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a b s t r a c t

Techniques for the logical analysis of binary data have successfully been applied to non-
binary data which has been ‘binarized’ by means of cutpoints; see Boros et al. (1997, 2000)
[7,8]. In this paper, we analyze the predictive performance of such techniques and, in
particular,we derive generalization error bounds that depend onhow ‘robust’ the cutpoints
are.

© 2011 Elsevier B.V. All rights reserved.

1. Logical analysis of numerical data

1.1. LAD for binary data using positive patterns

Logical analysis of data (LAD) comprises a set of techniques to produce a data classifier. In classical LAD for binary data, we
have a setD ⊆ {0, 1}d×{0, 1} of labeled observations (or data-points) (x, y). Here x is an observation and y the corresponding
binary label. The set of observations is partitioned into a set D+

= {x : (x, 1) ∈ D} of positive observations (labeled 1) and a
set D−

= {x : (x, 0) ∈ D} of negative observations (labeled 0). We shall sometimes abuse notation slightly and talk of x ∈ D
when we should say x ∈ D+

∪ D− (because, technically, D is a set of labeled observations). The aim is to find a function h
of a particular, simple, type (called a hypothesis) which fits the observations well. In a sense, such a hypothesis ‘explains’
the given data well and it is to be hoped that it generalizes well to other data points, so far unseen. That is, we should like
it to be the case that for most x ∈ {0, 1}d which are not in D, h classifies y correctly, something we will make more precise
shortly. Obvious candidates for such hypotheses are those that are extensions of D, meaning that, for all (x, b) ∈ D, we have
h(x) = b.

In the standard LAD method for binary data described in [10], a disjunctive normal form Boolean function (a DNF)
is produced. First, a support set of variables is found. By this is meant a set S = {i1, i2, . . . , is} such that no positive
observation takes the same values as a negative observation on all the coordinates i1, i2, . . . , is. (So, the positive and negative
observations are distinguishable as sets when projected onto the coordinates given by S.) If S is a support set then there is
some extension of D which depends only on the Boolean literals ui, ūi for i ∈ S. In the technique described in [10], a small
support set is found by solving a set-covering problem derived from the dataset D. Once a support set has been found, one
then looks for positive patterns. A (pure) positive pattern is a conjunction of literals which is satisfied by at least one positive
observation inD (inwhich casewe say that the observation is coveredby thepattern) but bynonegative observation.We then
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take as hypothesis h the disjunction of a set of positive patterns. If these patterns together cover all positive observations,
then h is an extension of D.

1.2. Binarization of numerical data

The standard LAD techniques apply when the data is binary, D ⊆ {0, 1}d × {0, 1}. But in many applications, one deals
with numerical data, in which D ⊆ Rd

× {0, 1}. Extending the methods of LAD to numerical data has been extensively
investigated and used in many applications; see [8], for instance. A key initial step in using LAD methods when the set of
observations has real-valued attributes is to binarize the data, so that D ⊆ Rd

× {0, 1} is converted into a binary dataset
D∗

⊆ {0, 1}n × {0, 1}, where, generally, n ≥ d. The standard way to do so is to use cutpoints for each attribute.
We shall suppose from now on that D ⊆ [0, 1]n × {0, 1}, so all attribute values are between 0 and 1: clearly, this can be

achieved simply by normalizing the values. We shall also assume that D contains no contradictions: that is, we do not, for
any x ∈ Rd, have both (x, 0) and (x, 1) in D. For each attribute (or coordinate) j = 1, 2, . . . , d, let

u(j)
1 < u(j)

2 < · · · < u(j)
kj

be all the distinct values of the jth attribute of the members of D. The candidate cutpoints for attribute (or dimension) j are
the values

β
(j)
i =

u(j)
i + u(j)

i+1

2
for i = 1, . . . , kj − 1. These are the numbers halfway between successive values of the attribute. For each j = 1, 2, . . . , d
and i = 1, 2, . . . , kj − 1, and for each x ∈ D, we define b(j)

i (x) to be 1 if and only if xj ≥ β
(j)
i . Let x∗ be the resulting binary

vector

x∗
= (b(1)

1 (x), . . . , b(1)
k1

(x), b(2)
1 (x), . . . , b(2)

k2
(x), . . . , b(d)

1 (x), . . . , b(d)
kd

(x)) ∈ {0, 1}n

where n =
d

j=1 kj. Then we have a ‘binarized’ version D∗
= {(x∗, b) : (x, b) ∈ D} of the dataset D and we could apply LAD

techniques to this binary dataset. Consider the dataset D∗. Because of the way in which the cutpoints are chosen in order to
form D∗, there will be some set of positive patterns such that the disjunction of those patterns is an extension of D∗. This is
simply because no two elements x ∈ D+ and y ∈ D− are mapped onto the same binarized observation in D∗, so the sets of
members of D∗ corresponding to positive and negative observations in D are disjoint.

