded above

by 1, satisfying

Sp |98 o, .0, (12)] < 1%
where 21,19, ...,1, € {1,2,...,N}, a1, ¢y are positive constants, and that the absolute
value of the lower partial derivatives of order less than r is bounded by some positive
constants uniformly over z. (If we use a bound of the form c;r" then the unlabeled
sample complexity will differ from the one in Theorem 5.1 only in the constant raised
to Nloglog N). An additional condition on g is that its induced mixture f, 9 € F,
where 6 = [6;,0,], must have at least two modes. (In our discussion below we show
that the last condition is easily satisfied by many types of g. ) For brevity, when
there is no danger of misinterpretation, we will drop the subscript g, 8 and refer to a

mixture just as f.

The pattern classes in P have a mixture of the following form

1 /1 1
fusl@) = = (5902 = 01 + 5901 = 6P

which may have multiple modes (a mode is a local maximum) although g(|z — 6|?)

has a single mode at @ = §. Now consider the region

{e: glle = 0P) = g(lz = 627}
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which is the Bayes decision border of the problem. This region is equivalent to
{z :|z—0,| = |x—0,]}, (9(y) has an inverse as it is decreasing), which is a hyperplane
passing through the midpoint Ql—'ztﬁz and perpendicular to the line through 6, and 6.
(As a consequence of the succeeding discussion it follows that the points 8; and 6,
are not modes of the mixture f.) We now prove that the global modes of f(z) are
on a line through 6; and 6;, and that they identify this hyperplane and therefore the
Bayes border.

We will show that the set of modes on the line through 6; and 6, (which includes
the global modes) has an average which is exactly the point 94%02. Moreover, if we
take only the global modes (assuming that there are more than one) their average
is also this quantity because all the modes on the line appear in symmetric pairs.
Hence the global modes of f(z) identify a point (i.e., their average) and a line (going
through them). The hyperplane which goes through this point and perpendicular to
this line yields the Bayes decision border.

In the following, we ignore the normalizing constant and the a prior: probabilities
which are 1. Translate the coordinate frame so that the origin is at the point 6;. Then
transform to a new primed-coordinate system, &’ = Q s.t. the coordinates of 67 and
0!, are on the x)-axis (the first point is the origin however we will refer to it by the
name 6;). This is simply a rotation hence @ is unitary and the Jacobian equals 1

yielding

f@) = g(1QT — QTOL") + 9(1QTa" — QT )

= g(l2' = )" + g(|l2’ — 63]*)

12

gl — O a2 gl — 0 2 ),

Note that the global modes of f(x) are on the 2} axis since the &’ which maximizes

f(z') has 2’} = ... = 2’y = 0 because these are all non negative quantities while ¢g(y)
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decreases as y increases.
We now show that the midpoint between the modes of f(z') equals ﬂ%%. Since
the global modes are on the z}-axis, and since at these points, all the partial deriva-

tives are 0, in particular the partial w.r.t. x;, then the solution set of

oo (o((a1 — 01" + (e} — 8)")) = 0

must contain the first elements of the global mode vectors (which is the only nonzero

elements, w.r.t. the primed frame). We get

o = 0)2) _ Oy — 4
7@~ 0)7) ~ 7h— Oy

I3 +0l

where ¢'(-) denotes the derivative of g(-). For convenience, let y = z'; — 2 and
oL, —6! .
a = -1, The above equation becomes

gy+a)?) _a—y
g((y—a)?) y+a

(5.17)

Now since ¢ is decreasing then ¢’ is negative hence the left side is positive which
implies that the solution, y, to the equation satisfies —a < y < a. Clearly y = 0 is
a solution. Also, suppose yq is a solution, then it follows that —yo is also a solution

since
I(y+a)?) a-—y
d((y—a)?) y+a

implies that

g((e—10)?) _ a+wyo

g'((e+y0)?)  a—yo

and hence
g (v +a)*) _a—(=%)
9'((=yo—a)?)  —yot+a’

So the solutions that differ from 0 appear in symmetric pairs. Regardless of the

number of solutions, clearly their average must be y = 0. Moreover, considering only
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the global modes (which must be on this line), then their average is also at y = 0
again due to the symmetry. That is, given that z is a global mode then —z is also a

global mode since the function f achieves the same value at both of these points, i.e.,

£([20...0) = g ((z + a)*) + ¢ ((z — )?)
= g((-z+ap) +g((-2-a)?)
= f([-20...0]).

So taking the average of the global modes yields the point 2’ = gj_,;;_%_]_ which is
~ precisely the point we needed to show.

As was shown above, the line through the modes is the line through 6; and 6,.
Hence given that there are at least one solution pair (i.e., at least two modes), we can
identify this line and choose the hyperplane perpendicular to it that goes through the
point which is the average of the modes; this yields the Bayes border.

Suppose there exist other two-pattern classes in the same family of problems with

z — 6,|?) with § # g, and § #

class conditional distributions say §(|z — 6;]2) and §(

9, 0 # [0,,04]T (the last condition ensuring we are not considering the simple permu-
tation which trivially would yield the same decision regions) such that the mixture is

the same, i.e.,

i(le = 61) + 3= = 6:1°) = g(le = 6:") + 9o = 6:°) = f.

Then, arguing as above, we get that the average of the global modes of f are located
on the line through 6,0, and their average is ﬁ12L01 and similarly that the global
modes are also on the line through 0,0, and their average is él%-él. Clearly, because
the modes of f are fixed, the two averages must be the same point. Now, if we assume
that f has two global modes, then the above two lines must coincide. So although the

mixture f does not identify a unique class conditional pair it still identifies a unique
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border which is the Bayes border of both different problems, i.e.,

{o:9(lz =P =gl -6} = {z:lz—bf =|e — 0.}
= {z:|z- 6, = |z —0,)%}

= {z:g(lz = 0:") = g(lz — 62")}.

Hence this algorithm will yield the Bayes border just from knowledge of the f although
it is not possible to uniquely identify the class conditional densities from f. As seen
above, the two global mode requirement is also necessary for determining a line to
which the optimal hyperplane should be perpendicular. So in order for the algorithm
to work properly the mixture needs to have at least two global modes.

We now show that there exist functions g which give rise to mixtures f that have
at least two modes. We specify ¢’ by construction, constraining the graph of ¢'(y) to

go through two points (yi, A) and (y;, B) satisfying

=Y a—y;

—— <A,
yi t+a yita

0<y:i<y; <a, > B (5.18)

where y;,7;, @, are any fixed scalars and 4, B > 0.
This guarantees that the first point lies above the curve :ﬁ% and the second point

below it. Now we choose any continuous, negative function g’ such that

Swta)) _ . 1 dwi+a?) g

9 (5 = @)?) 9'((yi — a)?) (5.19)

' 2y ., — »
This guarantees that the curve of ﬁ%i'—z)%% intersects the curve of T at least at one

point (yx, C) where y; <y < y;, Le., yr # 0 is a solution of (5.17). By the above, it
follows that —y; is also a solution. Let us just show that there exist functions g’ that
satisfies (5.19). Fix some values for y;,y;, a, A, B that satisfies (5.18). Arbitrarily pick
negative values for ¢'((y; + @)?) and ¢'((y; + «)*) (negative since g is required to be

decreasing). Then determine the necessary values of g'((yi — @)?) and ¢'((y; — a)?).
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This completes the specification of ¢, i.e., specifying the value that g’ takes at the
points y; — @, y; + a,y; — a,y; + a. Clearly there are infinitely many such g’ hence
functions ¢ that satisfy this, and they need not be indexed by a finite parameter
vector. Similarly we can show that there are functions g with more than two modes.

So there are infinitely many functions, g, which are decreasing on [0, 00) and

have continuous derivatives, ¢’, such that the corresponding mixtures,

fasl@) = = (5000 = B + 3901z = 1))

have at least two modes. Taking the hyperplane perpendicular to the line through
these modes and which passes through the point of their average, yields the Bayes
optimal decision border.

We now explain the conditions on f (on page 146) which result in the same
sample complexity as for learning the Gaussian mixture of Section 5.4. The only
terms depending on f(z) (as opposed to the kernel function K(z)) which influence
the sample complexity are the bound on f(z) (used in (5.11)) and on its r** derivative
(5.8). We demand that the first r —1 derivatives be bounded by some finite constants
uniformly over z. The bound need only be specified for the r** derivative since by
the orthogonality of K (z) (see page 109), only the r** term survives.

In the Gaussian case, M, = cl(QW)_N/zr';'er for some positive constant ¢; which

results in the term coeNr™? in (5.14). It follows that if ¢ satisfies

) ([e)] < errde

SL;p gx,-l WEig ey

where 41,%2,...,4, € {1,2,...,N}, &,c, are positive constants, and the absolute
values of the lower order partial derivatives of g is each bounded by some finite
positive constant, then the sample complexity n is the same as in Theorem 5.1.

The other part where f has any bearing is in the bound of EK? in (5.11). We
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just use ¢V instead of (27)N/2. This does not change the sample complexity order of
growth since it only introduces a different constant in (5.15).

