
Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based
View Synthesis

ANONYMOUS AUTHOR(S)

Interactive webdemo at https://binary-opacity-grid.github.io

Fig. 1. Our method reconstructs triangle meshes from multi-view images and is able to capture fine geometric detail such as leaves, branches and grass (left).
At the same time our meshes are compact enough for real-time view synthesis on a Google Pixel 8 Pro (right).

While surface-based view synthesis algorithms are appealing due to their low
computational requirements, they often struggle to reproduce thin structures.
In contrast, more expensive methods that model the scene’s geometry as a
volumetric density field (e.g. NeRF) excel at reconstructing fine geometric
detail. However, density fields often represent geometry in a “fuzzy” manner,
which hinders exact localization of the surface. In this work, we modify
density fields to encourage them to converge towards surfaces, without
compromising their ability to reconstruct thin structures. First, we employ
a discrete opacity grid representation instead of a continuous density field,
which allows opacity values to discontinuously transition from zero to one
at the surface. Second, we anti-alias by casting multiple rays per pixel, which
allows occlusion boundaries and subpixel structures to be modelled without
using semi-transparent voxels. Third, we minimize the binary entropy of
the opacity values, which facilitates the extraction of surface geometry by
encouraging opacity values to binarize towards the end of training. Lastly,
we develop a fusion-based meshing strategy followed by mesh simplification
and appearance model fitting. The compact meshes produced by our model
can be rendered in real-time on mobile devices and achieve significantly
higher view synthesis quality compared to existing mesh-based approaches.

CCSConcepts: •Computingmethodologies→Reconstruction;Appear-
ance and texture representations; Rasterization.

Additional Key Words and Phrases: Novel View Synthesis, Differentiable
Rendering, Neural Radiance Fields, Multiview-to-3D, Real-Time Rendering

1 INTRODUCTION
Surface rendering is generally considered to be more efficient than
volume rendering, as surface rendering ideally only requires reading
appearance data from a single 3D location, while volume rendering
requires aggregating colors and densities across multiple points
along each ray. Nevertheless, the current highest-quality view syn-
thesis algorithms [Barron et al. 2023; Duckworth et al. 2023; Kerbl

et al. 2023] all use volume rendering. These algorithms tend to rep-
resent even hard surfaces as “fuzzy” volumes, which leads to their
high computational cost. This also holds when applying surface-
promoting regularizers [Barron et al. 2022], see Figure 2.
Recently, BakedSDF [Yariv et al. 2023] has demonstrated that

accurate view synthesis is also possible with a surface-based ap-
proach. However, in contrast to volumetric methods, BakedSDF
struggles with recovering fine geometric detail. One reason for this
is that BakedSDF adopts the currently dominant paradigm for 3D
reconstruction, where the SDF is converted to a fuzzy volume dur-
ing training [Li et al. 2023; Wang et al. 2021; Yariv et al. 2021; Yu
et al. 2022]. This soft conversion from SDF to volumetric density al-
lows the model to “cheat” by representing thin structures in a fuzzy
manner. As a result, during meshing, thin structures often vanish.
Furthermore, during training, the validity of the recovered SDFmust
be ensured using an Eikonal loss, which acts as a smoothness prior
and thereby tends to remove fine geometric detail.
To avoid these weaknesses of SDF-based approches, we investi-

gate an alternative strategy that does not require an Eikonal loss
or soft density conversion. We use a volume-based representa-
tion whose geometry we successively “sharpen” during training.
We achieve this surface convergence by applying the following
three modifications to an existing state-of-the-art radiance field
model [Barron et al. 2023]. First, we employ a discrete opacity grid
instead of a continuous density field, which enables opacity values
to discontinuously transition from zero to one at the surface [Chen
et al. 2023]. Second, we cast multiple rays per pixel to allow our
model to accurately reproduce anti-aliased occlusion boundaries
without using semi-transparent voxels. Third, we explicitly encour-
age hard surfaces by enforcing a binary entropy loss on the opacity
values. As shown in Figure 2, this causes opacity values to binarize

https://binary-opacity-grid.github.io

2 • Anon.

Density Field

di
st

an
ce

 fr
om

 c
am

er
a

Opacity Grid 0

1

Fig. 2. We visualize the volume rendering weights for rays corresponding to
a row of pixels (left, in pink). Density fields such as Zip-NeRF [Barron et al.
2023] tend to represent hard surfaces as semi-transparent volumes despite
their use of surface-promoting regularizers. In contrast, our opacity grid
converges to a hard surface. Note that, since each pixel column visualizes
the volume rendering weights of a single ray, gaps in this visualization do
not indicate the presence of holes in the underlying representation.

to zero or one as training converges, which enables the extraction of
surface geometry. We demonstrate that all three of these elements
are required for accurate reconstruction of subpixel structures.

Furthermore, we present a fusion-based meshing strategy for con-
verting our recovered binary opacity grid into a triangle mesh after
training. The resultingmesh can then be simplifiedwith off-the-shelf
tools to a complexity that is adequate for real-time rendering while
still preserving thin structures. Finally, we equip that mesh with a
lightweight view-dependent appearance model that is well-suited
for real-time viewer applications. Because the standard approach of
UV mapping is problematic for our highly detailed meshes, we sys-
tematically evaluate alternative appearance representations and find
the combination of triplanes with a low-resolution voxel grid as the
preferred method [Reiser et al. 2023]. Our triangle mesh and appear-
ance representation are compact enough to be rendered in real-time
on mobile devices and achieve significantly higher view synthesis
quality compared to existing mesh-based models. As such, our work
represents a step towards closing the gap between surface-based
view synthesis methods and volume-based ones.

2 RELATED WORK
In this section, we review real-time view synthesis methods that
fit a 3D scene representation to calibrated multi-view images using
differentiable rendering. Thesemethods can be subdivided according
to their rendering formulation into volume-based, surface-based
and hybrid methods.
Volume-basedMethods.The highest-quality view synthesis meth-
ods use volume rendering during optimization and inference [Bar-
ron et al. 2023]. Many techniques in this category follow the neural
radiance fields (NeRFs) paradigm [Mildenhall et al. 2020]. NeRFs
associate a density and view-dependent color value with each 3D
point and can be fitted using differentiable volume rendering to
multi-view images with a re-rendering objective. The original NeRF
uses an MLP to represent the scene, which results in slow rendering.
Follow-up works speed-up rendering by using alternative represen-
tations such as voxel grids [Garbin et al. 2021; Hedman et al. 2021;
Yan et al. 2023; Yu et al. 2021], triplanes [Chen et al. 2022; Duckworth
et al. 2023; Reiser et al. 2023], or point-based representations [Kerbl
et al. 2023; Kopanas et al. 2021; Rückert et al. 2022a,b; Xu et al. 2022].

Surface-based Methods. Although recent volume-based methods
such as SMERF or 3DGS are capable of real-time rendering, they are
slower than surface-based alternatives such as BakedSDF, as demon-
strated in Duckworth et al. [2023]. In volume rendering, computing
a pixel’s value requires compositing colors from multiple sampling
locations (SMERF) or primitives (3DGS), while surface rendering
(under typical conditions) only requires reading appearance data
from a single surface location. This is the case for surface-based
view synthesis methods that employ a triangle mesh, which can be
efficiently rendered using hardware-accelerated rasterization.