There are a number of ways, however, in which this binarization is non-optimal. One immediate observation, as noted
in [8], is that there is no need to use β

(j)
i unless there exist x ∈ D+, y ∈ D− with xj = u(j)

i and yj = u(j)
i+1, or vice versa.

So such ‘non-essential’ cutpoints can be eliminated, reducing the dimensionality of the binarized dataset. But there may be
further redundancy in the use of the remaining cutpoints. In [7,8], the authors consider the problem of finding aminimal set
of cutpoints such that the corresponding binarized dataset will have an extension. This problem is phrased as a set-covering
problem, which has an efficient greedy approximation algorithm, yielding a near-minimal number of cutpoints. We will
comment further on this later, in discussing a variant of their approach. The outcome is that, in practice, the set of candidate
cutpoints is reduced significantly to a set of used (or chosen) cutpoints.

1.3. The hypotheses

Let us denote by A(j) the (reduced) set of cutpoints used for attribute j, and suppose the members of A(j) are

a(j)
1 < a(j)

2 < · · · < a(j)
lj

.

A typical binarized x ∈ [0, 1]d will be x∗
∈ {0, 1}n where

x∗
= (b(1)

1 (x), b(1)
2 (x), . . . , b(1)

l1
(x), b(2)

1 (x), . . . , b(2)
l2

(x), . . . , b(d)
1 (x), . . . , b(d)

ld
(x)),

where b(j)
i (x) = 1 if and only if xj ≥ a(j)

i . Let the Boolean literal u(j)
i be given by I[xj ≥ a(j)

i ], where I[P] has logical value 1 if P
is true and value 0 otherwise. Then a positive pattern is a conjunction of some of the Boolean variables u(j)

i . Evidently, since
(by definition of u(j)

i ) it is the case that u(j)
i = 1 implies u(j)

i′ = 1 for i > i′, and any j, it follows that a typical positive pattern
can be written in terms of these Boolean variables as

d
j=1

u(j)
rj ū

(j)
sj ,

where sj > rj. (Here, ∧ denotes the Boolean conjunction, the ‘and’ operator.) Geometrically, this positive pattern is the
indicator function of the ‘box’

[a(1)
r1 , a(1)

s1 ) × [a(2)
r2 , a(2)

s2 ) × · · · × [a(d)
rd , a(d)

sd ).
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1.4. Robustness

The paper [8] raises the issue of numerical attribute values being too close to cutpoints, something that could be
problematic if there is a chance of measurement errors. There, the suggestion is that the corresponding binary variable
could, due its potential unreliability, simply be considered missing and that one might seek to use ‘robust’ patterns, which,
in a sense, are not dependent on the missing attribute value. In this paper, we also consider the distance between cutpoints
and the (original, numerical) observations, but for a different reason. Rather than regard proximity of an attribute value to a
cutpoint as a situation in which the corresponding binary attribute is deleted or considered unreliable, we continue to use
it. But the smallest of the distances between cutpoints and the corresponding attribute values of the observations enters
into our upper bound on the generalization accuracy of the resulting classifier. Moreover, it does so in such a way that the
bound is worse (larger) if this minimal distance is small. This provides further motivation (other than considerations of
measurement error or noise) to avoid the use of cutpoints which would be too close to the numerical attribute values of the
observations, and it also leads to a variant of the cutpoint selection algorithm briefly referred to above.

2. Assessing the accuracy of learning

2.1. The probabilistic framework

To model the effectiveness of LAD for numerical data, we deploy a form of the popular ‘PAC’ model of computational
learning theory (see [3,16,6]). This assumes that the labeled observations (x, b) ∈ D (where x ∈ [0, 1]d and b ∈ {0, 1})
have been generated randomly (perhaps from some larger set of data) according to some fixed (but unknown) probability
distribution P on Z = [0, 1]d × {0, 1}. (This includes, as a special case, the situation in which x is drawn according to a fixed
distribution on [0, 1]d and the label b is then given deterministically by b = t(x) where t is some fixed function.) Thus, if
there are m data points in D, we may regard the dataset as a sample s = ((x1, b1), . . . , (xm, bm)) ∈ Zm, drawn randomly
according to the product probability distribution Pm. In general terms, suppose that H is a set of functions from X = [0, 1]d
to {0, 1}. Given any function h ∈ H , we can measure how well hmatches the sample s through its sample error

