
ReactJava Developer Guide
10 February, 2023
Company Confidential

Giavaneers, Inc.	1545 1/2 Pacific Avenue, Santa Cruz, California 95060
T 831.459.9064 info@giavaneers.com www.giavaneers.com

mailto:info@giavaneers.com
http://www.giavaneers.com

Giavaneers, Inc.

History	
7

Introduction	
10

Getting Started	
11

If you do not already have IntelliJ installed... 11

Get the ReactJava IntelliJ Plugin... 11

If Building Native Apps on a Mac ... 11

If you do not already have Node installed... 12

Create a new ReactJava IntelliJ Project... 12

Updating an existing ReactJava project... 12

Working with the new ReactJava project 13

ReactJava Project Structure 16

Example in Ten Steps: ThreeByThree	
17

The First Step 17

Adding CSS 19

CSS Selector for Class	
19

CSS Selector for Element Id	
20

Mixing CSS Selector Types	
20

Centering the Square on the Screen 21

Centering the Square within a Column 22

Centering the Square with Material-UI Grid 23

Making the App Responsive 24

ReactJava Developer Guide	 1

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Add Consistency by Using a Theme 25

Add Interaction with a Click Handler 26

Add Nine Squares to a Board 27

Getting a Color from the Cloud 28

Components, Properties, and State	
29

Custom Components and Properties 29

Notes on the render() Method 33

Specifying App Properties 34

Specifying App Properties Programatically	
34

Specifying App Properties with URL Parameters	
34

Specifying App Log Level with a URL Parameter	
35

Providing a Default ElementId 35

Managing Component State 36

Querying whether a Component is Mounted 38

Finding a Component Instance	
39

Component.forClass() 39

Component.forId() 40

Component.forElement() 41

Finding the App instance 41

React Hooks	
42

useState() 42

ReactJava Developer Guide	 2

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

useEffect() 42

useRef() 44

Use Components from a React Library	
45

Material-UI Example 45

Grommet Example 46

Recharts Example 48

Adding Additional Node Modules	
49

Ensuring Clarity of Node Module JSX Tags 51

Adding Additional Javascripts	
52

Embedding Shared Resources	
53

Embedding Image and Other Files 53

Embedding Javascripts as Shared Resources 53

Dynamic Routing	
55

A Routing Example 56

Timers	
57

Keyboard Support	
57

Observables and Promises	
58

ReactJava Core Observables 58

Wrapping Promises in Observables 59

JSON Support	
60

Using Cloud Services	
61

ReactJava Developer Guide	 3

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Configuring Cloud Services 61

Adding Google Analytics	
64

Configuring Google Analytics 64

Generating Google Analytics Page Views 65

More General Access to Google Analytics 66

Posting Events	
66

Reading Analytics Data	
66

User Accounts and Authentication	
67

Configuring the Authentication Service 67

Accessing the Authentication Service 67

Creating a New User Account 68

Logging In to a User Account 68

Logging Out of a User Account 68

Database Support	
69

Built-In Firebase Support 69

Configuring the Database Service 69

Accessing the Database Service 70

Database Structure 70

Writing to the Database 71

Deleting Data from the Database 71

Reading from the Database 72

ReactJava Developer Guide	 4

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Reading Once	
72

Reading Continuously on Changes	
72

Stopping Reading on Record Changes	
73

SEO Support	
74

robots.txt 75

Sitemap 75

Redirect HTMLs 75

Head Title and Description Tags 75

Structured Data 75

SEO API 76

ReactJava Built-in Components	
77

Logon 78

Compile Time Constants 79

GeneralPage 80

Manifest	
81

PageDsc	
82

Components API	
83

ReactJava Examples	
84

Deploying the ReactJava App	
87

Deploying to Google Cloud Storage 87

Establishing a Domain	
87

Proving Your Domain Ownership	
88

ReactJava Developer Guide	 5

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Copying Your Web App Files	
88

Configuring Your Deployment Bucket	
88

Limitations of Deploying to Google Cloud Storage	
88

Deploying to Firebase 89

Creating a Firebase Project	
89

Install and Configure the Firebase CLI	
89

Modifying firebase.json	
90

Deploying Your App	
91

Deploying More Than One App from a Project	
91

Specifying Your Custom Domain	
92

Example Setup	
92

Deploying as a Progressive Web App (PWA) 94

App HTML File Meta and Link Entries	
94

The PWA Manifest File	
94

Application Icon Image Files	
95

Service Worker Javascript File	
95

Service Worker Registration	
95

Summary of Requirements to Deploy a ReactJava PWA	
95

Installing Your PWA on a Mobile Device	
95

Accommodating PWA Changes to a Mobile App	
96

Installing Your PWA on a Desktop Computer	
97

Accommodating PWA Changes to a Desktop App	 100

ReactJava Developer Guide	 6

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

History
15 Aug, 2018	 Initial draft. (LBM - Brian McGann, Giavaneers, Inc.)

12 Oct, 2018	 Added Getting Started section. (LBM)

17 Oct, 2018	 Reworked the Getting Started section to have users install Node manually,
rather than the integrated mode that works for Mac installations. (LBM)

26 Oct, 2018	 Documented new npm login credentials and instructions for updating an
existing project. (LBM)

27 Oct, 2018	 Documented ThreeByThree example. (LBM)

13 Nov, 2018	 Documented use of Grommet. (LBM)

11 Dec, 2018	 Documented support for declaring the addition of node modules. (LBM)

14 Dec, 2018	 Documented support for dynamic routing and enhanced update support for
create-reactjava-app. (LBM)

20 May, 2019	 Revised Three By Three example. (LBM)

21 Jun, 2019	 Added SEO Support and Deployment sections. (LBM)

02 Sep, 2019	 Added IntelliJ ReacJava Plugin sections. (LBM)

03 Oct, 2019	 Corrected npm command line for installing material-ui. (LBM)

11 Oct, 2019	 Updated Three By Three example sources. (LBM)

14 Oct, 2019	 Split off last sections into ReactJava Maintenance Guide. (LBM)

31 Oct, 2019	 Added sources and access to the working example for Routing. (LBM)

08 Nov, 2019	 Updated section on adding custom React component libraries. Pruned
some redundant examples. (LBM)

12 Nov, 2019	 Added a bit more explanation to the dynamic routing section. (LBM)

ReactJava Developer Guide	 7

History

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

7 Dec, 2019	 Added Database Support section and placeholders for Timers, Keyboard
Support, and User Accounts and Authentication. (LBM)

9 Dec, 2019	 Added Timers, Keyboard Support, and User Accounts and Authentication
sections. Added remove() functionality to Database Support section. (LBM)

2 Jan, 2020	 Added Using Cloud Services section. Enhanced the User Accounts and
Authentication, Google Analytics and Database sections. (LBM)

6 Jan, 2020	 Added description of how to deploy to Firebase. (LBM)

8 Feb, 2020	 Added Introduction and made revisions in preparation for public release.
(LBM)

14 Feb, 2020	 Added built-in components section. (LBM)

22 Feb, 2020	 Added information to the Deploy to Firebase section. (LBM)

26 Feb, 2020	 Added section on Hooks. (LBM)

8 Mar, 2020	 Added section on specifying App properties. (LBM)

24 Mar, 2020	 Added description of Component defaultElementId() method. (LBM)

15 Apr, 2020	 Added section on finding a specific component instance as well as
describing the built-in tracking of Component mounted state. (LBM)

22 May, 2020	 Modified section on adding custom javascripts to use the new
getCustomJavascripts() method. (LBM)

15 Aug, 2020	 Added the 'as' syntax to specifying a custom jvascript, thereby creating a
ReactJava native namespace. (LBM)

22 Aug, 2020	 Added the section on exporting shared resources and the specific
discussion about exporting custom javascripts. (LBM)

3 Apr, 2021	 Added the section on finding an App instance. (LBM)

15 Apr, 2021	 Added the section describing the built-in JSON.simple JSON library. (LBM)

02 Dec, 2022	 Added the section on assigning the log level at launch time. (LBM)
ReactJava Developer Guide	 8

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

07 Dec, 2022	 Added a section on using the Recharts charting package. (LBM)

27 Dec, 2022	 Added a section on adding general files as embedded resources. (LBM)

03 Feb, 2023	 Added a section describing how support for various Firebase services are
built-in to ReactJava.

10 Feb, 2023	 Added section describing deployment as a Progressive Web Application.

ReactJava Developer Guide	 9

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Introduction
ReactJava provides the ability to create React web applications using the Java programming
language. In an upcoming release, it will also automatically port any ReactJava web application
to iOS and Android for deployment as a native application on mobile devices.

ReactJava is not a framework in its own right; it is simply a lightweight front-end providing access
to the standard React framework from Java.

ReactJava was initially created as an educational aid for Advanced Computer Science high
school students in which Java is taught as the sole programming language in compliance with the
College Board national curriculum. The intention was to allow students fluent in Java but
inexperienced in Javascript the ability to leverage all the power of React, lightweight, declarative,
performant, component-based programming that is simple to write and easy to debug, packaged
in a way that naturally combines the structure, familiarity, and reach of Java.

Despite its initial focus on computer science education, it has emerged as a tool of more general
interest in its own right to a broader developer community. Although we make no claims that the
developer experience with ReactJava is generally better than that of normal React, some may find
it appealing to be able to use Java with its inherent structure, rich set of robust, industrial-strength
tools, leveraging the enormous collection of existing Java libraries to build the same great
applications for mobile and the desktop that is done normally with React and React Native.

ReactJava Developer Guide	 10

Introduction

https://reactjs.org/
https://facebook.github.io/react-native/
http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Getting Started
This page will help you install and build your first ReactJava app. The assumption throughout the
guide is that you will be using IntelliJ Ultimate Edition as an IDE, but you can make adjustments to
use other IDEs or even just the command-line.

If you do not already have IntelliJ installed...
Download the IntelliJ Ultimate addition and follow the installation instructions.

Get the ReactJava IntelliJ Plugin...
Once you have IntelliJ installed, go to Intellij->Preferences->Plugins and choose the Marketplace
tab to search for the 'ReactJava' plugin. Press the button to install it and then press the button to
restart the IDE

If you do not already have a JDK installed...
You will need a Java Development Kit installed. You can check if you have one from the terminal:

> javac -version

If you have a JDK installed, the version number will be displayed. Otherwise, install the Java 8
OpenSDK from Azul Systems.

If Building Native Apps on a Mac ...
Be sure you have the latest version of Xcode, complete with Command-line Tools. This is only
necessary for Release 2.0 and later of ReactJava

ReactJava Developer Guide	 11

Getting Started

https://www.jetbrains.com/idea/download/
https://www.azul.com/downloads/zulu-community/
https://www.azul.com/downloads/zulu-community/
http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

If you do not already have Node installed...
Go to nodejs.org and follow the instructions to download and install node.

Create a new ReactJava IntelliJ Project...
Once you have all of the above installed, create-reactjava-app is the easiest way to start building
a new ReactJava application. Use npm from the terminal to install the create-reactjava-app
package (sudo is required on Mac):

> [sudo] npm -g i create-reactjava-app

From then on, whenever you want to create a new ReactJava application,

> create-reactjava-app [pathToYourNewReactJavaProjectFolder]

The result will be a ReactJava project folder that you can open in IntelliJ.

Updating an existing ReactJava project...
You can update an existing project with any React, ReactJava and React Native updates at any
time by

> create-reactjava-app update [pathToYourNewReactJavaProjectFolder]

or if your working directory is currently the project folder you wish to be updated, simply

> create-reactjava-app update

ReactJava Developer Guide	 12

http://www.giavaneers.com
http://nodejs.org
http://www.reactjava.io

Giavaneers, Inc.

Working with the new ReactJava project
You can open the new ReactJava project folder with IntelliJ.

Select the new project folder and the project will open

ReactJava Developer Guide	 13

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Open the project settings:

Make sure the Java 8 JDK is selected and the language level is set to 8.

ReactJava Developer Guide	 14

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

You can build and run the project in the debugger with a single click.

When the app starts, the browser should launch and the app should appear.

ReactJava Developer Guide	 15

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

ReactJava Project Structure
Some of the important project files are shown in the following figure.

ReactJava Developer Guide	 16

application source file

GWT module descriptor

ReactJava libraries

application html file

application package descriptor

application launch file

ant build file

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Example in Ten Steps: ThreeByThree
Here's a simple example that we can build upon in ten steps, learning the main concepts of
ReactJava along the way. This example is what is known as a Single Page App (SPA).