Early view-synthesis methods used surface geometry from multi-
view stereo [Jancosek and Pajdla 2011; Schönberger et al. 2016] and
modelled appearance by blending between input images [Debevec
et al. 1998; Waechter et al. 2014; Wood et al. 2000]. Later methods
improved visual quality by predicting the appearance of the surface
with a trained neural network [Philip et al. 2021; Riegler and Koltun
2021; Thies et al. 2019]. However, these approaches were constrained
by the quality of the reconstructed surface, as they did not jointly
optimize for appearance and geometry.

MobileNeRF is similar to ourmethod in that it also uses an opacity-
based representation during training [Chen et al. 2023]. The key
difference is that MobileNeRF outputs a coarse proxy mesh equipped
with binary alpha masks, whereas we aim for a traditional mesh,
which enables wider compatibility. To this end, we use a signifi-
cantly higher voxel grid resolution than MobileNeRF and rely on
simplification to obtain a compact mesh. Our fine grid is more ge-
ometrically expressive than MobileNeRF’s alpha-textured coarse
mesh, which is unable to represent multiple close-by sheets of ge-
ometry. During training, we achieve surface convergence using a
combination of supersampling and entropy regularization, while
MobileNeRF differentiably quantizes opacity values.

UNISURF also uses an opacity-based representation [Oechsle et al.
2021]. In addition to volume rendering, UNISURF uses a second
rendering formulation where the 0.5 level set defines the surface
[Niemeyer et al. 2020; Yariv et al. 2020]. We instead obtain hard
surfaces by regularizing opacity values.
BakedSDF optimizes a signed distance function (SDF) that can

be converted into a mesh after training and encodes appearance
as vertex attributes [Yariv et al. 2023]. Similar to VolSDF [Yariv
et al. 2021], NeuS [Wang et al. 2021], or NeuralAngelo [Li et al.
2023], BakedSDF converts signed distances to density values during
optimization, and those densities are used for volume rendering.
Valid SDFs are encouraged through the use of a loss to enforce
the Eikonal constraint, but this constraint is sometimes violated
in favor of reconstructing fine geometric detail in a fuzzy manner.
As a result, thin structures often vanish when “baking” these SDFs
into meshes. In contrast, in our method, there is high agreement
between optimized and extracted geometry, since opacity values
mostly become binary towards the end of the training.
A number of recent papers also focus on fine geometric detail.

NeRFMeshing and NeRF2Mesh both convert a density field into
a triangle mesh [Rakotosaona et al. 2023; Tang et al. 2023]. Since
density fields do not have a clearly defined surface, these methods
compensate for lossy mesh conversion with an additional optimiza-
tion stage. LoD-NeuS uses an error-guided SDF growth strategy to
featurizes conical frusta along each ray [Zhuang et al. 2023].

Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis • 3

DMTet and FlexiCubes differentiably convert an implicit repre-
sentation to a triangle mesh during training. Similar to our method,
any mismatch between optimized and baked geometry is avoided,
but these methods do not scale to high resolutions because they re-
quire that the full grid be processed during each forward pass [Liao
et al. 2018; Munkberg et al. 2022; Shen et al. 2021, 2023].
HybridMethods. Recently, some methods have emerged that use a
combination of surface and volume rendering during inference [Guo
et al. 2023; Turki et al. 2023; Wang et al. 2023]. These models aim to
model the majority of the scene as surface geometry, while modeling
whatever small subsets of the scene that happen to look “fuzzy” as
volumes. Our goal is to expand the portion of the scene that can
be represented as a surface, aiming to use volume rendering as
sparingly as possible to ensure optimal performance.

3 BINARY OPACITY GRIDS
To capture thin structures with a surface-based representation, our
model first uses an opacity-based voxel grid representation. Through
the use of an entropy regularizer and supersampling, our opacity
values become binary (either zero or one) towards the end of training.
This enables us to exactly locate the surface, which is essential for
the conversion of our recovered model into a triangle mesh.

3.1 Representation
During training, we represent the scene with an R × R × R voxel
grid, using a 3D contraction function, as described in Appendix C.
With each voxel, we associate an opacity value 𝛼 ∈ [0, 1] and a
color value c ∈ [0, 1]3, which also depends on the view direction.
To render a pixel, we cast a ray from the camera origin through
the center of the pixel, and this ray is then intersected with all of
the voxels along its path. For each intersected voxel, we query its
opacity value 𝛼𝑘 and its color value c𝑘 . The final pixel value C is
computed using front-to-back alpha compositing:

C =
∑
𝑘

𝛼𝑘
©«
𝑘−1∏
𝑗=1

𝛼 𝑗
ª®¬ c𝑘 . (1)

Following MobileNeRF, we directly parameterize opacity values in
[0, 1], unlike NeRF, which parameterizes density values that are later
converted to opacity values using the distance between sampling
points [Mildenhall et al. 2020]. In contrast to density-based volume
rendering, our formulation does not involve any approximation
since it is a finite sum over values associated with the voxels along
the ray. One advantage of our formulation is that, when all opacity
values are binary, the surface must be located at the first voxel along
the ray with an opacity value of one [Chen et al. 2023].

To represent thin structures, we require a high voxel grid resolu-
tion R on the order of 213. Directly optimizing a voxel grid of this
size is not feasible, as this would require >2 terabytes of memory
to store opacity values alone. Instead, we predict the grid values
using an MLP equipped with a multi-resolution hash encoding as
in Müller et al. [2022]. Note that our overall representation is still
discrete in nature because the MLP is only queried at quantized
positions [Reiser et al. 2023].
The number of voxels that intersect a ray is proportional to the

grid resolution R. Therefore, with a high resolution, it becomes

computationally intractable to query the representation at all inter-
sected voxels. To address this, prior work adopted a coarse-to-fine
strategy in combination with empty space skipping, but it has been
observed that this can cause thin structures to be lost during early
training iterations [Liu et al. 2020; Müller et al. 2022]. For standard
density-based NeRFs, this issue can be circumvented with hierarchi-
cal sampling using a “proposal” MLP [Barron et al. 2022; Mildenhall
et al. 2020]. Howeer, this strategy relies on the assumption that,
at the beginning of training, the volume rendering integral can be
well-approximated with randomly placed samples due to the initial
volume being somewhat smooth. Since opacity-based rendering
does not incorporate the distance between sample points, the finite
sum in Equation (1) can only be poorly estimated with a small num-
ber of randomly placed samples. To circumvent this, we first train a
Zip-NeRF to produce a converged proposal MLP, which encodes the
coarse geometry of the scene [Barron et al. 2023]. When training
our model, we query our representation only at a fixed number of
samples from the distribution predicted by the pre-trained proposal
MLP, whose weights are kept fixed. These samples represent a super-
set of the actual surface locations, which entails that the finite sum
in Equation (1) is computed accurately. If more than one sampled
position falls within the same voxel, only the first position is used,
which ensures that each voxel only contributes at most once.