ers(h) =
1
m

|{i : h(xi) ≠ bi}|

(the proportion of points in the sample incorrectly classified by h). In particular, we might be interested in consistent
hypotheses: those for which the sample error is zero. An appropriate measure of how well h would perform on further
examples is its error,

erP(h) = P({(x, b) ∈ Z : h(x) ≠ b}),

the probability that a further randomly drawn labeled data point would be incorrectly classified by h.
Much effort has gone into obtaining high-probability bounds on erP(h). A typical result would state that, for all δ ∈ (0, 1),

with probability at least 1 − δ, for all h ∈ H which are consistent with s, we have erP(h) < ϵ(m, δ), where ϵ(m, δ) (known
as a generalization error bound) is decreasing in m and δ. Such results can be derived using uniform convergence theorems
from probability theory [17,13,12], in which case ϵ(m, δ) would typically involve the growth function [17,6,16,1].

Much emphasis has been placed in practical machine learning techniques, such as Support Vector Machines [11],
on ‘learning with a large margin’. (See, for instance [15,1,2,14].) Broadly speaking, the rationale behind margin-based
generalization error bounds is that if a classifier has managed to achieve a ‘wide’ separation between the points of different
classifications, then this indicates that it is a good classifier, and it is possible that a better (that is, smaller) generalization
error bound can be obtained. Relatedwork involving ‘width’ rather than ‘margin’ has also been carried out [4] and, similarly,
shows that ‘definitive’ classification is desirable. In a similar vein, we will show that if the chosen cutpoints are ‘robust’ with
respect to the data points (in that no attribute of a data point is too close to a cutpoint value), good generalization error
bounds follow.

2.2. The hypotheses, and robustness

We start by clarifying what the hypothesis class is. As discussed above, the general hypotheses we consider can all be
represented in the form

h = I[B1 ∪ B2 · · · ∪ Br ],

where

• r ∈ N;
• I[S] denotes the indicator function of a set S;
• there is, for each j, a set A(j) of cutpoints such that each Bs is a box of the form I1 × I2 × · · · × Id, where, for each j,

Ij = [α, α′) with α, α′ being cutpoints in A(j) (with the convention that this includes also [0, α′) and [α, 1)).
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It will, in the proofs, be convenient to define the following restricted class of such hypotheses: for N ∈ N and ℓ =

(l1, l2, . . . , ld) ∈ Nd, we define HN(ℓ) = HN(l1, l2, . . . , ld) to be the set of such hypotheses in which |A(j)
| = lj, for

j = 1, 2, . . . , d and in which the number r of boxes satisfies r ≤ N . (Thus, it is the set of hypotheses in which we
use lj cutpoints for attribute j and, with respect to these cutpoints, take h to be the indicator function of the union of
at most N boxes.) Then, the set H of all possible hypotheses that we could obtain by applying LAD to numerical data
through binarization, and the subsequent construction of a classifier that is a disjunction of pure positive patterns, is
H =


{HN(ℓ) : N ∈ N, ℓ ∈ Nd

}.
We make the following definition.

Definition 2.1. Suppose that h ∈ H and that the cutpoint sets used by h are A(1), . . . , A(d). For Γ = (γ1, γ2, . . . , γd) ∈

(0, 1)d, we say that for (x, b) ∈ [0, 1]d × {0, 1}, h is Γ -robust on (x, b) if
• h(x) = b (so, h correctly classifies the sample point); and
• for all j = 1, 2, . . . , d and for all a(j)

∈ A(j), |xj − a(j)
| ≥ γj.

Here, xj denotes the jth coordinate of x.

So, h is Γ -robust on (x, b) if it correctly classifies x and, moreover, any attribute (coordinate) xj of x is at distance at least
γj from any of the cutpoints in A(j). Geometrically, this implies that, for each j, x lies at distance at least γj in dimension j
from any of boundary of any of the boxes used to define h. In fact, it means more than this simply: not only is it at distance
at least γj in dimension j from the boundaries of the boxes of which h is the union; but it is at distance at least γj from the
boundaries of any box defined by the cutpoints. So, to be explicit, Γ -robustness with respect to (x, b) is a property of both
the cutpoint sets {A(j)

: 1 ≤ j ≤ d} and the hypothesis: for each j, x is at distance at least γj in dimension j from any of the
planes defined by the cutpoint values in Aj; and, also, h classifies x correctly.

We also can measure robustness on a sample.

Definition 2.2. For a sample s = ((x1, b1), . . . , (xm, bm)), and for h ∈ H , the Γ -robustness error erΓs (h) of h on s is the
proportion of labeled observations (xi, bi) in s such that h is not Γ -robust on (xi, bi). That is,

erΓs (h) =
1
m

m
i=1

I[h is not Γ -robust on (xi, bi)].