The First Step
First we create an app that simply renders a blue block. You can get the source here, and you
can try it here.

import io.reactjava.client.core.react.AppComponentTemplate;

public class MyApp extends AppComponentTemplate
{
 public final void render()
 {
 /*--
 <div style='background:blue;height:300px;width:300px;'></div>
 --*/
 }
}

That's all there is to it: ReactJava apps can be extremely simple.

Every ReactJava application starts with a custom app class that extends
AppComponentTemplate. AppComponentTemplate is a subclass of the Component class, the
central class of ReactJava. Some apps are made up entirely of a single custom app class, as is
the case for this first example.

The most important method of the Component class is the render() method. The default
implementation of the Component render method() is empty - it doesn't include anything at all.
The overriding render() method of our MyApp class includes a single line of markup in JSX which
causes a blue block 540 pixels on a side to be rendered on the screen.

As you can see, JSX looks a lot like HTML, and serves as the main means by which a
Component expresses the appearance it should take on the screen. A Component render()
method can contain any combination of Java code and JSX. The JSX is separated from any Java

ReactJava Developer Guide	 17

Example in Ten Steps: ThreeByThree

http://www.giavaneers.com
https://en.wikipedia.org/wiki/Single-page_application
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step01/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step01/ThreeByThreeReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/core/react/AppComponentTemplate.java
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/core/react/Component.java
https://reactjs.org/docs/introducing-jsx.html
http://www.reactjava.io

Giavaneers, Inc.

code by a special version of the standard block comment delimiters; the character sequence '/
--' begins a block of JSX and the character sequence '--/' terminates it.

Note that a render() method must have no more than one root component in its markup. The root
may have any number of descendant components, but if there is more than one root component,
only the first will be rendered. In the example below, only the blue square will be shown; the green
square will not.

import io.reactjava.client.core.react.AppComponentTemplate;

public class MyApp extends AppComponentTemplate
{
 public final void render()
 {
 /*--
 <div style='background:blue;height:300px;width:300px;'></div>
 <div style='background:green;height:300px;width:300px;'></div>
 --*/
 }
}

In order to render both squares, they should be wrapped within a single root container element.

import io.reactjava.client.core.react.AppComponentTemplate;

public class MyApp extends AppComponentTemplate
{
 public final void render()
 {
 /*--
 <div>
 <div style='background:blue;height:300px;width:300px;'></div>
 <div style='background:green;height:300px;width:300px;'></div>
 </div>
 --*/
 }
}

ReactJava Developer Guide	 18

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Adding CSS
Instead of styling our block inline, it's usually preferable to express styling in CSS. The
Component class provides a method for this called renderCSS(). It uses the same special block
comment delimiters as in the render() method, but this time they separate Java code from CSS
statements instead of JSX. You can select CSS styles selected to all elements that share a class
specification, or styles to be applied to a specific element selected by its id.

CSS Selector for Class
Here's our first example using CSS instead of inline styling. The CSS declaration for class
'square' explicitly assigns the height and the width of the cell, making the cell square. You can get
the source here, and you can try it here.

public final void render()
{
 /*--
 <div class='square'></div>
 --*/
};

public void renderCSS()
{
 /*--
 .square
 {
 background: green;
 width: 300px;
 height: 300px;
 }
 --*/
}

ReactJava Developer Guide	 19

http://www.giavaneers.com
http://www.reactjava.io
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step02/a/cssclassselector/App.java
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step02/a/cssclassselector/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step02/a/cssclassselector/ThreeByThreeReactJava.html

Giavaneers, Inc.

CSS Selector for Element Id
In this next example, we declare the CSS style for the specific element instance. It uses the
cssSelectorForId() method of the Component class. This is a very useful pattern if you want to
control more than one instance of the same Component class differently from the others. You can
get the source here, and you can try it here.

public final void render()
{
 /*--
 <div></div>
 --*/
};

public void renderCSS()
{
 /*--
 {cssSelectorForId()}
 {
 background: blue;
 width: 300px;
 height: 300px;
 }
 --*/
}

Mixing CSS Selector Types
In this last example, we include a mix of selector types in our CSS. We select by the class
'square' for specifying the size, and we select by the elementId for the square's color. That way,
all squares will be the same size, but each square instance can have its color specified
independently from the others. You can get the source here, and you can try it here.

public final void render()
{
 /*--
 <div class='square'></div>
 --*/
};

public void renderCSS()
{
 /*--
 .square {width:300px; height:300px;}
 {cssSelectorForId()} {background-color:blue;}
 --*/
}  

ReactJava Developer Guide	 20

https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step02/b/csselementidselector/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step02/b/csselementidselector/ThreeByThreeReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step02/c/cssmixedselectors/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step02/c/ThreeByThreeReactJava.html
http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Centering the Square on the Screen
Rather than always sticking to the leading edge of the screen, let's keep our square in the center,
regardless of how the width of the browser window changes. We can accomplish that by putting
the square in a 'row' element that extends across the entire width of the screen, and then using
CSS to center our square within the row. You can get the source here, and you can try it here.

public final void render()
{
 /*--
 <div class='row'>
 <div class='square'></div>
 </div>
 --*/
};

public void renderCSS()
{
 /*--
 .row
 {
 display: flex;
 flex: one;
 flex-direction: row;
 width: 100%;
 align-items: center;
 justify-content: center;
 }
 .square
 {
 width: 300px;
 height: 300px;
 background-color: blue;
 }
 --*/
}

ReactJava Developer Guide	 21

http://www.giavaneers.com
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step03/center/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step03/ThreeByThreeReactJava.html
http://www.reactjava.io

Giavaneers, Inc.

Centering the Square within a Column
Here's another way to center our square within the row. It offers the advantage of a bit more
generality at the expense of being slightly more complex. We add a 'column' element to the row
to hold the square and declare its CSS so that the square's computed height will always equal its
width. Check out the 'box-sizing: border-box;' and the 'padding-top: 100%' specifications to see
how this works. Now we can always maintain a square shape for a specified width without having
to also specify the height. You can get the source here, and you can try it here.

public final void render()
{
 /*--
 <div class='row'>
 <div class='contentWidth'>
 <div class='square'></div>
 </div>
 </div>
 --*/
}

public void renderCSS()
{
 /*--
 .row
 {
 display: flex;
 flex: one;
 flex-direction: row;
 width: 100%;
 align-items: center;
 justify-content: center;
 }
 .contentWidth
 {
 box-sizing: border-box;
 width: 300px;
 }
 .square
 {
 padding-top: 100%;
 background-color: blue;
 }
 --*/
}

ReactJava Developer Guide	 22

http://www.giavaneers.com
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-top
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step04/column/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step04/ThreeByThreeReactJava.html
http://www.reactjava.io

Giavaneers, Inc.

Centering the Square with Material-UI Grid
Rather than going to the trouble of writing complicated CSS ourselves, it's often easier to
leverage existing React components from leading third-party libraries. Material-UI is currently the
leading React component library, and it includes a Grid component that is specifically designed to
create a grid structure on the screen that we can use to center our square. (We'll be able to use it
for other useful things later as well). You can reference the parameters of the Grid API here.

The Material-UI library is included in the project by default. If it hadn't been, you could have gone
to the terminal tab in IntelliJ and installed it with npm:

> npm i @material-ui/core

We've applied it below. Notice how we name the Material-UI Grid component and applied its
parameters. The Grid container and item elements play the roles of the 'row' and 'column'
elements of the previous example. You can get the source here, and you can try it here.

public final void render()
{
 /*--
 <@material-ui.core.Grid container justify="center">
 <@material-ui.core.Grid item class='contentWidth'>
 <div class='square'></div>
 </@material-ui.core.Grid>
 </@material-ui.core.Grid>
 --*/
}

public void renderCSS()
{
 /*--
 .contentWidth
 {
 width: 300px;
 }
 .square
 {
 padding-top: 100%;
 background-color: blue;
 }
 --*/
}

ReactJava Developer Guide	 23

http://www.giavaneers.com
https://material-ui.com/
https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step05/materialui/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step05/ThreeByThreeReactJava.html
http://www.reactjava.io

Giavaneers, Inc.

Making the App Responsive
Instead of sizing the square the same regardless of the size of the window, it is often better to
automatically resize it to keep the block approximately scaled to the size of the window. That way,
what look good on a large desktop monitor will also look good on a small handheld device. And it
isn't just the size of a single item we want to scale: we want to automatically adjust the whole
layout so it works well for different screen sizes.

This is called 'responsive design', and we do it in steps called 'breakpoints' that we implement in
our CSS with media queries. We've applied five breakpoints below. Notice how the size of the
square changes as you drag the browser window to different sizes. You can get the source here,
and you can try it here.

public void renderCSS()
{
 /*--
 .square
 {
 padding-top: 100%;
 background-color: blue;
 }
 .contentWidth
 {
 }
 @media(min-width: 320px)
 {
 .contentWidth {width: 300px;}
 }
 @media(min-width: 576px)
 {
 .contentWidth {width: 540px;}
 }
 @media(min-width: 768px)
 {
 .contentWidth {width: 720px;}
 }
 @media(min-width: 992px)
 {
 .contentWidth {width: 960px;}
 }
 @media(min-width: 1200px)
 {
 .contentWidth {width: 1140px;}
 }
 --*/
};

ReactJava Developer Guide	 24

http://www.reactjava.io
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step06/responsive/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step06/ThreeByThreeReactJava.html
http://www.giavaneers.com

Giavaneers, Inc.

Add Consistency by Using a Theme
A theme is a set of constants related to various styling parameters. By relying upon the current
theme, a Component can ensure consistency across an entire application.

Media query breakpoints are properties of the theme, and by using the theme breakpoint values,
you can ensure consistency and at the same time make the CSS easier to maintain.

In the example below, we've replaced the declaration of explicit breakpoint values with symbolic
ones accessed from the current theme. We've also mixed in Java code with the CSS. And also
notice how we've replaced explicit CSS values with references to Java values by enclosing the
Java references with curly braces, '{' and '}'. You can get the source here, and you can try it here.

import io.reactjava.client.core.react.IUITheme;
import io.reactjava.client.core.react.IUITheme.Breakpoints;

...
public void renderCSS()
{
 Breakpoints bkpts = getTheme().getBreakpoints();
 String sm = IUITheme.toPx(bkpts.getSizeSmall());
 String md = IUITheme.toPx(bkpts.getSizeMedium());
 String lg = IUITheme.toPx(bkpts.getSizeLarge());
 String xl = IUITheme.toPx(bkpts.getSizeExtraLarge());
 String xsDim = IUITheme.cssLengthScale(sm, 0.5);
 String smDim = IUITheme.cssLengthScale(sm, 0.8);
 String mdDim = IUITheme.cssLengthScale(md, 0.8);
 String lgDim = IUITheme.cssLengthScale(lg, 0.8);
 String xlDim = IUITheme.cssLengthScale(xl, 0.8);
/*--
 .square {padding-top: 100%;}
 {cssSelectorForId()} {background-color: blue;}
 .contentWidth
 {
 }
 @media(max-width: {sm})
 {
 .content {width:{xsDim};}
 }
 @media(min-width: {sm})
 {
 .content {width:{smDim};}
 }
 @media(min-width: {md})
 {
 .content {width:{mdDim};}
 }
 @media(min-width: {lg})
 {
 .content {width:{lgDim};}
 }
 @media(min-width: {xl})
 {
 .content {width:{xlDim};
 }
--*/
}  

ReactJava Developer Guide	 25

http://www.giavaneers.com
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step07/theme/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step07/ThreeByThreeReactJava.html
http://www.reactjava.io

Giavaneers, Inc.

Add Interaction with a Click Handler
We can add a click handler to our square to change its color. We've also mixed Java code in
with the JSX, and like the previous example, we've replaced explicit JSX values with
references to Java values by enclosing the Java references with curly braces, '{' and '}'. Note
that the elemental2 library comes built-in with ReactJava.

You can get the source here, and you can try it here.

import elemental2.dom.Element;
import elemental2.dom.Event;
import io.reactjava.client.core.react.INativeEventHandler;

...

public INativeEventHandler squareClickHandler = (Event e) ->
{
 // change the clicked element to green //
 Element element = (Element)e.target;
 element.setAttribute("style", "background-color:green");
};

public final void render()
{
 /*--
 <@material-ui.core.Grid container justify="center">
 <@material-ui.core.Grid item class='contentWidth'>
 <div class='square' onClick={squareClickHandler}></div>
 </@material-ui.core.Grid>
 </@material-ui.core.Grid>
 --*/
};

ReactJava Developer Guide	 26

https://github.com/google/elemental2
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step08/interactive/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step08/ThreeByThreeReactJava.html
http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Add Nine Squares to a Board
Rather than a single square, we can add nine squares to an outer Grid container 'board' element,
making the layout look like tic-tac-toe. Notice how we can intersperse Java with JSX.