We now discuss algorithm K (stated on page 105) which is used to determine
consistent estimates of the modes of f € F and identify a decision rule that has a
P...o close to Ppgyes.

After this subsection, there will be one more condition enforced on the class P,

more precisely, on its induced mixture class F.

5.5.1 Discussion of Algorithm K

Above, we described the type of mixtures f € F for which algorithm K can construct
a decision rule. The intuition of the algorithm is based on the fact that for sufficiently
small € > 0, knowing f,(z) allows to determine regions A;. which contain the global
modes 5; of f and the mode estimates 7;. These regions are closely related to the
global humps of the true mixture f (a hump is a region where one global mode is the
only extrema). We now prove the consistency of this algorithm.

We assume that f is of the form stated in the preceding section. In general,
although ¢ is decreasing, f may have multiple global maxima and relative extrema,
also on the #)-axis. Denote M = sup, f(z). We assume that f has at least two global
modes 11, 12, such that f(n;) = M. (We showed before that there exist g that have
at least two modes; using the same argument we can show there exist g that have
more than two modes.) Moreover let us assume that there are a ﬁnite number of such
global modes, 5;, 1 <1 < k, at which f(n;) = M. (This further restricts the type of
g that may be used above but it is easy to show by the same construction that there
exist such functions ¢.) Let

L=supf(x), D={r: lwiuge) =0z #u5f(n) = M, f(n)) = M1 < i, < K}
x€D
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where f'(z;u,, ;) is the directional derivative of f at = in the direction of the unit
vector u,, , whose direction is the same as the ray starting at 7; going through z.
We now show additional constraints on ¢ s.t. M — L > 0 and s.t. f decreases
monotonically along any ray, starting from a mode 7;, in some small ball around each
mode. These will be crucial for our algorithm.

We show that there exists a § > 0 s.t. f is decreasing along any ray in the
direction of u,, where x is in the ball B(n,6) around a mode 5 (we do not use
subscripts for indexing one of k modes and instead reserve the subscripts to specify
elements of a vector, except for #; and ;). We will use the primed frame (page 147)
which has the points corresponding to 8; and 8, on the z}-axis however here we drop
the prime ’ from the notations of all vectors. To prove this it suffices to show that

f'(z;u) < 0 for any x € B(1,6) s.t. x # n and where u = I_f«‘%;LI By definition,

oo _ df(z)xi—m Of(z) 3 — 1
F@w) = e el T om fe—al Tt

of(z)zn — N
dzn |z —n|

T —
= (d(le = 0:P)2(z1 = 1) + ¢' (|2 — 02*)2(21 = 0u) |:; - ZI
b (o= 00+ o = 0aF)22) 2
4+ et (g’(|:[: - 01!2)2.’171\1 + {/I(lfC - 02‘2)2$N) I'Bx-]—vﬂl

where we used the fact that 8;, 6, and 7 are on the z;-axis. We inquire whether the
above is < 0. Denote by a = ¢'(|z — 61|?) and b = ¢'(]z — 02]*). Then it is the same

as asking if
(a(zy = O11) + b(a1 — 021)) (1 — m) + (@ + D) (2] + -+ +2y) <O.

But the second term is negative because ¢’ < 0 as g is decreasing on [0,00). So it

suffices to check for the value of z; for which
(a(xg — O11) + b(a1 — 621)) (1 —m) < 0. (5.20)
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We still have |z — n] < 6, i.e., |ty — n1| < 6, as a constraint on z;.) Without loss of
n ]

generality take ; < 12, so we have 63; < < 0q1. There are two cases:
e z; < 71, in which case we need |b(z; — 051)| > |a(zy — 611] for (5.20) to hold.
e z; > 1, where we need |a(z; — 021)| > [b(z; — 61| for (5.20) to hold.

It suffices to consider the two following cases:

"(z1=621)2) - z1-8
< 9'((x1=02: L1-011
e z; < 1y, need T(r=t)?) > fmoar?

' —0-1)2 21—
e 1, > 1y, need glz1=bn)) ~ z1=fi1

g'((x1-611)?) [T

We know from previous a,ng.lysis that the roots of ﬁj&ﬁi:xi% = :2‘1'_9;; are modes. But

by definition, 5 = [7,0---0] is a mode. So using the same notation as in Section 5.5,
and generalizing for all the k global modes, the above two requirements are satisfied
if for 1 <t <k, ¢ is chosen s.t. for n; — é6 < y < n; the function ’;—:E%’y’i_'%;-} is above
the graph of ;‘I—;% and for 5, <y < n; + § it is below this graph. We use the same
construction of g as in (5.18) in order to satisfy these conditions and hence there are
infinitely many such functions. The existence of § > 0 follows from having a finite
number of modes. So we showed that there are infinitely many functions g s.t. f is
decreasing along any ray r,, , for any @ € B(7;,6), 1 < ¢ < k, for some 6 > 0. We
now use this to construct an algorithm for estimating the modes.

We estimate these modes by %;, 1 <4 < k by using f,(z), the estimate of f(z)
where sup_ | f(x) — fa(z)] < €. (Note, we do not need f,(z) to be continuous in this
algorithm; this is crucial since the kernel estimate gives a discontinuous f,(z) as the
window functions, i.e., the polynomials, are truncated at £1.) For the algorithm to
work we need the error accuracy of the kernel estimate € < A—%’L.

First, find the argsup,ex fu(®) = i and suppose, w.lo.g. |iy —m| < |fi — nil,

i # 1. (If there is more than one such point, then choose any one. ) Define H;, to be
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the region
H; = {z: |z—ni| < |e—n;|,j # 1, f decreases on line I, , in direction of z,z € RV }u{n:}

and let H = H, U H,---U H, where H;N H; = 0.
We have
f(z)>L=2a€H.

To see this, suppose z € H. That means as we walk along a ray from some 7; towards
x we encounter a point z at which f'(z;u,, ,) = 0. Moreover, there exist such a z
satisfying f(z) > f(z). Now z € D (where D is the region in the definition of L).
Hence f(z) < L. And therefore f(z) < L which proves it.

Now, we have, 1); € H;. This follows since

Fali) > falm) > fn) —e=M — ¢

where the first inequality is because #; is the argsupf.(-) over X 3 n;. The second
inequality follows from the fact that for any z, |f.(z) — f(z)| < €. So,

f(h) 2 fallh)—e>M—2¢> L
where the last inequality follows from the restriction on ¢, 1.e., € < MS'—Q.
Now define

B, ={x: fu(x) > fau(f) — 4¢€}.

(We will not carry the subscrlipt e for brevity. ) Clearly t € B= z € H i.e.,
BCH

since

x € B= fulz)> fulh) —4e> M —e — 4e = M — Be,

f(a) > fo(z) —e> M —6e > L,
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and from above, f(z) > L = z € H. We will concentrate only on subsets of B hence

throught the discussion below, we have f with the ray-decreasing property of H.
We next define a region A; which depends on the estimate 7;. Up to now we only

defined #;, so at this stage only A; can be defined. However, later when we define

the rest of the estimates #;, ¢ = 2,...,k, we will use the following definition for A;:
Aie={y |y — il <inf inf |z =, fa(2) < fa(fn) —6e} U {} for 1 <i <k,
T z€Th,z

where 75, ; is a ray from #; going through z. (We omit the € subscript for brevity. )
So A; is simply a ball around #; with the above-specified radius.

We claim that the region

We proceed by showing that all points z in H; that have f,(z) > fa(1) — 4€ must

be also in A;. First, we prove that
m € Ar.

Suppose the contrary. Then there exists a z € JA; on the ray r,, 5, and by definition
of Ay, fu(2) < fu(i1) —6e. Also, f is decreasing between 7, and #;, (since we showed

that 4, € Hy, and by definition n; € Hy) hence

fm) = f(2) = flh) = ful2) = f(2) — €2 f(1h) — e > fa(h) — 2e.

This is a contradiction. Now we prove the claim making use of the fact that 1, € A;.
Suppose the contrary. Then there exists an z satisfying ¢ € B, « € A,, and = € H;.
This implies there exist some z € JA, i.e., on the border of A; as in the definition of
A,, such that z lies in between,n; and z, i.e. on the ray r,, .. Now, |z —n1| < |1 —z|.

Since x,7n; € Hy, then f(z) > f(a). Also, since z € 9A; then f,(z) < fu(f1) — 6e.
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And fn(”c) < fa(2) + 2€ because at any point, f, can jump by at most 2¢ from its
current value (due to [f,(-) — f(-)| < €). Hence fu(z) < fo(f1) —6€+2€ = fo(fh) —4e.
So « does not satisfy f,(z) > f.(1) — 4e. So z &€ B. This is a contradiction. Hence
after removing A, from B, we are left with no points from Hy, i.e. (B—A;)NH; = 0.

Now we show that H;, 7 # 1, has points that are in B, i.e. after the removal of

Aj, we still have

(B—A)NH; #0.

First we show that

n; & Ay, for 2 <1< k.