We say simply that h is Γ -robust on the sample s if erΓs (h) = 0.

3. A generalization error bound

3.1. The bound

We denote by H the set of all possible hypotheses that we could obtain by applying LAD to numerical data through
binarization, and the subsequent construction of a classifier that is a disjunction of pure positive patterns. That is, in the
earlier notation,

H =


{HN(ℓ) : N ∈ N, ℓ ∈ Nd

}.

Our main result is as follows. Note that, as explained earlier, we may regard a randomly-drawn training sample s as being
distributed according to the product probability measure Pm.

Theorem 3.1. Suppose that h is any hypothesis in H. Suppose δ ∈ (0, 1). Then, with probability at least 1 − δ (with respect to
the product measure Pm, where P is the underlying probability measure describing the generation of labeled examples), a sample
s is such that
• for all γ ∈ (0, 1);
• for all l1, l2, . . . , ld ∈ N;
• for all N ∈ N;
• if h ∈ H is the indicator function of the union of at most N boxes based on cutpoint setsA(1), A(2), . . . , A(d), where |A(i)

| = li
for i = 1, 2, . . . , d,

then, if h is Γ -robust on s, the error, erP(h) of h is less than

2
m


d

j=1

(lj + 2) log2


16
γj


+ N + 2N

d
j=1

log2(lj + 2) + log2


2
δ


.

Clearly, there will be some maximal values of γj such that the hypothesis we produce will be Γ -robust. One can determine
this after the hypothesis is produced, and use this in the above bound.

We mention that the bound given in Theorem 3.1 is generally better than that obtainable using a standard approach
(see [17,6]) based on growth function and VC-dimension.
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4. Cutpoint selection

The generalization error bounds obtained here suggest that there is potentially some advantage to be gained by choosing
cutpoints in such away that the hypotheses formed from these cutpoints areΓ -robust for large values of γj (j = 1, 2, . . . , d).
Suppose that for all j and for all chosen cutpoints a(j)

i , the minimum distance of this cutpoint to the jth-coordinate of any
data point is at least γj. It will then follow that any hypothesis constructed from these cutpoints will, if it is consistent with
the sample be, furthermore, Γ -robust. (See Section 1.2 for a reminder of how the candidate cutpoints are determined.) We
can therefore attach to each candidate cutpoint β

(j)
i itself (rather than to a hypothesis) a measure of robustness: we define

ρD(β
(j)
i ) = min

x∈D
|xj − β

(j)
i |,

where xj denotes the jth coordinate of x. It will be convenient to denote this by ρ
(j)
i .

Of course, since the bound of Theorem 3.1 depends not only on Γ but on the numbers, lj, of cutpoints in each dimension,
therewould appear to be a need to have a trade-off between the robustness and the number of the selected cutpoints. Ideally,
we would like to obtain a small number of highly-robust cutpoints in each dimension, but that may not be possible: wemay
be wise to choose a more than minimal number of cutpoints in order to avoid those with low robustness, for instance.

The paper [7] explains how the problem of finding a minimal sufficient number of cutpoints can be phrased as a set-
covering problem. In [8], a greedy algorithm for choosing a reasonably small set of cutpoints is proposed. (By the performance
guarantee for the greedy set-covering algorithm, the number of cutpoints is provably within a reasonable multiple of the
minimum possible number.) In view of Theorem 3.1, which indicates that robust cutpoints are good, we can modify this
algorithm to take this into account. As in [7], we start by using all possible cutpoints to binarize the data. That is, we startwith
the binarization obtained by using all the β

(j)
i , the midpoints in each dimension between the projections of the data points.

Suppose that, with this particular binarization, as in Section 1.2, the binarized dataset is D∗ (which has dimension n), and
that (D+)∗ and (D−)∗ are, respectively, the binary vectors corresponding to positive and negative observations. For each pair
(z, w) where z ∈ (D+)∗ and w ∈ (D−)∗, for 1 ≤ j ≤ d, and, for each j, for i between 1 and kj, let a

(z,w)
j,i be the {0, 1}-variable

which is 1 if and only if z and w have a different value (0 or 1) in the coordinate that corresponds to the candidate cutpoint
β

(j)
i (which means that this cutpoint distinguishes between z and w). The problem of cutpoint minimization is to find the

smallest set of cutpoints such that the corresponding binarization has the property that no positive and negative observation
of the dataset have the same binarized vector. This can (as noted in [7]) be expressed as a set-covering problem. Expressed
in terms of an integer program, the cutpoint minimization problem is

minimize
d

j=1

kj
i=1

yj,i

subject to
d

j=1

kj
i=1

a(z,w)
j,i yj,i ≥ 1 for all (z, w) ∈ (D+)∗ × (D−)∗

yj,i ∈ {0, 1}, (1 ≤ j ≤ d, 1 ≤ i ≤ kj).