3.2 Training strategy
Locating a surface and extracting a triangle mesh from an opac-
ity grid requires binary opacity values, but optimizing the opacity
values of our grid with no additional regularization does not natu-
rally result in binarized values at the end of training. To encourage
binary opacity values, we use an entropy loss that pulls opacity
values smaller than 0.5 towards 0 and opacity values larger than 0.5
towards 1. We apply this loss to the opacity values 𝛼𝑘 of all voxels
sampled along each ray:

Lent =
1
𝑘

∑
𝑘

H(𝛼𝑘), (2)

where H is the binary entropy function:

H(𝑝) = −𝑝 log2 (𝑝) − (1 − 𝑝) log2 (1 − 𝑝). (3)

This alone, however, is not sufficient to accurately reconstruct
fine geometric detail. This is because, in a properly anti-aliased
image (such as the photographs we use as inputs), each pixel’s value
is the integral of all light within the cone associated with that pixel.
Consider the case of a “mixed pixel” at an occlusion boundary,

where a pixel’s value depends on light emitted from both a fore-
ground object and a background object. In volumetric methods such
as NeRF or 3DGS, such a pixel will be modeling by reconstructing a
semi-transparent region of the foreground object, such that the ray
being cast partially penetrates it and proceeds to the background
object. This correctly yields a reconstructed pixel value that contains
contributions from both the foreground and background objects. But
this use of semi-transparency violates the binary entropy assump-
tion required by our model: if opacity values are all binary, casting
a single ray through the center of a pixel will result in either the
foreground or the background object being struck, and will there-
fore yield an incorrect and aliased pixel intensity (i.e., “jaggies”). It

4 • Anon.

naive meshing volumetric fusion

Fig. 3. Comparison between different meshing strategies. The bottom
left image shows a depth map rendered from a mesh that was obtained by
applying the meshing strategy from Yariv et al. [2023] to our representation.
Geometry is instantiated at all visible voxels with an opacity value of 1
that are sampled by the proposal MLP in any training view. This leads to
numerous floating artifacts, as infrequently sampled voxels in free space
are severely underconstrained by the training loss. The bottom right shows
that these underconstrained voxels can be effectively filtered by running
volumetric fusion on depth maps rendered from our model. This filtering
step also fully preserves thin structures, as can be seen in the top image.

is therefore infeasible to accurately reconstruct these mixed pixels
using binary opacity values, assuming a single ray is cast for each
pixel. To correctly disambiguate the contributions from multiple
surfaces, we therefore cast multiple rays per pixel during training.
More specifically, we uniformly sample 16 sub-rays within the foot-
print of each pixel. After rendering each sub-ray, the final pixel
value is computed as the arithmetic mean of the subpixel values.
We observe that supersampling produces a significant improvement
in geometric quality, especially regarding the reconstruction of thin
structures, which often cover less than a single pixel.

4 MESH CONVERSION
After optimization, we convert the recovered binary opacity grid
into a triangular mesh — the most ubiquitous and practical repre-
sentation for geometry in computer graphics. If done naïvely, this
conversion leads to a mesh consisting of billions of tiny cubes, which
is prohibitively large for real-time rendering. To mitigate this, we
design a simple and scalable baking pipeline that outputs a mesh
that can be simplified using off-the-shelf tools.

4.1 Volumetric Fusion for Outlier Removal
The most basic strategy for converting our binary occupancy grid
representation into a triangle mesh is to simply instantiate a surface
quad between every pair of voxels with opposing opacity values.
This works poorly, because the opacity values of voxels in free space

are completely unconstrained, as these voxels are never sampled
during training. Similarly, occluded space is not constrained by the
re-rendering objective, which leads to arbitrary opacity values in the
interior of objects. Therefore this strategy results in the creation of
many random surfaces, which are either distracting floating artifacts
in front of objects or invisible but computationally-wasteful pseudo-
geometry in the interior of objects.

A better strategy is to incorporate the proposal MLP that encodes
which opacity values are constrained by the training objective. Prior
work does this by rendering all training views using the proposal
MLP [Reiser et al. 2023; Yariv et al. 2023] and then only instantiating
surfaces in the vicinity of voxels that contribute to rendering of
any pixel. This leads to the filtering of unconstrained areas, since
only parts of the scene that are not occluded and sampled by the
proposal MLP and thus receive supervision are considered for mesh-
ing. However, in our model, this strategy still produces a significant
number of floating artifacts, as can be seen in the bottom left image
of Figure 3. This is because some voxels are severely undercon-
strained, as they are not consistently sampled by the proposal MLP
during training. In other words, during training, some voxels are
only sampled in a fraction of the training views that observe a voxel.
These underconstrained voxels may get erroneously assigned an
opacity value of 1 despite being far from any surface. Since these
voxels are still sampled in some of the training views, they are in-
correctly appended to the final mesh. To filter these false positives,
we employ volumetric fusion [Curless and Levoy 1996] as described
in Appendix A. The bottom right image of Figure 3 demonstrates
the effectiveness of volumetric fusion for removing outliers.

Another important motivation for using volumetric fusion is that
it outputs a dense implicit representation of the scene. As shown
in Curless and Levoy [1996], this implicit representation can be
converted into a hole-free mesh, which is the preferred input for
most mesh simplification algorithms. Before conversion to a mesh
with marching cubes, we filter the implicit representation with a
small Gaussian blur with 𝜎 = 1 to remove geometric noise in the
underconstrained outer parts of the scene.

4.2 Simplification and Visibility Culling
To produce a more compact representation, we simplify the mesh
with an off-the-shelf tool based on quadric edge collapse decima-
tion [Garland and Heckbert 1997]. We found this approach to dra-
matically simplify our meshes while still preserving thin structures.
We explicitly simplify the mesh in far-away regions more aggres-
sively, as described in Appendix C. After simplification, we cull
triangles that are not visible from any training camera, which leads
to another significant reduction in the number of triangles. Only
using the training cameras’ poses for visibility estimation leads to
holes in the mesh that become apparent during novel view synthe-
sis. To combat this, we augment the set of camera poses used for
visibility estimation: we create additional poses by adding randomly
sampled offsets and rotations to the poses of the training cameras,
as described in Appendix C. We find that it is crucial to perform
culling after simplification, as mesh simplification methods tend to
not be robust to the numerous small holes introduced by culling.

Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis • 5

5 VIEW-DEPENDENT APPEARANCE FOR MESHES
To enable view synthesis we need a view-dependent appearance
model for our reconstructedmesh. To this end, we evaluate a number
of potential representations and encodings for view-dependent color,
with a focus on options that are suited for real-time rendering.

