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Abstract

This paper concerns learning binary-valued functions defined on IR, and investigates
how a particular type of ‘regularity’ of hypotheses can be used to obtain better
generalization error bounds. We derive error bounds that depend on the sample
width (a notion analagous to that of sample margin for real-valued functions). This
motivates learning algorithms that seek to maximize sample width.
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1 Introduction

1.1 The idea of width

It has proven useful, when using the sign of a real-valued function for binary
classification, to use functions that achieve a ‘large margin’ on a labeled train-
ing sample (since better generalization error bounds are possible, and because
such classifiers are also more robust). For general binary-valued functions, not
arising in this way from real-valued functions, it is not immediately clear what
one could use as an analogy to the margin. This paper investigates how an
alternative notion of ‘regularity’ of binary-valued functions with respect to
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a training sample can analogously be used to guide the selection of a ‘good’
classifier from the class.

The key concept is that of sample width of a function. Informally, a function
f : IR → {−1, 1} has a sample width γ with respect to a sample of real
numbers, each labeled with 1 or −1, if γ is the largest number such that for
each point x of the sample, we have not only that f(x) matches the label
associated with x, but, also, f is constant on an interval of length 2γ centered
on each of the sample points. In a sense, then, the function f not only fits
the data, but does so in a ‘simple’ or ‘robust’ (or perhaps even ‘convincing’)
way. Here, we show how generalization error bounds on such hypotheses can
be derived that depend explicitly on the sample width, improving (that is,
decreasing) with the sample width.

1.2 Notation

Let the domain be X = [0, B], for a finite B > 0. If A is a logical expression
that can be evaluated to true or false, then we denote by I{A} the indicator
function which takes the value 1 or 0 whenever the statement A is true or
false, respectively. We denote by 〈a, b〉 a generalized interval set of the form
[a, b], (a, b), [a, b) or (a, b]. For an interval set R we write IR(x) as the indicator
function for the statement x ∈ R or when the set is known explicitly to be
R = 〈a, b〉 then we write I〈a, b〉. For any a ∈ IR, sgn(a) = +1 or −1 if a > 0 or
a ≤ 0, respectively. By a binary function h on X we mean a function which
maps from X to Y = {−1,+1}. For simplicity, we allow functions h that have
only simple discontinuities, i.e., at any point x the limits h(x+) ≡ limz→x+ h(z)
from the right and similarly from the left h(x−) exist (but are not necessarily
equal). We assume that the set of discontinuities is countable.

For x ∈ X, define the width of h on x by

ωh(x) = h(x) sup{a ≥ 0 : h(z) = h(x), for all z such that x− a ≤ z ≤ x+ a}.

Let Z = X × Y . A finite sample ζ is an element of Zm (so it may include
repetitions), and m is known as the length of the sample. For a sample ζ ∈ Zm,
the sample width of h, denoted ωζ(h), is defined as min(x,y)∈ζ y ωh(x). So, if
ωζ(h) = γ > 0, then this implies that for each (x, y) in the sample, h is
constant on an interval of the form 〈x − γ, x + γ〉. This definition of width
resembles the notion of sample margin of a real-valued function f (see for
instance [3]) which is defined as mζ(f) ≡ min(x,y)∈ζ yf(x).

Following a form of the PAC model of computational learning theory [5, 8, 12],
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we assume that some number, m, of labeled data points (x, b) (where x ∈
X and b ∈ Y ) are generated independently at random according to a fixed
probability distribution P on Z = X × {−1, 1} and that we ‘learn’ about P
from the sample. (Note that this model includes as a special case the situation
in which x is drawn according to a fixed distribution µ on X and the label b
is then given by b = t(x) where t is some fixed function from X to Y .)

For a sample ζ ∈ Zm, we define the γ-width error (or, simply, γ-error) of a
binary function h to be the following quantity:

Lγζ (h) =
1

m

m∑
i=1

I{yiωh(xi) < γ}

and we let
L(h) = P{y h(x) < 0} = P{h(x) 6= y}

be the probability that h misclassifies a randomly drawn pair (x, y) ∈ X × Y .
This is known as the generalization error of h. It is the probability of an error
if we use the hypothesis h to predict the label y from x, for an element (x, y)
of Z drawn according to P .

What we would like to be able to do is to infer that a hypothesis that fits
a large randomly-drawn sample well (in the sense that it has small γ width
error for a suitably large value of γ on a large Pm-random sample) will in fact
have small generalization error (and will therefore have a high probability of
correctly predicting the label y associated with x for a P -random (x, y) ∈ Z).
The type of result we aim to derive, therefore is one of the following type: for
any γ, δ > 0 and any probability distribution P , with Pm probability at least
1− δ, a random sample ζ ∈ Zm will be such that for all h ∈ H,

L(h) < Lγζ (h) + ε(m, γ, δ),

where ε(m, γ, δ) → 0 as m → ∞ and where ε decreases as γ increases. (The
product probability measure Pm is used because the m elements of the sample
are generated independently and identically, according to P .)