The outer 'board' Grid container is just like the previous examples, but this time it centers three
Grid container 'row' elements instead of one column element. Each row contains three Grid item
'column' elements horizontally, and each 'column' element contains a square just like before.
Each square shares the common click handler.

The Grid item column element parameter 'xs={4}' indirectly specifies the column width so it isn't
specified explicitly in the CSS.

You can get the source here, and you can try it here.

public final void render()
{
/*--
 <@material-ui.core.Grid container justify="center">
--*/
 for (int iRow = 0; iRow < 3; iRow++)
 {
/*--
 <@material-ui.core.Grid container spacing={8} class='contentWidth' >
--*/
 for (int iCol = 0; iCol < 3; iCol++)
 {
/*--
 <@material-ui.core.Grid item xs={4}>
 <div class='square' onClick={squareClickHandler}></div>
 </@material-ui.core.Grid>
--*/
 }
/*--
 </@material-ui.core.Grid>
--*/
 }
/*--
 </@material-ui.core.Grid>
--*/
};

public void renderCSS()
{
 ...

 .contentWidth
 {
 margin-top: 4px;
 }

 ...
--*/
};  

ReactJava Developer Guide	 27

http://www.giavaneers.com
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step09/board/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step09/ThreeByThreeReactJava.html
http://www.reactjava.io

Giavaneers, Inc.

Getting a Color from the Cloud
In order to show how you can access the web from your app, let's assume when the user clicks a
square, rather than supplying a new color for it to take explicitly, you'd rather get the new color
from a backend server in the cloud. How could you do that?

ReactJava provides a Service Provider called 'HttpClient' which supports you making Http
requests. One variation of its API leverages ReactiveX to handle asynchronous completion. The
ReactiveX library comes built-in with ReactJava. You can learn more about ReactiveX and how it
compares with other asynchronous support mechanisms.

You can get the source here for this example, and you can try it here.

...
import elemental2.dom.DomGlobal;
import io.reactjava.client.core.providers.http.HttpClient;
import io.reactjava.client.core.providers.http.HttpResponse;
...

public INativeEventHandler squareClickHandler = (Event e) ->
{
 final Element element = (Element)e.target;

 // request a color from the backend //
 HttpClient.get(
 "http://reactjavabackend.appspot.com/examples/threebythree/getColor")
 .subscribe(
 (HttpResponse rsp) ->
 {
 // change the clicked element to green //
 element.setAttribute("style", "background-color:" + rsp.getText());
 },
 (Throwable error) ->
 {
 DomGlobal.window.console.log(error.getMessage());
 });
};

ReactJava Developer Guide	 28

http://www.giavaneers.com
http://www.reactjava.io/javadoc/reactjava/io/reactjava/client/core/providers/http/HttpClient.html
http://reactivex.io/
http://reactivex.io/
https://itnext.io/javascript-promises-vs-rxjs-observables-de5309583ca2
https://itnext.io/javascript-promises-vs-rxjs-observables-de5309583ca2
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step10/httpclient/App.java
http://storage.googleapis.com/www.reactjava.io/examples/threebythree/step10/ThreeByThreeReactJava.html
http://www.reactjava.io

Giavaneers, Inc.

Components, Properties, and State
Let's extend our example to cover some additional core concepts; namely, writing custom
components, configuring them with properties, and responding to changes to their state.

Custom Components and Properties
So far our entire app has been constructed with a single class. For the sake of clarity and
maintainability, let's split that up into three classes: one for a Square, another for a Board, and the
third we'll use what remains of our original App. All three are components.

Let's start with the new version of the App which simply renders the Board and provides the
shared clickHandler. Notice we refer to the Board component by means of a tag with its simple
classname. Notice also that we configure the Board by assigning two different properties:
'numColumns' specifies the number of rows and columns the Board should contain, and
'clickHandler' specifies the shared click handler.

Component properties are specified in this way, from the parent down. Their names are lower
case. By convention, they are also immutable, that is, they are read-only; the child should never
modify its configured set of properties. You can get the source here.

import io.reactjava.client.core.react.AppComponentTemplate;

public class MyApp extends AppComponentTemplate
{
 public INativeEventHandler squareClickHandler = (Event e) ->
 {
 final Element element = (Element)e.target;
 // request a color from the backend //
 HttpClient.get(
 "http://reactjavabackend.appspot.com/examples/threebythree/getColor")
 .subscribe(
 (HttpResponse rsp) ->
 {
 // change the clicked element to green //

 element.setAttribute("style","background-color:"+rsp.getText());
 },
 (Throwable error) ->
 {
 DomGlobal.window.console.log(error.getMessage());
 });
 };
 public final void render()
 {
 /*--
 <Board numcolumns={4} clickhandler={squareClickHandler}></Board>
 --*/

ReactJava Developer Guide	 29

Components, Properties, and State

http://www.reactjava.io
http://www.giavaneers.com
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/components/App.java

Giavaneers, Inc.

 };
}  

ReactJava Developer Guide	 30

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Now the Board. It gets the number of rows and columns it should create by the value of its
'numColumns' property which is normalized to the closest integral fit to the twelve column layout
of the Material-UI Grid. It also passes the click handler it gets to each of the Squares it creates.
Like before, we refer to the Square component by means of a tag with its simple classname. You
can get the source here.

import io.reactjava.client.core.react.Component;

public class Board extends Component
{
 public final void render()
 {
 int numColumns;
 int gridColsEach;

 // normalize the closest integral fit to the twelve column grid layout

 numColumns = props().getInt('numColumns');
 gridColsEach = 12 / numColumns;
 numColumns = 12 / gridColsEach;
 /*--
 <@material-ui.core.Grid container justify="center">
 --*/
 for (int iRow = 0; iRow < numColumns; iRow++)
 {
 /*--
 <@material-ui.core.Grid container spacing={8} class='contentWidth'>
 --*/
 for (int iCol = 0; iCol < numColumns>; iCol++)
 {
 /*--
 <@material-ui.core.Grid item xs={gridColsEach}>
 <Square clickhandler={props().get("clickhandler")}></Square>
 </@material-ui.core.Grid>
 --*/
 }
 /*--
 </@material-ui.core.Grid>
 --*/
 }
 /*--
 </@material-ui.core.Grid>
 --*/
 };

 ...
}

ReactJava Developer Guide	 31

http://www.reactjava.io
http://www.giavaneers.com
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/components/Board.java

Giavaneers, Inc.

The Board component CSS is the same responsive code we used before.

import io.reactjava.client.core.react.IUITheme;
import io.reactjava.client.core.react.IUITheme.Breakpoints;

...

public void renderCSS()
{
 Breakpoints bkpts = getTheme().getBreakpoints();
 String sm = IUITheme.toPx(bkpts.getSizeSmall());
 String md = IUITheme.toPx(bkpts.getSizeMedium());
 String lg = IUITheme.toPx(bkpts.getSizeLarge());
 String xl = IUITheme.toPx(bkpts.getSizeExtraLarge());
 String xsDim = IUITheme.cssLengthScale(sm, 0.5);
 String smDim = IUITheme.cssLengthScale(sm, 0.8);
 String mdDim = IUITheme.cssLengthScale(md, 0.8);
 String lgDim = IUITheme.cssLengthScale(lg, 0.8);
 String xlDim = IUITheme.cssLengthScale(xl, 0.8);
/*--
 .contentWidth
 {

 }
 @media(max-width: {sm})
 {
 .content {width:{xsDim};}
 }
 @media(min-width: {sm})
 {
 .content {width:{smDim};}
 }
 @media(min-width: {md})
 {
 .content {width:{mdDim};}
 }
 @media(min-width: {lg})
 {
 .content {width:{lgDim};}
 }
 @media(min-width: {xl})
 {
 .content {width:{xlDim};
 }
--*/
};

ReactJava Developer Guide	 32

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Finally, the Square. It is essentially the same as it was originally, although this time it takes its click
handler from its properties. You can get the source here, and you can try the completed App
here.

import io.reactjava.client.core.react.Component;

public class Square extends Component
{
 public final void render()
 {
 /*--
 <div class='square' onClick={props().get("clickHandler")}></div>
 --*/
 };

 public void renderCSS()
 {
 /*--
 .square
 {
 padding-top: 100%;
 }
 {cssSelectorForId()}
 {
 background-color: blue;
 }
 --*/
 };
}

Notes on the render() Method
Note the following with respect to the render() method:

1.	 An empty render() method will automatically generate a simple 'div' component.

Also, there are a few restrictions on the render() method of custom components:

1.	 Any custom component which is the target of a route path must have a render() method, even
if it is empty.

2.	 All component render() methods must be final. As a consequence, the render() method of any
component class may not invoke the render() method of any superclass.

ReactJava Developer Guide	 33

http://www.reactjava.io
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/components/Square.java
http://storage.googleapis.com/www.reactjava.io/examples/threebythree/components/ThreeByThreeReactJava.html
http://storage.googleapis.com/www.reactjava.io/examples/threebythree/components/ThreeByThreeReactJava.html
http://www.giavaneers.com

Giavaneers, Inc.

Specifying App Properties
Properties for the App component can be specified in a few ways: programatically by assignment
in an override of either the non-default constructor or the App initialize() method, or at execute
time by specification of url parameters.

Specifying App Properties Programatically
Properties for the App component can be specified in an override of the non-default constructor
as follows:

...

public App(Properties props)
{
 super(Properties.with(props, "myPropertyName", myPropertyValue));
};

or in an override of the App initialize() method:

...

initialize()
{
 props().set("myPropertyName", myPropertyValue);
};

Specifying App Properties with URL Parameters
Properties for the App component can be specified at execute time by means of URL query
parameters. For example, the URL

http://myAppURL?myProperty1Name=myProperty1Value&myProperty2Name=myProperty2Value

specifies two App properties, each with a string value.

ReactJava Developer Guide	 34

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Specifying App Log Level with a URL Parameter
The App log level can be specified at launch time by means of a URL parameter with the well
known name '$LOG_LEVEL'. For example, the URL

http://myAppURL?$LOG_LEVEL=DEBUG

launches the App with the DEBUG log level.

Providing a Default ElementId
A component can provide a default elementId value to be used in the event one is not provided
with its declaration. This is accomplished by overriding the Component defaultElementId()
method:

...

defaultElementId()
{
 return("myDefaultElementIdValue");
};

ReactJava Developer Guide	 35

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Managing Component State
You can't change a component's properties, but you can change a component's state variables.
And when you do, if the state variable changes value, your component will re-render. To illustrate,
let's use a state change to modify the color of a square when it's clicked instead of the way we
did it before.

We declare a state variable called "color" in the Square class and initialize its value to "blue" and
make our CSS use whatever is the current value of the state variable. The useState() method is a
React Hook which implicitly declares a state variable by name and initializes its value. Any
useState() invocation must be located before any other kind of statement in the render() method
and it is implemented such that it is ignored other than the very first time it is invoked. You can get
the source here.

import io.reactjava.client.core.react.Component;

public class SquareByRender extends Component
{
 public final void render()
 {
 useState("color", "blue");
 // use Paper instead of div to allow //
 // non-string parameter 'clickhandler" //
 // to be passed as a property by parent//
 // which can't be done for div //
 /*--
 <@material-ui.core.Paper
 class='square' onClick={props().get("clickHandler")}
 />
 --*/
 };

 public void renderCSS()
 {
 /*--
 .square
 {
 padding-top: 100%;
 }
 {cssSelectorForId()}
 {
 background-color: {getStateString("color)};
 }
 --*/
 };
}

ReactJava Developer Guide	 36

http://www.reactjava.io
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/state/SquareByRender.java
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/state/SquareByRender.java
http://www.giavaneers.com

Giavaneers, Inc.

We can accomplish the same thing another way, by doing the styling inline. You can get the
source here.

public final void render()
{
 useState("color", "blue");
 String color = getStateString("color");

 // use Paper instead of div to allow //
 // non-string parameter 'clickhandler" //
 // to be passed as a property by parent//
 // which can't be done for div //
/*--
 <@material-ui.core.Paper
 style'backgroundColor:{color};paddingTop:100%'
 onClick={props().get("clickHandler")}
 >
 </div>
--*/
};

If we want the flexibility to handle it either way as a configuration property, we can modify the
Board markup to choose which class to use for the Square as a function of a Board property
'squareclass'. You can get the source here.