5.1 Spatial Parameterization
We begin by exploring parameterizations which efficiently map
positions on our mesh to coefficients that encode appearance.
UV mapping. UV texture maps are the most ubiquitous represen-
tation for appearance. However, we found that current UV mapping
tools cannot deal well with the complexity of our input mesh, which
contains a lot of fine geometric detail (though concurrent work such
as Srinivasan et al. [2023] may provide a viable path).
Vertex Attributes. Prior mesh-based view synthesis methods like
Yariv et al. [2023] store appearance coefficients at vertex attributes
on the mesh and then interpolatie them across each face. Unfortu-
nately, this requires the vertex density to be higher than the desired
texture density, which results in prohibitively large and expensive
meshes. This is not the case for us, as our meshes are drastically
simplified, leading to large triangles in geometrically simple regions.
VolumeTextures.We can directly associate a color value with each
3D position using a 3D volume texture. A simple way to encode a
volume sparsely is to subdivide the volume into blocks of D3 voxels
and store only the nonempty blocks [Hedman et al. 2021]. The choice
of the block sizeD involves a trade-off: A small block size yields high
compactness, but results in poor data locality, which leads to slow
rendering. A large block size comes with highmemory consumption,
since any block that contains a single surface-adjacent voxel must be
allocated. This also holds for alternative sparse data structures such
as octrees [Benson and Davis 2002] or spatial hashing [Lefebvre and
Hoppe 2006], since they equally depend on blocking for fast access.
Triplanes and Low-resolution Voxel Grid. Recently, it has been
shown that volume textures can be encoded compactly with a com-
bination of triplanes and a low-resolution voxel grid [Reiser et al.
2023]. Both the triplanes and the low-resolution voxel grid are cache-
friendly, leading to fast random access.
Table 1 shows that volume textures yield the highest quality,

followed by the combination of triplanes and low-resolution voxel
grid. The gap to vertex attributes is more pronounced, which you can
also see in Figure 4: vertex attributes look blurry in geometrically
simple regions. Finally, while the triplane and grid combination uses

Table 1. Comparison between representations for mesh appearance on
gardenvase. Replacing vertex attributes by a grid-based representation
leads to higher quality. However, the sparse voxel grid representation leads
to a high memory consumption (VRAM). At a slight loss of quality, the
“triplane + voxel” option is considerably more compact, while having the
fastest rendering among all alternatives.

PSNR ↑ SSIM ↑ LPIPS ↓ VRAM ↓ FPS ↑
vertex attributes 25.58 0.771 0.211 97 261
volume textures 26.25 0.820 0.143 4513 169
triplane + voxel 26.02 0.807 0.157 629 477
offline 26.86 0.830 0.135 – –

Ground truth BakedSDF, vertex aributes BakedSDF++, triplane + voxel

Ours, vertex aributes Ours, sparse voxel grid Ours (final), triplane + voxel

Fig. 4. Comparison between different representations for mesh ap-
pearance. Replacing vertex attributes with a grid representation leads to
sharper textures. There is almost no difference between “voxel grid” and the
cheaper alternative “triplane + voxel”.

less memory than and is much faster than volume textures, these
representations look nearly identical in Figure 4.

5.2 View-Dependence
We also investigate several encodings for view-dependent color:
spherical harmonics and spherical Gaussians, which are estab-
lished formats for view-dependent colors in real-time view synthesis
systems [Fridovich-Keil et al. 2022; Yariv et al. 2023; Yu et al. 2021],
and neural feature vectors that get decoded to a view-dependent
color with a small MLP [Hedman et al. 2021]. As can be seen in
Table 2, spherical Gaussians deliver the highest quality, while only
requiring 24 bytes instead of 27 bytes per texel compared to spherical
harmonics. To fairly compare neural feature vectors with spheri-
cal Gaussians, we choose a 24-dimensional neural feature vector
to match memory consumption and bandwidth requirements. Our
decoder uses the same architecture as other recent real-time view
synthesis systems [Chen et al. 2023; Duckworth et al. 2023; Hedman
et al. 2021; Reiser et al. 2023]. Even with a large neural feature vector,
this underperforms the non-neural baselines. As such, in our model,
we use spherical Gaussians with the triplane and low-resolution
grid combination, which gives the best trade-off between rendering
speed, quality and memory consumption.

5.3 Real-Time Implementation
We implement a prototype web viewer for our representation based
on Three.js. Since our meshes contain many tiny structures, anti-
aliasing (AA) is critical during rendering. To avoid the computa-
tional expense of supersampling anti-aliasing (SSAA), we implement
temporal anti-aliasing (TAA) [Yang et al. 2020], which amortises
sampling across time and only needs a single sample per pixel per
frame, as described in Appendix D. We find that the quality of our

Table 2. Comparison between view-dependency encodings on gardenvase
using our combination of triplanes and low-resolution voxel grid.

PSNR ↑ SSIM ↑ LPIPS ↓ bytes ↓
Spherical Gaussians 26.02 0.807 0.157 24
Spherical Harmonics 25.65 0.797 0.166 27
8-dim. Neural Feature 25.18 0.781 0.179 8
24-dim. Neural Feature 25.72 0.798 0.164 24

6 • Anon.

Ground truth MobileNeRF BakedSDF Ours SMERF 3DGS
Fig. 5. Our method narrows the quality gap between surface-based and volume-based methods when it comes to the reconstruction of thin structures.

TAA is on par with the significantly more expensive SSAA, even
when capturing frames under motion.

6 EXPERIMENTS
We conduct experiments on the indoor and outdoor scenes of the
challenging dataset from Mip-NeRF 360 [Barron et al. 2022], where
we compare our method in terms of quality, rendering speed, mem-
ory consumption, and storage impact to a range of volume-based
and surface-based alternatives. We additionally conduct an abla-
tion study to illustrate how our individual components contribute
towards accurately reconstructing thin structures.

6.1 Test-time Anti-Aliasing
Using anti-aliasing for test-time rendering is crucial for high quality,
as evidenced by Table 5. To this end, we study in our setting whether
SSAA can be replaced by cheaper TAA without negatively affecting
view synthesis quality. For this comparison, we always employ our
previously-detailed 16× supersampling strategy during training and
only vary the anti-aliasing algorithm used for test-time rendering.
Since TAA may introduce blur under motion, we also measure the
quality of images that were captured after having moved the camera
over a fixed number of frames to the target pose. As Table 5 shows,
TAA reaches comparable quality with the more expensive SSAA
even when the camera is moving, making it a viable choice for our
viewer application.

6.2 Comparison with BakedSDF
We compare with BakedSDF — the state-of-the-art for real-time,
mesh-based view synthesis — in all scenes from Mip-NeRF 360 [Bar-
ron et al. 2022]. To disentangle whether differences in rendering
quality between BakedSDF and our method stem from geometry or
appearance, we also fit our best-performing appearance model (see
Section 5) to the meshes from BakedSDF, i.e., we encode appear-
ance using a combination of triplanes and low-resolution voxel grid
instead of vertex attributes. For a fair comparison, we also use the
same supersampling strategy for both BakedSDF and our method.
We call this improved version BakedSDF++.

As can be seen in Figure 4, fitting our own appearance model to
the meshes from BakedSDF leads to sharper textures, since with
the combination of triplanes and low-resolution voxel grid, texture
resolution is not bounded by vertex density. This indicates that this

Table 3. Quantitative results of our model on the outdoor and indoor scenes
from mip-NeRF 360 [Barron et al. 2022], with evaluation split for volume-
based and surface-basedmethods. Metrics not provided by a baseline are
denoted with “–”. The best metric within each family is shown in bold.