We have three key points, 7, 7, and 7;. Consider the line [, ,,,. Clearly there exist a
Y € Ly s.t. f(y) < L. That is because, in general, on a ray through any two modes,
ni, j of f, there must be a point y at which the directional derivative f'(y; uy ;) = 0,
and also recall the definition of L. (Note that y # 7; since the two modes differ, i.e.,

m # n;.) So therefore

faly) SLte< M—=Te= f(m)—Te < fa(m)—6e < fo(in) —6e = fu(y) < fali)—6e

where the first inequality from the left follows from the condition on e¢. Hence either
y € A; or y € 0A; Therefore the radius of A; is < |fj; — y| by definition of A;. Also
| — m| < |71 — mi] by definition of 7;. So we have a circle centered at 7; with 5; on
the circle and 7y, ¥, both inside the circle, both lying on a line through #;. It is now
simple to see that |, —y| < |7 — 7| by taking a radius of size |i}; — ;| and rotating
it until it goes through the point 5. So the radius of A; is < |7j; — n;|. Hence ; € A;.

Now we prove that there exist at least one point in (B — A;) N H;, namely 7;
itself, for 2 <7 < k. It suffices to check if f,(n;) > fo.(71) — 4¢, i.e. the definition of

B, since we've already proved that 7; ¢ A; and by definition of H;, n; € H;. But this
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follows trivially as

Fa(mi) 2 f(m) — €= f(m) — €2 f(ih) — € 2 falin) — 26 > fo(fh) — 4e.

We now define the rest of the estimates, namely 7, ..., 7. Find the point that
equals argsup,cp_4, fo(z). This must yield a point which is not in H; since we’ve
shown above that (B — A;) N Hy = 0. This point must be in B N H; for some
2 < i < k since we proved that there exists at least one point, namely #;, in BN H;
for 2 <1 < k, and since B C H. W.l.o.g. suppose this point falls closer to 7, than
to any other n;, 3 <7 < k. We define this point as 7,. From these last statements
and from the definition of H,, we have 7, € H,. We can then define A, as was done
above for the general A;. There is a slight asymmetry in the way we defined the
estimates since we used 7j; as the pilot, in the definition of all A;, 1 <7 < k and for
the definition of the region B. Hence we will go through the proofs once more, to
show that they still work when for getting #;, 2 <: < k.

As was the case for Ay, here too we claim
(B=A)—A;)NH, =0
as we now show. First we prove that
79 € A,.

Suppose the contrary. Then there exists a z € 9A; on the ray r,, 7, and by definition
of Az, fu(2) < fu(i1) — Ge. Also, f is decreasing between 7, and 7, (since we showed

that 7, € H,, and by definition 5, € H,) hence

f(m2) = £(2) 2 f(i) = fa(2) 2 f(2)=€ 2 f(R)=€ > falif2)—2€ > fa(fn)—4e > falf)—6e

This is a contradiction. (Note, the inequality before last follows since

|Fa(h = fa(f2))] < 26
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In fact, for any 1 <1 # j <k, |fo(M:) — fu(;)] £ 2€ because for any 1 < i <k,

fa(B:) Z fa(ne) 2 f(n:) —e= M —e

and f,(%;) < M + ¢.) Now we prove the claim making use of the fact that 5, € A,.
Suppose the contrary, i.e., that * € B, and z € H, but z ¢ A,. This implies there
exist some z € 9A,, i.e., on the border of A, as in the definition of A,, such that
z lies in between 7, and z, i.e., on the ray r,, ,. Now, |z — 5| < |p2 — . Also,
since z € A, then f,(2) < fu(h) — 6¢. Since z,m, € Ha, then f(z) > f(z). And
fn(z) < fo(2) + 2€ because at any point, f, can jump by at most 2¢ from its current
value (due to |fn(:) — f(*)] < €). Hence fo(z) < fo(f1) — 6+ 2€ = fo(h) — 4e. So z
does not satisfy fn(z) > fu(71) — 4€. So z ¢ B. This is a contradiction. Hence after
removing A, from B, we are left with no points from Hj, i.e. ((B—A;)—A)NH, = 0.

As before, after removal of A; from B — A; we still have pointsin H;, 3 <: < k,

which are in B, i.e.
((B—A))—A)NH; #0 for 3 <i< k.

First we show that 5; € A, for 3 <7 < k. We have three key points, 7, 72 and #;.
Consider the line [, ,.. Clearly there exist a y € ,, ;. s.t. f(y) < L. That is because,
in general, on a ray through any two modes, 7;, n; of f, there must be a point y at
which the directional derivative f'(y;uy, ;) = 0, and also recall the definition of L.

(Note that y # n; since the two modes differ, i.e., ; # n;. ) So therefore

faly) S Lte< M=Te= f(m)=Te < fa(m)=6e < fa(in) —6e = fuly) < fu(f)—6e

where the first inequality from the left follows from the condition on e. Hence either
y & Ay or y € 0A,. But therefore the radius of A, is < |, — y| by definition of A,.

Also |2 — 12| < |52 — ni| by definition of 7j;. So we have a circle centered at #; with
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n; on the circle and 7;, y inside the circle, both lying on a line through #;. It is now
simple to see that |f; —y| < |, — ;| by taking a radius, of size |fj; — 7;|, and rotating
it until it goes thorough the point y. So the radius of A is < |2 —7;|. Hence n; € A,.

Now we prove that there exist at least one point in ((B — A;) — A;)N H;, namely
n; itself, for 3 < ¢ < k. Tt suffices to check if fo(n:) > fu(71) — 4, i.e. the definition
of being in B, since we already proved that 7; € A, and by definition of H;, n; € H;.
We have

fa(mi) 2 f(ni) — e = f(m) — e 2 f(in) — €2 fa(fh) — 2¢ > fa(ih) — 4e.

Using the above if we take argsup,ep_ 4, - 4, fn(), this must yield a point which
is not in H,, nor in Hy. This point must lie in BN H; for some 3 <: < k. W.lo.g.
suppose the point falls closer to 3 than to any other 7;, 4 < 1 < k. We define this
point to be 73. From these last statements and from the definition of Hj, we have
fis € Hs.

So it is clear that our procedure for finding 7;, 1 < ¢ < k continues as above until
all 7j; have been found, the last one being 9y = argsup,cp_4,-...ma,_, fa(z). After that

stage, we have removed A;, | <¢ <k from B, i.e., we are left with the region
| BNnAiN---NAj

(where intersection by the complement is the same as subtracting a region) whose
intersection with any of H;, 1 < ¢ < &, is empty. But recall that B C H;UH;. ..U H;.
This means the region that the learner is left with does not have any point z s.t.
fa(x) > fu(ih)—4e€ and at that stage he stops the algorithm since no point is returned

for the argsup of f,, t.e.,

AESUP B s as fo(®) = argsupp fu() = 0.
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Note that the learner does not need to know the number of modes, k, of f since all
he needs to do is keep finding the argsup of f, over a region which is totally defined
by the first estimate, 7;, and which becomes smaller and smaller until it becomes
empty exactly when there is no need to estimate anymore modes.

Finally we show that the above estimates are consistent as ¢ — 0. From above,

both #;,7; € A;.. Considering the terms inside the definition of A;, we have
m—nase—0

since
M = argsup,ex fu(x) — argsupyex f(z) = m

since |f.(z) — f(z)| — 0 for any z € X. Also,
falin) = f(in) = f(argsup,ex fa()) = f(argsup,ex f(2)) = £(m)
and f,(z) — f(z). Hence

Ful2) < Fulin) = 66} U (i)

= Ay:ly—ml sif inf fz—nl, f(z) < f(n)} U {mi}

Aie = {y:ly—il <inf jnf |2—4

= {y:ly—ml<0}u{n}=n
As both n; and 7); are in A, ;, the above implies that 7§, — n; as e — 0,forall 1 <7 < k.

5.5.2 The resulting P, o

In the previous subsection, it was only necessary to know M — L in order to specify
the allowed range for the accuracy parameter €, without needing to know the number
of modes of f. Thus far the algorithm yields consistent estimates for the modes of f,

where f € F.
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Using the modes estimates we can form a hyperplane estimate of the optimal

Bayes hyperplane as follows: Given the £ mode estimates 7;, 1 <1 < k, we minimize

ZNZ( ([, 11, w,))’

i=1

w.r.t. the (N — 1) unknown (N + 1)-

the function

Q..

imensional unit vectors wy,...,wxn_1, under

the constralnts
(wj,wy) =0,  for1<k<N-—1andk#j.

(Nonlinear programming is one approach to solve this.) This will find a line [ in RN
which is least;sqlla.l'e-close to the k mode estimates. We used here the fact that a line
in RY can be represented as intersection of affined hyperplanes in RY, ie., as the
set of all points that are orthogonal to a specific set of vectors w;, 1 < j < N —1.
The term inside the double summation represents the distance of the i** point to the
7" hyperplane. Thus e represents the total distance squared of the k points from the
line in RY, and minimizing e obtains the least square line [.

We then form the average

]

1k
T 2
and define the hyperplane estimator to be the unique hyperplane which is orthogonal

to the line [ and which goes through the point 77 (which is not necessarily on the line

D).
As n — oo, the mode estimates converge to the true modes and the hyperplane

estimate converges to the optimal Bayes hyperplane. So there exists some function

h(e€) such that the classification error of the decision rule based on this hyperplane is
Perrm' = PB(Lyes(l + h(f))

where h(e) — 0 as ¢ — 0 when the regions are labeled optimally. As in the Gaussian
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case, we can use the majority rule with ¢ log% labeled examples, where ¢; > 0 is
some constant, to guarantee with confidence > 1 — ¢ that this is true.