2 A related problem: learning with γ-regular functions

In this section, we look at a different problem which has some resemblance
to the main one of this paper, as described above. We do so for two reasons:
first, to see what sort of generalization error bound is obtained, so that the
one we obtain for the main problem can be compared with it; and, secondly,
because it draws on the ‘standard’ VC-theory of learning, which the reader can
contrast with the rather different approach used to solve our main problem.
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By considering sample width, we regard a binary function as being highly
regular, or simple, with respect to a training sample, if it has long constant-
value runs centered on the points of the sample. What would be an appropriate
sample-independent counterpart to this? Perhaps the obvious approach is to
regard a binary function as simple if it is piecewise constant, with the smallest
‘piece’ being of at least a certain length. Explicitly, let us say that h : [0, B]→
{−1, 1} is γ-regular if for every x ∈ [0, B], there is an interval R = 〈a, a+ 2γ〉
such that x ∈ R and h is constant on R (so that h(z) = h(x) for all z ∈ R).
(The fact that we take R to be of length 2γ rather than γ is so as to enable
easier comparison with the sample-width based results we will obtain.)

A moment’s thought shows that this type of regularity does not imply large
sample-width, because for the latter, we require the long constant-value seg-
ments to be centered on the sample points, which will fail to be the case if
a sample point happens to be near the end-point of one of the intervals R
of the type described above. Nonetheless, it does seem to be a comparable
sample-independent version of the ‘width at least γ’ property.

The following result bounds the generalization error of functions h : X → Y
in terms of their regularity and their error on the sample, which is

1

m

m∑
i=1

I{h(xi) 6= yi}.

What it shows, informally speaking, is that if we have a function that agrees
well with the values on a random sample and which, moreover, is γ-regular
for a large value of γ, then (with high probability) the function has small
generalization error.

Theorem 1 Let B > 0 and denote the domain by X = [0, B] with range
Y = {−1,+1} and let Z = X × Y . Let P be a probability distribution on Z
and suppose that δ ∈ (0, 1). Then, with Pm-probability at least 1−δ, ζ ∈ Zm is
such that for any function h : X → Y and for all γ ∈ (0, B/2], if h : X → Y
is γ-regular, then

P{h(x) 6= y} < 1

m

m∑
i=1

I{h(xi) 6= yi}+ ε(m, γ, δ),

where, defining k(γ) by

k(γ) =

⌊
B

4γ
+

1

2

⌋
,

ε(m, γ, δ) denotes √√√√ 8

m

(
2k(γ) ln

(
em

k(γ)

)
+ ln

(
2k(γ)+2

δ

))
.
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Proof: We sketch the proof. First, let us fix γ ∈ (0, B/2]. It can be seen that the
class of γ-regular functions is contained in the set Hγ of all functions on [0, B]
that are indicator functions of unions of no more than k(γ) = bB/(4γ) + 1/2c
intervals. Now we can apply some results from the standard theory of learn-
ing [3, 5, 8, 13]. Those results, together with bounds on the ‘growth func-
tion’ (see [3, 8, 13]) of Hγ, tell us that, for any probability distribution P on
Z = X × Y , and any δ ∈ (0, 1), we have the following: with Pm-probability
at least 1 − δ, ζ ∈ Zm is such that for any h ∈ Hγ (and, therefore, for any
γ-regular function h : X → Y ),

P{h(x) 6= y} < 1

m

m∑
i=1

I{h(xi) 6= yi}+ ε0(m, γ, δ),

where

ε0(m, γ, δ) =

√√√√ 8

m

(
2k(γ) ln

(
em

k(γ)

)
+ ln

(
4

δ

))
.

So far, this requires γ to be fixed in advance. We can modify the result to
obtain the required bound of Theorem 1 (that is, a bound that simultaneously
applies for all γ) using a technique knows as the method of sieves [3, 6, 9]. (See
also the last part of Section 3.2 of this paper for more detail on this method.)
�

Given that k(γ) is of order B/γ, if we suppress constants and focus on de-
pendence on m, the bound of Theorem 1 states that with probability at least
1− δ, we have

P{h(x) 6= y} < 1

m

m∑
i=1

I{h(xi) 6= yi}+ ε(m, γ),

where ε(m, γ) is of order
√

ln(γm)/(γm). In fact, at the expense of larger

constants, we can use a result of Talagrand [11] (see also [3]) to improve this

to an ε that is of order
√

1/(γm).