...
for (int iCol = 0; iCol < numColumns; iCol++)
{
 /*--
 <@material-ui.core.Grid item xs={gridColsEach}>
 --*/
 if ("SquareByRenderCSS".equals(props().getString("squareclass")))
 {
 /*--
 <SquareByRenderCSS clickhandler={props().get("clickhandler")} />
 --*/
 }
 else
 {
 /*--
 <SquareByRender clickhandler={props().get("clickhandler")} />
 --*/
 }
 /*--
 </@material-ui.core.Grid>
 --*/
}
...

ReactJava Developer Guide	 37

https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/state/SquareByRenderCSS.java
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/state/SquareByRenderCSS.java
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/state/Board.java
http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

The Board'squareclass' property is assigned by the App as shown below. You can get the source
here, and try the app here.

...

public final void render()
{
/*--
 <Board
 numcolumns={3}
 clickhandler={squareClickHandler}
 squareclass={"SquareByRenderCSS"}
 />
--*/
}

Querying whether a Component is Mounted
ReactJava provides a built-in effectHook handler which tracks whether a Component is mounted
or dismounted. You can check whether a Component is mounted by means of the getMounted()
method.

ReactJava Developer Guide	 38

http://www.giavaneers.com
http://www.reactjava.io
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/state/App.java
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/state/App.java
http://storage.googleapis.com/www.reactjava.io/examples/threebythree/state/ThreeByThreeReactJava.html

Giavaneers, Inc.

Finding a Component Instance
There are times it is necessary to programatically interact with a specific Component instance.
Typically, this is the case when the target Component provides an API that includes non-static
methods, and the instance of interest cannot be supplied in the consumer props.

ReactJava provides three ways to find a specific Component instance: by the target Component
class, by the target Component Id, and by any Element created by the target Component render()
method.

Component.forClass()
The forClass() static method provides a Component instance for a specified class. Since the
Component instance may not have yet been created at the time of invocation, the method returns
an Observable that is resolved either immediately, or upon subsequent instantiation. For example,

...

Component.forClass(PDFViewer.class).subscribe(
 (Component instance) ->
 {
 buildTableOfContents((PDFViewer)instance).getBookmarks());
 },
 error ->
 {
 errorHandler(error);
 });

ReactJava Developer Guide	 39

Finding a Component Instance

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Component.forId()
The forId() static method provides a Component instance for a specified Component Id. A
Component Id can be declared by the target Component's override of the defaultId() method, or
by specifying an "id" parameter in the corresponding tag within a render() method. The method
returns an Observable that is resolved either immediately, or upon subsequent instantiation. For
example,

import io.reactjava.client.components.pdfviewer.PDFViewer;
...

public class MyComponent extends Component
{
 public final void render()
 {
 NativeObject pdfOptions =
 NativeObject.with("pdfurl", "http://reactjava.io/docs/ReactJava.pdf");
 /*--
 <PDFViewer id="myPDFViewer" pdfoptions={pdfOptions} />
 --*/
 };

...

Component.forId("myPDFViewer").subscribe(
 (Component instance) ->
 {
 buildTableOfContents((PDFViewer)instance).getBookmarks());
 },
 error ->
 {
 errorHandler(error);
 });

The default Component Id of the App instance is its classname.

ReactJava Developer Guide	 40

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Component.forElement()
The forElement() static method provides the Component instance for any Element that it created
in its render() method. The method returns the Component instance directly. For example,

import elemental2.dom.DomGlobal;
import elemental2.dom.Element;
...

public class MyComponent extends Component
{
 public final void render()
 {
/*--
 <div>
 <p id="myParagraph"> This is the content of my paragraph </p>
 </div>
 --*/
 };

...

Element paragraph = DomGlobal.document.getElementById("myParagraph");
if (paragraph != null)
{
 MyComponent myComponentInstance = (MyComponent)Component.forElement(paragraph);
}

Finding the App instance
The default Component Id of the App instance is its classname for which you can get the App
instance by using Component.forId() as follows:

Component.forId(App.class.getName()).subscribe(
 (App app) ->
 {
 ...
 },
 error ->
 {
 errorHandler(error);
 });

or you can simply use the Configuration static method:

App app = Configuration.sharedInstance().getApp();

or even simpler, the App static convenience method:

App app = App.sharedInstance();

ReactJava Developer Guide	 41

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

React Hooks
Hooks are a relatively new addition to React which allow the use of state and other React features
without the requirement to explicitly declare associated class variables.

useState()
The useState() method described previously is one of the React Hooks which allows management
of component state without an explicit 'state' component member variable.

useEffect()
The useEffect() method declares a callback to be invoked when after component is mounted,
before it is unmounted, aftre it is updated, and whenever any of a specified set of property and
state values change. Invoking the useEffect() method tells React that your component needs to
do something after render. React will remember the function you passed (we’ll refer to it as our
“effect”), and call it later after performing the DOM updates.

There are two useEffect() methods: one with the callback as the sole argument, and another
which adds an array of property and state names as a second argument.

If the single argument method is used, the callback will be invoked after the component is
mounted, before it is unmounted and anytime it is updated.

If the two argument method is used, the callback will be invoked after the component is mounted,
before it is unmounted and anytime any of the specified property or state values are changed.

If the two argument method is used, and the specified conditions array is empty, the callback will
be invoked only after the component is mounted and before it is unmounted.

ReactJava Developer Guide	 42

React Hooks

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

For example,

...

public INativeEffectHandler handleEffect = () ->
{
 // do something at component mount time, unmount time,
 // and any update
};

...

public final void render()
{

// handler invoked after mounted, //
// before unmounted, and any update //

 useEffect(handleEffect);
}

and,

...

public INativeEffectHandler handleEffect = () ->
{
 // do something at component mount time and unmount time
};

...

public final void render()
{

// passing an empty set of dependencies//
// causes the effect handler to be //
// invoked only after mounted and //
// before unmounted, not on update as //
// would occurr if used the single //
// argument useEffect() method //

 useEffect(handleEffect, new Object[0]);
}

ReactJava Developer Guide	 43

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

If you do not need your callback to be invoked before the component is unmounted, you can
return a null cleanup function from your callback:

...

public INativeEffectHandler handleEffect = () ->
{
 // do something at component mount time only

 ...
 return(INativeEffectHandler.kNO_CLEANUP_FCN)
};

Otherwise, your callback will be invoked before the component is unmounted and will be handled
in the cleanup fuynction you return:

 ...

public INativeEffectHandler handleEffect = () ->
{
 // do something at component mount time

 ...

 return(() ->
 {
 System.out.println("component will unmount");
 });
};

useRef()
The useRef() method is supported for research purposes only, since its functionality can be readily
replaced in ReactJava by use of a declared component instance variable.

ReactJava Developer Guide	 44

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Use Components from a React Library
We can change the standard button to be one from a third-party React component library.

Material-UI Example
We've already used components from Google's Material Design which comes built-in with
ReactJava. To use a button from Material-UI rather than the default HTML component, the only
change is to the markup in the render() method. The original,

/*--
 <Button
 class='button'
 onClick={this.buttonClickHandler}>
 Change Colors
 </Button>
--*/

is changed to

/*--
 <@material-ui.core.Button
 class='button'
 variant='contained'
 fullWidth=true
 onClick={this.buttonClickHandler}>
 Change Colors
 </@material-ui.core.Button>
--*/

The only change is to the markup in the render() method. Note the reference made to the
Material-UI button component, '@material-ui.core.Button' whose name derives directly from its
relative path in the project node_modules directory. The extra properties, 'variant' and 'fullWidth'
are custom to the @material-ui.core.Button class, adding extra functionality that you can find out
about in the Material-UI reference documentation.

ReactJava Developer Guide	 45

Use Components from a React Library

https://material-ui.com/api/button/
http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Grommet Example
As another example, let's use Grommet.

Start by using npm to load the Grommet library. Open a terminal, and change the working
directory to the IntelliJ project folder (or just open the terminal tab in the project):

> cd [pathToYourReactJavaProjectFolder]

Then use npm to load the Grommet library:

> npm install grommet grommet-icons styled-components

Like the previous example, the only change is to the markup in the render() method. Note the
reference made to the Grommet button component, 'grommet.components.Button whose name
derives directly from its relative path in the project node_modules directory.

The original

/*--
 <@material-ui.core.Button
 class='button'
 variant='contained'
 fullWidth=true
 onClick={this.buttonClickHandler}>
 Change Colors
 </@material-ui.core.Button>
--*/

changed to

/*--
 <grommet.components.Button
 class='button'
 onClick={this.buttonClickHandler}>
 Change Colors
 </grommet.components.Button>
--*/

ReactJava Developer Guide	 46

http://www.giavaneers.com
https://v2.grommet.io/use
http://www.reactjava.io

Giavaneers, Inc.

Unlike when using components from Material-UI, since Grommet is not built-in to ReactJava, we
must declare Grommet as an imported node module by overriding the
getImportedNodeModules() method:

/*--

@name getImportedNodeModules - get imported node modules
 */
 /**
 Get imported node modules.

@return list of node module names.

@history Sat Aug 29, 2020 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
@Override
protected StringLiteralList getImportedNodeModules()
{
 return(StringLiteralList.newInstance("grommet.components.Button"));
}

See the section on Adding Additional Node Modules for more information.

ReactJava Developer Guide	 47

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Recharts Example
One of today's leading chart packages for use with React is Recharts.

You can add Recharts to your project using npm,

> npm install recharts

To create a simple Line Chart, add an override for getImportedNodeModules() to create easy to
read tag aliases,

@Override
protected StringLiteralList getImportedNodeModules()
{
 return(StringLiteralList.newInstance(
 "recharts.cartesian.CartesianGrid as CartesianGrid",
 "recharts.cartesian.Line as Line",
 "recharts.cartesian.XAxis as XAxis",
 "recharts.cartesian.YAxis as YAxis",
 "recharts.chart.LineChart as LineChart",
 "recharts.component.Tooltip as Tooltip",
 "recharts.component.Legend as Legend"));
}

define data and a margin specification,

public static final NativeObject[] kDATA =
{
 NativeObject.with("name", "Page A", "uv", 4000, "pv", 2400, "amt", 2400),
 NativeObject.with("name", "Page B", "uv", 3000, "pv", 1398, "amt", 2210),
 NativeObject.with("name", "Page C", "uv", 2000, "pv", 9800, "amt", 2290),
 NativeObject.with("name", "Page D", "uv", 2780 ,"pv", 3908, "amt", 2000),
 NativeObject.with("name", "Page E", "uv", 1890, "pv", 4800, "amt", 2181),
 NativeObject.with("name", "Page F", "uv", 2390, "pv", 3800, "amt", 2500),
 NativeObject.with("name", "Page G", "uv", 3490, "pv", 4300, "amt", 2100)
};

public static final NativeObject kMARGIN =
 NativeObject.with("top", 5, "right", 30, "left", 20, "bottom", 5);

and then implement the render() method,

public final void render()
{
/*--
 <LineChart width={500} height={300} data={kDATA} margin={kMARGIN}>
 <CartesianGrid strokeDasharray="3 3" />
 <XAxis dataKey="name" />
 <YAxis />
 <Tooltip />
 <Legend />
 <Line type="monotone" dataKey="pv" stroke="#8884d8" />
 <Line type="monotone" dataKey="uv" stroke="#82ca9d" />
 </LineChart>
--*/
};  

ReactJava Developer Guide	 48

http://www.giavaneers.com
http://www.reactjava.io
https://recharts.org/en-US/

Giavaneers, Inc.

Adding Additional Node Modules
If your application requires use of additional node modules, you can declare so by overriding the
getImportedNodeModules() method of the Component class in your component as shown in the
following snippet:

/*==

name: App.java

purpose: Three By Three App.

history: Sat Oct 27, 2018 10:30:00 (Giavaneers - LBM) created

notes:

 COPYRIGHT (c) BY GIAVANEERS, INC.
 This source code is licensed under the MIT license found in the
 LICENSE file in the root directory of this source tree.

==*/

...

/*--

@name getImportedNodeModules - get imported node modules
 */
 /**
 Get imported node modules. This implementation declares the
 'assert' node module should be imported.

@return String literal list of node module names separated by commas

@history Sun Dec 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
@Override
protected StringLiteralList getImportedNodeModules()
{
 return(StringLiteralList.newInstance("assert"));
}

ReactJava Developer Guide	 49

Adding Additional Node Modules

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

The value returned is a StringLiteralList containing an ordered list of String literal node module
names separated by commas of the folowing form:

 "nodeModuleName1[:javascript:css], nodeModuleName2[:javascript:css],..."

where,

nodeModuleName is the String literal name of the node module in the project node_modules
directory,

 :javascript is an optional qualifier indicating the 'main' module javascript is to be imported

 :css is an optional qualifier indicating the 'style' module css is to be imported

If either ':css' or ':javascript' is included but the other is not, the other is not imported.