Now, the function h(e) is the accuracy parameter of the probability of error
of the classifier. The function h depends on the type of ¢’s that are permitted in
the definition of the problem family P since it is directly related to the amount of
deviation possible by the mode estimates 7j; when the kernel estimate f,(z) deviates
by no more than € from f(z) uniformly over z € IRN. The flatter the main humps of
f, the more such deviation is possible and the more P.,,,. can deviate from Ppggyes-

Therefore in order to be able to claim an accuracy h(€) uniformly for all problems
in P, given the sample complexities of Theorem 5.1 we need to ensure that we define
P with dependence on h. One way to create a P, is to consider a union of families of

classification problems, the it* family P; being composed of density functions

f!]i,ox(x) = gz(lx - 61l2)7 fg,’,@z(a:) = gz(lr - 02|2)3 01762 € RN
and such that for the class P;, the misclassification error accuracy is h;(€). (It is not

difficult to approximate h;(e) since it suffices to consider one type of function g;.)

Then define
P = U£‘=1'Pi
where [ < oo, and & is an envelope function for all the h;, 2 =1,...,1, i.e.
hiz) = st;p hi(z).
Then any classification problem in the family P, can be learned to an accuracy h(e)

using algorithm K with the sample complexities of Theorem 5.1.

5.6 Neural Network Clustering

Here we describe simulation results of a neural network (Kohonen [24]) based on

the Kohonen self-organizing maps, which can learn using unlabeled examples. Our
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results are qualitative, giving the intuition for comparing two extreme scenarios: an
only-labeled sample with side information about the class densities, versus a mixed
sample (few labeled examples) without side information; the latter is implemented
via a neural network.

The Kohonen neural network is a popular algorithm that has found numerous
applications among a wide range of fields, e.g., statistical pattern recognition, robot
control, adaptive communication schemes, and speech recognition. It is biologically
inspired by the cortical maps in the brain that are topologically ordered and organized
with high dependency on their input features. Its algorithm is very similar to the
k-means algorithm which is an ad hoc procedure used to partition multivariate data
into cells that resemble the clustering of the underlying distribution. We first describe
the algorithm and then show how it can be used for learning classification.

The neural network consists of k neurons with real weight vectors w; € X, ¢ =
1,...,k where X is the space over which examples = are drawn according to some
distribution. The neurons are arranged in a two-dimensional array which defines
their spatial neighboring. It is then possible to define the influence of a neuron on the
adaptation of other neurons in its vicinity. The notion of vicinity is not in X space
but is measured by the array-index according to which the neurons are ordered. The
weight vectors are adapted by the following iterative procedure

wi(t) + a(t) (z(t) —wi(t)) ifi € N(t),

wi(t+1) = { wi(t) ifid N.(t). (5.21)

where ¢ represents discrete time, «(t) is an adaptation-gain, and N.(t) is an index set
of the neurons around the winner neuron whose index is ¢. We define the winner as
the one neuron whose weight vector {uc is the closest to  w.r.t. the Euclidean norm,
ie., |z —w| = minjcick |2 —w;|. One can view the quantity |z —w;| as a real-valued

output of the 7** neuron. Hence in effect this algorithm is a model of a collection of
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neurons all seeing the same input vector z and adapting their sensitivity to z (i.e.,
the weight vectors) according to both the input z and the activity of other neurons.
As time evolves, the activity of only the nearer neighbors influence the adaptation of
a neuron’s weight vector. The parameters a(t) and N,(t) start at some initial value
and decrease at the rate of O(1/t). This choice is ad hoc, however with it, the vectors
w get ordered in a way which resembles the natural clustering of the examples which
are drawn according to the unknown underlying distribution. This is the fame of the
Kohonen self-organization phenomenon; it is based on the intuition that the density of
weight vectors w; in X space tends to imitate the probability density of the examples
z. In this regard it is similar to some non-parametric density estimation techniques.
It is possible to use this neural network for learning a two-class classification problem

as we shall see below.

We define a nearest neighbor partition of the weight vectors w with the i** vector

w; corresponding uniquely to a voronoi cell

v; = {2 : |z —w] < |z — w;l|} (5.22)

for j # 1. Clearly, if this partition is labeled, i.e., each cell gets a label 1 or 2, then
we have a decision rule: given an z, classify it by the label of the cell in which it
falls. Therefore the following learning procedure emerges: pick randomly k weight
vectors then show n unlabeled examples x, while adapting the w vectors according
to the Kohonen rule. Déﬁne a nearest neighbor partition using the w vectors, then
show m labeled examples and use the majority rule per cell, to label each cell, and
the resulting labeled partition is the classification decision rule. This is the basis for

our neural networks learning classification experiments. We now describe our results.
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A 4 Neuron Net trained on a 2 dimensional mixture of two gaussians with
different variances. After training only on unlabeled example, the neuron
weight vectors define a voronoi partition that is then labeled using labeled
examples.

1000
500 - -
0
0 200 400 600 800 1000
Class #1
Class #

X Yoronoi Vectors

Figure 5.3:
5.6.1 The value of a labeled example versus P, .

We investigated the mixed sample sizes, n and m with dimensionality N = 2, for
achieving a specified error; as in previous sections, the labeled examples are used
only for labeling the decision regions. We simulated a 4-neuron network with weight
vectors in R?. Unlabeled examples ¢ € R? were drawn according to a mixture of
two Gaussians each with a different covariance matrix (both were diagonal mﬁtrices).
Figure 5.3 shows the actual data drawn from this mixture; the lines represent the
voronoi cell borders of the partition. We ran six experiments, each differing in the
number of randomly drawn unlabeled examples ranging from n = 20 up to n =
10,000. In each experiment we then showed m randomly drawn labeled examples,
where m ranged from the minimum number necessary in order not to leave out any

cell unlabeled, up to m = 100. We measured the classification error as a function of
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n and m; the learning curves are shown below in Figure 5.4. The curves of the neural
network corresponding to the lower unlabeled sample sizes do not reach the low error
rate as m increases because we did not utilize labeled examples to further adjust the
decision border as in the different variants of the LVQ algorithm of Kohonen [24]. For
each experiment we averaged the learning curves of 50 different neural networks. As
a reference we then conducted an experiment, using the knowledge of the parametric
form of the class densities to estimate the sufficient statistics, i.e., the means and
covariances for each of the Gaussians, by using only labeled examples with which the
Bayes optimal decision border was estimated. With respect to the neural net, this
experiment is different since significantly more information (parametric/identifiability
knowledge of the class conditional distributions) is provided to the algorithm.
Examining the intersection of the (dotted) curve of the purely labeled experiment
with the (solid) curves of the neural network, gives approximately the number of
unlabeled examples necessary for the labeled sample size of the neural network to
differ by one example from the labeled sample size of the parametric algorithm. This
intuitively represents an upper bound on the value of one labeled example in terms
of unlabeled examples because it says that for a fixed error, with no side information
and with minimal usage of la.béled examples we need this many unlabeled examples
and one fewer labeled examples than the case which has maximum side information
and uses labeled examples efficiently. The points where the parametric algorithm
curve intersects the neural net curves are plotted in Figure 5.5. There we see that

the value of a labeled example increases sharply as the objective P.,..r is reduced.

5.6.2 m versus the dimensionality N

In this section we describe the effect on the labeled sample size m when increasing the

dimensionality N. A partition can be labeled by any one of the 2% labelings, where k
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The set of solid curves corresponds to learning with both unlabeled and labeled
examples. n = # unlabeled examples.
The dotted curve represents learning with only labeled examples.
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is the number of cells. Theoretically, we expect that as the dimensionality increases,
k needs to increase in order to construct a partition which achieves a given fixed error
criteria (under the optimal labeling). This in turn requires more labeled examples
in order to pick the optimal labeling with a fixed confidence. This effect of N on m
is clearly undesirable and since many realistic problems have high dimensionality we

sought an approach that can reduce this effect.

As unlabeled examples are taken to be abundant, we did not attempt to limit
their supply when choosing the algorithm. Our main focus was to limit the labeled
sample size. The Kohonen neural network, by principle, fits this criteria as it can
utilize primarily unlabeled examples for learning the decision regions. We therefore

J
considered a variant of its architecture.

The limitation of the voronoi partition, produced by the Kohonen network, arises
from the piecewise-linearity of the cells (from (5.22) a voronoi cell has hyperplane bor-
ders with its surrounding cells). When the classification problems consist of pattern
classes that are not linearly separable, it takes many voronoi cells to establish a rea-
sonable decision border. This raises the labeled sample size required to optimally
label the partition. However, if the cells have nonlinear borders then in many prob-

lem situations one can do with fewer cells and hence considerably reduce the labeled
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sample size.