Outdoor Scenes Indoor Scenes
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Instant-NGP [2022] 22.90 0.566 0.371 29.15 0.880 0.216
MERF [2023] 23.19 0.616 0.343 27.80 0.855 0.271
3DGS [2023] 24.64 0.731 0.234 30.41 0.920 0.189
Zip-NeRF [2023] 25.68 0.761 0.208 32.65 0.929 0.168
Shells [2023] 23.17 0.606 0.389 29.19 0.872 0.285
SMERF [2023] 25.32 0.739 0.232 31.32 0.917 0.186
Mobile-NeRF [2023] 21.95 0.470 0.470 – – –
BakedSDF [2023] 22.47 0.585 0.349 27.06 0.836 0.258
Ours (SSAA) 23.94 0.680 0.263 27.71 0.873 0.227

Table 4. Rendering speed comparison in frames per second. Our method is
significantly faster than volume-based and surface-based baselines and
is the only method capable of real-time rendering on our test smartphone.

Device Smartphone Laptop Desktop
Resolution 400 × 750 1280 × 720 1920 × 1080
MERF [2023] 10 21 113
3DGS [2023] – – 176
BakedSDF [2023] 19 81 412
Ours (TAA) 67 448 927

representation might be a viable alternative to vertex attributes even
for dense meshes as produced by BakedSDF.
More importantly, as shown in Figure 6, our method is signifi-

cantly better than BakedSDF at reconstructing thin structures, which
are often absent for this baseline. Furthermore, Table 6 shows that
our method outperforms BakedSDF++ in all key metrics, highlight-
ing that our meshes are better suited for view synthesis than the
meshes from BakedSDF.

6.3 Comparison with other Baselines
We also compare our method with a broader set of baselines in terms
of quality and rendering speed. We benchmark the volume-based
baselines MERF and 3DGS and the surface-based method BakedSDF
on a Google Pixel 8 Pro smartphone, a MacBook M1 Pro (2022)
laptop and a desktop equipped with an NVIDIA RTX 3090 graphics
card. We report the harmonic mean of frames per second (FPS)

Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis • 7

Table 5. Comparison between test-time anti-aliasing algorithms on the
outdoor scenes from the mip-NeRF 360 dataset [Barron et al. 2022]. TAA
achieves nearly the same fidelity as significantly more expensive SSAA.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↓
SSAA 23.94 0.680 0.263 50
TAA, stationary 24.00 0.680 0.266 448
TAA, under motion 23.92 0.676 0.270 448
No AA 23.26 0.652 0.287 477

Table 6. Comparison between BakedSDF, an improved version of BakedSDF
(BakedSDF++) and our method on the outdoor scenes from mip-NeRF
360 [Barron et al. 2022]. Our method achieves higher view synthesis quality
than BakedSDF++, which indicates that our compact meshes are better
suited for view synthesis than BakedSDF’s meshes.

PSNR ↑ SSIM ↑ LPIPS ↓ #faces ↓
BakedSDF 22.47 0.585 0.349 40M
BakedSDF++ 22.50 0.612 0.315 40M
Ours (SSAA) 23.94 0.680 0.263 13M

Table 7. Quantitative results for geometric ablations on the outdoor scenes
from the mip-NeRF 360 dataset [Barron et al. 2022].

PSNR ↑ SSIM ↑ LPIPS ↓
(a) No supersampling 23.38 0.645 0.292
(b) No entropy loss 23.21 0.635 0.293
(c) R = 2048 instead of R = 8192 22.44 0.582 0.343
Ours (SSAA) 23.94 0.680 0.263

on the outdoor scenes of the Mip-NeRF 360 dataset [Barron et al.
2022]. In terms of rendering speed, our mesh-based representation
outperforms all volume-based baselines, see Table 4. In terms of
quality metrics, our method still lags behind the most recent volume-
based baselines, as can be seen in Table 3. However, the quality gap
between surface-based and volume-based methods is significantly
reduced, especially when it comes to the reconstruction of thin
structures, as can be seen in Figure 5.

6.4 Geometry Ablations
To investigate which elements contribute the most to geometric
quality, we conduct an ablation study on the outdoor scenes from
mip-NeRF 360 [Barron et al. 2022]. We focus here on the training of
the initial opacity grid, which determines the quality of the mesh.

We train a variant of our model without supersampling (a). In this
case, we only disable supersampling during training of the binary
occupancy grid, but we still use supersampling for fitting the mesh
appearance model and for computing quality metrics. This isolates
the effect supersampling has on the quality of the obtained mesh.
As shown by the top row of Figure 7, thin structures are hard to
recover well without casting multiple rays per pixel during training.
Next, we train a variant of our model without the entropy loss

(b). Since for this model, many opacity values do not become binary
during the course of training, we define depth as the distance to
the first voxel along the ray with an opacity value greater than 0.5.
Similar to (a), the effect of this is most pronounced for very thin
structures such as the ones shown in Figure 7.

Finally, we decrease the resolution R of the binary opacity grid (c).
For this experiment, we only decrease the resolution of the initial
binary opacity grid, but we use the same resolution of triplanes
and the low-resolution voxel grid during mesh appearance fitting
as for the full model. This isolates the effect geometric resolution
has on mesh quality. As can be seen in Figure 7, a high resolution is
crucial for reconstructing thin structures. Quantitative results for
these ablations are given in Table 7.

6.5 Storage Analysis
Finally, we study how the individual components of our representa-
tion contribute to disk storage and memory consumption. We split
our representation into a mesh and an appearance model. As we
have shown experimentally, reconstructing thin structures requires
a high grid resolution. As can be seen in Table 8, without any further
processing, this leads to meshes with billions of faces, resulting in
an impractical storage requirement of over 20 GiB. However, using
mesh simplification and culling, the size of the mesh can be reduced
by a factor of 100 to around 200 MiB. This results in the overall size
of the representation being dominated by the appearance model,
which occupies around 76% of the overall storage.

6.6 Limitations and Future Work
Training-time supersampling adds a large computational overhead.
The reconstruction of the underconstrained background of the scene
is often highly noisy, which significantly increases the size of our
meshes. This could potentially be mitigated with a smoothness reg-
ularizer. The concurrent work Nuvo presents a UV mapping method
that is suited for high-detail meshes such as ours [Srinivasan et al.
2023]. Replacing our appearance representation with UV textures
and obtaining more compact meshes using smoothness regulariza-
tion could lead to further, significant speed-ups andmemory savings.
Finally, we found the quality difference between our approach and
volume-based methods larger in the indoor scenes. We attribute this
to changes in illumination (e.g. shadows) between images that are
difficult to capture on surfaces with a low-capacity view-dependence
model. Indeed, we found a large offline view-dependence network to
yield significantly higher quality in these scenes. The interpolated
view-dependence networks from SMERF [Duckworth et al. 2023]
seem like a promising real-time alternative.