3 Bounding generalization error in terms of width error

3.1 The main theorem

The following result bounds the generalization error of hypotheses in terms of
their sample width error.
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Theorem 2 Let B > 0 and denote the domain by X = [0, B] with range
Y = {−1,+1} and let Z = X × Y . Let P be a probability distribution on Z
and suppose that δ ∈ (0, 1). Then, with Pm-probability at least 1− δ, ζ ∈ Zm

is such that for any function h : X → Y and for all γ > 0,

L(h) < Lγζ (h) + ε(m, γ, δ),

where

ε(m, γ, δ) =

√√√√ 8

m

(
2B

γ
ln 3 + ln

(
32B

δγ

))
.

Note that the theorem makes no assumption on any class of hypotheses nor on
its VC-dimension. (The error bound holds simultaneously for any h : X → Y ).
Note also that γ is not prescribed in advance.

The ε of Theorem 2 is, if we suppress constants and focus on its dependence

on m, of order
√

1/(γm). As we will explain at the end of Section 3.2, many
analogous margin-based results for real-valued functions used in classification
have an ε that includes also lnm factors and an additional factor related to
the ‘fat-shattering dimension’ of the hypothesis space.

As noted, learning with γ-regular functions is a different problem, but it bears
some analogy. In section 2 we obtained the high-probability bound

for all γ ∈ (0, B], for all γ−regular h,

P{h(x) 6= y} < 1

m

m∑
i=1

I{h(xi) 6= yi}+O
(√

1/(γm)
)
, (1)

where, here, the O-notation hides constants and δ-dependence. Theorem 2
gives the bound

for all h : X → Y,

P{h(x) 6= y} < Lγζ (h) +O
(√

1/(γm)
)
. (2)

These bounds look similar and, noting that Lγζ (h) ≥ 1
m

∑m
i=1 I{h(xi) 6= yi}, it

might look as if (2) is weaker than (1). As we have noted, however, the two
problems to which these bounds relate are different (though they are perhaps
analogous). Importantly, it should be observed that (2) is a sample-based bound
that applies to any h : X → Y (and not just those that that are γ-regular).
Even if a function h is not γ-regular, it might still have a large sample-width
on a given sample, and it is this that potentially makes the sample-width
approach useful in practice.
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3.2 Proof of the main theorem

Overview

Any binary function h may be represented by thresholding a real-valued func-
tion f , i.e., h(x) = sgn(f(x)). The idea here is to choose a class F of real-
valued functions f whose value f(x) is equivalent to the width ωh(x) of the
corresponding binary functions. Then, the problem of bounding generalization
error in terms of width error can be related to the previously-studied problem
of bounding (classification) generalization error in terms of margin when real-
valued functions are used, through thresholding, for classification. We can then
use a margin-based ‘uniform convergence’ result (see [6] and Theorem 10.1 of
[3]) to obtain generalization error bounds that depend on the covering number
of the related class F . The covering numbers of the class F we construct are
then bounded to provide a final error bound.

The related class of real functions

For a binary function h onX consider the corresponding set sequence {Ri}i=1,2,...

which satisfies the following properties: (a) [0, B] =
⋃
i=1,2,...Ri and for any

i 6= j, Ri ∩ Rj = ∅, (b) h alternates in sign over consecutive sets Ri, Ri+1, (c)
Ri is an interval set 〈a, b〉 with possibly a = b (in which case Ri = {a}). Hence
h has the following general form

h(x) = ±
∑

i=1,2,...,

(−1)iIRi(x) (3)

There are exactly two functions h corresponding to each sequence of sets
Ri, i = 1, 2, . . . .. Unless explicitly specified, the end points of X = [0, B]
are not considered roots of h, i.e., the default behavior is that outside X,
the function ‘continues’ with the same value it takes at the endpoint h(0) or
h(B), respectively. Now, associate with the set sequence R1, R2, . . . the unique
non-decreasing sequence of right-endpoints a1, a2, . . . which define these sets
(the sequence may have at most repetitions, or runs, of length two except for
0 and B) according to

Ri = 〈ai, ai+1〉, i = 1, 2, . . . .