The question therefore was whether a neural network utilizing primarily unla-
beled examples in a self organizing unsupervised learning can produce non linear cells
and adapt them to achieve a good partition, in particular, a partition that does not
have too many cells and which needs fewer labeled examples to be optimally labeled.

| Our simulation results (described below) show that a two-layer Kohonen net-
work, featuring self organization in both layers, performed with the above desired
characteristics fpr a variety of problems. On some problems this network had a la-
beled sample complexity superior (w.r.t N) to the voronoi-partition classifier (based
on the regular single layer Kohonen net), for instance, there were problems in which
the labeled sample size was a constant w.r.t. N. We now describe the simulations.

The architecture that we considered has two self organizing layers. The first layer
is a Kohonen network, i.e., a collection of neurons each of whose inputs is a vector z
which represents the pattern-class feature vector. The i** neuron is associated with
a weight vector w;. The output of the i** neuron is a real scalar g which measures
the Euclidean distance from z, i.e. g; = |t — m;|. These neurons adapt their weight
vector according to the Kohonen adaptation rule of (5.21).

The second layer consists of neurons each having a weight vector y;. Their input
is the vector g of outputs of the first layer neurons. The neurons of this layer also
adapt their y; according to the Kohonen rule.

Using unlabeled examples, we first train the first layer producing the adapted
w; vectors. Then using the same examples we train the second layer neurons. This
results in a partition of the transformed feature space G i.e. X is transformed to
G by the mapping ¢ = [|Jx — ma|, |& — mz|,..., |t — mk|]. Each of the second layer

neurons is associated with a voronoi cell, i.e.,
vi ={g:1g—ul <lg—wil}.
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Using labeled examples, we label the partition, assigning each cell with the label of
the majority of the examples that fell in it (or drawing with probability 1 its label if

none fell).

Given a test vector x, the network classifies it with the label of the cell in which
it falls. This establishes the classifier which we denote as the 2-layer network.

We simulated this 2-layer network and compared its m v.s. N performance with
that of the 1-layer network (i.e., the usual Kohonen network). Some examples of the
types of activation regions, i.e., cells, that the 2-layer network exhibited are displayed
in Figures 5.6 and 5.7. In these the input space X dimensionality is N = 3. The
region between the two mesh surfaces is a cell corresponding to one of the second
layer neurons. The first pattern class is represented by the black dots and the second
class by the gray dots. The nonlinearity of the surfaces is apparent.

We trained both the 1-layer and the 2-layer networks on a problem consisting
of four N-dimensional cubes, mutually contained as Cube; C Cube; C Cubez C
Cubey and where the first class is defined as Cube; |JCubez and the second class
as Cube; |J Cubey. We first drew unlabeled examples distributed uniformly and then
labeled examples distributed uniformly over each class. The case of N = 2 is displayed
in Figure 5.8. We measured the sample complexity m w.r.t. N for both networks,
which is needed to achieve a constant error rate across the range of N. Figure 5.9
shows the labeled sample complexity versus dimension N which, for the 1-layer-
network, increases with increasing N. The 2-layer network needed only a constant
number of labeled examples.

We then considered random classification problems, picking 30 clusters per class
randomly positioned over a two ring region. Figure 5.10 shows an instance of the
problem with N = 2. The vertices of the mesh indicate the position of the first layer

neurons and the black and gray clusters are class 1 and 2 respectively.
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We measured the error versus labeled sample complexity of 20 randomly chosen
1-layer networks and 20 randomly chosen 2-layer networks per dimension N and
plotted the results over a range 2 < N < 12. As a measure of comparison between
the 1-layer and 2-layer net we used the following ratio

ml-layer/ My-layer _ R

_m R
Perror,2/Per'ror,1 Rp

I
H

which measures the number, R,,, of 1-layer examples needed for every one 2-layer
example in order to achieve a ratio of R, 2-layer misclassifications per one 1-layer
misclassification. The higher it is the worse the 1-layer performance w.r.t the 2-
layer performance. As seen in Figure 5.11, this ratio increases as N increases. This
suggests that on average, the 2-layer network requires fewer labeled examples than
the 1-layer network, for the random-clusters-on-rings problems, and the saving in
labeled examples increases with the input dimensionality.

The ring problems are particularly difficult for a linear partition since class 1
encloses class 2 and the difficulty becomes worse with multiple rings. There are a

[1Takd

host of easier problems, e.g., a cluster in the shape of a next to another cluster,
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but not containing it. Here the 1-layer network performs better (i.e., fewer labeled
examples are needed for same error) then in the multiple ring case, but the 2-layer

net still does better than the 1-layer.

We also ran both types of networks on problems with classes that consist of
randomly positioned non overlapping clusters but not on ring contours as before.
Again, performance represented the labeled sample complexity versus dimensionality
N. Here, the 1-layer performed as well as the 2-layer net. Trying to decrease the
number of cells in the second layer resulted in poor performance. This is due to the
limitation of the nonlinearity of the cells. The decision borders that can be achieved
with partitions based on the 2-layer architecture are not better than those that the
usual voronoi partition achieves, when considering the average performance over these

types of randomly generated problems.

The above ideas fit under a common strategy of sample reduction, namely fitting
the family of possible classification decision regions to the family of classification
probléms. The 2-layer network reduced the sample complexity for problems where

the class clusters are distributed over N-dimensional spherical contours.
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5.7 The Method of k-Means

The Kohonen neural network uses an adaptation rule for the neural weights that
is similar to the k-means algorithm (cf. MacQueen [36]). This procedure adapts k

vectors, ¥y, . . ., Yk, S0 to minimize the empirical mean square error (MSE)

(V) = =

1 » . 2
2 v

n
i=
where Y = [yy,...,%] with y; being N-dimensional column vectors and the z; are

the N-dimensional example vectors. The matrix Y defines a voronoi partition with

k cells. The true MSE is denoted by

— M — 3 2
e(Y) = E min o —y;|

where expectation is w.r.t. the underlying pattern mixture density f(z). A necessary
condition for minima of e(Y) is that the partition must have its k vectors as the
centroids of the corresponding cells (cf. Gersho A. [37]).

Using the theory of uniform SLLN we can find the sufficient number of examples
z;, such that for any pa.rtition Y, [e(Y) — e,(Y)| < € (cf. Pollard [21]). It follows
that an algorithm which finds a partition Y’ that minimizes e,(Y’) in effect finds
a partition which minimizes e(Y) to within € accuracy. This idea can be used for
classification problems. Suppose one of the r minima of e(Y’), denoted by Y™, is a
partition for which Perror = PBayes- We can then use unlabeled examples together
with an algorithm that locates the r local minima of e,(Y) to estimate the local
minima of €(Y) and use labeled examples to choose the best performing partition
out of the r possible ones. This would require an algorithm which uses unlabeled
examples to discover consistent estimates of the r global minima of e(Y’) and hence

would be similar to the mode estimation of Section 5.5.
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We look at the problem in which r = 1, i.e., e(Y) has one global minimum

and hence the labeled examples are not needed for choosing one of several possible

partitions, but just to label one partition estimate, Y, of Y*.

We first present the algorithm and then derive its sample complexities.

Algorithm S:

The setting:

Given:

Begin:

End.

C c R? is a compact parameter space, Y = [y1, y2] € C, where Y indexes
a two-vector voronoi partition.
The MSE is defined as

— ; — ]2
e(Y) = Elrsrljlélzlx yil“.
The two pattern classes are such that there exists a two-vector voronoi

partition, Y™ € C, being the partition of the Bayes classifier, and such that
e(Y™) is the unique global minimum of the function e(Y’).

m labeled examples and n unlabeled examples drawn according to an un-
known mixture f(z).
1) Using the unlabeled examples find the point Y* which minimizes the
empirical MSE, i.e.,
"% _ . = i . a2
Y = a1gme€Cn glrglgz lz; — y;]°.

2) Form the hyperplane perpendicular to the line through 7*, 1 = 1,2,
and which passes through their midpoint.

3) Label the two decision regions across the hyperplane by the label of
the majority of the examples on either side.

As an instance of such a problem, consider for simplicity, the classification prob-

lem which consists of two pattern classes, each in a cluster sufficiently separated so

that the partition, Y™, defined by the hyperplane perpendicular to the line through

the two cluster-centroids, separates the two clusters and achieves the global minimum
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of e(Y). We now find the sufficient number of unlabeled examples, n, and labeled
examples, m, to learn the Bayes rule to within small error and high confidence.
Unlabeled examples are used to compute the empirical MSE e,(Y"). In order for

minimization of the empirical MSE to yield a good partition we need

. 1 & .
P ( sup [Bminfle = nf e - ) - 5 S mindles =l i =l
[v1,32]€C n

=1

> e) < 6/2
(5.23)

where §, ¢ are two arbitrarily small positive constants, and y;,y. are the two vectors

defining a partition Y whose two regions are
Ri={z:le—nl<le—wl}, R={z:lz—yl|2lz—1yl}

and C is a compact subset of RY x RY which contains the optimal [y}, y3]-based
partition which achieves the minimum MSE.