7 CONCLUSION
We have presented the first mesh-based view synthesis algorithm
that is capable of reproducing subpixel structures in the input im-
ages by employing a high-resolution opacity grid combined with
supersampling and a binary entropy loss. In contrast to volume-
based alternatives, our method renders in real-time on affordable
smartphones. Compared to BakedSDF, the previous state-of-the-art
in mesh-based view synthesis, our method yields 3 times more com-
pact meshes and achieves 1.46 dB higher PSNR in outdoor scenes.

REFERENCES
Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).
Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. ICCV (2023).

8 • Anon.

David Benson and Joel Davis. 2002. Octree textures. ACM Transactions on Graphics
(TOG) (2002).

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. Tensorf:
Tensorial radiance fields. In European Conference on Computer Vision. Springer,
333–350.

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. 2023.
MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field
Rendering on Mobile Architectures. CVPR (2023).

Brian Curless and Marc Levoy. 1996. A Volumetric Method for Building Complex
Models from Range Images. SIGGRAPH (1996).

Paul Debevec, Yizhou Yu, and George Borshukov. 1998. Efficient view-dependent
image-based rendering with projective texture-mapping. EGSR (1998).

Claude E Duchon. 1979. Lanczos filtering in one and two dimensions. Journal of Applied
Meteorology and Climatology (1979).

Daniel Duckworth, Peter Hedman, Christian Reiser, Peter Zhizhin, Jean-François Thib-
ert, Mario Lučić, Richard Szeliski, and Jonathan T. Barron. 2023. SMERF: Stream-
able Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration.
arXiv:cs.CV/2312.07541

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5501–5510.

Stephan J Garbin,Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin.
2021. FastNeRF: High-Fidelity Neural Rendering at 200fps. ICCV (2021).

Michael Garland and Paul S. Heckbert. 1997. Surface simplification using quadric error
metrics. SIGGRAPH (1997).

Yuan-Chen Guo, Yan-Pei Cao, Chen Wang, Yu He, Ying Shan, and Song-Hai Zhang.
2023. VMesh: Hybrid volume-mesh representation for efficient view synthesis.
SIGGRAPH Asia (2023).

Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul
Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. ICCV
(2021).

Michal Jancosek and Tomas Pajdla. 2011. Multi-view reconstruction preserving weakly-
supported surfaces. CVPR (2011).

Brian Karis. 2014. High Quality Temporal Supersampling. ACM SIGGRAPH Courses:
Advances in Real-Time Rendering in Games.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions
on Graphics (2023).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv (2014).

Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis. 2021. Point-
Based Neural Rendering with Per-View Optimization. In Computer Graphics Forum,
Vol. 40. Wiley Online Library, 29–43.

Sylvain Lefebvre and Hugues Hoppe. 2006. Perfect spatial hashing. ACM Transactions
on Graphics (TOG) (2006).

Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-
Yu Liu, and Chen-Hsuan Lin. 2023. Neuralangelo: High-Fidelity Neural Surface
Reconstruction. CVPR (2023).

Yiyi Liao, Simon Donne, and Andreas Geiger. 2018. Deep marching cubes: Learning
explicit surface representations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2916–2925.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural Sparse Voxel Fields. NeurIPS (2020).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. ECCV (2020).

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. (2022).

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex
Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting Triangular 3D Models,
Materials, and Lighting From Images. CVPR (June 2022).

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020. Differ-
entiable Volumetric Rendering: Learning Implicit 3D Representations without 3D
Supervision. CVPR (2020).

Michael Oechsle, Songyou Peng, and Andreas Geiger. 2021. UNISURF: Unifying Neural
Implicit Surfaces and Radiance Fields for Multi-View Reconstruction. ICCV (2021).

Julien Philip, Sébastien Morgenthaler, Michaël Gharbi, and George Drettakis. 2021.
Free-viewpoint indoor neural relighting from multi-view stereo. ACM Transactions
on Graphics (TOG) (2021).

Marie-Julie Rakotosaona, Fabian Manhardt, Diego Martin Arroyo, Michael Niemeyer,
Abhijit Kundu, and Federico Tombari. 2023. NeRFMeshing: Distilling Neural Radi-
ance Fields into Geometrically-Accurate 3D Meshes. 3DV (2023).

Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan, Ben Mildenhall, Andreas
Geiger, Jon Barron, and Peter Hedman. 2023. MERF: Memory-Efficient Radiance

Fields for Real-Time View Synthesis in Unbounded Scenes. ACM Trans. Graph.
(2023).

Gernot Riegler and Vladlen Koltun. 2021. Stable View Synthesis. CVPR (2021).
Darius Rückert, Linus Franke, and Marc Stamminger. 2022a. Adop: Approximate

differentiable one-pixel point rendering. ACM Transactions on Graphics (ToG) 41, 4
(2022), 1–14.

Darius Rückert, Yuanhao Wang, Rui Li, Ramzi Idoughi, and Wolfgang Heidrich. 2022b.
Neat: Neural adaptive tomography. ACM Transactions on Graphics (TOG) 41, 4
(2022), 1–13.

Marco Salvi. 2016. An excursion in temporal supersampling. Game Developers Confer-
ence.

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
2016. Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV (2016).

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep
Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Syn-
thesis. NeurIPS (2021).

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, ZianWang, Wenzheng
Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. 2023. Flexible Isosurface
Extraction for Gradient-Based Mesh Optimization. ACM Trans. Graph. (2023).

Pratul P. Srinivasan, Stephan J. Garbin, Dor Verbin, Jonathan T. Barron, and Ben
Mildenhall. 2023. Nuvo: Neural UV Mapping for Unruly 3D Representations. arXiv
(2023).

Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding, Jingdong Wang,
and Gang Zeng. 2023. Delicate Textured Mesh Recovery from NeRF via Adaptive
Surface Refinement. ICCV (2023).

Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2019. Deferred Neural Rendering:
Image Synthesis using Neural Textures. ACM Transactions on Graphics (TOG) (2019).

Haithem Turki, Vasu Agrawal, Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder,
Deva Ramanan, Michael Zollhöfer, and Christian Richardt. 2023. HybridNeRF: Effi-
cient Neural Rendering via Adaptive Volumetric Surfaces. arXiv:cs.CV/2312.03160

Oliver T. Unke and Hartmut Maennel. 2024. E3x: E(3)-Equivariant Deep Learning
Made Easy. arXiv (2024).

Michael Waechter, Nils Moehrle, and Michael Goesele. 2014. Let there be color! Large-
scale texturing of 3D reconstructions. ECCV (2014).

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. NeurIPS (2021).

Zian Wang, Tianchang Shen, Merlin Nimier-David, Nicholas Sharp, Jun Gao, Alexander
Keller, Sanja Fidler, Thomas Müller, and Zan Gojcic. 2023. Adaptive Shells for
Efficient Neural Radiance Field Rendering. ACM Trans. Graph. (2023).

Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H.
Salesin, and Werner Stuetzle. 2000. Surface light fields for 3D photography. SIG-
GRAPH (2000).

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and
Ulrich Neumann. 2022. Point-nerf: Point-based neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5438–5448.