Here, yj,i = 1 is to indicate that the corresponding cutpoint say β
(j)
i is chosen. To formulate a variant of this, which takes into

account the robustness of the cutpoints, let φ be a positive, decreasing, real function and consider the following weighted
set-covering problem

minimize
d

j=1

kj
i=1

φ(ρ
(j)
i )yj,i

subject to
d

j=1

kj
i=1

a(z,w)
j,i yj,i ≥ 1 for all (z, w) ∈ (D+)∗ × (D−)∗

yj,i ∈ {0, 1}, (1 ≤ j ≤ d, 1 ≤ i ≤ kj).

For example, we could simply take φ(x) = 1/x. Then the ‘cost’ of selecting cutpoint β(j)
i will be the inverse of its robustness.

Or, motivated by the nature of the bound of Theorem 3.1, we might take φ(x) = ln(1/x).
In [8], some variants of the standard set-covering formulation of cutpoint selection are suggested. One variant is to require

that each binarized positive and negative observation be distinguished in more than one (say µ) coordinates, by requiringd
j=1
kj

i=1 a
(z,w)
j,i yj,i ≥ µ. Another is that the objective function

d
j=1
kj

i=1 yj,i be replaced by
d

j=1
kj

i=1 uj,iyj,i where uj,i is
somemeasure of the ‘discriminating power’ of the corresponding binary attribute. A third possiblemodification is to replace
the constraints

d
j=1

kj
i=1

a(z,w)
j,i yj,i ≥ 1
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by

d
j=1

kj
i=1

a(z,w)
j,i λ(z, w, i, j)yj,i ≥ 1,

where λ(z, w, i, j) is some measure of how well the cutpoint β
(j)
i separates the pair z, w. If we define λ(z, w, i, j) to be

simply ρ
(j)
i (which does not explicitly depend on z and w, though it depends collectively on set of all (z, w)), then this third

modification to the standard formulation is similar to that taken above where φ(x) = 1/x (but with the yj,i variables being
0 or 1/ρ(j)

i rather than 0 or 1).
We can quickly obtain a good approximate solution to our modified cutpoint selection problem via the standard

greedy algorithm for weighted set-covering. In this instance, the algorithm translates into the following cutpoint selection
algorithm.
Greedy Cutpoint Selection

1. Initialize: X := (D+)∗ × (D−)∗, A(j)
:= ∅ (j = 1, 2, . . . , d).

2. Repeat steps (a)–(c) until X = ∅:

(a) Choose (j, i) to maximize
|{(z,w)∈X :a(z,w)

j,i =1}|

φ(ρ
(j)
i )

(b) A(j)
:= A(j)

∪ {β
(j)
i }

(c) X := X \ {(z, w) : a(z,w)
j,i = 1}

3. Output the cutpoint selection A = (A(1), A(2), . . . , A(d)).

5. Proof of the generalization error bound

We first derive a result in which the numbers of cutpoints in each dimension and the parameters γj are prescribed in
advance, and in which the number of boxes involved in the hypothesis is bounded above by a prescribed number. We then
remove the requirement that these parameters be fixed in advance, to obtain Theorem 3.1.

For γ ∈ (0, 1), let Aγ ⊆ [0, 1] be the set of all integer multiples of γ /2 belonging to [0, 1], together with 1. So,

Aγ =


0,

γ

2
, 2

γ

2
, 3

γ

2
, . . . ,


2
γ


γ

2
, 1


.

We have

|Aγ | ≤


2
γ


+ 2 ≤


4
γ


.

ForA(1), A(2), . . . , A(d)
⊆ [0, 1], letA = (A(1), A(2), . . . , A(d)) and letHN(A) be the set of hypotheses using cutpointsA(i)

for attribute i, and which are indicator functions of the unions of no more than N boxes defined by these cutpoints.
Let N ∈ N and ℓ = (l1, l2, . . . , ld) ∈ Nd be fixed. Define ĤN(ℓ) as follows:

ĤN(ℓ) =


{HN(A) : A(j)

⊆ Aγj , |A
(j)

| = lj, j = 1, 2, . . . , d}.

So, ĤN(ℓ) is the set of hypotheses using, for attribute j, lj cutpoints, all from Aγj , and involving no more than N boxes defined
by these cutpoints.

We now bound the cardinality of the finite set ĤN(ℓ).

Lemma 5.1. With the above notation, we have

log2 |ĤN(ℓ)| ≤

d
j=1

lj log2


4
γj


+ 2N

d
j=1

log2(lj + 2).