Note that different choices for 〈 and 〉 (see earlier definition of a general-
ized interval 〈a, b〉) give different sets Ri and hence different functions h. For
instance, suppose X = [0, 7] then the following set sequence R1 = [0, 2.4),
R2 = [2.4, 3.6), R3 = [3.6, 3.6] = {3.6}, R4 = (3.6, 7] has a corresponding
end-point sequence a1 = 2.4, a2 = 3.6, a3 = 3.6, a4 = 7. Note that a singleton
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Fig. 1. h (solid with right vertical axis) and its corresponding f (dashed with left
vertical axis) on X = [0, B] with B = 800

set introduces a repeated value in this sequence. As another example consider
R1 = [0, 0] = {0}, R2 = (0, 4.1), R3 = [4.1, 7] with a1 = 0, a2 = 4.1, a3 = 7.

Next, define the corresponding sequence of midpoints

µi =
ai + ai+1

2
, i = 1, 2, . . . .

and the continuous real-valued function f : X → [−B,B] corresponding to h
as:

f(x) = ±
∑

i=1,2,...

(−1)i+1(x− ai)I[µi−1, µi] (4)

where we take µ0 = 0.

The connection between γ-width error of binary functions and the ‘margin
error’ in the class F real-valued functions we have constructed is crucial. To
help describe this link, some additional notation is useful. For a probability
distribution P on X × Y , as above, for f : X → IR, and for ζ ∈ Zm the error
of f on ζ at margin γ is defined as

erγζ (f) =
1

m

m∑
i=1

I{yif(xi) < γ}.

Note that if h has a width ωh(x) = γ at x, then the corresponding function f
satisfies f(x) = γ. That is, f(x) = wh(x). Also, for all x, h(x) = sgn(f(x)). It
can be seen that, for any ζ,

Lγζ (h) =
1

m

m∑
i=1

I{yiωh(xi) < γ} =
1

m

m∑
i=1

I{yif(xi) < γ} = erγζ (f)
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and, for any P ,

L(h) = P{yh(x) < 0} = P{sgn(f(x)) 6= y}.

Note, in particular, that the problem of minimizing the γ-width error over
all binary functions h on X is equivalent to minimizing the margin error (at
margin γ) over this class F of piecewise-linear functions f .

Covering number bounds

We next need to consider covering numbers. For S ⊆ X, let the l∞(S)-norm
be defined as ‖f‖l∞(S) = maxx∈S |f(x)|. For γ > 0, a γ-cover of F with respect

to l∞(S) is a subset F̂ of F with the property that for each f ∈ F there
exists f̂ ∈ F̂ such that for all x ∈ S, |f(x)− f̂(x)| < γ. The covering number
N (F, γ, l∞(S)) is the smallest cardinality of a covering for F with respect
to l∞(S) and the uniform covering number N∞(F, γ,m) is the maximum of
N (F, γ, l∞(S)), over all S with S ⊂ X and |S| = m.

We shall use Theorem 10.1 of [3] (see also [6]), which is as follows:

Theorem 3 Suppose that F is a set of real-valued functions defined on X
and that P is any probability measure on Z = X × {−1, 1}. Then, for any
ε ∈ (0, 1), any γ > 0 and any positive integer m,

Pm
({
L(sgn(f)) ≥ erγζ (f) + ε for some f ∈ F

})
≤ 2N∞(F, γ/2, 2m)e−ε

2m/8.

Given the connection between width error of functions h : X → {−1, 1} and
margin error of corresponding functions in F , this means that, with probability
at least 1− 2N∞(F, γ/2, 2m) exp(−ε2m/8), for all h, we have

L(h) < Lγζ (h) + ε.

We now proceed to use this result to obtain useful generalization error bounds
by bounding the covering numbers of F and relaxing the assumption that γ
be prescribed in advance.

For a finite set S ⊂ X, let us compute the covering number of F with respect
to the l∞(S)-norm of f . Our approach is to construct and bound the size of
a covering with respect to the sup-norm ‖f‖∞ on X which clearly also serves
as a covering with respect to l∞(S). To do that we construct a finite class F̂
of functions as follows: fix γ and denote by N = dB/γe. Let

αj = jγ, 0 ≤ j ≤ N (5)
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and denote by A = {αj : 0 ≤ j ≤ N}. Then we define the finite class F̂ as

consisting of all functions f̂ of the following general form

f̂(x) = ±
∑

i=1,2,...

(−1)i+1(x− âi)I〈µ̂i−1, µ̂i〉, (6)

with

âi ∈ A, µ̂0 = 0, µ̂i =
âi + âi+1

2
, i = 1, 2, . . . (7)

where (similar to the end-point sequence ai above) the sequence âi, i = 1, 2, . . .
is non-decreasing, may repeat up to two consecutive times (except for values of
0 and αN) and its length does not exceed 2N . As an extreme example consider
the function

ĥ(x) =

−1 if x ∈ A

+1 otherwise,

whose corresponding f̂ has the sequence â1 = 0, â2 = α1, â3 = α1, â4 = α2,
â5 = α2, â6 = α3, . . ., â2N−2 = αN−1, â2N−1 = αN−1, â2N = αN .