Han Yan, Celong Liu, Chao Ma, and Xing Mei. 2023. PlenVDB: Memory Efficient
VDB-Based Radiance Fields for Fast Training and Rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 88–96.

Lei Yang, Shiqiu Liu, and Marco Salvi. 2020. A Survey of Temporal Antialiasing
Techniques. Computer Graphics Forum (2020).

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of neural
implicit surfaces. NeurIPS (2021).

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P. Srinivasan, Richard
Szeliski, Jonathan T. Barron, and Ben Mildenhall. 2023. BakedSDF: Meshing Neural
SDFs for Real-Time View Synthesis. SIGGRAPH (2023).

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and
Yaron Lipman. 2020. Multiview neural surface reconstruction by disentangling
geometry and appearance. Advances in Neural Information Processing Systems 33
(2020), 2492–2502.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
PlenOctrees for Real-time Rendering of Neural Radiance Fields. ICCV (2021).

Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger.
2022. MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction. NeurIPS (2022).

Yiyu Zhuang, Qi Zhang, Ying Feng, Hao Zhu, Yao Yao, Xiaoyu Li, Yan-Pei Cao, Ying
Shan, and Xun Cao. 2023. Anti-Aliased Neural Implicit Surfaces with Encoding
Level of Detail. SIGGRAPH Asia (2023).

A FUSION ALGORITHM
When converting our trained binary opacity grid into a triangle
mesh, it is crucial to only instantiate geometry in regions that were
sampled by the proposal MLP, since only these regions were su-
pervised during training. This can be achieved by rendering depth

http://arxiv.org/abs/cs.CV/2312.07541
http://arxiv.org/abs/cs.CV/2312.03160

Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis • 9

maps from the training viewpoints using the proposal MLP and
creating surface voxels via unprojection. However, during training,
some voxels may only be sampled in a fraction of the views and
thus have incorrect opacity values. This leads to floating artifacts in
the resulting mesh (see Figure 3 in the main paper).

We use volumetric fusion to filter these underconstrained voxels.
Specifically, for each voxel, we count how for many depth maps
the voxel is observed 1) in free space and 2) on the surface. As
underconstrained voxels appear in very few training views, we
can detect and discard them by only keeping voxels that are more
frequently observed on the surface rather than in free space.

Another important motivation for volumetric fusion is that it out-
puts a dense implicit representation which can easily be converted
into a hole-free mesh — the preferred input for most simplification
algorithms. Consequently, we would like our fusion algorithm to
also label unobserved voxels as “inside” or “outside”. A simple heuris-
tic is to lo label unobserved voxels as “inside” [Curless and Levoy
1996]. However, in rare cases, the proposal MLP does not sample
the surface of an object, which carves large holes into the resulting
mesh. We address this by requiring several views to observe a voxel
in free space before it can be labelled as outside.
This leads to our fusion algorithm. For each voxel, we count:
• S: the number of views where it is observed on the surface.
• F : the number of views where it is observed in front of the
surface, i.e. in free space.

• O: the number of views in which it is observed at all.
Specifically, we project the voxel into each training view where we
obtain a depth value 𝑑 . Then, we increment S if the voxel’s depth is
approximately the same as 𝑑 . We increment F if the voxels’ depth is
smaller than 𝑑 . If the voxel is within the training camera’s frustum,
we increment O. Finally, we label the voxel as "inside" if any of the
following conditions is met:

(1) 𝑠S > F
(2) F < 𝑡 (O)
(3) S = 0 and F = 0
(4) O < 2
We multiply S with a number 𝑠 > 1 to bias the reconstruction

towards surfaces, which helps preserve thin structures. Weighing
S and F equally leads to the erosion of objects, as voxels at object
boundaries are not consistently sampled by the proposal MLP. Rule
(2) is motivated by the fact that sometimes the proposal MLP misses

Table 8. Memory consumption and storage impact of our method. (a) The
dense mesh before simplification, (b) after simplification, (c) after culling.
Simplification and culling are crucial for attaining practical mesh sizes.
Results are averaged over all scenes from mipNeRF-360 [Barron et al. 2022].

(a) Dense Mesh (b) + Simpl. (c) + Culling
Mesh #vertices 606M 9M 7M
Mesh #faces 1208M 18M 10M
Mesh VRAM 20.28 GiB 0.30 GiB 0.19 GiB
Mesh DISK 21.40 GiB 0.32 GiB 0.20 GiB

Appearance VRAM 0.75 GiB 0.75 GiB 0.75 GiB
Appearance DISK 0.65 GiB 0.65 GiB 0.65 GiB

Total VRAM 21.02 GiB 1.05 GiB 0.94 GiB
Total DISK 22.05 GiB 0.97 GiB 0.85 GiB

an entire object altogether. In the unobserved interior of an object,
S will be equal to zero in this case, but since F is nonzero, this leads
to incorrectly labeling the voxel as outside. Rule (2) fixes this by
requiring a minimum number of views that need to observe a voxel
to lie in free space for it to labelled as outside. This threshold needs
to be dependent on then number of views that observe a voxel, since
otherwise sparsely observed voxels are always labelled as inside.
Rule (3) ensures that completely unobserved parts of the scene are
labelled as inside. The optional rule (4) ensures that only voxels are
considered that are observed in at least two views, since parts of
the scene that are only observed by a single camera are inherently
underconstrained and thus only contribute geometric noise. As can
be seen in Figure 3 of the main paper, this algorithm effectively
removes floating artifacts, while preserving thin structures.

B SCALABLE MESH CONVERSION VIA CHUNKING
To capture thin structures with a surface-based approach, a very
high grid resolution of 81923 is required. Processing such a high
resolution grid in one pass requires too much memory. Fortunately,
all of the steps (volumetric fusion, filtering, marching cubes, and
simplification) in our pipeline can be executed in 10243 chunks,
which allows scaling to arbitrary resolutions. To avoid discontinu-
ities at chunk boundaries, we configure the mesh simplification
algorithm to keep boundary vertices intact. The final mesh can then
be computed by concatenating sub-meshes and merging the du-
plicate boundary vertices. To speed up volumetric fusion, we only
process voxels that are sufficiently close to an initial estimate of the
surface. We obtain this initial estimate of the surface by unproject-
ing the depth values contained in the depth maps of all input views.
We then quantize the resulting 3D points based on grid resolution
(81923), which gives us a list of surface voxels. We then subdivide
the scene into 163 blocks and determine for each block whether
it contains a voxel that is maximally 𝐷 = 64 voxels apart from a
voxel in the previously computed list of observed surface voxels.
During fusion we skip blocks that are not marked as alive. Since
we are no longer densely computing the implicit representation, it
is no longer guaranteed that running marching cubes results in a
hole-free mesh, which is the preferred input for most simplification
algorithm. However, we find that with our choice of 𝐷 = 64, only a
moderate number of holes are introduced. These holes are usually
not observed and therefore the quality of the reconstruction does
not suffer. This technique also leads to slightly smaller meshes.