If neither ':css' nor ':javascript' is included, the 'main' module javascript is to be imported (the
default case).

If the nodeModuleName ends with '.js', the corresponding specific module script is imported,
while if the nodeModuleName ends with '.css', the corresponding specific module stylesheet is
imported.

Note that each node module name must be a String literal or a class field containing a String
literal. In future versions of ReactJava, it may be possible to support other String representations.

As examples,

 1.	"prismjs" specifies the default script for module 'prismjs' without any module css

2. 	"prismjs:javascript:css" specifies the default script for module 'prismjs' along with the
default module css

3.	 "prismjs.components.prism-core, prismjs.components.prism-clike,
	 prismjs.components.prism-java, prismjs.themes.prism-okaidia.css"

	 specifies

	 components.prism-core.js of module 'prismjs', followed by
	 components.prism-clike.js of module 'prismjs', followed by

ReactJava Developer Guide	 50

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

	 components.prism-java.js of module 'prismjs'

 and

	 themes.prism-okaidia.css of module 'prismjs'.

Ensuring Clarity of Node Module JSX Tags
If an additional node module containing a native React component is imported, sometimes the
corresponding JSX tag name it is not obvious. For example, the default script for the 'react-split-
pane' node module is 'index.cjs.js' from which the JSX tag, 'SplitPane' cannot be inferred.

In these cases, the specific tag to be used can be added to the nodeModuleName as in the
following example:

/*--

@name getImportedNodeModules - get imported node modules
 */
 /**
 The react-split-pane SplitPanel tag cannot be inferred from the
 component javascript filename, which is 'index.cjs.js', and so
 the corresponding importedNodeModule is declared with the tag name
 included; namely 'react-split-pane as SplitPanel'.

@return String literal list of node module names separated by commas

@history Sun Dec 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
@Override
protected StringLiteralList getImportedNodeModules()
{
 return(StringLiteralList.newInstance("react-split-pane as SplitPane"));
}

ReactJava Developer Guide	 51

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Adding Additional Javascripts
If your application requires use of additional javascripts beyond those of node modules, you can
declare so by overriding the getCustomJavascripts() method of the AppComponentTemplate
class in your App component as shown in the following snippet:

/*==

name: App.java

purpose: Three By Three App.

history: Sat Oct 27, 2018 10:30:00 (Giavaneers - LBM) created

notes:

 COPYRIGHT (c) BY GIAVANEERS, INC.
 This source code is licensed under the MIT license found in the
 LICENSE file in the root directory of this source tree.

==*/

...

/*--

@name getCustomJavascripts - get custom javascripts
 */
 /**
 Get custom javascripts. This method is typically invoked at

boot time.

@return ordered list of javascript urls

@history Sun Dec 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
@Override
protected void getCustomJavascripts()
{

 // relative url //
 return(Collections.singletonList("workflownative.js as ReactJava.workflow");
}

...

The 'as' clause is optional; use it if you want to assign a window global variable of the custom
javascript to the ReactJava global variable. The example above will assign the 'workflow' global
variable of workflownative.js as a property of the ReactJava global variable. This can be useful
when assigning native class namespaces, for this example, 'ReactJava.workflow'.

ReactJava Developer Guide	 52

Adding Additional Javascripts

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Embedding Shared Resources
You can add any sort of file as an embedded resource added to your source tree relative to your
App home page.

Embedding Image and Other Files
Add any file as an embedded resource to the WAR directory in your project tree. You can access
it in your client code as shown in the example below:

// get a url relative to the home page //

String embeddedRsrcURL = GWT.getHostPageBaseURL() + "MyContent.txt";

// read the contents //

Utilities.getURLAsString(embeddedRsrcURL).subscribe(
 contents ->

{
 kLOGGER.logInfo(contents);

},
(Throwable error) ->
{
 kLOGGER.logError(error);
});

Embedding Javascripts as Shared Resources
If you are building a module to be exported as a jar that can be inherited by other modules and
want to embed custom javascripts your module requires so they do not have to be explicitly dealt
with by the client module, you can do so in the same way you embed other exported resources.
See the section on embedding shared resources for the way you should add the javascripts to
your project source tree and the <public path> specification you need to add to your module
gwt.xml file. Then you can name the custom javascripts you ar binding by the
'getExportedResourceURL()' method as shown below:

ReactJava Developer Guide	 53

Embedding Shared Resources

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

/*==

name: TensorflowAppTemplate.java

purpose: Tensorflow ReactJava Application Template.

history: Sat Oct 27, 2018 10:30:00 (Giavaneers - LBM) created

notes:

 COPYRIGHT (c) BY GIAVANEERS, INC.
 This source code is licensed under the MIT license found in the
 LICENSE file in the root directory of this source tree.

==*/

...

public abstract class TensorflowAppTemplate extends AppComponentTemplate...

...

/*--

@name getCustomJavascripts - get custom javascripts
 */
 /**
 Get custom javascript emdedded with the module as a shared, exported
 resource.

@return ordered list of javascript urls

@history Sun Dec 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
@Override
protected List<String> getCustomJavascripts()
{
 return(Arrays.asList(
 getExportedResourceURL("javascript/tf.1.7.4.js as ReactJava.tf"),
 getExportedResourceURL("javascript/tfjs-vis.1.4.umd.js as ReactJava.tfvis")
));
}

...

As mentioned previously, the 'as' clause is optional; use it if you want to assign a window global
variable of the embedded javascript to the ReactJava global variable. The example above will
assign the 'tf' global variable of 'tf.1.7.4.js' as a property of the ReactJava global variable. This
can be useful when assigning native class namespaces, for this example, 'ReactJava.tf'.

ReactJava Developer Guide	 54

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Dynamic Routing
Moving from a Single Page Application with a single view to to an app that supports multiple
views can be accomplished with Dynamic Routing. Each view is accessed independently by a
unique 'route'.

ReactJava determines the routes for a component by invocation of its getNavRoutes() method of
the AppComponentTemplate class whose results can change from one invocation to the next.
The default implementation of the getNavRoutes() method returns no routes.

A route is a tuple of a particular format of a url that targets the application (a 'path' specification)
with an associated component class. The routes declared by a component are organized as a
Map, where the key is the path and the value is the associated target component class. For
example,

/*--

@name getNavRoutes - get routes for application
 */
 /**
 Get map of component classname by route path.

@history Sat May 13, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
protected Map<String,Class> getNavRoutes()
{
 Map<String,Class> routeMap = new HashMap<>()
 {{
 put("animals", Component1.class);
 put("flowers/:color/:leafcount?", Component2.class);
 put("trees/:height(ten|twenty)", Component3.class);
 }};

 return(routeMap);
}

returns three different routes.

The first matches explicitly with the relative url value 'animals',

The second matches with the relative url 'flowers', and also assigns the target component 'color'
property with the path value element following the 'flowers' value and assigns the 'leafcount'
property with the path value element following the 'color' value if it exists. Note the first parameter
is required while the second is optional since its path specification includes a trailing question

ReactJava Developer Guide	 55

Dynamic Routing

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

mark. For example, the relative url '/flowers/yellow/eight' will render the Component2 class,
assigning its 'color' property to 'yellow' and its 'leafcount' property to 'eight', while '/flowers/
yellow' will also render the Component2 class, assigning its 'color' property to 'yellow' and leave
its 'leafcount' property value unassigned.

The third matches with the relative url 'trees' only if the path value element following the 'trees'
value satisfies the regular expression 'ten|twenty', in which case the target component's height
property value will be assigned whichever value was specified in the url: either 'ten' or 'twenty'.

In order to change the view, the Router.push() method is invoked specifying the new path. You
can get the current path value by using the Router.getPath() method. Note that the Router will
cause a re-render for the new path only if the specified path value changes.

A Routing Example
Reviewing an actual example can be helpful. This example consists of three classes. You can get
the sources to the 'App' class here, the 'A' class here, and the 'B' class here. You can see the
example in operation here.

Notice that the App merely sets up the routes to the two pages, A and B. The implementations of
A and B illustrate different ways you can navigate to different locations among the two pages.

ReactJava Developer Guide	 56

https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/routing/App.java
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/routing/A.java
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/routing/B.java
https://storage.googleapis.com/www.reactjava.io/examples/routing/components/RoutingReactJava.html
http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Timers
Timers provide the ability to launch an operation to execute in the background either once, or
repetitively. A one-shot timer can be created by using the elemental2 DomGlobal.setTimeout()
method, and a repeating timer can be created by using the DomGlobal.setInterval() method.

You can get the source to a repeating timer example here, and see the example in operation here.

Keyboard Support
Keyboard support is accomplished by adding a keyEvent listener on the particular element of
interest. To create a global keyEvent handler, add the listener on the document body.

You can get the source to an illustrative example here, and see the example in operation here.

ReactJava Developer Guide	 57

Timers

Keyboard Support

https://javadoc.io/static/com.google.elemental2/elemental2-dom/1.0.0/elemental2/dom/DomGlobal.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/timer/App.java
https://storage.googleapis.com/www.reactjava.io/examples/timer/TimerReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/keyboard/App.java
https://storage.googleapis.com/www.reactjava.io/examples/keyboard/KeyboardReactJava.html
http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Observables and Promises
ReactJava includes built-in support for cleaning up Observables and Promises used by a
ReactJava Component once it is dismounted. For Observables, you can take advantage of the
built-in support by using the Observable class from the 'io.reactjava.core.react' package, rather
than from the 'io.reactjava.core.rxjs' package. For Promises, wrap your Promise in an Observable
by using the Observable.fromPromise() factory method.

ReactJava Core Observables
Before being used, access to cloud-based services must be configured by overriding the
getCloudServicesConfig() method of the AppComponentTemplate class to provide a configuration
object,

/*--

@name getCloudServicesConfig - get cloud services configuration
 */
 /**
 Get cloud services configuration.

@return cloud services configuration.

@history Sun Nov 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
protected ICloudServices getCloudServicesConfig()
{
 ICloudServices config =
 new CloudServices()
 .setCloudPlatform(ICloudServices.kPLATFORM_FIREBASE)
 .setAPIKey("AIzaSyDh9OrV7rghijudnkyQ9wSUz4BKZE8F-sI")
 .setProjectId("reactjava-f11e6")
 .setAppId("1:1074492811559:web:04a915c2562cdf92952102")
 .setAuthDomain("reactjava-f11e6.firebaseapp.com")
 .setDatabaseURL("https://reactjava-f11e6.firebaseio.com")
 .setMessagingSenderId("1074492811559")
 .setStorageBucket("reactjava-f11e6.appspot.com")
 .setTrackingId("G-2CVJGP0ZN6");

 return(config);
}

ReactJava Developer Guide	 58

Observables and Promises

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Wrapping Promises in Observables
Before being used, access to cloud-based services must be configured by overriding the
getCloudServicesConfig() method of the AppComponentTemplate class to provide a configuration
object,

ReactJava Developer Guide	 59

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

JSON Support
ReactJava includes a built-in version of the java JSON.simple library cross-compiled to javascript
with ReactJava.

ReactJava Developer Guide	 60

JSON Support

http://www.giavaneers.com
https://www.tutorialspoint.com/json_simple/json_simple_quick_guide.htm
http://www.reactjava.io

Giavaneers, Inc.

Using Cloud Services
ReactJava includes a standard, cross-platform API for a suite of built-in cloud based services,
including Analytics, Authentication and User Accounts, Database, File Storage and Messaging.

Configuring Cloud Services
Before being used, access to cloud-based services must be configured by overriding the
getCloudServicesConfig() method of the AppComponentTemplate class to provide a configuration
object,

/*--

@name getCloudServicesConfig - get cloud services configuration
 */
 /**
 Get cloud services configuration.

@return cloud services configuration.

@history Sun Nov 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
protected ICloudServices getCloudServicesConfig()
{
 ICloudServices config =
 new CloudServices()
 .setCloudPlatform(ICloudServices.kPLATFORM_FIREBASE)
 .setAPIKey("AIzaSyDh9OrV7rghijudnkyQ9wSUz4BKZE8F-sI")
 .setProjectId("reactjava-f11e6")
 .setAppId("1:1074492811559:web:04a915c2562cdf92952102")
 .setAuthDomain("reactjava-f11e6.firebaseapp.com")
 .setDatabaseURL("https://reactjava-f11e6.firebaseio.com")
 .setMessagingSenderId("1074492811559")
 .setStorageBucket("reactjava-f11e6.appspot.com")
 .setTrackingId("G-2CVJGP0ZN6");

 return(config);
}

The default platform is Firebase for which the 'cloudPlatform' assignment may be omitted. The
'APIKey', 'ProjectId' and 'AppId' parameters must always be specified. The other parameters
need only be provided if the corresponding services are required.