Next, we proceed to evaluate the approximation ability of F̂ . Given an f ∈ F
with its end-point sequence ai let âi be any sequence (as in (7)) which also
satisfies |ai − âi| ≤ γ/2. Note that while the sequence âi may have r > 2
repeated consecutive values {âj+s}r−1

s=0 (for instance, due to a cluster of close
points {aj+s}r−1

s=0) it is easy to see that the resulting function is equivalent to a

function f̂ in F̂ whose sequence is obtained by replacing this long subsequence
with a new subsequence a′j of length equal to one (with a′j = âj) or two
(with a′j = a′j+1 = âj) in case r is odd or even, respectively. For convenience,
unless otherwise stated, we will use the original sequence âi (without such
replacement) as the corresponding sequence of f̂ . We denote by µi and µ̂i the
corresponding midpoint sequences, i = 1, 2, . . ., of f and f̂ .

Consider µi−1, µi and µ̂i−1, µ̂i which must satisfy µi−1 ≤ µi µ̂i−1 ≤ µ̂i. Denote
by Gi ≡ {x : min{µi, µ̂i} ≤ x ≤ max{µi, µ̂i}}. There are two cases: (I) the
intervals Gi−1 and Gi overlap (II) do not overlap. Suppose (II) then denote by
Ei = {x : max{µi−1, µ̂i−1} ≤ x ≤ min{µi, µ̂i}}, i = 1, 2, . . .. Over Ei we have
f(x) = (−1)i+1(x− ai) and f̂(x) = (−1)i+1(x− âi) hence

sup
x∈Ei
|f(x)− f̂(x)| = |ai − âi| ≤ γ/2, i = 1, 2, . . . .

In either case (I) or (II), the worst-case deviation over the interval Gi occurs
when either f increases and f̂ decreases (at a slope of absolute value 1) or vice
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versa. Without loss of generality, suppose µi ≤ µ̂i so the latter is true. Then
we have f̂(x) = x− âi and f(x) = −(x− ai+1) so for x ∈ Gi,

|f̂(x)− f(x)| = |(x− âi)−−(x− ai+1)| ≤ |(µ̂i − âi) + (µ̂i − ai+1)|. (8)

By (6) at x = µ̂i the function f̂ changes to −(x− âi+1) thus the right side of
(8) equals

| − (µ̂i − âi+1) + (µ̂i − ai+1)| = |âi+1 − ai+1| ≤ γ/2, i = 1, 2, . . . .

Combining the above, we have

sup
x∈X
|f(x)− f̂(x)| = max

i=1,2,...
max

{
sup
x∈Ei
|f(x)− f̂(x)|, sup

x∈Gi
|f(x)− f̂(x)|

}
≤ γ/2.

Thus the class F̂ is a finite γ/2-covering of the infinite class F . We proceed
now to bound the cardinality of F̂ .

From (6), there is a two-to-one correspondence between an f̂ ∈ F̂ (and its
negation −f̂) and the non-decreasing sequence âi, where âi ∈ A, 1 ≤ i ≤ n,
1 ≤ n ≤ 2N , which may have up to two consecutive repetitions (in case the
original sequence âi has a repeated subsequence of length greater than two
we henceforth replace it, as mentioned above, by a sequence with repeated
runs of length no larger than two). Let bi, 1 ≤ i ≤ m− 1 ≤ n be the sequence
obtained from âi by removing all duplicates, 0 and αN (if they appear). Define
the sequence of differences as

ci =


bi/γ i = 1

(bi − bi−1)/γ i = 2, 3, . . . ,m− 1

N − bi−1/γ i = m

which satisfies
∑m
i=1 ci = N . For instance, for the sequence â1 = 0, â2 = â3 =

α4, â4 = αN−3 we have b1 = α4, b2 = αN−3 and c1 = 4, c2 = N − 7, c3 = 3.
This sequence ci, i = 1, 2, . . . ,m forms an ordered partition (or composition)
of the integer N into m parts. By a classical result (see [2], p.54) the number

of such compositions is exactly
(
N−1
m−1

)
. Clearly, given any such composition

we may construct its corresponding bi sequence and then have 2m−1 possible
ways of duplicating any number bi (this includes the choice of no duplication
at all). The resulting sequence can then be modified by either preceding (or
not) with a 0 or appending (or not) with an αN (thus four possibilities) to
obtain a valid âi sequence with a corresponding function f̂ ∈ F̂ . Negating to
obtain −f̂ also yields a possible function in F̂ . Hence there are exactly

4 · 2 ·
∑
m=1

(
N − 1

m− 1

)
2m−1 = 8

∑
k≥0

(
N − 1

k

)
2k = 8(1 + 2)N−1 = 8 · 3N−1
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functions f̂ ∈ F̂ and hence

|F̂ | = 8 · 3N−1 = 8 · 3dB/γe−1.