In order to use Theorem 3.9 we need to define a class of bounded functions. Let

Jurwn(2) = min{|z — y1|?, |z — y2[*}. Then

P( sup Egyl,uz zgyly'.‘h )
fv1.32]€C
< ( sup /901,1/2 $)(]P_ Zgyl,uz )zeD >€/2)
(v1,v2)€C
+ P( sup / Gy (T (lP-——ng,uz z;)1zepe >e/2) (5.24)
[v1,92]€C

where D is a compact subset of RY. Define the class

= {Jum/z( Meep @ [y1,92) € C}.

The functions in H are bounded since
min{le — %, le — 1’} < 202 4 202](lnl + 1v2) + 1P + vl < M

as |z|? is bounded over the compact region D and |y;]?, |y2|* are bounded over the

compact set C. Theorem 3.9 can be used to bound the first term of (5.24) by é/4.
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The second term is bounded by

1 n
P| sup / Gy, de,+ sup =) Gy, :v,-lx‘.Dc>e2)
(Lsup | smn@ir]+ sup |25 n(etocr| > f
and
sup / gylyy,(m)dPI S/ SUP Gy, ()| dP S/ |a:|2dP+M1/ |z|dP + M,
[v1,p2)€C IV D¢ De |{y1,u2]eC De De

where M;, M, < oo and we used the fact that |y;|?, |y2|* are bounded over C. We
assume that the class mixture f(z) is such that there exists a compact D that makes
these last integrals arbitrarily small; in particular, for the case in which the class
clusters are bounded we can let D be a ball which contains both clusters which
makes these integrals equal zero since the probability measure (corresponding to the
mixture distribution) is zero outside the ball. Hence we can bound the the right side
by an arbitrarily small quantity A > 0. As on page 67, the second term of (5.24) is
then bounded by /4 where § is a given arbitrary confidence parameter.

Proceeding to find a bound on the first term of (5.24) by using Theorem 3.9, we
only need to calculate the VC dimension of the class H of functions. First we find the
VC of the class A of functions {|z — a|? : « € RN}. A function here can be expressed

as a linear combination

N N IN+1
le —al? =Y 22 -2 awi+ o’ = ) aidi()
1=1 =1 =1

where «; are constants and the ¢;(z) are basis functions. The class of graphs of
these functions has VC = 2N 4 1 by Theorem 3.6 and by Definition 3.5 it follows
that VC(A) = 2N + 1. The graphs of functions of H are intersections of graphs of

functions of A intersected with a fixed set {(z,2):0 < z <1,ep}, e,
{(z,2):0< 2z < e — )} N{(z,2): 0< 2z < [z — 32y N {(z,2): 0 < z < lep}-
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Given an m-sample, the number of dichotomies achieved by such class of graphs is at

VC(A),,VO(A

most m m ). Finding the largest m such that it equals 2™ yields

VC(H) < 2(4N + 2)log(4N +2).

Plugging this into Theorem 3.9 we have the sufficient number of unlabeled examples

n in order for (5.23) to be satisfied is

64 M
€2

n 2

((IGN + 8)log(4N + 2) log 16eM 16) .

P +10g7

With e-accuracy when estimating e(Y) by e,(Y"), implies we can estimate Y* =
y1,vs] by Y = U1, 95 st |y — 97 £ «, ¢ = 1,2 where a > 0 is arbitrary small
Y1,Y2 VY2 i Y

depending on €, Y*, and ¥*. Developing on this theme, we have

A A

e(Y")—e< e (V) <e(Y)<e(Y) 4 e
where the middle inequality follows from ¥* = argminyccen(Y). So

le(Y*) — (V)] < 2e.

Now assume that e(-) is continuous and 1-1 at least in some ball around Y* (for
conditions cf. Apostol [28] p. 370). Then (cf. Rudin [27] p. 90) its inverse is

continuous there and therefore

‘e(Y*) — (%)

§2€:>‘Y*—)A/*

<a

for small enough € > 0, where « is arbitrarily small and depends on e, f’*, Y.
Hence the learner draws n (as above) unlabeled examples then locates the argmin
of e,(Y). This vector, f’*, is a-close to the vector Y* at which the minimum of
the true MSE, e(-), occurs. That implies, |77 — y¥| < a, ¢ = 1,2. Recall that by

assumption, the partition based on the hyperplane which is associated with this Y*
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achieves the minimum P.,,.,. From Section 4.1 we have P.,;or = Pgayes(1 +O0(c(€)))
when labeled optimally. From Section 4.3 we need m = Alog %, for some constant
A, labeled examples to guarantee that the probability of not labeling optimally is at

most §/2.

Combining all of the above it follows that with confidence > 1 —§, and

64 M?

n>
62

((16N + 8)log(4N + 2)log 16eM 16)

log —
+og5

€

unlabeled examples and

m = Alog-(lg

labeled examples, algorithm S which minimizes the empirical MSE finds a classifica-
tion rule which has

Per'ro'r = PBayes(l + caZ(e))

for some positive constant ¢ and where () depends on the problem by depending

on the MSE function e(Y).



Chapter 6

Conclusions

Based on the finite sample complexity results we now discuss their implications on
the worth of a label example under several different scenarios. All constants c;,
¢ =0,1,2... are finite and positive.

First we compile the results concerning the learning of a classification problem
with an underlying Gaussian mixture. In the following discussion, f will denote the
unknown underlying Gaussian mixture of two equiprobable pattern classes, unless
stated otherwise.

We showed in Section 4.2 that with knowledge of both the parametric form of f

and that f is a member of an identifiable family, algorithm M suffices with

N? 1 1
ny = cl—e—gg (Nlog - + log -g)

unlabeled examples
mp = Cg log:s-
labeled examples. We compare this to the purely-labeled sample scenario of Section

4.1 where a learner using algorithm E required

BLPWLI
mp = —— log { =%

labeled examples to learn the same problem. Clearly there is a reduction by intro-

ducing ny; unlabeled examples. Dividing nys by the difference mg — mys yields a
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rough estimate of the worth of a label example, namely

C3N2
e38log N (6.1)

unlabeled examples. This is polynomial in NV, %, and %.
In Section 5.2 we showed that when learning the same classification problem but

not knowing the parametric form of f nor the fact that the class of Gaussian mixtures

is identifiable, algorithm K required

13Nlog(5+log N) | 1
ng = ¢4 eﬁ'}’\l‘ og Zg
unlabeled examples and
1

my = cs log 5

labeled examples. As before, comparing this to mg we have that a labeled example

is worth roughly
el 3N log(5+log N)

Nlog N eToew

(6.2)

unlabeled example.

This is roughly exponential in N and % and is therefore considerably more than
the previous polynomial expression. As discussed in Chapter 5, the same ng and
my apply also for algorithm K when learning a function with a more general form
than the Gaussian mixture f. So the reason that it takes significantly more unlabeled
examples to learn f with algorithm K than with algorithm M is due to the larger
complexity of the family of functions of which f is a member under algorithm K.

Therefore when learning the same Gaussian mixture f, under the nonparametric
scenario, a labeled example is worth an exponentially more unlabeled examples than
in the parametric scenario.

We can equivalently express the above results by showing Pe,.-(m,n) as a func-

tion of m and n, i.e., Peror(m,n) = g(m) + h(n). For the mixed saniple learning, in
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both the parametric and the nonparametric scenarios the function g(m) is O(e~*™),
m — oo, for some constant by > 0 independent of N. For the parametric case the
function h(n) is O ((-’3—)61), n — oo, and in the nonparametric case the function
h(n) is O ((;%"},v)logN), n — oo, where by, b, > 0 are independent of N. Cover &
Castelli [5] report a similar expression for the Pe,or, namely a polynomial decrease
in n and exponential decrease in m however our results specifically point out the
dependency on the dimensionality N. For fixed N, it is clear that in both scenarios
the number of unlabeled examples is exponentially more than the number of labeled
examples. With variable N we conclude that the value of a labeled example is ex-
ponentially more when in the nonparametric scenario. In the purely labeled sample
case, Perror(m) is O ((—Z—)h), m — 0o, for by > 0 is constant with N. Hence the
rate of decrease of the error w.r.t. m is exponential when unlabeled examples are

introduced to the learning. Without unlabeled examples, it is only polynomially fast.

In Sections 4.4, 4.5, we considered the same Gaussian mixture problem, but
with general a priori class probabilities, p and 1 — p. The algorithms E,, M, and
M, assume that f is a member of a parametric family of identifiable mixtures. The
parameter vector indexing an f in this family is [#, p], where p is the class “1” a priori
probability and 6 is the two-means vector. W.l.o.g we assume p < 1 — p. We now
determine the tradeoff between the number of labeled and unlabeled examples, under
the case of general 0 < p < % in the following three scenarios: (1) both 6 and p are
learned using a purely labeled sample (2) 8 is learned using an unlabeled sample, p
is learned using a labeled sample (3) both 6 and p are learned using an unlabeled

sample. (The last two are the mixed-sample cases.)

The sample complexities sufficient to achieve P or < Ppayes(l + c7€) with con-

fidence > 1 — & are as follows: in (1), for constant p, the sufficient labeled sample
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is

N N

mE, = cs— log —.
€ €

When p varies it effects m through a factor polynomial in ;1;, howeverasp — 0, m — 1
while P.,.,, — 0.