ReactJava Developer Guide	 61

Using Cloud Services

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

For example, to configure an App that only uses Authentication and User Account Services of
Firebase,

 ICloudServices config =
 new CloudServices()
 .setAPIKey("AIzaSyDh9OrV7rghijudnkyQ9wSUz4BKZE8F-sI")
 .setProjectId("reactjava-f11e6")
 .setAppId("1:1074492811559:web:04a915c2562cdf92952102")
 .setAuthDomain("reactjava-f11e6.firebaseapp.com");

or to configure an App that only uses Database Services of Firebase and Google Analytics,

 ICloudServices config =
 new CloudServices()
 .setAPIKey("AIzaSyDh9OrV7rghijudnkyQ9wSUz4BKZE8F-sI")
 .setProjectId("reactjava-f11e6")
 .setAppId("1:1074492811559:web:04a915c2562cdf92952102")
 .setDatabaseURL("https://reactjava-f11e6.firebaseio.com")
 .setTrackingId("G-2CVJGP0ZN6");

When using the Firebase platform, you can find the 'APIKey', 'ProjectId' and 'AppId' parameter
values from the Firebase Console. Login and select your project and then go to the Project
Settings:

ReactJava Developer Guide	 62

http://www.giavaneers.com
https://console.firebase.google.com/
http://www.reactjava.io

Giavaneers, Inc.

Among other places, you'll find your parameters in the configuration settings section:

ReactJava Developer Guide	 63

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Adding Google Analytics
ReactJava has built-in support for adding Google Analytics to your App. The following sections
describe different ways you can use it.

Configuring Google Analytics
Rather than the standard Firebase support for Google Analytics, ReactJava leverages the 'react-
ga' node module for its functionality which is installed by default.

Before being used, the Google Analytics service must be configured by overriding the
getCloudServicesConfig() method of the AppComponentTemplate class,

/*--

@name getCloudServicesConfig - get cloud services configuration
 */
 /**
 Get cloud services configuration. Unlike other configuration
 parameters, if the only cloud service to be used is Google Analytics,
 only the 'trackingId' parameter need be specified.

@return cloud services configuration.

@history Sun Nov 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
protected ICloudServices getCloudServicesConfig()
{
 return(new CloudServices().setTrackingId("G-ZNP1NLDLLB"));
}
...

Unlike for other configuration parameters, if the only cloud service to be used is Google Analytics,
only the 'trackingId' parameter need be specified.

ReactJava Developer Guide	 64

Adding Google Analytics

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Generating Google Analytics Page Views
If Google Analytics is configured, on render(), a page view event is automatically posted for the
specified trackingId without explicit invocation of the API. You can get the source to a simple,
illustrative example here.

ReactJava Developer Guide	 65

https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/googleanalytics/simple/App.java
http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

More General Access to Google Analytics
As described in the previous section, simple access to Google Analytics for reporting application
page views is streamlined without need for explicit invocation of the API. The remainder of this
section describes how to post additional events, or to access other functionality of the Google
Analytics service.

Operation begins by obtaining an Analytics service provider instance:

 import io.reactjava.client.core.providers.analytics.IAnalyticsService;
 import io.reactjava.client.core.react.ReactJava;
 ...

 IAnalyticsService analytics = ReactJava.getProvider(IAnalyticsService.class);

Posting Events
To post an event for the configured trackingIs, you specify an event 'category' along with an event
'action'. For example, to post a ADD_TO_CART event for the configured trackingId,

 import io.reactjava.client.providers.analytics.IAnalyticsService.EventNames;
 ...

 IAnalyticsService analytics = ReactJava.getProvider(IAnalyticsService.class);

 analytics.logEvent(EventNames.ADD_TO_CART.value(), "Added item to cart");

You can get the source to a simple, illustrative example here.

Reading Analytics Data
You will usually use the standard Google Analytics console for analyzing reports about your
application. But if you want to present your analytics data in your own custom reports, you can
use Google's Core Reporting API, or for realtime reports, Google's Real Time Reporting API.

ReactJava Developer Guide	 66

http://www.reactjava.io
http://www.giavaneers.com
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/googleanalytics/postevent/App.java
https://analytics.google.com/analytics/
https://developers.google.com/analytics/devguides/reporting/core/v3#version
https://developers.google.com/analytics/devguides/reporting/realtime/v3

Giavaneers, Inc.

User Accounts and Authentication
ReactJava has built-in support for a variety of cloud-based Authentication services through a
single, standard API. The model of the standard API follows that of Firebase Authentication. You
can get the source to an example here, and you can try it here.

Configuring the Authentication Service
Before being used, the service must be configured by overriding getCloudServicesConfig()
method of the AppComponentTemplate class to provide a configuration object,

/*--

@name getCloudServicesConfig - get cloud services configuration
 */
 /**
 Get cloud services configuration.

@return cloud services configuration.

@history Sun Nov 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
protected ICloudServices getCloudServicesConfig()
{
 ICloudServices config =
 new CloudServices()
 .setAPIKey("AIzaSyDh9OrV7rghijudnkyQ9wSUz4BKZE8F-sI")
 .setProjectId("reactjava-f11e6")
 .setAppId("1:1074492811559:web:04a915c2562cdf92952102")
 .setAuthDomain("reactjava-f11e6.firebaseapp.com");

 return(config);
}

Accessing the Authentication Service
Operation begins by obtaining an Authentication service provider instance:

 import io.reactjava.client.core.providers.database.IAuthenticationService;
 import io.reactjava.client.core.react.ReactJava;
 ...

 IAuthenticationService auth =
 ReactJava.getProvider(IAuthenticationService.class);  

ReactJava Developer Guide	 67

User Accounts and Authentication

http://www.reactjava.io
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step03/center/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step03/ThreeByThreeReactJava.html
http://www.giavaneers.com

Giavaneers, Inc.

Creating a New User Account
To create a new user account, you simply provide the associated user email address, and a
password:

 auth.createUserWithEmailAndPassword(email, password)
 .subscribe(
 (response) ->
 {
 kLOGGER.logInfo("Account created successfully for " + email);
 },
 (error) ->
 {
 kLOGGER.logError("New account creation failed.");
 });

Upon successful account creation, the user is logged in.

Logging In to a User Account
Logging in to a user account requires the user email address and password:

 auth.signInWithEmailAndPassword(email, password)
 .subscribe(
 (response) ->
 {
 kLOGGER.logInfo("Account login successful for " + email);
 },
 (error) ->
 {
 kLOGGER.logError("Account login failed.");
 });

Logging Out of a User Account
Logging out is simple:

 auth.signOut()
 .subscribe(
 (response) ->
 {
 kLOGGER.logInfo("Account logout successful");
 },
 (error) ->
 {
 kLOGGER.logError("Account logout failed.");
 });  

ReactJava Developer Guide	 68

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Database Support
ReactJava has built-in support for a variety of cloud-based database services through a single,
standard API. The model of the standard API follows that of the Firebase Realtime Database. You
can get the source to an example here, and you can try it here.

Built-In Firebase Support
Support for a variety of Firebase services is built-in to ReactJava. Specifically, supporting scripts
of the Firebase SDK are injected at execute time as defined in
"io.reactjava,client.providers.auth.firebase.FirebaseCore.java".

Configuring the Database Service
Before being used, the service must be configured by overriding getCloudServicesConfig()
method of the AppComponentTemplate class to provide a configuration object,

/*--

@name getCloudServicesConfig - get cloud services configuration
 */
 /**
 Get cloud services configuration.

@return cloud services configuration.

@history Sun Nov 02, 2018 10:30:00 (Giavaneers - LBM) created

@notes
 */
//--
protected ICloudServices getCloudServicesConfig()
{
 ICloudServices config =
 new CloudServices()
 .setAPIKey("AIzaSyDh9OrV7rghijudnkyQ9wSUz4BKZE8F-sI")
 .setProjectId("reactjava-f11e6")
 .setAppId("1:1074492811559:web:04a915c2562cdf92952102")
 .setDatabaseURL("https://reactjava-f11e6.firebaseio.com");

 return(config);
}

ReactJava Developer Guide	 69

Database Support

https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step03/center/App.java
https://storage.googleapis.com/www.reactjava.io/examples/threebythree/step03/ThreeByThreeReactJava.html
http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Accessing the Database Service
Operation begins by obtaining a database service provider instance:

 import io.reactjava.client.core.providers.database.IDatabaseService;
 import io.reactjava.client.core.react.ReactJava;
 ...

 IDatabaseService database = ReactJava.getProvider(IDatabaseService.class);

Database Structure
The structure of the database is a tree, similar to that of a filesystem. Each record is identified by
its path from the root.

 root
 |
 |- child0
 | |
 | |- grandchild00
 |
 |- child1
 | |
 | |- grandchild10
 | |- grandchild11
 | | |
 | | |- greatgrandchild110
 | |
 | |- grandchild12
 |
 |- child2

In the example above there are a total of eight records. The path for greatgrandchild110 is
"child1/grandchild11/greatgrandchild110", while the path for child2 is "child2".

ReactJava Developer Guide	 70

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Writing to the Database
The value of a database record is modeled as a Map, where the keys are String valued field
names and the field values are Objects. To write a record, you specify the parent path along with
a record value. For example, to write greatgrandchild110 whose parent is grandchild11,

 Map<String,Object> value = new HashMap<>();
 value.put("message", "This is a message.");

 Observable observable = database.put("child1/grandchild11", value);
 observable.subscribe(
 successfulResponse ->
 {

 // successfully written
 ...
 },
 error ->
 {
 // write unsuccessful
 ...
 });

Deleting Data from the Database
To remove a record and all of its descendants, you use the remove() method specifying the target
record path. For example, to remove child0 and all its descendant records,

 Observable observable = database.remove("child0");
 observable.subscribe(
 successfulResponse ->
 {

 // successfully removed
 ...
 },
 error ->
 {
 // remove unsuccessful
 ...
 });

ReactJava Developer Guide	 71

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Reading from the Database
There are two ways for reading from the database: reading a specific record once, and registering
to receive an notification every time a specified event occurs on the record.

Reading Once
One way to read a record from the database is to use the database 'get()' method, specifying the
path of the record of interest:

 Observable observable = database.get("child1/grandchild11/greatgrandchild110");
 observable.subscribe(
 successfulResponse ->
 {

 // successfully read

 Map<String,Object> value = (Map<String,Object>)successfulResponse;
 for (String fieldName : value.keySet())
 {
 kLOGGER.logInfo(fieldName + " -> " + value.get(fieldName));
 }
 },
 error ->
 {
 // read unsuccessful
 ...
 });

Reading Continuously on Changes
The more general way is to use the database 'getStart()' method. The 'getStart()' method takes
three arguments: the target record path, an event type, and a callback to which the database
record value is delivered. The callback will be called immediately on response to the 'getStart()'
method invocation, and then again each time the specified event occurs on the target record.

There are five event types:

1.	 kEVENT_TYPE_VALUE - this event will trigger once with the initial data stored at this location,
and then trigger again each time the data changes.

2.	 kEVENT_TYPE_CHILD_ADDED - This event will be triggered once for each initial child at this
location, and it will be triggered again every time a new child is added.

ReactJava Developer Guide	 72

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

3.	 kEVENT_TYPE_CHILD_REMOVED - This event will be triggered once every time a child is
removed.

4.	 kEVENT_TYPE_CHILD_CHANGED - This event will be triggered when the data stored in a
child (or any of its descendants) changes. Note that a single child_changed event may
represent multiple changes to the child. The value passed to the callback will contain the new
child contents. For ordering purposes, the callback is also passed a second argument which
is a string containing the key of the previous sibling child by sort order, or null if it is the first
child.

5.	 kEVENT_TYPE_CHILD_MOVED - This event will be triggered when a child's sort order
changes such that its position relative to its siblings changes. The value passed to the
callback will be for the data of the child that has moved. It is also passed a second argument
which is a string containing the key of the previous sibling child by sort order, or null if it is the
first child.

For example, to read the current contents of child0 and the be notified as each new child is
added,

 IDatabaseService.IEventCallback myCallback =
 database.getStart(
 "child0",
 IDatabaseService.kEVENT_TYPE_CHILD_ADDED,
 (Map<String,Object> value, String prevChildKey) ->
 {
 for (String fieldName : value.keySet())
 {
 kLOGGER.logInfo(fieldName + " -> " + value.get(fieldName));
 }
 });

Stopping Reading on Record Changes
Continuous reading on record changes can be stopped by use of the 'getStop()' method. For
example, to stop being notified when a new child is added to child0,

 database.getStop(
 "child0", IDatabaseService.kEVENT_TYPE_CHILD_ADDED, myCallback);

ReactJava Developer Guide	 73

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

SEO Support
It is sometimes difficult to achieve good Search Engine Optimization results for React singe page
applications, especially for those that include multiple page views via multiple routes. ReactJava
provides built-in SEO support specifically tailored for single page applications that include one or
more views. The figure below illustrates ReactJava auto-generated documents for SEO.