To conclude, we therefore have shown that for any subset S ⊂ X the class F
has a covering number

N (F, γ/2, l∞(S)) ≤ N (F, γ/2, l∞) ≤ |F̂ | = 8 · 3dB/γe−1. (9)

This bound therefore gives the following upper bound on the uniform γ/2
covering numbers (which is independent of m): for all m, for any γ > 0,
N∞(F, γ/2,m) < 8 · 3B/γ.

This bound is almost tight since as we next show a lower bound on it grows
at the same rate with respect to B/γ. To obtain the lower bound we use
the fat-shattering dimension. This is a scale-sensitive version of the pseudo-
dimension and was introduced by Kearns and Schapire [10]. Suppose that F is
a set of functions from X to IR and that γ ∈ (0, 1). We say that a finite subset
S = {x1, x2, . . . , xd} of X is γ-shattered if there is r = (r1, r2, . . . , rd) ∈ IRd

such that for every b = (b1, b2, . . . , bd) ∈ {0, 1}d, there is a function fb ∈ F
with fb(xi) ≥ ri + γ if bi = 1 and fb(xi) ≤ ri − γ if bi = 0. The fat-shattering
dimension, fatF : IR+ → N ∪ {0,∞}, is

fatF (γ) = max {|S| : S ⊆ X is γ-shattered by F} ,

or fatF (γ) =∞ if the maximum does not exist.

We can fairly easily lower bound the γ-fat-shattering dimension of our class
F . Consider the sample Sγ = {xi ≡ α2i+1 : 0 ≤ i ≤ bN/2c − 1} where
αi are defined in (5). The function f ∈ F , whose corresponding sequence
ai+1 = α2i, 0 ≤ i ≤ bN/2c, achieves the alternating dichotomy on Sγ, i.e., the
corresponding binary function h(xi) = (−1)i, 0 ≤ i ≤ |Sγ| and its margin on
Sγ equals γ. It is simple to see that for any other dichotomy v ∈ {−1,+1}|Sγ |
there exists some f ∈ F such that its corresponding h satisfies h(xi) = vi,
0 ≤ i ≤ |Sγ| with f having a margin at least γ on Sγ. Hence

fatF (γ) ≥ |Sγ| =
⌊
N

2

⌋
=

⌊
1

2

⌈
B

γ

⌉⌋
≥
⌊
B

2γ

⌋

It is known (see [7] and Theorem 12.10 of [3]) that for any m ≥ fatF (16ε),
N∞(F, γ,m) ≥ exp(fatF (16γ)/8). Hence we have

N∞(F, γ/2,m) ≥ efatF (8γ)/8 ≥ ebB/16γc/8. (10)

12



From (9) and (10) we see that the log of the covering number is tightly esti-
mated to within a constant multiple of B/γ.

Final steps

By Theorem 3, with probability at least 1 − 2N∞(F, γ/2, 2m) exp(−ε2m/8),
for all h : X → {−1, 1}, we have L(h) < Lγζ (h) + ε. Therefore, given the
covering number bound we now have the following: for fixed γ > 0 and for
δ ∈ (0, 1), with probability at least 1− δ, for every function h : X → {−1, 1},

L(h) < Lγζ (h) +

√√√√ 8

m

(
B

γ
ln 3 + ln

(
16

δ

))
. (11)

The result obtained thus far requires γ to be fixed in advance. What we want
instead is a bound that holds simultaneously for all γ. We can achieve this by
using the ‘method of sieves’ (see [3, 6, 9]). Note that, since X = [0, B] and
by the way the functions in F are defined, we need never consider a width or
margin greater than B. For γ1, γ2 ∈ (0, B) and δ ∈ (0, 1), let E(γ1, γ2, δ) be the
subset of Zm consisting of ζ ∈ Zm for which there exists some h : X → {−1, 1}
with the property that L(h) > Lγ2ζ (h) + ε(m, γ1, δ), where

ε(m, γ, δ) =

√√√√ 8

m

(
B

γ
ln 3 + ln

(
16

δ

))
.