In (2), for fixed p, the labeled sample complexity decreases to

1 1
ma = Co— log -
€ €

which is independent of N, on account of introducing

Nilog?

nan = 010—66

unlabeled examples. The parameter p effects n through a factor of log? (-71;) and m
through a factor polynomial in % butn - 0andm —1asp—0.
In case (3), the labeled sample myy, is practically a constant, while for a fixed p,

the unlabeled sample size is
N3log?
na, = 011"—“6‘5‘"
For variable p, n depends on p through a factor of %—ﬂ, however as p — 0, n — 0,
and m — 1.

From the above it follows that n,m, are effected by p in the worst-case through
a factor polynomial in %. When p is estimated using the unlabeled sample, n grows
w.r.t. p, faster than the rate at which m grows w.r.t. p under the scenario where
the labeled sample is used to estimate p. So there is a tradeoff between cost and
amount of examples— unlabeled examples are cheaper but more of them are needed.
The same situation also applies for the estimation of the means—when unlabeled
examples are used, more of them are needed than when labeled examples are used.

For p — 0, the labeled sample goes to 1, and the unlabeled sample goes to

0. This is anticipated since small p implies that one of the pattern classes has a
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negligible effect on the decision rule and hence can be ignored, letting all of RN have
the complement label while suffering a small misclassification error. The algorithms
that are used, all need at least one labeled example.

Observing the number of unlabeled examples needed to reduce from mg, to mas,,
we have as a rough estimate that one labeled example is worth

N?log?
012W
unlabeled examples, which is a polynomial in %.

We also partially analyzed algorithm M which is based on the MLE technique,
for the two classes having the same non unit covariance matrix. We encountered some
difficulty in the part of the proof (of Theorem 4.2) where it is necessary to show the
independence of the function ®(8) for all N greater than some constant. However in
all other parts there was no difficulty (the work is more involved than for the unit
covariance case). In particular, we let the parameter 6 = (1, p2, £71] and under
the condition that the unknown mixture f(z|6) has a nonsingular covariance matrix
Yo, we can define a compact set containing 6 and not containing any points with
singular covariance matrices. This enables us to define a ‘bona fide class of bounded
functions, indexed by the parameter 6, and thereby be able to apply the uniform
SLLN theorems. We conjecture that for the part of the proof which was not yet
completed, there exists a way to find the necessary symmetry in the integrals that
define ®(0) such that for N > Ny, supggp s, ) (8) is constant, where 3 < No < oo.

Based on this, the unlabeled sample complexity will still remain polynomial in NV, %,

Onft

In Section 5.7 we considered the k-means method—a nonparametric method to
learning classification which is based on an ad hoc clustering approach. As before,

the classifier here consists of a partition and a labeling of each of the decision regions.
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The partition comprises of voronoi cells, each associated with a vector y;, hence the
partition can be indexed by a ma.‘trix Y of k vectors y; € RY, 1 < ¢ < k. The
classical vector-quantization techniques (cf. Gersho [37]) uses such a partition as a
mapping from the input space containing the vector z to the output space which is
the finite set of vectors y;, 1 < ¢ < k. A common measure of discrepancy between the
random input  and the output y is the means squared error (MSE). Thus a good
partition, for vector quantization, is one which minimizes the MSE. A classifier can
be constructed based on the partition provided that each voronoi cell is assigned a
label of either class. There are several labelings possible and the learner is to pick the
one which minimizes the probability P.,,,, of misclassification. In general, a partition
which has a minimum MSE does not necessarily has a minimum P,,,,, under optimal

labeling but for some problems the MSE partition does yield a good classifier.

We considered the problem for which there exists a unique minimum MSE par-
tition with Per,o,r = Ppgyyes- Using algorithm S we showed that it is sufficient to
have nps be polynomial in 1, log$, and N, to achieve P, which is cjaa?(e)
where «a is a function depending on the smoothness of the MSE function e(Y) =
Emin {|z — y1/?, |& — 32|} over the region C C R*M. Here « is analogous to the
function h of Section 5.5 in that they both represent the worst misclassification er-
ror deviation when the uniform deviation between the empirical and the true means

over a class of functions is at most e. The labeled sample size mjss is practically an

absolute constant.

When compared to the results of algorithm K, it may first seem surprising that
this nonparametric k-means classification scheme requires only a polynomial number
of unlabeled examples. However we note that a.lgo'rithm S is really parametric since
it searches for an optimal partition, or its associated parameter Y*, in a Euclidean

parameter space, (we still call this a nonparametric approach to classification since
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knowledge of the parametric form of the class densities is not required.) So we should
expect its sample complexities to be of the same order of magnitude as for algorithm
M which is also based on a search for a function in class of parametric functions.
Consequently we do not anticipate such a parametric approach to perform satisfacto-
rily on a rich nonparametric family of density mixtures since the complexity of such
a family of functions mismatches the complexity of the parametric function class on
which algorithm S is based. However with heuristics, as for instance in the different
variants of the LVQ algorithm (cf. Kohonen [24]) where the partition is adjusted

using labeled examples, it may be possible to improve the classification error ad hoc.

We now discuss another possible approach to estimate the modes of f by using
the kernel technique. In Chapter 5, algorithm K estimated f(z) using the kernel
technique uniformly for all = € RY, i.e. we used sup R~ %}fﬁ%ﬂ%—u as the estima-
tion discrepancy. However only the modes of f were needed by the algorithm for
constructing the decision border. This suggests that perhaps it suffices to estimate
the functional values of f at its k¥ modes 7;, 1 < ¢ < k. The difficulty is that the
modes 7; are not known hence one cannot even specify what is there to be estimated.
However suppose that the learner does know that the modes of f are restricted to be
in a ball B of radius p centered at some point x¢ of IRY. He can then consider an
e-cover, S, (w.r.t. the Euclidean norm) of B having a cardinality which is bounded
above by s, = (zf)N . (For brevity we also denote it by s). By definition, for any point
¢ € B there exists a y; € S such that |y; —z| < e. For continuous f and small enough
e > 0 we can guarantee that there exist y; € S, each e-close to its corresponding 7;
such that |f(y;) — f(n;)| < a for arbitrary @ > 0, and 1 < j < k. (Note, the learner

knows the points y;, 1 < j < s.)

The learner may then use the kernel technique to generate the s values, f(y;),
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as a-estimates of the points f(y;), i.e.,

1& i — Y .
fn(yj)=;ZU_NK (-x——yi>, 1<5<s,

i=1 4
where z;, 1 < i < n are the unlabeled examples, such that |fa(y;) — f(y;)| < . It
follows that for each ni, 1 <1 < k, there is a subset A; of S which contains points
y; such that |f.(y;) — f(m)| < 2, and from above, there exists such a point which
is e-close to 7;. Thus using a variant of algorithm K the learner can obtain e-close
estimates of the modes of f.
It only remains to show the sample complexities for this approach. The analysis

follows identically as the one in Section 5.2, except now the class K, is defined as
Ke = {Kyj,a(a:) 1y; € S}

instead of

Ko ={K,,(x):yeDC RV}

which was the case in Chapter 5 where f,.(y) estimated f(y) uniformly for y € RN,
We can use the cardinality |K,| instead of a covering number (and hence not requiring
VC(K,)). From above we have |K,| = s.. Following (5.12) and using the cardinality

w.r.t. the appropriate accuracy yields a sample complexity

4Nlog(5+log N)

n = cy——x—log—
€2log N 66

which differs from the n of Theorem 5.1 in the 4 instead of the 13. So this other
approach contributes to an exponential reduction in the number of unlabeled examples
from our algorithm K approach however the resulting unlabeled sample size is still
exponential in N and %, and an additional constraint is for the learner to know a
priori the region B which contains the true modes of f.

As a summary, in this thesis we considered an interesting simple question raised

by T. M. Cover [5], which asks what is the tradeoff between labeled and unlabeled
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examples for learning a classification rule. We used theory from statistics and mathe-
matical analysis to formalize this question in terms of a probabilistic setting in which
sample sizes not only influence the misclassification accuracy but also the confidence
of the classification decision. It became clear as we began to get expressions for the
value of a labeled example, that side information is a crucial assumption in learnabil-
ity. That is, learning by examples is very dependent on what is assumed to be known
by the learner a priori.

It seems that there should be a way to represent both examples and side infor-
mation in the same model of learning, so that for instance, one would be able to tell
how many more examples are needed if less side information is at hand, or vice versa.
This is an interesting theoretical question. If an elegant and intuitive model could
be contrived to represent it then its consequences will have strong theoretical, if not
also practical, implications on our understanding of information in conjunction with
learning by examples.

There has been some related work on this question, cf. Abu-Mostafa [45] repre-
sents this in terms of giving the learner hints and uses VC dimension arguments to
formalize it. Haussler, Kearns & Schapire [44] consider a Bayesian-information theo-
retic model in which the unknown function is drawn according to some prior density
from a function class, and different degrees of side information are represented by
using different types of priors.

From our work we saw that in both the parametric and nonparametric scenar-
ios, there was a primary function class defined, which was indirectly related to the
class of mixtures that contained the unknown underlying mixture. This primary
function class in essence represents the “engine” of the so called uniform SLLN—
the mathematical machinery that produced for us all the sample complexity results.