Figure X - ReactJava AutoGenerated Documents for SEO

ReactJava Developer Guide	 74

MyAppSitemap.xml

robots.txt
<title>

<description>

<script>
structured data

</script>

MyApp.html

MyAppView1.html
(redirect)

MyAppView2.html
(redirect)

#view1

#view2

Default View

SEO Support

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

robots.txt
A robots.txt file is generated which identifies the application sitemap file.

Sitemap
A sitemap file is generated which identifies the main application html file, along with an additional
entry for each ancillary view/route, targeting a corresponding redirect html.

Redirect HTMLs
Each redirect html targets the application html file with an associated hash value corresponding to
the ancillary view.

Head Title and Description Tags
Unique title and meta description tags for each view is automatically inserted into the application
document as the corresponding view is selected. These are key to achieving good search engine
results for each of the application views.

Structured Data
Structured data is automatically inserted into the application document as the corresponding view
is selected. This can improve the user experience significantly, and typically enhances search
engine results for each of the application views.

ReactJava Developer Guide	 75

https://developers.google.com/search/docs/guides/search-gallery
http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

SEO API
SEO support is provided by overriding the getSEOInfo() method of the AppComponentTemplate
class in your App and providing an SEOInfo instance. You can get the sources to an example
here, and see the example in operation here.

import io.react.client.core.react.SEOInfo;
...
/*--

@name getSEOInfo - get seo information

 Get SEO info. This method is invoked both at compile time and
 runtime.

 The intention is to provide a title, description, and base url for
 the app deployment in order to create a redirect target for each
 hash, along with an associated sitemap and robot.txt file.

@return SEOInfo instance

 */
//--
protected SEOInfo getSEOInfo()
{
 SEOInfo seoInfo =
 new SEOInfo(
 "http://www.myapp.com", // base deployment url //

 "view1", // default route path hash //
 new ArrayList<SEOPageInfo>()
 {{
 add(new SEOPageInfo(
 "view1", // view 1 route path hash //
 "My Application View 1 Title", // view 1 title //
 "View1 description w/ keywords")); // view 1 description //

 add(new SEOPageInfo(
 "view2", // view 2 route path hash //
 "My Application View 2 Title", // view 2 title //
 "View2 description w/ keywords")); // view 2 description //
 }});

 return(seoInfo);
}

ReactJava Developer Guide	 76

http://www.giavaneers.com
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/seo
https://storage.googleapis.com/www.reactjava.io/examples/seo/SEOReactJava.html
http://www.myapp.com
http://www.reactjava.io

Giavaneers, Inc.

ReactJava Built-in Components
A few ReactJava components come built-in that you might find useful. The following sections
detail their APIs.

ReactJava Developer Guide	 77

ReactJava Built-in Components

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Logon
The Logon component contains support for leveraging a supplied IAuthenticationService provider
instance to allow users to create or logon to user accounts.

Import

Props

Source Code
Logon

Examples
logon

chat

Name Type Default Description

authenticationSvc IAuthenticationService required Authentication Service provider instance

createAcctEnabled boolean false Whether account creation is enabled

labelSignIn String 'SIGN IN' Sign-in button label

labelSignUp String 'SIGN UP' Sign-up button label

observer Observer<IUserCredential> null Any Observer instance to be notified of logon result

ReactJava Developer Guide	 78

import io.reactjava.client.component.logon.Logon;

http://www.giavaneers.com
http://www.reactjava.io
https://storage.googleapis.com/www.reactjava.io/examples/login/LoginReactJava.html
https://storage.googleapis.com/www.reactjava.io/examples/chat/ChatReactJava.html

Giavaneers, Inc.

Compile Time Constants
The Constants component provides the ability to declare compile time constants that can be
referenced by classes of your web application.

Import

Props
Will accept any passed in with the constructor and export them as public static.

Source Code
Constants

Examples

ReactJava Developer Guide	 79

import io.reactjava.client.component.compiletime.Constants;

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

GeneralPage
GeneralPage is framework comprised of a collection of components that helps in creating web
pages that are documentary in nature. Typically an App will only deal with the GeneralPage
component itself, while the GeneralPage will draw upon the capabilities of many of the others in
the collection.

As shown in the figure above, The GeneralPage takes two properties: a Manifest and a Page
Descriptor.

A Manifest is a text file describing the of the contents of the various parts of the page. The
Manifest property is required.

A PageDescriptor describes the structure of a GeneralPage. The PageDescriptor property is
optional.

A complete description of the ReactJava GeneralPage framework can be found in the ReactJava
GeneralPage Developer Guide.

ReactJava Developer Guide	 80

GeneralPage

App

MANIFEST PAGEDSC

http://www.giavaneers.com
https://storage.googleapis.com/reactjava.io/docs/UserGuide/ReactJavaDeveloperGuide.pdf
https://storage.googleapis.com/reactjava.io/docs/UserGuide/ReactJavaDeveloperGuide.pdf
http://www.reactjava.io

Giavaneers, Inc.

Manifest
You can infer how the example manifest below is interpreted to render a GeneralPage instance.

/*===

 Getting Started

===*/
.title
Getting Started
.end

.body
If you have already used create-reactjava-app,
you can skip ahead to the
%markup%

 Tutorial

%markup%.
Otherwise, create a new app from the terminal:
.end

.code
> create-reactjava-app [pathToYourNewProjectFolder]
.end

/*===

 Working with the new ReactJava project

===*/
.caption
Working with the new ReactJava project
.end

.body
You can open the new ReactJava project folder with
IntelliJ or import it to Eclipse.
.end

.image
images/WorkingFigure1.png
.end

/*===

 Side Drawer References

===*/
.reference
User Guide
.end
.reference

 ReactJava API

.end
.reference

 Contributor Guide

.end
.reference
Giavaneers
.end  

ReactJava Developer Guide	 81

Rendered GeneralPage without a specified
Page Descriptor

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

PageDsc
The PageDescriptor describes the structure of a GeneralPage as follows:

PageDsc // page descriptor ---
{
 String title; // any page title
 String image; // any page title image
 boolean bMenuButton; // true iff page includes a menu button
 ButtonDsc[] appBarButtons; // any buttons on the appBar
 String[] pushPaths; // any router entries
 SectionDsc[] sections; // any page sections
 FooterDsc footer; // any page footer
}

where,

ButtonDsc // button descriptor ---
{
 String text; // any button text
 String url; // any button link
}

and,

SectionDsc // section descriptor ---
{
 String title;
 String subheader;
 String imagePath;
 String[] descriptions;
 String buttonText;
 String buttonVariant;
}

and,

FooterDsc // footer descriptor ---
{
 FooterCreditDsc credit; // any footer credit
 FooterCategoryDsc[] categories; // any footer categories
}

where,

FooterCreditDsc // footer credit descriptor ---
{
 String logo; // any credit logo
 String text; // any credit text
}

and,

FooterCategoryDsc // footer category descriptor ---
{
 String title; // footer category title
 FooterTopicDsc[] topics; // collection of footer category topics
}

where,

FooterTopicDsc // footer topic descriptor ---
{
 String topic; // topic title
 String url; // any topic link
 String target; // any topic target
}  

ReactJava Developer Guide	 82

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Components API
A reference to the API of the components of the GeneralPage framework can be found in the
ReactJava GeneralPage Developer Guide.

ReactJava Developer Guide	 83

http://www.giavaneers.com
https://storage.googleapis.com/reactjava.io/docs/UserGuide/ReactJavaDeveloperGuide.pdf
http://www.reactjava.io

Giavaneers, Inc.

ReactJava Examples
The following table includes all the examples referenced in this guide, along with some additional
ones.

Name Description Sources Demo

bitcoin An example of registering for realtime notifications of new
bitcoin transactions and analyzing and displaying each.

sources demo

chat A simple chat app using User Account, Authentication
and Database services

sources demo

database Common API for Firebase and other cloud based
database services

sources demo

displaycode Support for display of source code with syntax coloring in
a variety of programming languages

sources demo

googleanalytics postevent ReactJava built-in support for Google Analytics trackingId sources demo

simple Demonstrates sending various events to Google Analytics sources demo

reportdata Retrieves Google Analytics data sources demo

helloworld The basic example sources demo

helloworldsansjsx The basic example without use of JSX sources demo

keyboard Demonstrates keyboard support sources demo

login Common API for Firebase and other cloud based User
Account and Authentication services

sources demo

materialui generalpage The ReactJava General Page framework sources demo

pricing A demonstration of the Material-UI component library sources demo

theme ReactJava implementation of themes sources demo

routing How to support multiple views of a Single Page App sources demo

seo Demonstrates use of ReactJava built-in SEO sources demo

simple A very simple App sources demo

ReactJava Developer Guide	 84

ReactJava Examples

https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/bitcoin
https://storage.googleapis.com/www.reactjava.io/examples/bitcoin/BitcoinReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/chat
https://storage.googleapis.com/www.reactjava.io/examples/chat/ChatReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/database/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/displaycode/App.java
https://storage.googleapis.com/www.reactjava.io/examples/displaycode/DisplayCodeReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/googleanalytics/postevent
https://storage.googleapis.com/www.reactjava.io/examples/displaycode/DisplayCodeReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/googleanalytics/simple
https://storage.googleapis.com/www.reactjava.io/examples/displaycode/DisplayCodeReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/googleanalytics/reportdata
https://storage.googleapis.com/www.reactjava.io/examples/displaycode/DisplayCodeReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/helloworld/App.java
https://storage.googleapis.com/www.reactjava.io/examples/helloworld/HelloWorldReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/helloworldsansjsx/App.java
https://storage.googleapis.com/www.reactjava.io/examples/helloworldsansjsx/HelloWorldSansJSXReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/keyboard/App.java
https://storage.googleapis.com/www.reactjava.io/examples/keyboard/KeyboardReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/login
https://storage.googleapis.com/www.reactjava.io/examples/login/LoginReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/materialui/generalpage/App.java
https://storage.googleapis.com/www.reactjava.io/examples/materialui/generalpage/MaterialUIGeneralPageReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/materialui/pricing/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/materialui/theme/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/routing
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/seo/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/simple/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Name Description Sources Demo

statevariable simple A basic example of useState sources demo

handlerbyreference The simple example using the handler by reference sources demo

twosquares Two views managed by state variable sources demo

twosquaresonefile Two views where all classes are in one file sources demo

textfield Demonstrates using a TextField component sources demo

threebythree step01 A simple start to an example in ten steps sources demo

step02 Adding CSS: CSS Selector for Class sources demo

Adding CSS: CSS Selector for Element Id sources demo

Adding CSS: Mixing CSS Selector Types sources demo

step03 Centering the Square on the Screen sources demo

step04 Centering the Square within a Column sources demo

step05 Centering the Square with Material-UI Grid sources demo

step06 Making the App Responsive sources demo

step07 Adding Consistency by Using a Theme sources demo

step08 Adding Interactivity with a Click Handler sources demo

step09 Add Nine Squares to a Board sources demo

step10 HttpClient: Getting a Color from the Cloud sources demo

components Custom Components and Properties sources demo

A Board Component sources demo

The Square as a Custom Component sources demo

state Managing Component State: the square by render() sources demo

Managing Component State: the square by renderCSS() sources demo

progress Managing Component State: showing a progress
indicator

sources demo

ReactJava Developer Guide	 85

https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/statevariable/simple/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/statevariable/simple/handlerbyreference/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/statevariable/twosquares
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/statevariable/twosquaresonefile/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/textfield/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step01/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/threebythree/step02/a/cssclassselector
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/threebythree/step02/b/csselementidselector
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/threebythree/step02/c/cssmixedselectors
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step03/center/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step04/column/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step05/materialui/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step06/responsive/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step07/theme/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step08/interactive/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step09/board/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/step10/httpclient/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/components/App.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/components/Board.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/blob/master/src/io/reactjava/client/examples/threebythree/components/Square.java
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/threebythree/state
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/threebythree/state
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/threebythree/progress
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

tictactoe A simple implementation of tic tac toe. sources demo

timer How to use a timer. sources demo

useeffect Demonstrates the UseEffect hook sources demo

useref Demonstrates the UseRef hook sources demo

websockets Demonstrates use of websockets sources demo

Name Description Sources Demo

ReactJava Developer Guide	 86

http://www.giavaneers.com
http://www.reactjava.io
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/tictactoe
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/timer
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/useeffect
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/useref
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html
https://github.com/giavaneers/reactjavaexamples/tree/master/src/io/reactjava/client/examples/websockets
https://storage.googleapis.com/www.reactjava.io/examples/database/DatabaseReactJava.html

Giavaneers, Inc.