Proof. There are
d

j=1


|Aγj |

lj


choices for the cutpoint sets A(j). For each such choice, there are then no more thand

j=1


lj+2
2


possible ways of forming a box based on these cutpoints. (For, each side of the box is determined by an interval

whose endpoints are either 0, 1, or cutpoints.) Thus the number of ways of choosing no more than N such boxes is bounded

by
d

j=1


lj+2
2

N
. (This is slightly loose, since it counts the number of ordered selections, with repetition, of such boxes.)
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It follows that

|ĤN(ℓ)| ≤

d
j=1


lj + 2
2

N d
j=1


|Aγj |

lj



≤

d
j=1

(lj + 2)2N
d

j=1


⌊4/γj⌋

lj



≤

d
j=1

(lj + 2)2N
d

j=1


4
γj

lj
.

This gives the required result. �

Next, we use a ‘symmetrization’ technique (a general method that has its origins in the paper of Vapnik and Chervo-
nenkis [17]).

Lemma 5.2. If

Q = {s ∈ Zm
: ∃h ∈ HN(ℓ) with erΓs (h) = 0, erP(h) ≥ ϵ}

and

T = {(s, s′) ∈ Zm
× Zm

: ∃h ∈ HN(ℓ) with erΓs (h) = 0, ers′(h) ≥ ϵ/2},

then, for m ≥ 8/ϵ, Pm(Q ) ≤ 2 P2m(T ).

Proof. We have

P2m(T ) ≥ P2m(∃h ∈ HN(ℓ) : erΓs (h) = 0, erP(h) ≥ ϵ and ers′(h) ≥ ϵ/2)

=


Q
Pm({s′ : ∃h ∈ HN(ℓ), erΓs (h) = 0, erP(h) ≥ ϵ and ers′(h) ≥ ϵ/2}) dPm(s)

≥
1
2
Pm(Q ),

for m ≥ 8/ϵ. The final inequality follows from a well-known Chernoff bound [9], which is as follows: if x1, x2, . . . , xm are
independent {0, 1}-valued random variables with Prob(xi = 1) = p, then the probability that

m
i=1 xi ≤ (1 − α)pm is less

than exp(−α2pm/2). Now, suppose erP(h) ≥ ϵ. Then

Prob(ers′(h) < ϵ/2) ≤ Prob(mers′(h) < (1 − 1/2)ϵm)

≤ Prob(mers′(h) < (1 − 1/2)erP(h)m).

Taking xi to be 1 if h is erroneous on the ith entry of s′, and 0 otherwise, we may apply the Chernoff bound to see that

Prob(ers′(h) < ϵ/2) ≤ exp(−(1/2)2erP(h)m/2) ≤ exp(−ϵm/8),

and form ≥ 8/ϵ, this is no more than e−1 < 1/2. So, form ≥ 8/ϵ, Pm(ers′(h) ≥ ϵ/2) ≥ 1/2. �

Let G be the permutation group (the ‘swapping group’) on the set {1, 2, . . . , 2m} generated by the transpositions (i,m + i)
for i = 1, 2, . . . ,m. Then G acts on Z2m by permuting the coordinates: for σ ∈ G,

σ(z1, z2, . . . , z2m) = (zσ(1), . . . , zσ(2m)).

By invariance of P2m under the action of G,

P2m(T ) ≤ max{P(σz ∈ T ) : z ∈ Z2m
},

where P denotes the probability over uniform choice of σ from G. (See [17,1], for instance.)

Proposition 5.3. Let δ ∈ (0, 1). Then, with probability at least 1 − δ, if h ∈ HN(ℓ) and erΓs (h) = 0, then

erP(h) <
2
m


d

j=1

lj log2


4
γj


+ 2N

d
j=1

log2(lj + 2) + log2


2
δ


.

Proof. Suppose σz = (s, s′) ∈ T and that h ∈ HN(ℓ) is such that erΓs (h) = 0 and ers′(h) ≥ ϵ/2. The hypothesis h takes the
form

h = I[B1 ∪ B2 · · · ∪ Br ],
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where r ≤ N and each Bi is a box I1×I2×· · ·×Id. Thismeans that, for each j, Ij = [a(j)
rj , a(j)

sj ), for some rj, sj ∈ {0, 1, . . . , lj+1},
where A(j) comprises

a(j)
1 < a(j)

2 < · · · < a(j)
lj

and where we interpret a(j)
0 = 0 and a(j)

lj+1 = 1. (The indices rj and sj for box Bi also depend on i but we do not explicitly
denote this for the sake of notational ease.)