Then we have that for all γ, Pm(E(γ, γ, δ)) ≤ δ, for this is simply the bound
of (11) above, for fixed γ. Furthermore, if 0 < γ1 ≤ γ ≤ γ2 < 1 and 0 < δ1 ≤
δ ≤ 1, then E(γ1, γ2, δ1) ⊆ E(γ, γ, δ).This observation enables us to argue,
following [6], that

Pm

 ⋃
γ∈(0,B]

E(γ/2, γ, δγ/(2B))

≤Pm

 ∞⋃
i=0

⋃
γ∈(2−(i+1)B,2−iB]

E(γ/2, γ, δγ/(2B))


≤Pm

( ∞⋃
i=0

E(2−(i+1)B, 2−(i+1)B, δ2−(i+1))

)

≤
∞∑
i=0

δ2−(i+1) = δ.

So, with probability at least 1−δ, for all h : X → {−1, 1} and for all γ ∈ (0, B),

L(h) < Lγζ (h) +

√√√√ 8

m

(
2B

γ
ln 3 + ln

(
32B

δγ

))
,

13



which is exactly the statement of Theorem 2.

Advantage of directly bounding covering numbers

As noted after the statement of Theorem 2, our ε(m, γ, δ) is of order
√

1/(γm).
We commented earlier that analogous margin-based results for real-valued
functions [3] have an ε that is larger. Common margin-based approaches to
learning make use of Theorem 3 together with the fact that the covering
numbers can, by [1], be bounded by the fat-shattering dimension of the class.
Explicitly, the following bound (from [3]) is a straightforward corollary of the
main result of Alon et al..

Theorem 4 Suppose that F is a set of functions from X to [0, B] and that
F has finite fat-shattering function. Let m ∈ N and α > 0. Let d = fatF (α/4).
Then, for all m ≥ d,

N∞(F, α,m) < 2

(
4mB2

α2

)d log2(4eBm/(dε))

.

The following results from now using Theorem 3.

Theorem 5 Suppose that F is a set of functions from X to [0, B] and that
F has finite fat-shattering function. Let m ∈ N and γ > 0. Let d = fatF (γ/8).
Let δ ∈ (0, 1). Then, for any probability measure P on Z = X ×{−1, 1}, with
Pm-probability at least 1− δ,

L(sgn(f)) ≥ erγζ (f) + ε

where

ε =

√√√√ 8

m

(
d log2

(
8eBm

dγ

)
ln

(
32mB2

γ2

)
+ ln

(
4

δ

))
.

In the present context, where F is obtained from H in the way described in
Section 3.2, we have seen that d is of order at least 1/γ. This means that the

margin-based bounds involve a term of order
√

(lnm)2/(γm). So the bounds
obtained here through bounding the covering number directly yield better
results than those based on using the fat-shattering dimension.

3.3 A special case

The next result applies to the more specific case where we use a hypothesis
that has Lγζ (h) = 0. (This is sometimes termed the restricted model of learning

14



[3].)

Theorem 6 Let B > 0 and denote the domain by X = [0, B] with range
Y = {−1,+1} and let Z = X × Y . Let P be a probability distribution on Z
and suppose that δ ∈ (0, 1). Then, with Pm-probability at least 1− δ, ζ ∈ Zm

is such that for for all γ > 0, for any function h : X → Y with the property
that Lγζ (h) = 0, we have

L(h) <
2

m

(
2B

γ
ln 3 + ln

(
32B

δγ

))
.

Proof: It follows from a result in [4] (see also [3, 6] for similar results) that,
for fixed γ, the Pm-probability that there is f ∈ F with erγζ (f) = 0 and
L(sgn(f)) ≥ ε is no larger than

2N∞(F, γ/2, 2m)2−εm/2.

This means that, with probability at least 1− 2N∞(F, γ/2, 2m)2−εm/2, for all
h : X → Y such that Lγζ (h) = 0, we have L(h) < ε. Given the covering number
bound, this means that for fixed γ > 0 and for δ ∈ (0, 1), with probability at
least 1− δ, for every function h : X → Y which satisfies Lγζ (h) = 0, we have

L(h) <
2

m

(
B

γ
ln 3 + ln

(
16

δ

))
.

We turn this into a result that holds simultaneously for all γ ∈ (0, B] using
the same technique as in the proof of Theorem 2. The resulting bound is that
stated in Theorem 6. �

Theorem 2 gives the bound

for all h : X → Y, P{h(x) 6= y} < Lγζ (h) +O
(√

1/(γm)
)
.

If we simply apply this in the case where Lγζ (h) = 0, we obtain a (high-

probability) generalization bound of order
√

1/(γm). Theorem 6 improves this

to one of order only 1/(γm).
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4 Implications for learning algorithms

4.1 Sample width maximization algorithms

The generalization error bound results, Theorems 2 and 6, have some fairly
practical implications. Consider, in particular, Theorem 6. The error bound
decreases as γ increases; however, as γ increases, the condition that Lγζ (h) = 0
becomes more demanding. This suggests using a learning algorithm which will
maximize the sample width.