Deploying the ReactJava App
There are a number of ways to deploy a ReactJava App. ISPs and Cloud Service Platforms
provide different types of support, generally falling into two categories: dynamic services and
static services. Dynamic services are those that leverage an active web server of some sort, such
as Apache or Google App Engine. Static services are typically simple network file services, such
as Google Cloud Storage, Firebase or AWS S3. Dynamic services are typically a bit more
complicated to setup and can cost a bit more, but usually not much more. Static services are
very simple to setup and cost little to nothing.

At the time of this writing, Google generally recommends React deployment through dynamic
services, mainly to make it easier to achieve effective SEO. With ReactJava's built-in SEO support
however, static deployment can be both effective and easy.

We recommend deploying to Firebase since it supports secure URLs (https reather than http)
while Google Cloud Storage does not, but if that's not important to you, you might find deploying
to Google Cloud Storage a bit easier.

Deploying to Google Cloud Storage
Deployment to Google Cloud Storage is as simple as dragging your ReactJava App files and
dropping them onto your Google Cloud Storage bucket. Assign a single configuration parameter
on your bucket and that's it, your ReactJava App is active on the web. Let's go through the steps
to get your bucket and deploy your app.

Establishing a Domain
You'll probably want to have your own domain for your App. It's simple to setup with virtually any
ISP such as Google, GoDaddy, and many others. To do so, follow the simple instructions the ISP
provides. Establishing a domain with Google makes the subsequent steps especially easy, but
any of them will work fine.

ReactJava Developer Guide	 87

Deploying the ReactJava App

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Proving Your Domain Ownership
Before you can use your domain name with Google Cloud Storage, you have to prove you own it.

Copying Your Web App Files
Before you can use your domain name with Google Cloud Storage, you have to prove you own it.

Configuring Your Deployment Bucket
Before you can use your domain name with Google Cloud Storage, you have to prove you own it.

Limitations of Deploying to Google Cloud Storage
Although very easy and inexpensive, A website deployed to Google Cloud Storage may not be
deployed to a secure url (https). This is not always a significant problem, but it is generally
preferable to deploy to a secure url. Firebase provides an inexpensive solution that is almost as
easy to deploy.

ReactJava Developer Guide	 88

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Deploying to Firebase
Unlike Google Cloud Storage, Firebase supports deployment of a ReactJava App to a secure url.
It leverages the Firebase CLI to deploy your project files from your computer. Let's go through the
steps to deploy your App.

Creating a Firebase Project
Before you can deploy to Firebase, you need to create a Firebase Project and then register your
App. Follow the directions provided in the Firebase documentation.

Install and Configure the Firebase CLI
Use npm to install the Firebase CLI. From the terminal tab in your IntelliJ project,

> npm i firebase-tools

Then initialize Firebase hosting support.

> firebase init hosting

Choose to 'Use an Existing Project' and then you will be asked to choose your Firebase project
from among any others you may have created.

Next you will be asked to specify your 'public' folder which will be used to deploy from. You
should specify the '..._war_exploded' directory within your out/artifacts directory.

? What do you want to use as your public directory? out/artifacts/MyProject_war_exploded

Then you will be asked whether you wish to configure as a Single Page App. Say yes.

? Configure as a single-page app (rewrite all urls to /index.html)? (y/N) y

Once configuration is complete, two new files will be written to your project directory: '.firebaserc'
and 'firebase.json', and '.gitignore' will be edited to include firebase information.

ReactJava Developer Guide	 89

http://www.giavaneers.com
http://www.reactjava.io
https://firebase.google.com/docs/cli
https://firebase.google.com/docs/web/setup/

Giavaneers, Inc.

Modifying firebase.json
Many hosting behaviors of your deployed app can be configured by editing the autogenerated
"firebase.json" file. There is one change you will typically need to make.

The default behavior assumes your base WebApp html file is named "index.html". By default, the
name of a ReactJava base html file is not "index.html", but is the same as your project name. To
accommodate the difference, assuming your base WebApp html file is named "MyProject.html",
edit the autogenerated "firebase.json" file from

{
 "hosting": {
 "public": "out/artifacts/PlatformsWebsite_war_exploded",
 "ignore": [
 "firebase.json",
 "**/.*",
 "**/node_modules/**"
],
 "rewrites": [
 {
 "source": "**",
 "destination": "/index.html"
 }
]
 }
}

to

{
 "hosting": {
 "public": "out/artifacts/PlatformsWebsite_war_exploded",
 "ignore": [
 "firebase.json",
 "**/.*",
 "**/node_modules/**"
],
 "rewrites": [
 {
 "source": "*",
 "destination": "/MyProject.html"
 }
]
 }
}

Note not only the change from "index.html" to "MyProject.html", but also the change of the
source glob pattern from "**" to "*".

ReactJava Developer Guide	 90

http://www.giavaneers.com
http://www.reactjava.io
https://firebase.google.com/docs/hosting/full-config

Giavaneers, Inc.

Deploying Your App
Use the Firebase CLI from the project terminal tab to deploy your app to the default hosting sites,
[projectId].web.app and [projectId].firebaseapp.com as described in the Firebase documentation.

> firebase deploy

Once deployed, view your app in your browser at both

	 https://[projectId].web.app/MyProject.html

and

	 https://[projectId].firebaseapp.com/MyProject.html

Afterwards, you can also deploy to your custom domain as described in the following section.

Deploying More Than One App from a Project
If your project contains more than one ReactJava App, you will need to create a unique Firebase
project for each. Then use the Firebase CLI to register an alias for each of them:

> firebase use --add

This command prompts you to select a Firebase project and assign a project alias. Alias
assignments are written to the .firebase.rc file inside your project directory.

At any time, you can switch which of the projects to be used as the default:

> firebase use [project alias]

When you want to deploy, you can also specify a specific project rather than the default:

> firebase deploy --project=[project alias]

ReactJava Developer Guide	 91

http://www.giavaneers.com
http://www.reactjava.io
https://firebase.google.com/docs/cli
https://firebase.google.com/docs/hosting/deploying#deploy

Giavaneers, Inc.

Specifying Your Custom Domain
Follow the Firebase instructions for adding your custom domain to your Firebase project, proving
your domain ownership, and then going live.

Example Setup
The following is a DNS setup and associated Firebase Hosting configuration for a custom
domain. The DNS setup is with GoDaddy, but all service providers present an equivalent.

The intention is to not only have Firebase serve access to the custom domain, but also to have
the "www" subdomain be served with the same http/https content as the domain itself.

Internet Service Provider DNS Records

ReactJava Developer Guide	 92

protocol://domain served by firebase

protocol://www.domain served by firebase

domain ownership verification token
used by firebase

http://www.reactjava.io
https://firebase.google.com/docs/hosting/custom-domain#add-domain
https://firebase.google.com/docs/hosting/custom-domain#verify-domain-ownership
https://firebase.google.com/docs/hosting/custom-domain#verify-domain-ownership
https://firebase.google.com/docs/hosting/custom-domain#go-live
http://www.giavaneers.com

Giavaneers, Inc.

Configuration in Firebase Console

ReactJava Developer Guide	 93

subdomain redirected to domain

custom domain served by firebase

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Deploying as a Progressive Web App (PWA)
ReactJava has built-in support allowing you to deploy your application as a Progressive Web
Application (PWA). As such, your application can be installed as any other mobile app, complete
with a launch icon on the mobile desktop just like all the other apps found there. It can also be
installed to your desktop Mac or Windows machine just like any other desktop application.

Five items are required to allow any ReactJava application to be installed as a PWA: you must
add some specific <meta> and <link> entries to the <head> section of your application HTML file,
you must provide a PWA Manifest file in your project tree, you must provide one or more icon
image files to your project tree, you must supply a 'service worker' javascript file to your project
tree, and you must add a small javascript snippet to the head section of your application HTML
file to bind your 'service worker' javascript file. The following sections describe how to do each in
detail.

App HTML File Meta and Link Entries
A variety of <meta> and<link> entries must be included in the <head> section of your application
HTML file. ReactJava will automatically supply you with default entries, but you can modify them
in accordance with changes you make to the default Manifest file. You can use it as is, or edit it to
suit your preferences with the help of a variety of reference aids available on the web.

The PWA Manifest File
The web app manifest is a JSON file that defines how the PWA should be treated as an installed
application, including the look and feel and basic behavior within the operating system. It is called
"manifest.json" and is placed at the same location as the application HTML file.

ReactJava supplies a default manifest file for every application. You may find the same reference
aids used to modify the default Manifest file may be helpful.

ReactJava Developer Guide	 94

https://en.wikipedia.org/wiki/Progressive_web_app
https://en.wikipedia.org/wiki/Progressive_web_app
https://tomitm.github.io/appmanifest/
https://web.dev/learn/pwa/web-app-manifest/
https://tomitm.github.io/appmanifest/
https://tomitm.github.io/appmanifest/
http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Application Icon Image Files
At least one icon image file is required for a PWA to be installable. Typically, it is best to supply
four image files, one at each of the following resolutions: 192x192, 384x384, 512x512, and
1024x1024. ReactJava will automatically supply you with four generic icon image files. You'll want
to replace those with ones that are representative of your specific application.

Service Worker Javascript File
Every PWA must include a javascript file which implements a Service Worker. ReactJava supplies
a default Service Worker javascript file called "serviceworker.js" placed at the same location as the
application HTML file. It is very basic and can be enhanced to meet specific needs.

Service Worker Registration
In order to be installable, every PWA must register its support for a Service Worker. Registeration
is by means of a javascript snippet in the <head> section of the application HTLM file, which links
the app to a Service Worker javascript file. ReactJava supplies your app with a default javascript
snippet registering the default Service Worker javascript file.

Summary of Requirements to Deploy a ReactJava PWA
As detailed in the previous sections, ReactJava will automatically supply you with default
implementations of everything you need to deploy your application as a PWA. At a minimum
however, you'll likely want to include custom replacements for the default application icon files.

Once you have deployed your PWA to the web, as detailed in the Deploying to Firebase section
for example, you are ready to install it as a mobile device application or desktop application as
described in the following sections.

Installing Your PWA on a Mobile Device
The following is a DNS setup and associated Firebase Hosting configuration for a custom
domain. The DNS setup is with GoDaddy, but all service providers present an equivalent.

ReactJava Developer Guide	 95

http://www.reactjava.io
https://googlechrome.github.io/samples/service-worker/basic/
http://www.giavaneers.com

Giavaneers, Inc.

Accommodating PWA Changes to a Mobile App
If you want to update your PWA on your iPhone to accommodate changes made, uninstall the
PWA in the following two steps:

1. Delete the PWA from the Desktop screen as you would any other mobile app.

2. Clear your cookies and keep your history by going to Settings > Safari > Advanced > Website
Data, then tap Remove All Website Data. Alternatively, you can clear your history and cookies,
by going to Settings > Safari, and tap Clear History and Website Data.

Once done, reinstall the PWA as described earlier.

ReactJava Developer Guide	 96

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Installing Your PWA on a Desktop Computer
Once your PWA has been published to the web, it can be installed as a regular app on your
desktop computer. On Mac, navigate to the app on Google Chrome as shown in the figure below:

If all has gone well, and your app is installable, an icon will appear to the right of the navigation
bar.

ReactJava Developer Guide	 97

indicates app is installable

http://www.giavaneers.com
http://www.reactjava.io

Giavaneers, Inc.

Click on the icon and press the 'Install' button.

You will be presented with your app display screen.

ReactJava Developer Guide	 98

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

You will find your app in Applications/Chrome Apps.

And then you can move it to the Dock or anywhere else if you want.

ReactJava Developer Guide	 99

http://www.reactjava.io
http://www.giavaneers.com

Giavaneers, Inc.

Accommodating PWA Changes to a Desktop App
If you want to update your PWA on your desktop Mac to accommodate changes made, uninstall
the PWA in the following two steps:

1. From Google Chrome, enter "chrome://apps/" in the address bar and right-click on the app
icon and select "Remove from Chrome..."

2. Clear the Chrome browser cache.

Once done, reinstall the PWA as described earlier.

ReactJava Developer Guide	 100

http://www.giavaneers.com
chrome://apps/
http://www.reactjava.io