For every a ∈ [0, 1], there is some â ∈ Aγj such that |â − a| < γj/2. For a cutpoint a(j)
∈ A(j), let â(j)

∈ Aγj be such that
|â(j)

− a(j)
| < γj/2. For each j, let Îj = [â(j)

rj , â(j)
sj ). (We define Îj = ∅ if â(j)

rj ≥ â(j)
sj .) Let ĥ ∈ ĤN(ℓ) be the hypothesis

ĥ = I[B̂1 ∪ B̂2 · · · ∪ B̂r ],

where B̂i = Î1 × · · · × Îd.
Suppose that h is Γ -robust on (x, b). Then h(x) = b and, for all j = 1, 2, . . . , d and for all a(j)

∈ A(j), |xj − a(j)
| ≥ γj. It

follows, since |â(j)
− a(j)

| < γj/2, that |xj − â(j)
| ≥ γj/2. So ĥ is Γ /2-robust on (x, b). This argument shows that if erΓs (h) = 0

then erΓ /2
s (ĥ) = 0.

Suppose that h(x) ≠ b. Then either b = 0 and a box containing x is included in the disjunction defining h; or b = 1 and
no box included in h contains x. The hypothesis ĥ is the disjunction of the boxes B̂i. Of course, if ĥ(x) = h(x), then ĥ(x) ≠ b
and ĥ makes a misclassification. It could, however, be the case that ĥ(x) = b. For that to happen, it must be the case that
either: (i) x belongs to some Bi but to no B̂j; or, (ii), x does not belong to any Bi but does belong to some B̂j. So, for some j,
there is a(j)

∈ A(j) for which a(j)
− xj and â(j)

− xj have opposite signs. This implies that xj lies between the numbers a(j) and
â(j). But because |â(j)

− a(j)
| < γj/2, wemust therefore have |xj − â(j)

| < γj/2. So, although, in this situation, ĥwould classify
(x, b) correctly, it would not be Γ /2-robust on (x, b). This argument shows that if ers′(h) ≥ ϵ/2 then erΓ /2

s′ (ĥ) ≥ ϵ/2.
So, we see that if σz ∈ T then there is some ĥ ∈ ĤN(ℓ) for which σz ∈ T (ĥ), where

T (ĥ) = {(s, s′) ∈ Zm
× Zm

: erΓ /2
s (ĥ) = 0, erΓ /2

s′ (ĥ) ≥ ϵ/2}.

Now, suppose T (ĥ) ≠ ∅, so that for some τ ∈ G, τz = (s, s′) ∈ T (ĥ), meaning that erΓ /2
s (ĥ) = 0 and erΓ /2

s′ (ĥ) ≥ ϵ/2. Then,
by symmetry, P(σz ∈ T (ĥ)) = P(σ (τz) ∈ T (ĥ)). Suppose that erΓ /2

s′ (ĥ) = r/m, where r ≥ ϵm/2 is the number of xi in s′

on which ĥ is not Γ /2-robust. Then those permutations σ such that σ(τ z) ∈ T (ĥ) are precisely those that ‘swap’ elements
other than these r , and there are 2m−r

≤ 2m−ϵm/2 such σ . It follows that, for each fixed ĥ ∈ ĤN(ℓ),

P(σz ∈ T (ĥ)) ≤
2m(1−ϵ/2)

|G|
= 2−ϵm/2.

We therefore have

P(σz ∈ T ) ≤ P

σz ∈


ĥ∈ĤN (ℓ)

T (ĥ)

 ≤


ĥ∈ĤN (ℓ)

P(σz ∈ T (ĥ)) ≤ |ĤN(ℓ)|2−ϵm/2.

So,

Pm(Q ) ≤ 2 P2m(T ) ≤ 2|ĤN(ℓ)|2−ϵm/2.

This is at most δ when

ϵ =
2
m


log2 |ĤN(ℓ)| + log2


2
δ


.

Thus, with probability at least 1 − δ, if h ∈ HN(ℓ) and erΓs (h) = 0, then

erP(h) <
2
m


log2 |ĤN(ℓ)| + log2


2
δ


=

2
m


d

j=1

lj log2


4
γj


+ 2N

d
j=1

log2(lj + 2) + log2


2
δ


. �

Next, we use this to obtain a result in which Γ and the lj are not prescribed in advance. We use the following result, which
generalizes one from [5].
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Lemma 5.4. Suppose P is any probability measure, d ∈ N, and that

{E(Γ (1), Γ (2), δ) : Γ (1), Γ (2)
∈ (0, 1]d, δ ≤ 1}

is a set of events such that

• for all Γ ∈ (0, 1]d, P(E(Γ , Γ , δ)) ≤ δ,
• Γ (1)

≤ Γ ≤ Γ (2) (component-wise) and 0 < δ1 ≤ δ ≤ 1 imply E(Γ (1), Γ (2), δ1) ⊆ E(Γ , Γ , δ).