Definition 1 Given a hypothesis space H (a set of functions from X to Y ),
we say that a learning algorithm A :

⋃∞
m=1 Z

m → H is a sample-width maxi-
mization algorithm for H if for all m and all ζ ∈ Zm, A returns a hypothesis
in H which has zero γ(ζ)-width error on ζ, where

γ(ζ) = max{γ : ∃h ∈ H, Lγζ (h) = 0}.

So, a sample-width maximization algorithm for H will give an output hy-
pothesis that agrees with the classifications of the sample points and achieves
maximum possible width on the sample of all such functions. (There may be
many such hypotheses.) The generalization performance of such an algorithm
can be bounded directly by Theorem 6.

Theorem 7 Suppose that H is the set of binary functions mapping X = [0, B]
to {−1, 1}. Suppose that A is a sample-width maximization algorithm for H.
Given a sample ζ ∈ Zm, let A(ζ) denote the output hypothesis. Then, for any
δ ∈ (0, 1), with probability at least 1− δ,

L(A(ζ)) <
2

m

(
2B

γ
ln 3 + ln

(
32B

δγ

))
.

Note how important it is that, in Theorem 6, the parameter γ is not prescribed
in advance, because γ(ζ) cannot be known a priori.

If there is no particular fixed hypothesis space from which we must choose our
hypothesis, then it seems natural, given a labeled sample, to take as hypothesis
the simplest {−1, 1}-valued function that achieves maximum sample width.
That is, we have the following algorithm for learning binary functions on
X = [0, B].
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Algorithm MW:

Input: A sample ζ = {(xi, yi)}mi=1, xi ∈ X, yi ∈ Y , 1 ≤ i ≤ m, ordered
according to x1 ≤ x2 ≤ · · · ≤ xm,
(1) Locate all set-pairs of consecutive points {{xij , xij+1}}`j=1 such that yij 6=

yij+1, 1 ≤ ` ≤ m. (These set-pairs can have a non-empty intersection).
(2) Define the corresponding ` midpoints as follows:

νj =
xij + xij+1

2
, 1 ≤ j ≤ `

(3) Let h′ be defined as follows:

h′(x) =


yi1 if x ≤ ν1

yij+1 if νj < x ≤ νj+1, 1 ≤ j ≤ `− 1

yi`+1 if x ≥ ν`

Output: h′

It is clear that this is a sample width maximization algorithm. The width γ(ζ)
will depend, of course, on the xi in the sample and on their classifications,
but, certainly, we have γ(ζ) ≥ min1≤i 6=j≤m |xi − xj|/2, the minimum distance
between two points in the sample.

4.2 Model selection

A range of ‘model selection’ results for learning with real-valued functions have
been obtained, a number of which involve the margin. (See, for instance [3].)
In a similar way, the error bounds obtained here can lead to analogous results.
The bound of Theorem 2 takes the form

L(h) < E(m, γ, δ, h) = Lγζ (h) + ε(m, γ, δ), (12)

where, for fixed m and δ, ε(m, γ, δ) decreases as γ increases. A sample-width
maximization algorithm will find h such that Lγζ (h) = 0 and γ is as large as
possible. In general, for any h, and any sample, Lγζ (h) increases as γ increases.
Therefore E(m, γ, δ, h) is the sum of two quantities, one of which increases and
one of which decreases as γ increases and there is hence a trade-off between
the two quantities. This motivates the use of a learning algorithm A that
returns a hypothesis h which minimizes the combination E(m, γ, δ, h). The
(high-probability) generalization error bound for such an algorithm take the
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form

L(A(ζ)) ≤ inf
γ

Lγζ (h) +

√√√√ 8

m

(
2B

γ
ln 3 + ln

(
32B

δγ

)) .

5 Conclusions and further work

For learning with binary-valued functions, it is not immediately clear how to
use the notion of ‘margin’, which has proven useful in considering learning
with real-valued functions. This paper has studied how fairly natural notions
of ‘regularity’ of binary-valued functions can be used to bound generalization
error, and, in particular, it has shown that a sample-based measure of regularity
known as the sample width can be useful. These results suggest ways in which
to guide the selection of a ‘good’ classifier, by selecting those that have high
sample width.

This paper only concerns the case in which the domain in an interval on
the real line. Clearly, for other domains, there may be other ways of defining
notions corresponding to sample ‘width’, and we are currently considering
approaches to this.
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