For instance, going from the nonparametric kernel technique to the parametric MLE
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takes us from the function class
K, = {Ka‘,(y) cx € EC IRN}

to
G = {g(a16) = log f(2|0)15(z) : 0 € © C R?}.

Both engine classes have a complexity measure, namely the covering number or the
VC-dimension, as we showed in preceding chapters. The complexity of the class K, is
exponential in NV while the complexity of G is linear in N. So it seems intuitive that
whatever side information is available to the learner in the parametric scenario, and
which is abeyant in the nonparametric kernel scenario, could possibly be represented
by some function of the difference between the complexities of this two function
classes. It is as though the teacher points his finger at a lower dimensional area
in some high dimensional space, and thereby communicates to the learner this side
information, i.e., restricting the learner to search for the unknown function over a
a less complex set of functions which contains the unknown desired function. This
results in requiring fewer examples, for instance, as we saw in the significant reduction
of the unlabeled sample complexity when going from the kernel to the MLE scenario.
In ongoing research, we are investigating possible models that represent these ideas
in a formal framework.

We have used the majority rule algorithm with thé labeled examples for all the
mixed-sample learning algorithms when choosing the labeling of the partition of the
classifier. It is worth noting that the same rule can be used in the operation of the
classifier, i.e., when one needs to test a hypothesis of having class “1” or “2”. One
can take r test examples and let the classifier assign a labeling to each example. Then
choose the hypothesis which corresponds to the label of the majority of the  examples.

As in the classical hypothesis testing, the larger r the better performance, i.e., the
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Jower the probability of making a bad hypothesis decision. In fact, the probability of

error decreases to 0 exponentially fast with r.

Extensions to the case of more than two pattern classes and to other parametric
forms can be tackled using the same approach as we have taken here. In the para-
metric approach one would need to have identifiable mixtures and the MLE analysis
will be very similar to the Gaussian case. The function class over which the uniform
SLLN is to be applied will possibly have a different complexity but in most cases
we expect a polynomial growth for the number of unlabeled examples w.r.t. the im-
portant variables %, %, and the dimensionality N. In the nonparametric scenario,
it would be interesting to extend and determine other classes of mixtures where the

modes of a mixture f can determine the Bayes partition, in particular for the cases

of more than two pattern classes and for nonlinear decision borders.

An interesting extension for learning classification is using examples that can
take on a label of a fuzzy nature. For instance one type of such examples is denoted
by (z;,¥:), 1 < ¢ <[, where z; € IRY is a feature vector and 0 < y; < 1 represents
the probability that z; is of class 1. If y; = 1 then it corresponds to having a labeled
example from class 1, while if y; = 0 then it is a labeled example from class 2. When
Y = % the example is considered as unlabeled. This kind of examples therefore allow
for a full spectrum of confidence in the label (i.e., from 0 to 1) and may be useful in
situations where the teacher can only provide likelihoods or confidences about the true
origin of a particular feature vector z. Referring to this type of examples as the fuzzy
kind it is interesting to ask what is the sample complexity, I, for learning a decision
rule using examples of this kind. One approach is to use the [-sample to estimate
the a posterior functions p(1|x) and p(2]x) which directly identify the Bayes rule as
in (1.1). It suffices to estimate p(l|z) as p(2|z) = 1 — p(l|z). Let us assume that

the mixture density f(x) and the class conditional densities are parametric. In this
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case the function p(1|z) is a member of a parametric class of functions, indexed by a
finite real vector ¢ and denote it by ps(1|z), where ¢ = [p1, p2, 01,02] also indexes the
mixture f(z|$) in the class of mixtures. We can let the teacher draw (:, ;) according
to some arbitrary probability density g(z,y) and define a discrepancy measure as
E (ps(1]z) — y)* where y is a function of z and represents the true unknown pg, (1|z),
and ¢, ¢ € A C R* where k does not necessarily equal the dimension NN of the
feature vectors & (the expectation is w.r.t. g(z,y)). We can apply the uniform SLLN
over the class of functions H = {hy(z,y) = (ps(1]z) —y)?: ¢ € AC R} toget
SUPgeA ‘Ehd,(m, y) — %E'-ﬂ h¢,(m,»,y,-)l < € with confidence > 1 — 6.

The learner then finds a function hge which minimizes the empirical mean ¢ Y,
he(zi,yi) over all ¢ € A, and for sufficiently small ¢ > 0 it follows that pe+(1]x) is
a close estimate of the true unknown a posterior py,(1|z) in the MSE sense w.r.t.
any probability density g(z,y) (due to the distribution independent results of the
uniform SLLN theorems). In order for this to hold a sufficient sample complexity
can be calculated by determining a bound on the covering number of H. Roughly
speaking since the parameter set A is in R* which is also the parameter space of the
mixture density f(z|4) then the size [ of the fuzzy sample will differ by a constant
factor (w.r.t. the dimensionality & of the parameter space) from the unlabeled sample
size n that is sufficient to estimate the parametric mixture f(z|¢). In all the mixed
sample cases investigated earlier we saw that the number of labeled examples m is
only clog 3 which is significantly smaller than n so therefore [ is of the same order as

total m + n.

Hence when learning a classification problem one can either use unlabeled exam-
ples to estimate the class conditional densities and subsequently the decision regions
and then label them using the labeled sample or use a fuzzy sample to estimate the a

posterior functions p(1|a) and p(2|x) which directly result in an estimate of the Bayes
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decision rule. In both cases the total number of examples is roughly the same. There
are many other types of samples that one may investigate, for instance, introduce
a noise component to the labels by making the label be a random variable z which
takes on the value y (which is the true label) with probability 1 — a for small a > 0
and takes on the complement label y¢ with probability . This type of examples are
useful when representing the possibility of miscommunication between the teaéher
and the learner. Clearly an investigation of learning with such examples and other

variants of this type are interesting and will require more work.

In the mixed sample approaches we considered both the unlabeled and labeled
examples as being drawn according to the underlying true unknown densities fi(x)
and fo(z). This represents a natural setting in which there is no teacher which
controls the learning process but instead a passive “nature” presents the examples. It
is a suitable representation when learning is primarily done using unlabeled examples
as was true in the cases we investigated and as we mentioned above side information

is related to the complexity of the engine-class of functions over which the uniform

SLLN is applied.

However when dealing with a purely labeled sample or a fuzzy sample as above
there is an obvious role for a teacher to represent side information— having an active
teacher which is free to choose a particular probability density g(z,y) for randomly
draWing the examples. In the previous discussion regarding the fuzzy sample the
sample size | was distribution independent, hence the freedom to choose g(z,y) was
not exploited. When the teacher uses a particular distribution to draw the examples
he restricts the learner to search for the unknown function in an effectively simpler
class of functions, i.e., one whose complexity is the covering number w.r.t. probability
distribution ¢(z,y), which may be smaller than the upper bound based on the VC-

dimension of (3.8). This complexity measure has a direct bearing on the sample
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complexity (see (3.9)) hence it may be possible to reduce the sufficient sample sizes
(both for the purely labeled and the fuzzy sample) by selecting particular probability
densities g(z,y) which is effectively showing side information. When the sample space
is discrete and the functions are indicator of sets (cf. Benedek & Itai [49)]) it is clearly
seen that the sample size [ is directly related to the distribution g(z,y). Using these
ideas it is possible to choose distributions that place mass only on “interesting” or
relevant sets of the class and therefore in effect reduce the complexity of the class

resulting in a reduction of the sample size. For more related work see Benedek & Itai

[50], Barlett & Williamson [51].

The subject of animal learning is related to learning with labeled and unlabeled
examples. In real life, an animal gets penalized when making a wrong choice. The
penalty can be viewed as the negative label. In this respect, it is reasonable to expect
that an animal tends to minimize the number of labeled examples that it needs for
learning basic primitive tasks as the cost of negative labeled examples is high (for
instance, a negative label may mean the animal looses a limb or perhaps its life).
Young animals in the wild need to learn very quickly (relative to humans) in order to
achieve the stage in which they no longer rely on their parents hence considering that
labeled examples are rare or costly (especially for animals who do not have a language
of exact communication) it is rational to suppose that animals rely on learning with
unlabeled examples which are abundant in their natural habitat and less on labeled
examples (of course the genetic factor is also very important here since it may result
in many fewer things necessary to learn). The biological nervous system in particular
the brain of the animal perhaps uses mechanisms or neural architectures which put
more weight on learning with unlabeled examples and minimize the need for labeled

examples.

The self organizing neural networks that we considered in Chapter 5 are similar
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to some biological neural networks (cf. Kohonen [24]). It is known that topological
maps similar to those which arise in self organizing Kohonen neural networks (which
use primarily unlabeled examples) are common in the real brain. In our simulations
we saw that specific neural architectures need fewer labeled examples therefore it is
conceivable that biological neural networks possess architecture that need fewer la-
beled examples. This may be achieved by specialization, i.e., networks that represent
decision rules which are based on partitions having separating surfaces that are fit to

a particular class of pattern classification problems.
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