Then

P

 
Γ ∈(0,1]d

E


(1/2)Γ , Γ , δ 2−d

d
i=1

γi

 ≤ δ

for 0 < δ < 1.

Proof. To prove this, we note that

P

 
Γ ∈(0,1]d

E


(1/2)Γ , Γ , δ 2−d

d
i=1

γi


≤ P


∞

i1,...,id=0


E


(1/2)Γ , Γ , δ 2−d

d
i=1

γi


: for j = 1, . . . , d, γj ∈


1
2

ij+1

,


1
2

ij


≤ P


∞

i1,...,id=0

E


1
2

i1+1

, . . . ,


1
2

id+1


,


1
2

i1+1

, . . . ,


1
2

id+1


, δ 2−d
d

j=1


1
2

ij


≤

∞
i1,i2,...,id=0

δ

d
j=1


1
2

ij+1

= δ

d
j=1

∞
ij=0


1
2

ij+1

= δ

d
j=1

1 = δ. �

We can now complete the proof of Theorem 3.1.
For Γ ∈ (0, 1)d, let ϵ(m, δ, ℓ,N, Γ ) denote the quantity

2
m


d

j=1

lj log2


4
γj


+ 2N

d
j=1

log2(lj + 2) + log2


2
δ


.

Taking E to be set

E(Γ (1), Γ (2), δ) = {s : ∃h ∈ HN(ℓ) s.t erΓ
(2)

s (h) = 0, erP(h) ≥ ϵ(m, δ, ℓ,N, Γ (1))},

we can apply Lemma 5.4 to obtain the following: with probability at least 1 − δ, for any Γ ∈ (0, 1)d, if h ∈ HN(ℓ) satisfies
erΓs (h) = 0, then erP(h) is less than

2
m


d

j=1

lj log2


8
γj


+ 2N

d
j=1

log2(lj + 2) + log2


2
δ


+ d +

d
j=1

log2


1
γj


.

This is bounded above by

2
m


d

j=1

(lj + 2) log2


8
γj


+ 2N

d
j=1

log2(lj + 2) + log2


2
δ


.

It follows, by replacing δ by δ/2(l1+l+2+···+ld+N) that, for each ℓ ∈ Nd, with probability only at most δ/2(l1+l+2+···+ld+N) can
there be some Γ ∈ (0, 1)d and some h ∈ HN(ℓ) such that erΓs (h) = 0 and erP(h) ≥ ϵ′

= ϵ′(m, δ, ℓ,N, Γ ) where

ϵ′
=

2
m


d

j=1

(lj + 2) log2


8
γj


+ 2N

d
j=1

log2(lj + 2) + log2


2 2(l1+l2+···+ld+N)

δ


.

So, the probability that there is some Γ and some h ∈ H =


{HN(ℓ) : N ∈ N, ℓ ∈ Nd
} with erΓs (h) = 0 and

erP(h) ≥ ϵ′(m, δ, ℓ,N, Γ )
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is no more than
N∈N


ℓ∈Nd

δ

2l1+l2+···+ld+N
=

∞
N=1

δ

2N

∞
l1,l2,...,ld=1

d
j=1

1
2lj

=

∞
N=1

δ

2N

d
j=1

∞
lj=1

1
2lj

=

∞
N=1

δ

2N

d
j=1

1 = δ.

So, we have, with probability at least 1 − δ, for all Γ , if h ∈ H =


{HN(ℓ) : N ∈ N, ℓ ∈ Nd
} and erΓs (h) = 0, then

erP(h) < ϵ′
=

2
m


d

j=1

(lj + 2) log2


8
γj


+ 2N

d
j=1

log2(lj + 2) + log2


2 2(l1+l2+···+ld+N)

δ



≤
2
m


d

j=1

(lj + 2) log2


16
γj


+ N + 2N

d
j=1

log2(lj + 2) + log2


2
δ


,

and we obtain the result of the theorem.

6. Conclusions

In this paper, we have investigated some standard techniques for the logical analysis of numerical data, with the aim of
quantifying the predictive accuracy of such methods in a probabilistic model of machine learning. In particular, we have
obtained results which involve the ‘robustness’ of the cutpoints chosen to ‘binarize’ the data. These bounds suggest that it
is advantageous to minimize a combination of the number of cutpoints and their robustness (and not simply the number of
cutpoints). This, in turn, suggests a modification of the greedy cutpoint selection procedure to take robustness into account.
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