C IMPLEMENTATION DETAILS AND
HYPERPARAMETERS

Architecture. For the proposal MLPs and the MLP that predicts
binary opacity values and view-dependent colors, we closely fol-
low Zip-NeRF’s [Barron et al. 2023] architecture based on a multi-
resolution hash encoding [Müller et al. 2022]. To bound opacity and
color values between 0 and 1, we use a sigmoid activation function.
Following Reiser et al. [2023], during mesh appearance fitting, we
predict the values of the triplanes and low-resolution voxel grid
with a hash grid-equipped MLP. For this MLP, we use the same
architecture as the MLP that parameterizes the binary opacity grid.

10 • Anon.

In unbounded scenes, regions that are only observed from far
away can be represented with a low resolution. To achieve a reso-
lution that smoothly decreases with the distance from the scene’s
center, we apply MERF’s contraction function to each position x
before querying the MLP:

contract(x) =

𝑥 if ∥x∥∞ ≤ 1

𝑥
∥x∥∞ if 𝑥 ≠ ∥x∥∞ > 1(
2 − 1

|𝑥 |

)
𝑥
|𝑥 | if 𝑥 = ∥x∥∞ > 1

(4)

Before applying the contraction function, we scale input coordinates
by a factor of 2.5 to allocate more representation power to the
foreground. For the standalone voxel grid, we use a resolution of
20483. For the combination of triplane and low-resolution voxel
grid, we use a resolution of 20482 and 5123, respectively.
Optimization. For binary opacity grid optimization, we use Adam
[Kingma and Ba 2014] with an initial learning rate of 0.01, a final
learning rate of 0.001 and 25K steps. For mesh appearance optimiza-
tion, we use Adam with an initial learning rate of 0.0005, a final
learning rate of 0.00005 and 100K steps. The learning rate is warmed
up for 2500 steps. For the binary entropy loss, we use a weight of
0.05.
Simplification. For mesh simplification, we need to specify a ratio
𝑅 that controls what fraction of original triangles should be kept.
We want to simplify the background more aggressively than the
foreground, since we find it to be less important for accurate view
synthesis. As detailed in the previous section, simplification is exe-
cuted on a chunk-by-chunk basis. The scene is subdivided into an
83 grid of chunks. We define a chunk as lying in the background
if its center lies outside of the [−1, 1]3 unit cube. For foreground
chunks, we set 𝑅 to 0.03. We simplify backgrounds chunks twice as
aggressively by setting 𝑅 to 0.015. In addition, we make sure that
a background chunk contains at most 0.5M faces by adjusting 𝑅

accordingly.
Visibility Culling. For visibility culling, we not only use the cam-
era poses of the training images, but also generate 6 additional poses
for each training pose by adding random offsets and rotations to the
original pose. Let o be the origin of the training camera let d be the
direction the training camera faces to. We obtain a new origin o by
applying isotropic Gaussian noise. To obtain a new direction d̂, we
use the E3X library [Unke and Maennel 2024] and draw a a uniform
sample from an 𝜖-neighborhood of the the direction vector:

ô ∼ N(o, 𝜎2I)) , (5)

d̂ ∼ U({v ∈ R3 : | |v − d| |2 < 𝜖, | |v| |2 = 1}) . (6)

We find that the additional poses are crucial for avoiding visible
holes in the final mesh.

D TEMPORAL ANTI-ALIASING
We implement our temporal anti-aliasing strategy [Yang et al. 2020]
following industry best practices [Karis 2014]. Namely, we jitter
the projection matrix with a Halton(2, 3) sequence of length 16 and
reproject the previous frame’s color using the current depth buffer.
We then average the reprojected color with the current frame’s
color using an exponentially moving average with a blend factor

of 0.05. To reduce blur from repeated resampling, we use a Lanczos
kernel [Duchon 1979] with a radius of 3 for reprojection. Finally, to
limit ghosting artifacts for disoccluded content, we clip the repro-
jected color using variance-box [Salvi 2016] neighborhood clamping
in the YCoCg color space [Karis 2014].

Since TAA is known to cause blur under motion, we evaluate the
quality of our test set images with a moving camera. Given a target
camera pose, we first extract its “up” vector u and its “left” vector l.
We then translate the camera from an initial position p + 𝑐 (u + l) to
the target position p over a fixed number of frames 𝑇 = 100:

p(𝑡) = p + _𝑐 (u + l) (7)

where _ = 1 − 𝑡
𝑇−1 and the time step 𝑡 ranges from 0 to 𝑇 − 1.

The factor 𝑐 = 0.05 controls how far the initial position is from
the target position. The camera’s rotation is kept fixed during the
entire trajectory. The frame used for computing quality metrics is
captured when the camera has arrived at the target position.

E FRAME RATE BENCHMARKING
We follow the evaluation protocol from Duckworth et al. [2023]
and measure the average frame rate over the scene’s test set camera
poses. Following Duckworth et al. [2023], we render for each cam-
era pose 100 frames and compute the average frame time. Similar
to SMERF, for the browser-based viewer applications (BakedSDF
[Yariv et al. 2023], MERF [Reiser et al. 2023] and our method), we
measure frame rates that exceed the browser’s frame rate limit by
drawing each frame 𝑘 times before scheduling it for display. Follow-
ing SMERF, we measure frame times with three different values of 𝑘 ,
where we choose the initial value for 𝑘 to ensure that frame rate lies
below 60 FPS. We then perform two additional measurements with
larger values for 𝑘 . Finally, for each frame, we report the minimum
average frame time over 𝑘 .

Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis • 11

OursOurs BakedSDFGround truth

OursOurs BakedSDFGround truth

OursOurs BakedSDFGround truth

OursOurs BakedSDFGround truth

bicycle

gardenvase

stump

flowerbed

Fig. 6. Our method retains more geometric detail than BakedSDF. Bottom rows are visualizations of depth maps, for which we do not have ground-truth.

12 • Anon.

Ground truth (a) no supersampling (b) no entropy loss (c) low resolution Full model
Fig. 7. Qualitative results for geometric ablations. Our model’s ability to accurately reconstruct challenging thin structures depends critically on (a)
casting multiple rays per pixel, (b) enforcing the entropy loss, and (c) employing a high resolution grid.

	Abstract
	1 Introduction
	2 Related Work
	3 Binary Opacity Grids
	3.1 Representation
	3.2 Training strategy

	4 Mesh Conversion
	4.1 Volumetric Fusion for Outlier Removal
	4.2 Simplification and Visibility Culling

	5 View-Dependent Appearance for Meshes
	5.1 Spatial Parameterization
	5.2 View-Dependence
	5.3 Real-Time Implementation

	6 Experiments
	6.1 Test-time Anti-Aliasing
	6.2 Comparison with BakedSDF
	6.3 Comparison with other Baselines
	6.4 Geometry Ablations
	6.5 Storage Analysis
	6.6 Limitations and Future Work

	7 Conclusion
	References
	A Fusion Algorithm
	B Scalable Mesh Conversion via Chunking
	C Implementation Details and Hyperparameters
	D Temporal Anti-Aliasing
	E Frame Rate Benchmarking

